
Dynamic Link Library  ••••  Version 3.5 

Solver User's Guide 
 
 
 
 
 
 
 
 

By Frontline Systems, Inc. 
 

#include "frontmip.h" 
#include "frontkey.h" 
#include <stdio.h> 
 
INTARG _CC FuncEval (HPROBLEM lp, INTARG numcols, INTARG numrows, 
   LPREALARG objval, LPREALARG rhs, LPREALARG var, INTARG varone, INTARG vartwo) 
{ 
   objval[0] = var[0] * var[0] + var[1] * var[1]; /* objective */ 
   lhs[0] = var[0] + var[1]; /* constraint left hand side: =  1.0 */ 
   lhs[1] = var[0] * var[1]; /* constraint left hand side: >= 0.0 */ 
   return 0; 
} 
 
int main() /* Solve example constrained nonlinear optimization problem */ 
{ 
   double obj[2]; 
   double rhs[2] = { 1.0, 0.0 }; 
   char sense[2] = "EG"; 
   double matval[4]; 
   double lb[] = { -INFBOUND, -INFBOUND }; 
   double ub[] = { +INFBOUND, +INFBOUND }; 
   long stat, i; 
   double x[2] = {0.0, 0.0 }; 
   double objval, piout[2], slack[2]; 
   HPROBLEM lp; 
   printf("Example NLP problem\n"); 
   lp = loadnlp (PROBNAME, 2, 2, 1, obj, rhs, sense, 
      NULL, NULL, NULL, matval, x, lb, ub, NULL, 4, FuncEval, NULL); 
   optimize (lp); 
   solution (lp, &stat, &objval, x, piout, slack, NULL); 
   printf("Status = %ld  Objective = %g\n", stat, objval); 
   printf("Final values: x[0] = %7g  x[1] = %7g\n", x[0], x[1]); 
   for (i = 0; i <= 1; i++) 
      printf("slack[%ld] = %7g  dual value[%ld] = %7g\n", 
  i, slack[i], i, piout[i]); 
   return 0; 
} 
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SOFTWARE LICENSE 
Unless other license terms are specified in a written license agreement between Frontline Systems, Inc. (“Frontline”) and 
you or your company or institution, Frontline grants only a license to use one copy of the enclosed computer program 
(the “Software”) on a single computer by one person.  The Software is protected by United States copyright laws and 
international treaty provisions.  Therefore, you must treat the Software just like any other copyrighted material, except 
that:  You may store the Software on a hard disk or network server, provided that only one person uses the Software on 
one computer at a time, and you may make one copy of the Software solely for backup purposes.  You may not rent or 
lease the Software, but you may transfer it on a permanent basis if the person receiving it agrees to the terms of this 
license.  This license agreement is governed by the laws of the State of Nevada. 

LIMITED WARRANTY 

THE SOFTWARE IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND.  THE ENTIRE RISK AS TO 
THE RESULTS AND PERFORMANCE OF THE SOFTWARE IS ASSUMED BY YOU.  Frontline warrants only that 
the diskette(s) on which the Software is distributed and the accompanying written documentation (collectively, the 
“Media”) is free from defects in materials and workmanship under normal use and service for a period of ninety (90) days 
after purchase, and any implied warranties on the Media are also limited to ninety (90) days.  SOME STATES DO NOT 
ALLOW LIMITATIONS ON THE DURATION OF AN IMPLIED WARRANTY, SO THE ABOVE LIMITATION 
MAY NOT APPLY TO YOU.  Frontline's entire liability and your exclusive remedy as to the Media shall be, at 
Frontline's option, either (i) return of the purchase price or (ii) replacement of the Media that does not meet Frontline's 
limited warranty.  You may return any defective Media under warranty to Frontline or to your authorized dealer, either of 
which will serve as a service and repair facility. 

EXCEPT AS PROVIDED ABOVE, FRONTLINE DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR 
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND 
FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THE SOFTWARE AND THE MEDIA.  THIS 
WARRANTY GIVES YOU SPECIFIC RIGHTS, AND YOU MAY HAVE OTHER RIGHTS WHICH VARY FROM 
STATE TO STATE. 

IN NO EVENT SHALL FRONTLINE BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING 
WITHOUT LIMITATION DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS 
OF BUSINESS INFORMATION, AND THE LIKE) ARISING OUT OF THE USE OR INABILITY TO USE THE 
SOFTWARE OR THE MEDIA, EVEN IF FRONTLINE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH 
DAMAGES.  BECAUSE SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY 
FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY TO YOU.  
In states which allow the limitation but not the exclusion of such liability, Frontline's liability to you for damages of any 
kind is limited to the price of one copy of the Software and Media. 

U.S. GOVERNMENT RESTRICTED RIGHTS 
The Software and Media are provided with RESTRICTED RIGHTS.   Use, duplication or disclosure by the Government 
is subject to restrictions as set forth in subdivision (b)(3)(ii) of The Rights in Technical Data and Computer Software 
clause at 252.227-7013.  Contractor/manufacturer is Frontline Systems, Inc., P.O. Box 4288, Incline Village, NV 89450. 

THANK YOU FOR YOUR INTEREST IN FRONTLINE SYSTEMS, INC. 
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Introduction 

The Solver Dynamic Link Libraries 
Welcome to Frontline Systems’ Small-Scale Solver Dynamic Link Library (DLL).  
The Solver DLL provides the tools you need to solve linear, quadratic, nonlinear, and 
nonsmooth optimization problems, and mixed-integer problems of varying size.  It 
can be called from a program you write in any programming language, macro 
language, or scripting language for Microsoft Windows that is capable of calling a 
DLL.  Some of the possibilities that will be covered in this User Guide are Microsoft 
Visual C++, Visual Basic, Delphi Pascal, and Fortran Powerstation.  There are many 
others, including Visual Basic Application Edition in each of the Microsoft Office 
applications. 

Frontline offers two Solver DLL product lines with compatible calling conventions:  
the Small-Scale Solver DLL, which handles smaller, “dense matrix” problems, and 
the Large-Scale Solver DLL, which handles larger, “sparse  matrix” problems. 

The Small-Scale Solver DLL handles linear and quadratic programming problems 
with up to 2000 decision variables, depending on the version, and nonlinear and 
nonsmooth optimization problems of up to 400 decision variables.  (Any of the 
variables may be general integer or binary integer.)  It is offered in five different 
configurations that include only the Solver “engines” (linear, quadratic and/or 
nonlinear/nonsmooth) that you need for your application. 

The Large-Scale Solver DLL handles linear and mixed-integer linear programming 
problems of up to 16,384 decision variables.  At present, the Large-Scale Solver DLL 
does not include facilities for solving quadratic, nonlinear, or nonsmooth 
optimization problems, but future versions may include these capabilities. 

Both Solver DLLs are offered in 32-bit versions for Windows 95/98 and Windows 
NT/2000 and in 16-bit versions for Microsoft Windows 3.1.  (You can also run 16-
bit applications, which call the 16-bit Solver DLLs, under Windows 95/98 or NT.) 

The Small-Scale Solver DLL 
Frontline’s Small-Scale Solver DLL is a compact and efficient solver for linear 
programming (LP), mixed integer programming (MIP), and optionally quadratic 
programming (QP) problems of up to 2000 decision variables, depending on the 
version, and smooth nonlinear programming (NLP) problems or nonsmooth 
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optimization problems of up to 400 decision variables and 200 constraints (in 
addition to bounds on the variables). 

The Small-Scale Solver DLL is an enhanced version of the linear, mixed integer and 
nonlinear programming “engine” used in the Microsoft Excel Solver, which was 
developed by Frontline Systems for Microsoft.  This Solver has been proven in use 
over nine years in tens of millions of copies of Microsoft Excel.  Microsoft selected 
Frontline Systems' technology over several alternatives because it offered the best 
combination of robust solution methods, performance and ease of use. 

The Small-Scale Solver DLL is also a “well-behaved” Microsoft Windows Dynamic 
Link Library.  It respects Windows conventions for loading and sharing program 
code. Under Windows NT/2000 or Windows 95/98, the Solver DLL runs in 32-bit 
protected mode and supports preemptive multitasking.  When used under Windows 
3.1, the Solver DLL shares the processor with other applications through Windows 
non-preemptive multitasking.  It also solves the problems of 16-bit Windows memory 
management through use of a “two-level” storage allocator, which draws upon 
Windows global memory resources in an efficient manner. 

The algorithmic methods used in the Small-Scale Solver DLL include: 

• Simplex method with bounds on the variables for linear programming problems 

• Very fast “exact” quadratic method for solving QP problems such as portfolio 
optimization models 

• Generalized Reduced Gradient method for solving smooth nonlinear program-
ming problems 

• Evolutionary Solver (based on genetic algorithms) for solving nonsmooth 
optimization problems 

• Memory-efficient Branch & Bound method for mixed-integer problems 

• Preprocessing and Probing strategies for fast solution of zero-one integer 
programming problems 

• Very fast on “sparse” LP models with fewer nonzero matrix coefficients 

• Automatic scaling, degeneracy control and other features for robustness 

• Sensitivity analysis (shadow prices and reduced costs) for linear, quadratic and 
nonlinear problems 

• Optional objective coefficient and constraint right hand side sensitivity “range” 
information for linear problems 

• Automatic diagnosis of infeasible linear and nonlinear problems, computing an 
Irreducibly Infeasible Subset (IIS) of constraints 

The Large-Scale Solver DLL 
Frontline’s Large-Scale Solver DLL is a state of the art implementation of linear 
programming (LP) and mixed-integer programming (MIP) solution algorithms.  The 
16-bit version of the Large-Scale Solver DLL can handle problems of up to 8,192 
decision variables and 8,192 constraints in addition to bounds on the variables.  The 
32-bit version (which can be called from a 32-bit application under Windows 95/98 
or NT/2000) can handle problems of up to 16,384 variables and 16,384 constraints. 

The Large-Scale Solver DLL efficiently stores and processes LP models in sparse 
matrix form.  It uses modern matrix factorization methods to control numerical 
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stability during the solution of large LP models, where the cumulative effect of the 
small errors inherent in finite precision computer arithmetic would otherwise 
compromise the solution process.  These same methods often result in solution 
speeds far beyond earlier generations of LP solvers.  Thanks to these methods, the 
Large-Scale Solver DLL can readily handle all of the problems in the well-known 
NETLIB test suite – virtually all with the default tolerance settings. 

The Large-Scale Solver DLL is also a “well-behaved” Microsoft Windows Dynamic 
Link Library.  Like the Small-Scale Solver DLL, it respects Windows conventions 
for loading and sharing program code. Under Windows NT/2000 or Windows 95/98, 
the Solver runs in 32-bit protected mode and supports preemptive multitasking. 
When used under Windows 3.1, the Large-Scale Solver DLL shares the processor 
with other applications through Windows non-preemptive multitasking, and draws 
upon Windows global memory resources in an efficient manner. 

The Large-Scale Solver DLL uses many of the best published solution methods and 
has been proven in use on large LP models in industry and government around the 
world.  These algorithmic methods include: 

• Simplex method with two-sided bounds on both variables and constraints 

• Memory-efficient Branch & Bound method for mixed-integer problems 

• Matrix factorization using the LU decomposition, with the Bartels-Golub update 

• Refactorization using dynamic Markowitz methods for speed and stability 

• Steepest-edge techniques which often substantially reduce the number of pivots 

• Sophisticated “crash-like” methods for finding an effective initial basis 

• Basis restart for faster solution of MIP subproblems 

• Automatic row and column scaling, plus control of various algorithm tolerances 

The Large-Scale Solver DLL is described in a separate Solver User’s Guide, which is 
available on request from Frontline Systems.  In the rest of this User’s Guide, the 
term “Solver DLL” refers to the Small-Scale version. 

Which Solver DLL Should You Use? 
The Solver DLL is offered in five different configurations that include only the 
Solver “engines” (linear, quadratic, nonlinear and nonsmooth) that you need for your 
application.  The possible configurations are: 

• Linear (Simplex) Solver only 

• Nonlinear (GRG) plus Nonsmooth (Evolutionary) Solvers only 

• Both Linear (Simplex) Solver and Nonlinear (GRG) plus Nonsmooth 
(Evolutionary) Solvers 

• Linear (Simplex) Solver plus Quadratic and MIP enhancements 

• Both Linear (Simplex) Solver plus Quadratic and MIP enhancements, and 
Nonlinear (GRG) plus Nonsmooth (Evolutionary) Solvers 

Linear Solver 
The linear (LP) Solver is the preferred Solver “engine” for linear programming 
problems.  It uses the Simplex method to solve the problem, which is guaranteed (in 
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the absence of severe difficulties with scaling or degeneracy) to find the optimal 
solution if one exists, or to find that there is no feasible solution or that the objective 
function is unbounded. 

The LP Solver is designed to accept a matrix of coefficients (called matval later in 
this Guide) which allows the Solver itself to compute values for the problem 
functions (objective and constraints).  If you supply the matrix of coefficients, you 
don’t have to write a function (funceval()) to evaluate the problem functions.  In most 
cases, the coefficients are readily available from the data accepted as input or 
computed by your application.  In other situations, the coefficients might not be so 
readily available and you might find it easier to write a funceval() routine.  If your 
Solver DLL includes both the nonlinear (NLP) and LP Solver “engines,” you can ask 
the Solver DLL to compute the matrix of coefficients for you, by calling your 
funceval() routine, and then solve the problem using the faster and more reliable LP 
Solver “engine.” 

Quadratic Solver 
The quadratic (QP) Solver is an extension to the LP Solver which solves quadratic 
programming problems, such as portfolio optimization problems, with a quadratic 
objective function and all linear constraints.  It uses the fast and reliable Simplex 
method to solve a series of subproblems leading to the optimal solution for the 
quadratic programming problem. 

The QP Solver is designed to accept a matrix of coefficients (matval) for the linear 
constraints, and another matrix of coefficients (qmatval) for the quadratic objective 
function.  (In a portfolio optimization problem, the objective function is normally the 
portfolio variance, and the qmatval coefficients are the covariances between pairs of 
securities in the portfolio.) 

If you wish to minimize variance in a portfolio optimization problem, the QP Solver 
is the preferred Solver “engine” since it will be faster and more accurate than the 
NLP Solver.  If, however, you wish to maximize portfolio return and treat portfolio 
variance as a constraint, your problem will not be a QP (since its constraints are not 
all linear) and you will need to use the NLP Solver. 

Nonlinear Solver 
The nonlinear (GRG) Solver can solve smooth nonlinear, quadratic, and linear 
programming problems.  It may also be the easiest-to-use Solver “engine” if it is 
natural for you to describe the optimization problem by writing a function (called 
funceval() later in this Guide) that evaluates the objective and constraints for given 
values of the decision variables. 

However, this generality comes at a price of both speed and reliability:  On smooth 
nonlinear problems, the NLP Solver (like all similar gradient-based methods) is 
guaranteed only to find a locally optimal solution which may or may not be the true 
(globally) optimal solution within the feasible region. 

Moreover, since the NLP Solver treats QP and LP problems as if they were general 
nonlinear problems, it is likely to take considerably more time to solve such 
problems, and it may find solutions which are less accurate or less exact than 
solutions found by the Solver “engine” most appropriate to the task. 

Problems such as poor scaling or degeneracy also cause greater difficulty for the 
NLP Solver than for the QP or LP Solver.  If you have a linear (or quadratic) 
problem, or a mix of nonlinear and linear (or quadratic) problems, we highly 
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recommend that you experiment with each of the Solver “engines” and compare both 
solution time and accuracy of the results. 

Nonsmooth (Evolutionary) Solver 
The nonsmooth (Evolutionary) Solver, based on genetic or evolutionary algorithms, 
is the most general-purpose Solver “engine” in that it makes no assumptions about 
the mathematical form of the problem functions (objective and constraints):  They 
may be linear, quadratic, smooth nonlinear, nonsmooth, or even discontinuous and 
nonconvex functions.  Moreover, for smooth nonlinear problems where the GRG 
Solver is guaranteed to find only a locally optimal solution, the Evolutionary Solver 
can often find a better, globally optimal solution.  Like the nonlinear Solver, it calls a 
function funceval() that you write to evaluate the objective and constraints for given 
values of the decision variables. 

However, this generality comes at a considerable price of both speed and reliability.  
Unlike the Simplex and GRG Solvers which are deterministic optimization methods, 
the Evolutionary Solver is a nondeterministic method:  Because it is based partly on 
random choices of trial solutions, it will often find a different “best solution” each 
time you run it, even if you haven’t changed your problem at all.  And unlike the 
Simplex and GRG Solvers, the Evolutionary Solver has no way of knowing for 
certain that a given solution is optimal – even “locally optimal.”  Similarly, the 
Evolutionary Solver has no way of knowing for certain whether it should stop, or 
continue searching for a better solution – it is forced to rely on tests for slow 
improvement in the solution to determine when to stop. 

Solving Mixed-Integer Problems 
The Branch & Bound method for solving mixed integer programming problems is 
included in all configurations of the Solver DLL.  It can call any of the classical 
Solver “engines” to solve its subproblems – so you can solve integer linear problems 
with the LP Solver, integer quadratic problems with the QP Solver, and integer 
nonlinear problems with the NLP Solver.  (The Evolutionary Solver “engine” handles 
integer variables on its own, so the Branch & Bound method is not used in 
conjunction with it.)  Also, because the NLP Solver (or any similar method) is not 
guaranteed to find the globally optimal solution to any subproblem, the Branch & 
Bound method is not guaranteed to find the true optimal solution to an integer 
nonlinear problem – though it will often find a “good” but not provably optimal 
integer solution.  Solving integer linear problems with the LP Solver, or integer 
quadratic problems with the QP Solver, is an intrinsically faster and more reliable 
process. 

If you have an integer linear problem with many binary or 0-1 integer variables, we 
recommend that you try solving it with a Solver DLL configuration that includes the 
QP Solver.  Packaged with the QP Solver are a set of Preprocessing and Probing 
strategies for linear constraints that often greatly speed up the solution of problems 
with many 0-1 integer variables. 

16-Bit Versus 32-Bit Versions 
The choice of 16-bit versus 32-bit versions of the Solver DLL will probably be 
dictated by the programming language or other tool you are using to write your 
application program.  For example, Visual Basic 3.0 is a 16-bit system which can call 
only the 16-bit Solver DLL, whereas Visual Basic for Applications as shipped with 
Microsoft Office 95, 97 and 2000 can call only the 32-bit versions of the DLL. 
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The 32-bit versions of the Solver DLL takes full advantage of the instruction set 
features of the Intel 386, 486, Pentium and above processors, yielding a speed 
advantage which may be as great as a factor of two on larger problems. 

Support for 16-bit versions of the Solver DLL will be limited in the future.  We 
highly recommend that you use the 32-bit versions of the Solver DLL and develop 
your application for 32-bit platforms such as Windows 95/98 and Windows NT. 

What’s New in Version 3.5 
Version 3.5 of the Solver DLL product line introduces a number of new features 
including the Evolutionary Solver, reentrant versions of the Solver DLL for multi-
threaded applications, routines to support use-based licensing for Web server and 
similar applications, and the ability to read in and solve a linear, quadratic, or mixed-
integer problem written in algebraic notation from a external text file. 

Evolutionary Solver 
The new Evolutionary Solver “engine,” included with the nonlinear GRG Solver in 
Version 3.5 of the Solver DLL, is designed to find good – though not provably 
optimal – solutions for problems where the “classical” gradient methods in the GRG 
Solver are not sufficient.  The GRG Solver assumes that the problem functions 
(objective and constraints) are smooth functions of the variables (i.e. the gradients of 
these functions are everywhere continuous); its guaranteed ability to converge to a 
local optimum depends on this assumption.   In problems with nonsmooth or even 
discontinuous functions, the GRG Solver often has difficulty reaching a solution.  In 
such problems, the Evolutionary Solver – which makes no assumptions about the 
problem functions – can often find a good solution.  Even in smooth nonlinear 
problems, the GRG Solver is guaranteed only to find a locally optimal solution, but it 
may miss a better solution far from the starting point you provide.  The Evolutionary 
Solver has a much better chance of finding the globally optimal solution in such 
problems. 

Multi-Threaded Applications 
Version 3.5 of the Solver DLL is offered in both single-threaded and multi-threaded 
versions.  The single-threaded versions – like all earlier versions of the Solver DLL – 
are serially reusable but not reentrant:  They can solve multiple problems serially, but 
not concurrently, nor can they solve problems recursively, for example where 
computation of the objective or constraints for one optimization problem involves 
solution of another optimization subproblem.  The multi-threaded versions of the 
Solver DLL V3.5 are fully reentrant:  They can solve multiple problems concurrently 
and/or recursively.  They are especially suitable for Web server or Intranet-based 
applications, which may be accessed by many users at unpredictable moments which 
may overlap in time. 

Use-Based Licensing 
With the ability to solve multiple problems concurrently, the Solver DLL Version 3.5 
is being deployed in Web server and similar applications where the number of users 
is unknown in advance, or may become very large.  In such cases, the normal user-
based (or “seat-based”) licensing for multiple copies of the Solver DLL may not be 
appropriate.  To meet this requirement, Frontline Systems has developed alternative 
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use-based licensing terms, which permit any number of users or seats, but which 
monitor the number of uses or calls to the optimizer.  Developers can choose user-
based or use-based licensing.  On either basis, they can prepay for a quantity of 
licenses to bring down the average cost on a steeply declining discount schedule, and 
they can arrange that the total license cost will not exceed a certain fixed amount for 
a period such as a year, or for the lifetime of the application. 

To support use-based licensing, certain configurations of the Solver DLL V3.5 
include the ability to count uses (i.e. calls to the loadlp() or loadnlp() functions, and 
calls to the optimize() or mipoptimize() functions) and report this information both to 
the user and to Frontline Systems.  Use information can be written to a text file or 
emailed to Frontline Systems, either automatically or under the control of the 
application program (via the new getuse() and reportuse() functions.)  

Problems in Algebraic Notation 
Previous versions of the Solver DLL featured the ability to write out a text file 
containing an algebraic description of a linear, quadratic or mixed-integer problem.  
The primary use of this feature was in testing and debugging an application program, 
to ensure that the problem being defined by calls to the Solver DLL routines was in 
fact the problem intended.  Version 3.5 of the Solver DLL features the new lpread() 
function to complement the lpwrite() or lprewrite() functions.  With lpread(), the 
application can read in a problem previously written to disk by lpwrite(), or a 
problem generated in the correct format by another program or via hand editing of 
the text file.  This provides a wide range of new options for saving problems across 
multiple sessions, and solving problems interactively or in combination with other 
programs. 

How to Use This Guide 
This User Guide includes a chapter on installing the Solver DLL files, and a chapter 
providing an overview of the Solver DLL API calls and how they may be used to 
define and solve linear (LP), quadratic (QP), nonlinear (NLP), nonsmooth (NSP), 
and mixed-integer (MIP) programming problems.  It also includes chapters giving 
specific instructions for writing, compiling and linking, and testing application 
programs in four languages: C/C++, Visual Basic, Delphi Pascal, and FORTRAN. 

We highly recommend that you read the installation instructions and the overview of 
the Solver DLL API calls first.  Then you may turn directly to the chapter that covers 
the language of your choice.  Each chapter gives step-by-step instructions for 
building and testing a simple example program – included with the Solver DLL – 
written in that language.  You can use these example programs as a starting point for 
your own applications. 

The chapter “Solver API Reference” provides comprehensive documentation of all of 
the Solver DLL’s Application Program Interface (API) routines.  It covers many 
details besides those features illustrated in the various example applications.  You’ll 
want to consult this chapter as you develop your own application. 

Included with the Solver DLL are source code header files (defining the Solver DLL 
callable routines) and source code for example programs in four languages: C/C++, 
Visual Basic, Delphi Pascal, and FORTRAN. 
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Language Example File Header File 

C/C++ vcexamp1.c, 
vcexamp2.c 

frontmip.h 

Visual Basic vbexamp1.vbp, 
vbexamp2.vbp 

frontmip.bas, 
safrontmip.bas 

Delphi Pascal psexamp.dpr frontmip.pas 

FORTRAN flexamp.for frontmip.for 

For all four languages, the example programs define and solve two optimization 
problems – a simple LP (linear programming) problem, and a simple NLP (nonlinear 
programming) problem. (Note:  If your version of the Solver DLL includes only the 
LP or only the NLP Solver engine, you will be able to solve only one of these two 
problems; the other will display an error message dialog.)  For C/C++ and Visual 
Basic, more extensive examples are included as outlined below.  

For C/C++ and FORTRAN, the example files are text files containing source code; 
the instructions in the appropriate chapters explain how to create a project that will 
compile, link and run the sample programs.  For Visual Basic and Delphi Pascal  – 
which are designed to create forms-oriented applications – a complete project with 
supporting files is included.  These projects create simple forms that display the 
results of solving the two optimization problems when a button is pressed. 

The example programs for C/C++ and Visual Basic provide a total of eleven 
examples of using the Solver DLL.  The first set (source code file vcexamp1.c or VB 
project vbexamp1.vbp) includes five examples:  (1) A simple two-variable LP 
problem, (2) A simple MIP (mixed-integer linear programming) problem, (3) An 
example illustrating the Solver DLL features for diagnosing infeasibility, (4) A 
simple quadratic programming problem, which uses the classic Markowitz method to 
find an efficient portfolio of five securities, and (5) An example using the lpread() 
function to read and solve a problem defined in algebraic notation in an external text 
file. 

The second set (source code file vcexamp2.c or VB project vbexamp2.vbp) includes 
four examples of nonlinear problems, plus two examples of nonsmooth problems:  
(1) A simple two-variable NLP problem, (2) The same NLP problem with an optional 
user-written routine for computing partial derivatives, (3) An example illustrating the 
diagnosis of infeasibility for nonlinear problems, (4) An example showing how you 
can solve a series of linear and nonlinear problems, testing them for linearity, and 
switching between the NLP and LP Solver engines, (5) An example where the 
Evolutionary Solver finds the global minimum of a function with several local 
minima, and (6) An example where the Evolutionary Solver finds the optimal 
solution to a problem with a nonsmooth (discontinuous) objective. 

If you are using the 16-bit version of the Solver DLL, and you are either solving a 
large-scale problem or you wish to use the “callback functions” to gain control during 
the solution process, be sure to read the chapter “Special Considerations for 
Windows 3.x” – even if you are running your 16-bit application under Windows 
95/98 or NT/2000 in Windows 3.x compatibility mode. 

The chapter “Native Windows Applications” provides the C source code of a native 
Windows application, written to the Win16/Win32 API.  This source code can be 
compiled into either a 16-bit or 32-bit application, and run under Windows 3.x, 
Windows 95/98 or Windows NT/2000.  It makes use of the Solver DLL’s callback 
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functions, and takes into account the special considerations for Windows 3.x.  Also 
included in this chapter is the C source code of a simple multi-threaded application 
calling the reentrant version of the Solver DLL, written to the Win32 API. 
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Installation 

Running the Installation Program 
Most versions of the Solver DLL are provided in the form of single executable 
installation program file, such as SolvLP.exe, that can be run to uncompress and 
install all of the Solver DLL files, library and header files, and example source code 
files discussed later in this User Guide.  The name of the executable file reflects the 
configuration of the Solver DLL you ordered from Frontline Systems: 

SolvLP.exe – Linear (Simplex) Solver only 

SolvNp.exe – Nonlinear (GRG) plus Nonsmooth (Evolutionary) Solvers only 

SolvNpLp.exe – Both Linear (Simplex) Solver and Nonlinear (GRG) plus 
Nonsmooth (Evolutionary) Solvers 

SolvLpQp.exe – Linear (Simplex) Solver plus Quadratic and MIP enhancements 

SolvNpLpQp.exe – Both Linear (Simplex) Solver plus Quadratic and MIP 
enhancements, and Nonlinear (GRG) plus Nonsmooth (Evolutionary) Solvers 

Simply run this executable program to install the Solver DLL files into the directory 
structure outlined in the next section (for manual installation).  The installation 
program will prompt you for two pieces of information: 

• An installation password 

• A 16-character license key string, specific to your application(s) 

Both pieces of information are included in the physical package you received from 
Frontline Systems, or they may be provided to you by phone, fax or email.  Carefully 
enter the license key string exactly as given to you – use uppercase for any letters.  If 
you have any questions, please contact Frontline Systems as shown on the inside title 
page of this User Guide. 

Copying Disk Files Manually 
The Solver DLL files can be provided in uncompressed form on floppy disk, so they 
may be copied to a convenient directory on your hard disk with standard Windows 
commands.  We recommend that you create a directory FRONTMIP in your hard 
disk root directory (e.g. c:\frontmip if your hard disk drive letter is c:) and 
copy the entire contents of the distribution floppy disk to this directory.  You can 
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drag and drop the files in the Windows Explorer, or you can use the DOS command 
xcopy a:\*.* c:\frontmip /s.  The resulting directory structure is: 
Frontmip 
 Examples 
  Flexamp 
  Psexamp 
  Vbexamp 
  Vcexamp 
  Win16 
  Win32 
 Help 
 Include 
 Win16 
 Win32 

The Examples subdirectory contains source code for example programs in four 
different languages:  C/C++, Visual Basic, Delphi Pascal, and FORTRAN.  The 
Win16 and Win32 subdirectories within the Examples directory hold compressed 
archives (examples.zip) containing 16-bit and 32-bit executable of the example 
programs, compiled from the source code, plus a compatible version of frontmip.dll. 

The Include subdirectory contains an appropriate header file, declaring the Solver 
DLL entry points, for each language: 

frontmip.h C/C++ header file – reference in your source code 
frontmip.bas Visual Basic header file – add to your VB project 
safrontmip.bas VB header file w/SAFEARRAYs – add to your project 
frontmip.pas Delphi Pascal header file – add to your Delphi project 
frontmip.for FORTRAN header file – reference in your source code 
frontcbi.for FORTRAN header file – use with callback functions  

It also contains a license key file, which declares a character string constant 
containing your own, customized license key: 

frontkey.h C/C++ license key file – reference in your source code 
frontkey.bas Visual Basic license key file – add to your VB project 
frontkey.pas Delphi Pascal license key file – add to your project 
frontkey.for FORTRAN license key file – reference in your source 

The Win16 and Win32 subdirectories contain the Solver DLL and import library 
files.  These files have the same names in each subdirectory, but Win16 contains 16-
bit versions and Win32 contains 32-bit versions of the files: 

frontmip.dll Solver DLL (Dynamic Link Library) executable code 
frontmip.lib Import library – used by linker in C++/FORTRAN 

Directory Paths 
As you write, compile and link, and execute your application program, you will need 
to reference the Solver DLL files mentioned above.  Since only single files are 
needed at each step, you may find it convenient to copy the Solver DLL files to the 
directory where you are building or running your application.  If your application 
may be run from many different directories, you may wish to place the Solver DLL 
file in the c:\windows or c:\windows\system directory in Windows 3.x or 
Windows 95/98, or the c:\winnt\system32 directory (for the 32-bit version of 
the DLL) in Windows NT/2000. 



Dynamic Link Library Solver User's Guide Installation  ••••  17 

• When you compile the program that calls the Solver DLL routines you will 
reference the appropriate header file:  frontmip.h, frontmip.bas, 
safrontmip.bas, frontmip.pas or frontmip.for. 

• If you are using “load-time dynamic linking,” when you link the program that 
calls the Solver DLL routines you will use the import library frontmip.lib.  
If you are using “run-time dynamic linking,” the import library is not used.  Note 
that Visual Basic and Delphi Pascal use run-time dynamic linking. 

• When you execute the program that calls the Solver DLL routines, you will 
reference the dynamic link library file frontmip.dll.  No other files are 
needed at execution time. 

Licensing the Solver DLL 
Please bear in mind that in order to lawfully distribute copies of the Solver DLL 
within your organization or to external customers, or to lawfully use the Solver 
DLL in a server-based application that serves multiple users, you will need an 
appropriate license from Frontline Systems.  Licenses to use and/or distribute the 
Solver DLL in conjunction with your application are available at substantial 
discounts that increase with volume.  As discussed in the Introduction, you have the 
option of choosing either user-based (“seat-based”) or use-based licensing.  Please 
contact Frontline Systems for licensing and pricing information. 

The copy of the Solver DLL that you license, either for development purposes or 
for distribution, is customized for use by your application program(s).  It 
recognizes a specific 16-character license key string which you provide as the 
probname argument to the loadlp() or loadnlp() function.  Without this license key 
string, the Solver DLL will not function – all Solver DLL routines will return without 
doing anything.  It is important that you keep your license key string confidential, and 
use it only in your application programs.  Frontline Systems will treat you as 
responsible for the use of any copies of the Solver DLL that recognize your specific 
license key string. 

Registry Entries for Use-Based Licensing 
If you have chosen use-based licensing, you’ll receive a version of the Solver DLL 
that is designed to count the number of uses (i.e. calls to the loadlp() or loadnlp() 
functions, or calls to the optimize() or mipoptimize() functions) over time, and report 
this information both to you and to Frontline Systems.  To maintain the counts across 
different executions of your application, the Solver DLL uses several entries under a 
single key in the system Registry.  To use the Solver DLL on a given PC (e.g. your 
development system, or a production server), you must first run a supplied program, 
CreateUseKey.exe, to create the Registry key and associated entries. 

To do this, simply select Start Run and type the path of this program (normally 
C:\Frontmip\ CreateUseKey.exe).  Assuming that it successfully creates the 
Registry entries, this program displays a confirming MessageBox.  If run more than 
once on a given PC, it will display a MessageBox noting that the entries already exist 
in the Registry, and it will not modify them.  For complete information on the Solver 
DLL’s Registry key and associated entries, see the description of the getuse() 
function in the chapter “Solver API Reference.” 

During development and testing of your application, you can run the Solver DLL in 
“Evaluation/Test mode,” where it does not counts uses; in this mode, the DLL will 
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not reference the Registry entries, so they need not exist on the development system.  
Once the DLL is placed into production, it should be run in “Use Counting mode,” 
where the Registry entries must be present.  For information on how to set the mode 
in which the Solver DLL runs, consult the section “Use-Based Licensing” in the 
following chapter, “Designing Your Application.” 

On Windows NT and Windows 2000 systems, the CreateUseKey.exe program must 
be run under a user account with privileges to create Registry entries.  Since the 
Solver DLL only updates existing Registry entries, it does not need to run under an 
account with these privileges.  
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Designing Your Application 

Calling the Solver DLL 
This chapter provides an overview of the way your application program should call 
the Solver DLL routines to define and solve an optimization problem.  We’ll use the 
syntax of the C programming language, but the order of calls, the names of routines, 
the arguments, and most other programming considerations are the same in other 
languages. 

You build your application program with a header file, specific to the language you 
are using, which declares the Solver DLL routines, their arguments and return values, 
and various symbolic constants.  At run time, your application program uses dynamic 
linking to load the Solver DLL and call various routines within it.  Details of the 
process of compiling, linking and running your application with the Solver DLL are 
provided in the chapters on the various languages. 

Solving Linear and Quadratic Problems 
The overall structure of an application program calling the Solver DLL to solve a 
linear programming problem is as follows: 
main() 
{ 
/* Get data and set up an LP problem */ 
... 
loadlp(..., matval, ...);       /* Load the problem */ 
optimize(...);                  /* Solve it         */ 
solution(...);                  /* Get the solution */ 
unloadprob(...);                /* Free memory      */ 
... 
} 

Your program should first call loadlp().  This function returns a “handle to a 
problem.”  Then you’ll call additional routines, passing the problem handle as an 
argument.  Optionally, you may call loadquad() to specify a quadratic objective, 
and/or loadctype() to specify integer variables.  Then you call optimize() (or 
mipoptimize(), if there are integer variables) to solve the problem.  To retrieve the 
solution and sensitivity information, call solution().  Finally, call unloadprob() to free 
memory.  This cycle may be repeated to solve a series of Solver problems. 
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When you call loadlp(), you pass information such as the number of decision 
variables and constraints, arrays of (constant) bounds on the variables and the 
constraints, an array of coefficients of  the objective function, and a matrix of 
coefficients (called matval above) of the constraint functions. 

Solving Nonlinear Problems 
In a linear or quadratic problem, you can describe the objective and constraints with 
an array or matrix of constant coefficients; the Solver DLL can determine values for 
the objective and constraints by computing the sums of products of the variables with 
the supplied coefficients.  In a nonlinear problem, however, the problem functions 
cannot be described this way; the coefficients represent first partial derivatives of the 
objective and constraints with respect to the variables, and these derivatives change 
as the values of the variables change.   

Hence, you must write a “callback” function (called funceval() below) that computes 
values for the problem functions (objective and constraints) for any given values of 
the variables.  The Solver DLL will call this function repeatedly during the solution 
process.  You supply the address of this callback function as an argument to 
loadnlp(), which defines the overall nonlinear optimization problem.  You also 
supply arrays for the objective and constraint coefficients (matval), as you do when 
you call loadlp(), but these arrays need not be initialized to specific values – the 
Solver DLL will fill them in when it calls your callback function(s).  The overall 
structure of a program calling the Solver DLL to solve a nonlinear programming 
problem is: 
funceval(...) 
{ 
/* Receive values for the variables, compute values */ 
/* for the constraints and the objective function   */ 
} 

main() 
{ 
/* Get data and set up an LP problem */ 
... 
loadnlp(..., funceval, ...);    /* Load the problem */ 
optimize(...);                  /* Solve it         */ 
solution(...);                  /* Get the solution */ 
unloadprob(...);                /* Free memory      */ 
... 
} 

Your program should first call loadnlp().  Like loadlp(), this function returns a 
“handle to a problem.”  Then you’ll call additional routines, passing the problem 
handle as an argument.  Optionally, you may call loadnltype() to give the Solver 
more information about linear and nonlinear functions in your problem, testnltype() 
to have the Solver determine the loadnltype() information through a numerical test, or 
loadctype() to specify integer variables – defining an integer nonlinear problem.  
Then call optimize() (or mipoptimize(), if there are integer variables) to solve the 
problem.  To retrieve the solution and sensitivity information, call solution().  
Finally, call unloadprob() to free memory.  As with loadlp(), this cycle may be 
repeated to solve a series of Solver problems. 
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Solving Nonsmooth Problems 
You define and solve a problem with nonsmooth or discontinuous functions in much 
the same way as you would for a problem defined by smooth nonlinear functions.  In 
a nonsmooth problem, however, the first partial derivatives of the objective and 
constraints may not be continuous functions of the variables, and they may even be 
undefined for some values of the variables.  Because of this property, the gradient-
based methods used by the nonlinear GRG Solver are not appropriate, and instead the 
Evolutionary Solver “engine” must be used to solve the problem. 

As for smooth nonlinear problems, you write a “callback” function funceval() that 
computes values for the problem functions for any given values of the variables, and 
you supply the address of this function as an argument to loadnlp().  But you cannot 
use the optional jacobian() callback function (described below) to speed up the 
solution of a nonsmooth problem. 

Your program should first call loadnlp(), which returns a “handle to a problem.”  
Then you must call loadnltype(), supplying this problem handle, to tell the Solver that 
some or all of your problem functions are nonsmooth or discontinuous. This can be 
as simple as: 
loadnltype (lp, NULL, NULL); /* nonsmooth problem */ 

You may optionally call loadctype() to specify integer variables – defining an integer 
nonsmooth problem.  Then call optimize() (or mipoptimize(), if there are integer 
variables) to solve the problem.  To retrieve the solution and sensitivity information, 
call solution().  Finally, call unloadprob() to free memory.  This cycle may be 
repeated to solve a series of Solver problems. 

Genetic and Evolutionary Algorithms 
A non-smooth optimization problem generally cannot be solved to optimality, using 
any known general-purpose algorithm.  But the Evolutionary Solver can often find a 
“good” solution to such a problem in a reasonable amount of time, using methods 
based on genetic or evolutionary algorithms.  (In a “genetic algorithm,” the problem 
is encoded in a series of bit strings that are manipulated by the algorithm; in an 
“evolutionary algorithm,” the decision variables and problem functions are used 
directly.  Most commercial Solver products are based on evolutionary algorithms.) 

An evolutionary algorithm for optimization is different from “classical” optimization 
methods in several ways.  First, it relies in part on random sampling.  This makes it a 
nondeterministic method, which may yield different solutions on different runs. 

Second, where most classical optimization methods maintain a single best solution 
found so far, an evolutionary algorithm maintains a population of candidate 
solutions.  Only one (or a few, with equivalent objectives) of these is “best,” but the 
other members of the population are “sample points” in other regions of the search 
space, where a better solution may later be found.  The use of a population of 
solutions helps the evolutionary algorithm avoid becoming “trapped” at a local 
optimum, when an even better optimum may be found outside the vicinity of the 
current solution. 

Third – inspired by the role of mutation of an organism’s DNA in natural evolution – 
an evolutionary algorithm periodically makes random changes or mutations in one or 
more members of the current population, yielding a new candidate solution (which 
may be better or worse than existing population members).  There are many possible 
ways to perform a “mutation,” and the Evolutionary Solver actually employs three 
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different mutation strategies.  The result of a mutation may be an infeasible solution, 
and the Evolutionary Solver attempts to “repair” such a solution to make it feasible; 
this is sometimes, but not always, successful. 

Fourth – inspired by the role of sexual reproduction in the evolution of living things – 
an evolutionary algorithm attempts to combine elements of existing solutions in order 
to create a new solution, with some of the features of each “parent.”  The elements 
(e.g. decision variable values) of existing solutions are combined in a crossover 
operation, inspired by the crossover of DNA strands that occurs in reproduction of 
biological organisms.  As with mutation, there are many possible ways to perform a 
“crossover” operation – some much better than others – and the Evolutionary Solver 
uses multiple variations of two different crossover strategies. 

Fifth – inspired by the role of natural selection in evolution – an evolutionary 
algorithm performs a selection process in which the “most fit” members of the 
population survive, and the “least fit” members are eliminated.  In a constrained 
optimization problem, the notion of “fitness” depends partly on whether a solution is 
feasible (i.e. whether it satisfies all of the constraints), and partly on its objective 
function value.  The selection process is the step that guides the evolutionary 
algorithm towards ever-better solutions. 

A drawback of an evolutionary algorithm is that a solution is “better” only in 
comparison to other, presently known solutions; such an algorithm actually has no 
concept of an “optimal solution,” or any way to test whether a solution is optimal.  
(For this reason, evolutionary algorithms are best employed on problems where it is 
difficult or impossible to test for optimality.)  This also means that an evolutionary 
algorithm has no definite rule for when to stop, aside from the length of time, or the 
number of iterations or candidate solutions, that you wish to allow it to explore.  
Aside from such limits, the Evolutionary Solver uses two heuristics to determine 
whether it should stop – one based on the “convergence” of solutions currently in the 
population, and the other based on the rate of progress recently made by the 
algorithm.  For more information, see the section “Solver Parameters” in the chapter 
“Solver API Reference.” 

Problems in Algebraic Notation 
As outlined above, problems for the Solver DLL are generally defined by a series of 
calls made by your application program.  In particular, for linear and quadratic 
problems, you must be careful to supply the correct values for objective and 
constraint coefficients and constraint and variable bounds to define the problem you 
want to solve.  Problems you define exist only in main memory for the duration of 
your calls to the Solver DLL – they do not “persist” across runs of your application. 

To make it easier to work with linear and quadratic problems, the Solver DLL can 
read and write text files containing a problem description in a form very similar to 
standard algebraic notation.  An example of such a text file for a simple linear integer 
problem is shown below: 
Maximize LP/MIP 
  obj: 2.0 x1 + 3.0 x2 
Subject To 
  c1:  9.0 x1 + 6.0 x2 <= 54.0 
  c2:  6.0 x1 + 7.0 x2 <= 42.0 
  c3:  5.0 x1 + 10.0 x2 <= 50.0 
Bounds 
  0.0 <= x1 <= +infinity 
  0.0 <= x2 <= +infinity 
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Integers 
  x1 
  x2 
End 

If you define this problem via calls to loadlp() and loadctype(), you can produce a 
text file with the contents shown above by calling lpwrite() or lprewrite().  (This 
provides a convenient way to verify that the problem you defined programmatically 
is the problem you intended, by examining the resulting text file.)  If you have such a 
text file containing your problem, you can define it by calling lpread(), without 
setting up all of the array arguments normally required by loadlp() and loadctype(). 

You can use lpwrite() and lpread() to “persist” the definition of a problem on disk 
between runs of your application program, without having to write code to store this 
data in some file format of your own design.  You can also use an external program 
to generate a text file containing a problem definition in the format expected by 
lpread(), then use the Solver DLL to read in the problem and solve it.   

Using Other Solver DLL Routines 
You can set various parameters and tolerances using the routines setintparam() and 
setdblparam(), or get current, default, and minimum and maximum values for the 
parameters with other routines. 

To obtain control during the solution process (in order to display a message, check 
for a user abort action, etc.), you can set the address of a callback routine through a 
call to setlpcallbackfunc() (for any type of problem) or setmipcallbackfunc() (for 
problems with integer variables).  This feature – and the nonlinear Solver, which also 
requires a callback routine – can be used only in languages, such as C/C++ and 32-bit 
Visual Basic 5.0 and above, which permit you to define callback procedures and pass 
procedure names as parameters. 

Determining Linearity Automatically 
As explained above, the primary difference between solving a nonlinear problem and 
solving a linear problem is that you must provide a “callback” routine funceval() to 
evaluate the nonlinear problem functions, at trial points (values for the variables) 
determined by the Solver DLL.  However, you do not have to initialize the arrays of 
coefficients passed to loadnlp() with values. 

It is possible to use loadnlp() and a funceval() routine for any Solver problem – even 
if it is an entirely linear problem – but this will be significantly slower than calling 
loadlp() for a linear problem, which employs the Simplex method. 

If you are solving a specific problem or class of problems, you will probably know in 
advance whether your problem is linear or nonlinear.  If you know whether each 
variable occurs linearly or nonlinearly in the objective and each constraint function, 
you can supply this information to the Solver through loadnltype().  (Such 
information can be used by advanced nonlinear solution algorithms to save time 
and/or improve accuracy of the solution.) 

If you are solving a general series of problems, however, you might have some 
nonlinear and some linear problems, all represented by a funceval() routine.  The 
testnltype() routine lets you ask the Solver to determine, through a numerical test, 
whether the problem is linear or nonlinear.  In addition, testnltype() computes the 
information you would otherwise have to supply through a call to loadnltype(), and if 
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the problem is entirely linear, testnltype() computes the LP coefficients and places 
them in the matval array that you supplied when you called loadnlp().  You can then 
switch from the nonlinear Solver to the linear Simplex method by calling 
unloadprob(), and calling loadlp() with the same arguments used for loadnlp(). 

Supplying a Jacobian Matrix 
The nonlinear Solver algorithm uses the callback function funceval() in two different 
ways: (i) to compute values for the problem functions at specific trial points as it 
seeks an optimum, and (ii) to compute estimates of the partial derivatives of the 
objective (the gradient) and the constraints (the Jacobian).  The partial derivatives are 
estimated by a “rise over run” calculation, in which the value of each variable in turn 
is perturbed, and the change in the problem function values is observed.  For a 
problem with N variables, the Solver DLL will call funceval() N times on each 
occasion when it needs new estimates of the partial derivatives (2*N times if the 
“central differencing” option is used).  This often accounts for 50% or more of the 
calls to funceval() during the solution process. 

To speed up the solution process, and to give the Solver DLL more accurate 
estimates of the partial derivatives, you can supply a second callback function 
jacobian() which returns values for all elements of the objective gradient and 
constraint Jacobian matrix in one call.  The callback function is optional – you can 
supply NULL instead of a function address – but if it is present, the Solver DLL will 
call it instead of making repeated calls to funceval() to evaluate partial derivatives. 

Writing a jacobian() function can be difficult – it is easy to make errors in computing 
the various partial derivatives.  To aid in debugging, the Solver DLL has the ability 
to call your jacobian() function and compute its own estimates of the partial 
derivatives by calling funceval().  It will compare the results and display error 
messages for mismatching partial derivatives.  To use this feature, set the 
PARAM_DERIV parameter value to 3 (see the chapter “Solver API Reference”). 

The Evolutionary Solver “engine,” which is used if any of your problem functions are 
nonsmooth or discontinuous (as indicated by loadnltype()), does not make use of the 
jacobian() function, even if you supply it as an argument to loadnlp(). 

Diagnosing Infeasible Problems 
When a call to optimize() finds no feasible solution to your optimization problem, the 
Solver DLL returns a status value indicating this result when you call solution().  
This means that there is no combination of values for the variables that will satisfy all 
of the constraints (and bounds on the variables) at the same time.  If your model 
correctly describes the real-world problem, it may be that no solution is possible 
unless you can find a way to relax some of the constraints.  But more often, this result 
means that you made a mistake in specifying some constraint(s), such as indicating 
‘G’ (for >=) when you meant to use ‘L’ (for <=). 

If you have many constraints, it can be difficult to determine which of them contains 
a mistake, or conflicts with some other (combination of) constraints.  To aid you, the 
Solver DLL includes a facility to find a subset of your constraints such that your 
problem, with just those constraints, is still infeasible, but if any one constraint is 
dropped from the subset, the problem becomes feasible.  Such a subset of constraints 
is called an Irreducibly Infeasible Set (IIS) of constraints. 
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(Note:  If a call to mipoptimize() finds no feasible solution, your first step in 
diagnosing the problem should be to try to solve the “relaxation” of the MIP 
problem, ignoring the integer restrictions on the variables.  You can do this by calling 
setintparam( lp, PARAM_RELAX, 1) before you call mipoptimize() again.  If the 
relaxation of the original problem is still infeasible, you can use the API calls 
described in this section to isolate the infeasibility.) 

To find an Irreducibly Infeasible Set of constraints, call the routine findiis().  This 
routine returns the number of rows (constraints) and the number of columns (variable 
bounds) contained in the IIS; these numbers should always be less than or equal to 
the total number of constraints and bounds in your problem.  In many cases, there 
will be only a few constraints in the IIS, and by inspecting your code which sets up 
these constraints, you can often quickly identify the source of the infeasibility. 

To obtain the IIS itself, call the routine getiis().  This routine returns the indices of 
the constraints and the indices of the variable bounds that are included in the IIS.  If 
you have both lower and upper bounds on the same variable(s), getiis() tells you 
which bound is contributing to the infeasibility. 

If your problem is a linear or quadratic programming problem (i.e. if you are calling 
loadlp()), there is an even more convenient way to obtain the IIS: Call the routine 
iiswrite().  This routine calls findiis() for you (if it has not already been called) and 
then writes out a text file, in the same “algebraic” format used by lpwrite(), but 
containing only the constraints and bounds that are included in the IIS.  When you 
use iiswrite(), you don’t have to write any code to analyze or display the information 
returned by getiis(). 

In general, when a model is infeasible, there can be more than one subset of 
constraints (possibly many subsets) that qualify as an IIS.  Some of these will contain 
fewer constraints than others, making them easier to analyze.  However, finding the 
“minimal-size” IIS can be computationally very expensive; hence, the IIS finder is 
designed to find an IIS that contains as few constraints (rows) as possible in a 
reasonable amount of time.  Since variable bounds are easier to analyze than full 
constraints, the IIS finder favors fewer rows over fewer bounds. 

Solution Properties of Quadratic Problems 
A quadratic programming (QP) problem is one in which the objective is a quadratic 
function, and the constraints are all linear functions of the variables.  A general 
quadratic function may be written as the sum of a quadratic term  xT Q x and a linear 
term  c x: 

F(x) = xT Q x + c x 

The matrix Q is the Hessian (matrix of second partial derivatives) of the objective 
function.  Because the function is quadratic or second degree, all elements of this 
matrix are constant.  You supply the elements of the Q matrix when you call the 
loadquad() function, and the elements of the c vector when you call the loadlp() 
function (via the obj argument). 

Depending on the properties of the Q matrix, a quadratic function may have one, 
many, or no optimal (minimum or maximum) values.  If the Q matrix is positive 
definite (for a minimization problem; negative definite for a maximization problem), 
the function will have a “bowl” shape and a single optimal solution (a strong 
minimum).  If the Q matrix is positive semi-definite, the function will have a “trough” 
and (infinitely) many optimal solutions, all with the same objective function value (a 
weak minimum).  If the Q matrix is indefinite, the function will have a “saddle point” 
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(which has many, but not all, of the properties of an optimal solution), however the 
true optimal solution(s) – one or many of them – will lie somewhere on the 
boundaries of the constraints. 

Quadratic programming algorithms are specialized (for speed and accuracy) to solve 
problems where the Q matrix is positive definite (when minimizing) or negative 
definite (maximizing).  The QP algorithm used in the Solver DLL is somewhat more 
general:  It can handle problems where the Q matrix is positive semi-definite (or 
negative semi-definite), in which case it will converge to a point in the “trough” with 
the correct minimum (maximum) objective function value.  If applied to a problem 
where the Q matrix is indefinite, however, the Solver DLL may converge either to a 
saddle point, or to (one of) the optimal solution(s) on the constraint boundary – 
depending on the initial values of the variables.  In this case a call to the solution() 
function will return a status code of PSTAT_FRAC_CHANGE to indicate that the 
solution is not necessarily optimal. 

The loadquad() function tests the Q matrix you supply to determine whether it is 
positive (negative) definite, semi-definite or indefinite.  If it is indefinite, loadquad() 
will return a nonzero value, and if you have set the PARAM_ARGCK parameter to 
warn about errors in the arguments, it will display an error message dialog.   

Most problems based on real-world data yield a Q matrix which is positive definite.  
For example, if you are solving a portfolio optimization problem where the Q matrix 
represents variances and covariances of pairs of securities calculated from a historical 
price series, it can be shown that the matrix will be positive definite if the number of 
observations in the price series is greater than the number of variables. 

If, however, you are solving problems based on arbitrary user-provided data, you 
should take care to test the return value of the loadquad() function and the status 
value returned by the solution() function.  If the Q matrix is indefinite, you may wish 
to use the nonlinear Solver “engine” instead of the quadratic Solver “engine” – but 
you must bear in mind that either solution algorithm will find only a local optimum 
which is not necessarily the global optimum. 

The loadquad() function also accepts a var argument which provides initial values 
for the variables.  If the problem is positive (negative) semi-definite or indefinite, 
these initial values will influence the path taken by the solution algorithm and the 
final solution to which it converges.  If you must solve problems of this type, you can 
use the var argument to exercise some control over the solutions returned by the 
Solver DLL. 

Passing Dense and Sparse Array Arguments 
In most large optimization problems, the constraint coefficient matrix (the Jacobian) 
(and – in some quadratic problems – the Q matrix) are sparse – meaning that most of 
the matrix elements are zero.  For example, in many larger problems there are groups 
of constraints that are functions of a small subset of the variables, but that do not 
depend on any of the other variables – leading to many zero coefficients in the 
constraint matrix. 

When these matrices are sparse, it is more efficient to store – and to process – only 
the nonzero matrix elements.  A common way of doing this is to have auxiliary arrays 
that supply the row and column indices of the nonzero elements.  This means that no 
storage at all is needed for the zero elements, which can include 90% to 95% of all 
elements in large, sparse problems. 
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For further memory savings, the nonzero elements can be ordered by column (i.e. by 
variable), so that the column index need be stored only once for a set of consecutive 
nonzero elements.  (Alternatively, they could be ordered by row, i.e. by constraint; 
but the Solver DLL uses the “column-wise” method of storage.) 

In the loadlp(), loadquad() and loadnlp() functions, the Solver DLL allows you to 
pass the constraint matrix (and the Q matrix, if used), in either dense or sparse form. 
In dense form, you supply a “full-size” array of numcols * numrows elements 
(numcols2 elements in the case of the Q matrix), which may include both zero and 
nonzero elements; you need not supply any auxiliary information.  In sparse form, 
you supply a smaller array containing only the nonzero elements, plus auxiliary 
arrays which provide the row and column indices. 

In the loadlp() function (loadquad() and loadnlp() are similar), you pass the 
constraint matrix via the arguments matbeg, matcnt, matind and matval.  To pass the 
matrix elements in dense form, you supply NULL values for matbeg, matcnt and  
matind, and you supply a “full-size” array of numcols * numrows elements for 
matval.  Note that matval must be a single-dimensioned array where the elements are 
stored so that the row (constraint) index is varied most rapidly.  To pass the matrix 
elements in sparse form, you supply arrays for all four of matbeg, matcnt, matind and 
matval.  The matbeg array contains column (variable) indices; the matcnt array 
contains counts of elements in a column; the matind array contains row (constraint) 
indices; and the matval array contains the nonzero elements.  All column and row 
indices are 0-based. 

As an example, consider the following sparse matrix: 
 

1.2 0.0 3.4 
0.0 5.6 0.0 
7.8 0.0 0.0 
0.0 9.0 0.0 

Here, numcols = 3 and numrows = 4; there are nzspace = 5 nonzero elements.  To 
pass this matrix in sparse form, you’d supply matbeg and matcnt arrays (of numcols 
elements) and matind and matval arrays (of nzspace elements), as follows: 

matbeg[0] = 0 matcnt[0] = 2 
matbeg[1] = 2 matcnt[1] = 2 
matbeg[2] = 4 matcnt[2] = 1 

matind[0] = 0 matval[0] = 1.2 
matind[1] = 2 matval[1] = 7.8 
matind[2] = 1 matval[2] = 5.6 
matind[3] = 3 matval[3] = 9.0 
matind[4] = 0 matval[4] = 3.4 

The array element matbeg[j] contains offsets from the beginning of the matind and 
matval arrays where the nonzero coefficients of variable j will be found.  The 
corresponding element matcnt[j] contains a count of consecutive elements of matind 
and matval which pertain to the same variable (i.e. are in the same column of the 
matrix).  Note that matbeg[j+1] = matbeg[j] + matcnt[j] – the Solver DLL checks 
the arrays you supply to ensure that this is true.  For k = matbeg[j] to matbeg[j+1] - 
1, there is a nonzero coefficient M[i,j] at column j and row i = matind[k], with value 
matval[k]. 
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Arrays and Callback Functions in Visual Basic 
The Solver DLL uses the calling conventions standardized for the Windows API 
routines, which use argument data types drawn from C/C++.  In particular, array 
arguments are passed as pointers to the base of the block of memory containing the 
array values. 

In Visual Basic, however, arrays declared in the language are created using the COM 
Automation conventions for SAFEARRAYs.  A SAFEARRAY consists of a block of 
memory called an array descriptor, which contains information about array element 
sizes, dimensions and bounds, and a pointer to the memory holding the array values. 

Visual Basic programs that call Windows API routines usually handle array 
arguments by declaring the argument as ByRef and passing the first element of the 
array (rather than the “whole” array) as the argument.  For example, obj(0) passed 
by reference is a pointer to the first array element, i.e. the base address of the block 
of memory holding the array values; the SAFEARRAY descriptor is stored elsewhere 
in memory by Visual Basic and is not “seen” by the Solver DLL.  The Solver DLL is 
able to access additional array elements beyond the first element by indexing into the 
block of memory holding the array data. 

This approach does not work in reverse, however:  When Visual Basic is used to 
write a callback function such as funceval() or jacobian(), where the Solver DLL 
makes the call and passes blocks of memory for C-style arrays as arguments, the 
Visual Basic code can reference only the first array element.  Subscripting in Visual 
Basic is permitted only if the argument is actually declared as an array (e.g. obj()), 
and in this case Visual Basic expects to receive a SAFEARRAY as the argument.  
(This argument must be a pointer to a pointer to the SAFEARRAY descriptor.) 

To permit callback functions to be written in Visual Basic, the Solver DLL provides 
an option to treat all arrays as SAFEARRAYs rather than C-style arrays.  To use this 
option, call setintparam() as shown below, before calling loadlp(), loadnlp() or any 
of the other problem setup routines: 

ret = setintparam( NULL, PARAM_ARRAY, 1 ) 

When this parameter is set to 1, all arrays passed to the Solver DLL must be 
SAFEARRAYs.  In Visual Basic, this means that the array arguments must be 
declared as (for example): 

ByRef obj() As Double  

rather than 
ByRef obj As Double 

and the array name (e.g. obj), instead of the first array element (e.g. obj(0) ) 
must be passed as the actual argument.  In your callback routines, you can then use 
subscripting to refer to elements of the arrays passed to you as arguments. 

The Visual Basic header file frontmip.bas contains declarations of the Solver 
DLL routines that define the arguments as C-style arrays.  The header file 
safrontmip.bas contains declarations of the routines that define the arguments 
as SAFEARRAYs.  If you are using Visual Basic for a new Solver DLL application, 
you will probably want to use safrontmip.bas as your header file (and be sure 
to call setintparam( NULL, PARAM_ARRAY, 1 ) before calling other Solver DLL 
routines). 
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Using the Solver DLL in Multi-Threaded Applications 
The Solver DLL is offered in both single-threaded and multi-threaded versions.  The 
single-threaded versions are serially reusable but not reentrant:  They can solve 
multiple problems serially – a call to loadlp() or loadnlp() must be followed by a call 
to unloadprob() before the next call to loadlp() or loadnlp() is encountered. 

The multi-threaded versions of the Solver DLL are fully reentrant.  They can solve 
multiple problems concurrently:  You may call loadlp() or loadnlp() several times, 
keeping track of the “problem handles” returned by each call, and freely mix calls to 
any of the other Solver DLL routines, passing the appropriate problem handle to each 
call.  (You must still call unloadprob() for each problem handle when you are 
finished with it, to release memory.) 

The multi-threaded versions may be used to solve decomposition problems (which 
involve both a “master problem” and a “slave problem”), or any recursive problem 
where the computation of the objective or constraints for a main problem requires the 
solution of another optimization subproblem.  The multi-threaded versions may also 
be used in Web server or Intranet applications, where the application calling the 
Solver DLL consists of several threads of execution executing concurrently, each 
thread dealing with a specific user session. 

Use of the multi-threaded versions is identical to use of the single-threaded versions, 
except that calls to loadlp() or loadnlp() that would return an error in the single-
threaded versions (because a previous problem had not yet been unloaded) will return 
a new, valid “problem handle” without an error in the multi-threaded versions.  Your 
application simply needs to keep track of each problem handle, for example by 
saving it in local variable storage that is unique to each thread of your program. 

Use-Based Licensing 
The Solver DLL can be licensed for distribution to multiple users with your 
application, or for use on a server where the application serves multiple users.  
Licensing for a server-based application is usually based on the number of users (or 
“seats”).  However, if this number is difficult to determine or if it may be very large – 
as in a Web server application – licensing may be based on the number of uses of the 
DLL.  To support this latter form of licensing, the Solver DLL can track and report 
the number of calls your application makes to the loadlp() / loadnlp() routines and/or 
the optimize() / mipoptimize() routines. 

Use tracking and reporting is under the control of your application.  You determine 
the type of tracking and reporting with a call such as: 

ret = setintparam( NULL, PARAM_USERP, 1)  

If the PARAM_USERP parameter is set to 0 (the default setting), the Solver DLL 
does not track uses – it operates in “Evaluation / Test mode,” where it displays a 
MessageBox on the system console once every ten minutes.  If PARAM_USERP is 
1, the Solver DLL does track uses; the first time it runs in a new calendar month, it 
automatically sends a report of cumulative uses to date via email to Frontline 
Systems.  If PARAM_USERP is 2, the Solver DLL tracks uses, but it does not 
generate any reports automatically – use reports are created only when your 
application calls the reportuse() function, which can either write a text file or send an 
email message, containing a report of cumulative uses. 
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Calling the Solver DLL from 
C/C++ 

C/C++ Compilers 
To use the Solver DLL from C or C++, you must have an appropriate compiler and 
linker capable of building Windows applications, such as Microsoft Visual C++, 
Borland C++, Symantec C++ or WATCOM C++. This Guide will give explicit 
instructions for use with Microsoft Visual C++ 5.x and 6.x (32-bit) and Visual C++ 
1.5x (16-bit), but use with other compilers should be similar. 

Most C++ compilers for Windows allow you to easily port DOS or UNIX C and C++ 
applications (which use printf or cout for “glass teletype” output) to Windows. To 
simplify the input/output and focus on the Solver DLL routines and arguments, the 
example applications in this chapter use printf calls for output and will be built as 
“Win32 console applications” in Microsoft Visual C++ (or as “QuickWin” 
applications in 16-bit Visual C++). 

To build a native Windows application in C or C++, you’ll have to learn something 
about the Windows API and/or a C++ class library such as the Microsoft Foundation 
Classes.  A single-threaded and a multi-threaded example application using the 
Windows API and the Solver DLL’s callback functions are presented in the later 
chapter “Native Windows Applications.” 

Basic Steps 
To create an application that calls the Solver DLL, you must perform the three 
following steps: 

1. Include the header file frontmip.h in your C or C++ source program.  (You 
should also include the license file frontkey.h to obtain the license key string.) 

2. Include the import library file frontmip.lib in your project or your linker 
response file.  (Alternatively, you can write code to use “run-time dynamic 
linking” by calling Windows API routines such as LoadLibrary().) 

3. Call at least the routines loadlp() or loadnlp(), optimize(), solution() and 
unloadprob() in that order. 



32  ••••  Calling the Solver DLL from C/C++ Dynamic Link Library Solver User's Guide 

You can use any of the example programs as a guide for getting the arguments right.  
Vcexamp1.c contains five examples of solving linear, integer and quadratic 
programming problems, including an example using the infeasibility (IIS) finder, an 
example of portfolio optimization using the QP Solver, and an example that reads a 
problem from a text file using the lpread() function.  Vcexamp2.c contains four 
examples of solving nonlinear programming problems, including an example using 
the IIS finder and an example of testing a problem for linearity and switching 
between the NLP and LP Solvers.  It also contains two examples that use the 
Evolutionary Solver to find the global optimum in a problem with multiple local 
optima, and to find the optimum in a problem with nonsmooth functions. 

Building a 32-Bit C/C++ Program 
This section will outline the steps required to compile, link and run the example 
Solver DLL application VCEXAMP1.EXE, using 32-bit Microsoft Visual C++ 5.x 
or 6.x under Windows 95/98 or Windows NT/2000.  The steps required to compile, 
link and run VCEXAMP2.EXE are the same, and the steps involved in using other 
C/C++ compilers will be similar. 

First, follow the steps in the “Installation” chapter, which will copy the example 
programs into the examples subdirectory of the frontmip directory on your hard 
disk.  If you wish, you can run the pre-built version of VCEXAMP1.EXE by double-
clicking on the filename, before you try to compile and link from the source code. 

1. Create a Project.  Start Microsoft Visual Studio.  Select File New... and in the 
Projects tab of the displayed dialog, select Win32 Console Application.  Type 
vcexamp1 in the Project name edit box, and c:\frontmip\examples\vcexamp1 
(or a path of your choosing) in the Location edit box.  Then click OK.  In Visual 
C++ 6.x, click Finish and then OK in the New Project Wizard dialog boxes, to 
create an empty project. 

2. Add Files.  Select Project | Add to Project | Files... In the dialog, navigate if 
necessary to the proper directory, select the file vcexamp1.c, and click OK. 

Now select Select Project | Add to Project | Files... again.  In the dialog, open the 
Files of type dropdown list and select Library Files (*.lib).  Navigate to the 
Win32 subdirectory that contains the 32-bit version of the import library 
frontmip.lib.  Select frontmip.lib and click OK. 

If you now select the FileView pane in the Project Workspace window and open 
Vcexamp1 Files, the vcexamp1.c and frontmip.lib files should be listed.  You 
can double-click on vcexamp1.c to see the C source code. 

3. Build and Run the Application.  To compile and link vcexamp1.c and produce 
vcexamp1.exe, select Build Rebuild All.  Then use Build Execute vcexamp1.exe 
to run the program.  An output window like the one on the next page should 
appear.  (Press the ENTER key to continue running the program and produce 
more output.) 
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Building a 16-Bit C/C++ Program 
A 16-bit version of the example Solver DLL application VCEXAMP1.EXE, which 
runs under Windows 3.x, may be built using Microsoft Visual C++ 1.5x.  The steps 
involved in using other 16-bit C/C++ compilers will be very similar 

1. Create a Project.  Start Visual C++ 1.5x.  Select Project New... In the New 
Project dialog, click the Browse... button and navigate to the vcexamp1 
subdirectory (this is c:\frontmip\examples\vcexamp1 in the default directory 
structure).  In the File name edit box, type vcexamp1.mak, then click OK.  
Again in the New Project dialog, select QuickWin Application (.EXE) in the 
Project Type dropdown list, ensure that “Use Microsoft Foundation Classes” is 
not checked, and click OK. 

2. Add Files.  The Project Edit dialog is immediately displayed.  Navigate if 
necessary to the proper directory, select the file vcexamp1.c, and click on Add.  
In Visual C++ 1.5x, the Project Edit dialog remains open at this point. 

Open the List Files of Type dropdown list and select Library (*.lib).  Navigate to 
the directory containing the 16-bit version of the import library frontmip.lib (in 
the default directory structure, move two levels up and then down to Win16).  
Select frontmip.lib and click on Add.  Then click on Close. 

If you want to examine the C source code, select File Open, navigate to the 
appropriate directory if necessary, select vcexamp1.c and click OK. 

3. Build and Run the Application.  To compile and link vcexamp1.c and produce 
vcexamp1.exe, select Project Rebuild All VCEXAMP1.EXE.  Then select 
Project Execute VCEXAMP1.EXE to run the program.  This QuickWin 
application displays a window like the one shown on the next page. (Press the 
ENTER key to continue running the program and produce more output.) 
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The first few lines of output have scrolled beyond the top of this window.  You 
should also note that the C source code in vcexamp1.c uses a callback function to 
display the LP iterations only in the Win32 version of this example.  In Windows 3.x, 
you must set up callback function addresses with the MakeProcInstance API call.  
This call requires an instance handle argument that is not readily available in a 
QuickWin program.  For an example of the use of callback functions in both Win32 
and Win16 programs, see the chapter “Native Windows Applications.” 

C/C++ Source Code: Linear / Quadratic Problems 
The source code file vcexamp1.c is listed below.  Note that it includes five example 
problems for the Solver DLL, which are set up and solved in turn.  The first example 
is a simple two-variable LP problem.  The second example – for which source code 
in Visual Basic, Delphi Pascal and FORTRAN is also included – is a MIP problem, 
identical to the previous LP problem except that the decision variables are required to 
have integer values.  The third example attempts to solve an LP problem that is 
infeasible, then it uses the IIS finder to diagnose the infeasibility.  The fourth 
example is a quadratic programming problem, using the classic Markowitz method to 
find an efficient portfolio of five securities.  The fifth example uses the lpread() 
function to read in a problem in “algebraic notation” from a text file that was created 
by the lpwrite() function in the second example. 

You are encouraged to study this source code (or the Visual Basic source code) 
and the /* comments */ in each problem, even if you plan to use a language 
other than C/C++ for most of your work.  The C/C++ and Visual Basic example 
code is more extensive than the examples for the other languages, and illustrates most 
of the features of the Solver DLL including the Quadratic Solver, the Evolutionary 
Solver, automatic diagnosis of infeasible problems, and use of the lpread() and 
lpwrite() functions. 



Dynamic Link Library Solver User's Guide Calling the Solver DLL from C/C++  ••••  35 

 
 
/* ********************************************************************** 
   Frontline Systems Small-Scale Solver Dynamic Link Library Version 3.5 
   Frontline Systems Inc., P.O. Box 4288, Incline Village, NV 89450 USA 
   Tel (775) 831-0300 ** Fax (775) 831-0314 ** Email info@frontsys.com 
 
   Example LP, MIP and QP problems in C/C++: Build as Win32 console app 
   or Win16 QuickWin project containing files VCEXAMP1.C and FRONTMIP.LIB 
   ********************************************************************** */ 
 
#include "frontmip.h" 
#include "frontkey.h" 
#include <stdio.h> 
 
 
/* 
   Example 1: Solves the LP model: 
   Maximize   2 x1 +  3 x2 
   Subj to    9 x1 +  6 x2 <= 54 
              6 x1 +  7 x2 <= 42 
              5 x1 + 10 x2 <= 50 
   x1, x2 non-negative 
   LP solution: x1 = 2.8, x2 = 3.6 
   Objective = 16.4 
 
   This example shows the simple form of passing arguments to loadlp(): 
   A dense (full-size N by M) matrix is passed as the matval argument 
   and NULL pointers are passed as the matbeg, matcnt & matind arguments. 
 
   This example also shows how to obtain LP sensitivity analysis info 
   by calling the objsa() and rhssa() functions.  These calls are valid 
   only for LP problems.  For QP problems, only dual values (the piout 
   and dj arguments of solution()) are available; for MIP problems, no 
   sensitivity analysis info is available (none would be meaningful). 
 
   This example uses a callback function to display the LP iterations. 
*/ 
 
/* The following function is called on each LP iteration in example1 */ 
 
long _CC lpcallback (HPROBLEM lpinfo, long wherefrom) 
{ 
   long iters; double obj; 
   getcallbackinfo (lpinfo, wherefrom, CBINFO_ITCOUNT, (void*)&iters); 
   getcallbackinfo (lpinfo, wherefrom, CBINFO_PRIMAL_OBJ, (void*)&obj); 
   printf("Iteration %ld:  Obj = %g\n", iters, obj); 
   return PSTAT_CONTINUE; 
} 
 
void example1(void) 
{ 
   double obj[] = { 2.0, 3.0 }; 
   double rhs[] = { 54.0, 42.0, 50.0 }; 
   char sense[] = "LLL";  /* L's for <=, E's for =, G's for >= */ 
   double matval[] = { 9.0, 6.0, 5.0, 6.0, 7.0, 10.0 }; 
   double lb[] = { 0.0, 0.0 }; 
   double ub[] = { INFBOUND, INFBOUND }; 
   long stat, i; 
   double objval; 
   double x[2], piout[3], slack[3], dj[2]; 
   double varlow[2], varupp[2], conlow[3], conupp[3]; 
   HPROBLEM lp = NULL; 
   printf("\nExample LP problem\n"); 
 
 
   /* set up the LP problem */ 
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   lp = loadlp (PROBNAME, 2, 3, -1, obj, rhs, sense, 
      NULL, NULL, NULL, matval, lb, ub, NULL, 2, 3, 6); 
   if (!lp) return; 
 
#ifdef WIN32 
   setlpcallbackfunc (lp, lpcallback); /* set up the callback */ 
#endif 
 
   /* solve the problem */ 
   optimize (lp); 
 
   /* obtain the solution: display objective and variables */ 
   solution (lp, &stat, &objval, x, piout, slack, dj); 
   printf("LPstatus = %ld  Objective = %g\n", stat, objval); 
 
   /* display constraint slacks and dual values */ 
   printf("x1 = %g  x2 = %g\n\n", x[0], x[1]); 
   for (i = 0; i <= 2; i++) 
      printf("slack[%ld] = %7g  piout[%ld] = %7g\n", 
      i, slack[i], i, piout[i]); 
   printf("\n"); 
 
   /* obtain and display sensitivity analysis information */ 
   objsa (lp, 0, 1, varlow, varupp); 
   for (i = 0; i <= 1; i++) 
      printf("Obj coefficient %3.0f  Lower %7g  Upper %7g\n", 
         obj[i], varlow[i], varupp[i]); 
   rhssa (lp, 0, 2, conlow, conupp); 
   for (i = 0; i <= 2; i++) 
      printf("Constraint RHS  %3.0f  Lower %7g  Upper %7g\n", 
         rhs[i], conlow[i], conupp[i]); 
   printf("\n"); 
 
#ifdef WIN32 
   setlpcallbackfunc (lp, NULL); /* remove the callback function */ 
#endif 
 
   /* important - call unloadprob() to release memory */ 
   unloadprob (&lp); 
} 
 
/* 
   Example 2: Solves the MIP model: 
   Maximize   2 x1 +  3 x2 
   Subj to    9 x1 +  6 x2 <= 54 
              6 x1 +  7 x2 <= 42 
              5 x1 + 10 x2 <= 50 
   x1, x2 non-negative, integer 
   MIP solution: x1 = 2, x2 = 4 
   Objective = 16.0 
 
   This example illustrates the full set of arguments, used to pass a 
   potentially sparse matrix to loadlp.  For each variable (column) i, 
   matbeg[i] and matcnt[i] are the beginning index and count of non- 
   zero coefficients in the matind and matval arrays.  For each such 
   coefficient, matind[k] is the constraint (row) index and matval[i] 
   is the coefficient value.  See the documentation for more details. 
 
   In this example, we also use two debugging features of the Solver 
   DLL:  (1) We call setintparam() to enable the display of error 
   MessageBoxes by the DLL routines if they detect an invalid value 
   in one of the arguments we pass (since there are no errors, none 
   will appear).  (2) We call lpwrite() to write out a file which 
   summarizes the LP/MIP problem in algebraic form.  This can help 
   us verify that the arguments we pass have defined the right problem. 
*/ 
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void example2(void) 
{ 
   double obj[] = { 2.0, 3.0 }; 
   double rhs[] = { 54.0, 42.0, 50.0 }; 
   char sense[] = "LLL"; 
   long matbeg[] = { 0, 3 }; 
   long matcnt[] = { 3, 3 }; 
   long matind[] =   {   0,   1,   2,   0,   1,    2 }; 
   double matval[] = { 9.0, 6.0, 5.0, 6.0, 7.0, 10.0 }; 
   double lb[] = { 0.0, 0.0 }; 
   double ub[] = { INFBOUND, INFBOUND }; 
   char ctype[] = "II"; 
   long stat; 
   double objval; 
   double x[2]; 
   HPROBLEM lp = NULL; 
 
   printf("\nExample MIP problem\n"); 
 
   /* enable display of error MessageBoxes on argument 
      errors (since the arguments are correct, none will 
      appear).  Note - on argument errors, loadlp returns 
      a NULL pointer and all other routines return a non- 
      zero value; you can and should check for this!  But 
      the MessageBoxes can help you identify errors early. */ 
   setintparam (lp, PARAM_ARGCK, 1); 
 
   /* set up the LP portion of the problem */ 
   lp = loadlp (PROBNAME, 2, 3, -1, obj, rhs, sense, 
      matbeg, matcnt, matind, matval, lb, ub, NULL, 2, 3, 6); 
   if (!lp) return; 
 
   /* now define integer variables:  for each variable i, 
      ctype[i] is 'C' for continuous, 'I' for general 
      integer and 'B' for a binary integer variable */ 
   loadctype (lp, ctype); 
 
   /* lpwrite() can be called anytime after the problem 
      is defined, and before unloadprob() is called.  It 
      will write out the following text in file vcexamp1: 
      Maximize LP/MIP 
      obj: 2.0 x1 + 3.0 x2 
      Subject To 
        c1:  9.0 x1 + 6.0 x2 <= 54.0 
        c2:  6.0 x1 + 7.0 x2 <= 42.0 
        c3:  5.0 x1 + 10.0 x2 <= 50.0 
      Bounds 
        0.0 <= x1 <= +infinity 
        0.0 <= x2 <= +infinity 
      Integers 
        x1 
        x2 
      End 
   */ 
   lpwrite( lp, "vcexamp1"); 
 
   /* solve the problem; obtain and display the solution */ 
   mipoptimize (lp); 
   solution (lp, &stat, &objval, x, NULL, NULL, NULL); 
   printf("LPstatus = %ld  Objective = %g\n", stat, objval); 
   printf("x1 = %g  x2 = %g\n", x[0], x[1]); 
 
   /* don't forget to free memory */ 
   unloadprob (&lp); 
} 
 
/* 
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   Example 3: Attempt to solve the LP model: 
   Maximize   2 x1 +  3 x2 
   Subj to    9 x1 +  6 x2 <= 54 
              6 x1 +  7 x2 <= 42 
              5 x1 + 10 x2 <= -50 
   x1, x2 non-negative 
   Infeasible (due to non-negative variables and negative RHS) 
 
   When solution() returns stat = PSTAT_INFEASIBLE, ask Solver DLL 
   to find an Irreducibly Infeasible Subset (IIS) of the constraints: 
   Row 2 (with the negative RHS) and lower bounds on both variables 
 
   The constraint matrix is passed in simple (dense) form in matval[]. 
*/ 
 
void example3(void) 
{ 
   double obj[] = { 2.0, 3.0 }; 
   double rhs[] = { 54.0, 42.0, -50.0 }; 
   char sense[] = "LLL"; 
   double matval[] = { 9.0, 6.0, 5.0, 6.0, 7.0, 10.0 }; 
   double lb[] = { 0.0, 0.0 }; 
   double ub[] = { INFBOUND, INFBOUND }; 
   long stat, i, iisrows, iiscols; 
   long rowind[3], rowbdstat[3], colind[2], colbdstat[2]; 
   double objval; 
   double x[2]; 
   HPROBLEM lp = NULL; 
 
   printf("\nExample IIS diagnosis of infeasible problem\n"); 
   setintparam (lp, PARAM_ARGCK, 1); 
 
   /* set up the LP problem */ 
   lp = loadlp (PROBNAME, 2, 3, -1, obj, rhs, sense, 
      NULL, NULL, NULL, matval, lb, ub, NULL, 2, 3, 6); 
   if (!lp) return; 
 
   /* attempt solve the problem */ 
   optimize (lp); 
 
   /* check the status of the solution */ 
   solution (lp, &stat, &objval, x, NULL, NULL, NULL); 
   printf("LPstatus = %ld  Objective = %g\n", stat, objval); 
 
   /* if infeasible, find and display an Irreducibly  
      Infeasible Subset (IIS) of the constraints */ 
   if (stat == PSTAT_INFEASIBLE) 
   { 
      findiis (lp, &iisrows, &iiscols); 
      printf("\nfindiis: iisrows = %ld  iiscols = %ld\n", 
         iisrows, iiscols); 
      getiis (lp, &stat, rowind, rowbdstat, &iisrows, 
         colind, colbdstat, &iiscols); 
      for (i = 0; i < iisrows; i++) 
         printf("rowind[%ld] = %ld  rowbdstat[%ld] = %ld\n", 
            i, rowind[i], i, rowbdstat[i]); 
      for (i = 0; i < iiscols; i++) 
         printf("colind[%ld] = %ld  colbdstat[%ld] = %ld\n", 
            i, colind[i], i, colbdstat[i]); 
      iiswrite (lp, "iisexamp.txt"); 
   } 
   printf("\n"); 
 
   /* don't forget to free memory */ 
   unloadprob (&lp); 
} 
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/* 
   Example 4: Use the QP solver to perform 
   Markowitz-style portfolio optimization. 
   Variables are the percentages to be allocated 
   to each investment or asset class: 
      0 <= x1, x2, x3, x4 x5 <= 1 
   Minimize portfolio variance: [xi] Q [xi] 
   Subj to allocations: Sum (xi) = 1 
      and portfolio return: Sum (Ri xi) >= 0.085  
 
   The efficient portfolio is the QP solution (approx): 
      x1 = 0.462  x2 = 0  x3 = 0.313  x4 = 0  x5 = 0.225 
   The objective = approx. 0.00014 (minimum variance) 
 
   Both the constraint matrix and the Q matrix are passed 
   using the full set of arguments for sparse matrices. 
*/ 
 
void example4(void) 
{ 
   double obj[] = { 0.0, 0.0, 0.0, 0.0, 0.0 }; 
   double rhs[] = { 1.0, 0.085 }; 
   char sense[] = "EG"; 
   long matbeg[] = { 0, 2, 4, 6, 8 }; 
   long matcnt[] = { 2, 2, 2, 2, 2 };             
   long matind[] = { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 }; 
   double matval[] = { 1.0, 0.086, 1.0, 0.071, 1.0, 0.095, 
                       1.0, 0.107, 1.0, 0.069 }; 
   double lb[] = { 0.0, 0.0, 0.0, 0.0, 0.0 }; 
   double ub[] = { 1.0, 1.0, 1.0, 1.0, 1.0 }; 
   long qmatbeg[] = {  0,  5, 10, 15, 20 }; 
   long qmatcnt[] = {  5,  5,  5,  5,  5 }; 
   long qmatind[] = { 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 
                      0, 1, 2, 3, 4, 0, 1, 2, 3, 4 }; 
   /* The Q matrix specifies the covariance between each pair of assets */ 
   double qmatval[] =  
      { 0.000204,  0.000424,  0.000170,  0.000448, -0.000014, 
        0.000424,  0.012329,  0.001785,  0.001633, -0.000539, 
        0.000170,  0.001785,  0.000365,  0.000425, -0.000075, 
        0.000448,  0.001633,  0.000425,  0.005141,  0.000237, 
       -0.000014, -0.000539, -0.000075,  0.000237,  0.000509 }; 
   long stat; 
   double objval; 
   double x[5]; 
   HPROBLEM lp = NULL; 
 
   printf("\nExample QP problem (Portfolio Optimization)\n"); 
 
   /* set up the LP portion of the problem.  The LP portion 
      of the objective is all 0's here; it could be elaborated 
      to include transaction costs or other factors. */ 
   lp = loadlp (PROBNAME, 5, 2, 1, obj, rhs, sense, 
      matbeg, matcnt, matind, matval, lb, ub, NULL, 5, 2, 7); 
   if (!lp) return; 
 
   /* now set up the Q matrix to define the quadratic objective 
      (test whether this DLL supports loadquad(), if not return) */ 
   if (loadquad (lp, qmatbeg, qmatcnt, qmatind, qmatval, 25, x)) 
      return; 
 
   /* solve the problem; obtain and display the solution */ 
   optimize (lp); 
   solution (lp, &stat, &objval, x, NULL, NULL, NULL); 
   printf("LPstatus = %ld  Objective = %7.5f\n", stat, objval); 
   printf("x1 = %5.3f x2 = %5.3f x3 = %5.3f x4 = %5.3f x5 = %5.3f\n\n", 
      x[0], x[1], x[2], x[3], x[4]); 
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   /* once more: don't forget to free memory */ 
   unloadprob (&lp); 
} 
 
/* Example 5: Use the lpread() function to read a 
   problem definition from a disk file and solve it. 
   We read the file written by example2(): 
 
      Maximize LP/MIP 
      obj: 2.0 x1 + 3.0 x2 
      Subject To 
        c1:  9.0 x1 + 6.0 x2 <= 54.0 
        c2:  6.0 x1 + 7.0 x2 <= 42.0 
        c3:  5.0 x1 + 10.0 x2 <= 50.0 
      Bounds 
        0.0 <= x1 <= +infinity 
        0.0 <= x2 <= +infinity 
      Integers 
        x1 
        x2 
      End 
 
   As in Example 2, the MIP solution is: 
   x1 = 2, x2 = 4 
   Objective = 16.0 
*/ 
 
void example5(void) 
{ 
   double obj[2]; 
   double rhs[3]; 
   char sense[3] = "EEE"; 
   long matbeg[2]; 
   long matcnt[2]; 
   long matind[6]; 
   double matval[6]; 
   double lb[2]; 
   double ub[2]; 
   char ctype[2] = "CC"; 
   long stat, nzspace, i; 
   double objval; 
   double x[2]; 
   long objsen, numcols, numrows, numints; 
   HPROBLEM lp = NULL; 
 
   setintparam (lp, PARAM_ARGCK, 1); 
 
   /* First, we assume that the dimensions of the problem  
      are known.  We call loadlp(), passing array arguments 
      of the proper dimension.  Since the sense[] and ctype[] 
      arrays are checked for validity, we initialize them. */ 
 
   printf("\nExample: Read in MIP problem of known size\n"); 
 
   lp = loadlp (PROBNAME, 2, 3, -1, obj, rhs, sense, 
      NULL, NULL, NULL, matval, lb, ub, NULL, 2, 3, 6); 
   if (!lp) return; 
   loadctype( lp, ctype); 
 
   /* call lpread() to read in the actual array values */ 
 
   lpread( lp, "vcexamp1", NULL, NULL, NULL, NULL, NULL, NULL); 
 
   /* call mipoptimize() and display the solution */ 
 
   mipoptimize (lp); 
   solution (lp, &stat, &objval, x, NULL, NULL, NULL); 
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   printf("LPstatus = %ld  Objective = %g\n", stat, objval); 
   printf("x1 = %g  x2 = %g\n", x[0], x[1]); 
   unloadprob (&lp); 
 
   /* Next, we assume that the dimensions of the problem are 
      not known in advance.  We can call lpread() with a NULL 
      first argument to read the file and obtain the actual 
      problem dimensions.  Then, we would allocate arrays of 
      appropriate size (to keep this example simple, we'll 
      re-use the arrays from the first example above).  We call 
      loadlp() to define a problem and return a pointer to it. 
      Next, we call lpread() again to read in the actual array 
      values.  Then we'll be ready to call mipoptimize(). */ 
 
   printf("\nExample: Read in MIP problem of unknown size\n"); 
 
   /* Call lpread() to obtain the problem dimensions.  If 
      the matcnt argument is passed (needed only for sparse  
      problems), it must have at least as many elements as the  
      number of variables in the largest problem to be handled. 
      (If necessary, you can call lpread() twice, the first  
      time to get this size via the numcols argument.) */ 
 
   lpread( NULL, "vcexamp1", &objsen, &numcols, &numrows, &numints, 
      matcnt, NULL); 
 
   /* We would now allocate the x[], obj[], lb[], ub[], and 
      (if used) ctype[] and matbeg[] arrays to have numcols  
      elements, and the rhs[] and sense[] arrays to have  
      numrows elements.  For a dense problem, matval[] should  
      be allocated to have numcols * numrows elements.  For a 
      sparse problem, the matind[] and matval[] arrays should 
      be allocated to have nzspace elements, where nzspace is 
      the sum of the counts in matcnt[] as returned by lpread(). 
      (To keep this example simple, we'll re-use the arrays 
      from the first example above). */  
 
   for (nzspace = i = 0; i < numcols; i++) nzspace += matcnt[i]; 
   /* (we could now allocate matind[] and matval[] based on nzspace) */ 
   for (i = 0; i < nzspace; i++) matval[i] = matind[i] = 0; 
   /* matval[] and matind[] will be filled in by our next call to 
      lpread(); we need only initialize matbeg[] based on matcnt[] */ 
   for (i = 0; i < numcols; i++) 
      matbeg[i] = (i == 0 ? 0 : matbeg[i-1] + matcnt[i-1]); 
 
   /* Next, call loadlp() and loadctype() to define the problem 
      and pass in arrays of appropriate dimension. */ 
 
   lp = loadlp (PROBNAME, numcols, numrows, objsen, obj, rhs, sense, 
      matbeg, matcnt, matind, matval, lb, ub, NULL, 
      numcols, numrows, nzspace); 
   if (!lp) return; 
   loadctype( lp, ctype); 
 
   /* Now we call lpread() to read in the actual array values. */ 
 
   lpread( lp, "vcexamp1", NULL, NULL, NULL, NULL, NULL, NULL); 
 
   /* Finally, we call mipoptimize() and display the solution. */ 
 
   mipoptimize (lp); 
   solution (lp, &stat, &objval, x, NULL, NULL, NULL); 
   printf("LPstatus = %ld  Objective = %g\n", stat, objval); 
   printf("x1 = %g  x2 = %g\n", x[0], x[1]); 
   unloadprob (&lp); 
} 
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int main(void) 
{ 
   char buf[32]; 
   printf("TEST CASES FOR FRONTMIP.DLL\n"); 
   example1(); 
   example2(); 
   gets(buf); 
   example3(); 
   example4(); 
   gets(buf); 
   example5(); 
   return 0; 
} 

 

C/C++ Source Code: Nonlinear / Nonsmooth Problems 
The source code file vcexamp2.c is listed below.  It includes four example problems 
using the nonlinear GRG Solver, which are set up and solved in turn.  The first 
example is a simple two-variable nonlinear optimization problem, which defines a 
funceval() routine to evaluate the problem functions.  The second example is 
identical to the first one, except that a jacobian() routine is also defined, to give the 
Solver faster and more accurate partial derivatives of the problem functions.  The 
third example attempts to solve a nonlinear problem that is infeasible, then it uses the 
IIS finder to diagnose the infeasibility.  The fourth example illustrates how you can 
solve a series of linear and nonlinear problems, using the testnltype() function to 
determine whether the problem defined by your funceval() routine is linear, and how 
you can switch to the LP Solver engine if testnltype() finds that a problem is entirely 
linear. 

Also included in vcexamp2.c are two example problems using the Evolutionary 
Solver.  The first of these finds the global optimum of a classic two-variable problem, 
the Branin function, which has three local optima.  The second one finds the optimal 
solution of a three-variable problem where the objective function involves an “IF 
statement,” which is nonsmooth (in fact discontinuous) in the variable X. 

You are encouraged to study this source code (or the Visual Basic source code) 
and the /* comments */ in each problem, even if you plan to use a language 
other than C/C++ for most of your work.  Like the example source code for linear 
and quadratic problems, this example file is more extensive than the ones for the 
other languages. 

 
/* ********************************************************************** 
   Frontline Systems Small-Scale Solver Dynamic Link Library Version 3.5 
   Frontline Systems Inc., P.O. Box 4288, Incline Village, NV 89450 USA 
   Tel (775) 831-0300 ** Fax (775) 831-0314 ** Email info@frontsys.com 
 
   Example NLP and NSP problems in C/C++: Build as Win32 console app or 
   Win16 QuickWin project containing files VCEXAMP2.C and FRONTMIP.LIB 
   ********************************************************************** */ 
 
#include "frontmip.h" 
#include "frontkey.h" 
#include <stdio.h> 
#include <math.h> 
 
/* Example routine to check the capabilities and problem size limits of 
   the Solver DLL we are using.  A return value of 0 for the number of 
   variables or constraints means that the corresponding Solver engine 
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   is not included. */ 
 
void getlimits(void) 
{ 
   long cols, rows, ints; 
 
   getproblimits (NULL, PROB_LP, &cols, &rows, &ints); 
   printf("LP limits: %ld variables, %ld constraints, %ld integers\n", 
      cols, rows, ints); 
 
   getproblimits (NULL, PROB_QP, &cols, &rows, &ints); 
   printf("QP limits: %ld variables, %ld constraints, %ld integers\n", 
      cols, rows, ints); 
 
   getproblimits (NULL, PROB_NLP, &cols, &rows, &ints); 
   printf("NLP limits: %ld variables, %ld constraints, %ld integers\n", 
      cols, rows, ints); 
 
   getproblimits (NULL, PROB_NSP, &cols, &rows, &ints); 
   printf("NSP limits: %ld variables, %ld constraints, %ld integers\n", 
      cols, rows, ints); 
} 
 
 
/*  
   Example C program calling the nonlinear Solver DLL. 
   Solves the problem: 
 
   Minimize X^2 + Y^2 
   Subject to: 
      X + Y  = 1 
      X * Y >= 0 
 
   (Solution is X = Y = 0.5, Objective = 0.5) 
*/ 
 
 
/* Define a "callback" function which computes the objective and constraint 
   left hand sides, for any supplied values of the decision variables. */ 
 
INTARG _CC funceval1 (HPROBLEM lp, INTARG numcols, INTARG numrows, 
   LPREALARG objval, LPREALARG lhs, LPREALARG var, INTARG varone, 
   INTARG vartwo) 
{ 
   objval[0] = var[0] * var[0]  + var[1] * var[1] ; /* objective */ 
   lhs[0] = var[0] + var[1]; /* constraint left hand side */ 
   lhs[1] = var[0] * var[1]; /* constraint left hand side */ 
   return 0; 
} 
 
 
/* Define a "callback" function which displays progress information  
   when called on major iterations by the nonlinear Solver engine. */ 
 
INTARG _CC showiter1 (HPROBLEM lpinfo, INTARG wherefrom) 
{ 
   long itercount; double objval; 
   getcallbackinfo (lpinfo, wherefrom, CBINFO_ITCOUNT, &itercount); 
   getcallbackinfo (lpinfo, wherefrom, CBINFO_PRIMAL_OBJ, &objval); 
   printf("Iteration %d:  Objective = %g\n", itercount, objval); 
   return 0; 
} 
 
 
/* Now set up the NLP problem (including the "sense" and right hand sides 
   of constraints), call the nonlinear Solver, and display the solution. */ 
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void example1(void) 
{ 
   double obj[2]; 
   double rhs[2] = {  1.0, 0.0 }; 
   char sense[2] = "EG"; 
   double matval[4]; 
   double lb[] = { -INFBOUND, -INFBOUND }; 
   double ub[] = { +INFBOUND, +INFBOUND }; 
   long i, stat; double objval; 
   double x[2] = { 0.0, 0.0 }; 
   double piout[2], slack[2], dj[2]; 
   HPROBLEM lp = NULL; 
 
   printf("\nExample NLP problem 1\n"); 
   setintparam (lp, PARAM_ARGCK, 1); 
 
   lp = loadnlp (PROBNAME, 2, 2, 1, obj, rhs, sense, 
      NULL, NULL, NULL, matval, x, lb, ub, NULL, 4, 
      funceval1, NULL); 
   if (!lp) return; 
   setlpcallbackfunc (lp, showiter1); 
  
   optimize (lp); 
 
   solution (lp, &stat, &objval, x, piout, slack, dj); 
   printf("\nStatus = %d  Objective = %g\n", stat, objval); 
   printf("Final values: x1 = %g  x2 = %g\n", x[0], x[1]); 
   for (i = 0; i <= 1; i++) 
      printf("slack[%ld] = %7g  piout[%ld] = %7g\n", 
      i, slack[i], i, piout[i]); 
   printf("\n"); 
 
   unloadprob (&lp); 
} 
 
 
/*  
   Example C program calling the nonlinear Solver DLL. 
   Solves the problem: 
 
   Minimize X^2 + Y^2 
   Subject to: 
      X + Y  = 1 
      X * Y >= 0 
 
   (Solution is X = Y = 0.5, Objective = 0.5) 
 
   Here we define the function jacobian() as well as funceval(), to help 
   speed up the evaluation of first partial derivatives at trial points. 
   We re-use the functions funceval1() and showiter1() from Example 1. 
*/ 
 
 
INTARG _CC jacobian1 (HPROBLEM lp, INTARG numcols, INTARG numrows, 
   INTARG nzspace, LPREALARG objval, LPREALARG obj, LPINTARG matbeg, 
   LPINTARG matcnt, HPINTARG matind, HPREALARG matval, LPREALARG var, 
   LPBYTEARG objtype, LPBYTEARG matvaltype) 
{ 
   printf("jacobian evaluated at: x1 = %g   x2 = %g\n", var[0], var[1]); 
   /* Value of the objective function */ 
   objval[0] = var[0] * var[0] + var[1] * var[1]; 
   /* Partial derivatives of the objective */ 
   obj[0] = 2.0 * var[0]; 
   obj[1] = 2.0 * var[1]; 
   /* Partial derivatives of X + Y (constant) */ 
   matval[0] = 1.0; 
   matval[2] = 1.0; 
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   /* Partial derivatives of X * Y (variable) */ 
   matval[1] = var[1]; 
   matval[3] = var[0]; 
   return 0; 
} 
 
 
void example2(void) 
{ 
   double obj[2]; 
   double rhs[2] = {  1.0, 0.0 }; 
   char sense[2] = "EG"; 
   double matval[4]; 
   double lb[] = { -INFBOUND, -INFBOUND }; 
   double ub[] = { +INFBOUND, +INFBOUND }; 
   long i, stat; double objval; 
   double x[2] = { 0.25, 0.25 }; 
   double piout[2], slack[2], dj[2]; 
   HPROBLEM lp = NULL; 
 
   printf("\nExample NLP problem 2\n"); 
   setintparam (lp, PARAM_ARGCK, 1); 
 
   lp = loadnlp (PROBNAME, 2, 2, 1, obj, rhs, sense, 
      NULL, NULL, NULL, matval, x, lb, ub, NULL, 4, 
   funceval1, jacobian1); 
   if (!lp) return; 
 
   /* Ask the Solver DLL to call our jacobian() routine, and *check* 
      the partial derivatives we supply against its own "rise over run" 
      derivative calculations */ 
   setintparam (lp, PARAM_DERIV, 3); 
 
   optimize (lp); 
 
   solution (lp, &stat, &objval, x, piout, slack, dj); 
   printf("\nStatus = %d  Objective = %g\n", stat, objval); 
   printf("Final values: x1 = %g  x2 = %g\n", x[0], x[1]); 
   for (i = 0; i <= 1; i++) 
      printf("slack[%ld] = %7g  piout[%ld] = %7g\n", 
      i, slack[i], i, piout[i]); 
   printf("\n"); 
 
   setlpcallbackfunc (lp, NULL); 
   setintparam (lp, PARAM_DERIV, 0); 
   unloadprob (&lp); 
} 
 
 
/*  
   Example C program calling the nonlinear Solver DLL. 
   Attempts to solve the problem: 
 
   Minimize X^2 + Y^2 
   Subject to: 
      X * Y  = 1 
      X * Y  = 0 
 
   This problem is infeasible, because the two constraints conflict. 
   We will call findiis() and getiis() to help isolate the source  
   of the infeasibility. 
*/ 
 
 
INTARG _CC funceval3 (HPROBLEM lp, INTARG numcols, INTARG numrows, 
   LPREALARG objval, LPREALARG lhs, LPREALARG var, INTARG varone, 
   INTARG vartwo) 
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{ 
   objval[0] = var[0] * var[0] + var[1] * var[1]; /* objective */ 
   lhs[0] = var[0] * var[1]; /* constraint left hand side */ 
   lhs[1] = var[0] * var[1]; /* constraint left hand side */ 
   return 0; 
} 
 
 
void example3(void) 
{ 
   double obj[2]; 
   double rhs[2] = {  1.0, 0.0 }; 
   char sense[2] = "EE"; 
   double matval[4]; 
   double lb[] = { -INFBOUND, -INFBOUND }; 
   double ub[] = { +INFBOUND, +INFBOUND }; 
   long i, stat, iisrows, iiscols; double objval; 
   long rowind[2], rowbdstat[2], colind[2], colbdstat[2]; 
   double x[2] = { 0.25, 0.25 }; 
   double piout[2], slack[2], dj[2]; 
   HPROBLEM lp = NULL; 
 
   printf("\nExample NLP problem 3\n"); 
   setintparam (lp, PARAM_ARGCK, 1); 
 
   lp = loadnlp (PROBNAME, 2, 2, 1, obj, rhs, sense, 
      NULL, NULL, NULL, matval, x, lb, ub, NULL, 4, 
      funceval3, NULL); 
   if (!lp) return; 
 
   optimize (lp); 
 
   solution (lp, &stat, &objval, x, piout, slack, dj); 
   printf("Status = %ld (%s)  Objective = %g\n", stat, 
      stat == PSTAT_INFEASIBLE ? "INFEASIBLE" : "FEASIBLE", objval); 
   printf("Final values: x1 = %g  x2 = %g\n", x[0], x[1]); 
 
   if (stat == PSTAT_INFEASIBLE) 
   { 
      findiis (lp, &iisrows, &iiscols); 
      printf("\nfindiis: iisrows = %ld  iiscols = %ld\n", 
         iisrows, iiscols); 
      getiis (lp, &stat, rowind, rowbdstat, &iisrows, 
         colind, colbdstat, &iiscols); 
      for (i = 0; i < iisrows; i++) 
         printf("rowind[%ld] = %ld  rowbdstat[%ld] = %ld\n", 
            i, rowind[i], i, rowbdstat[i]); 
      for (i = 0; i < iiscols; i++) 
         printf("colind[%ld] = %ld  colbdstat[%ld] = %ld\n", 
            i, colind[i], i, colbdstat[i]); 
   } 
 
   unloadprob (&lp); 
} 
 
 
/*  
   Example C program calling the nonlinear Solver DLL for a series of 
   problems which may be linear or nonlinear.  This situation might  
   arise if you are calling some external program, or using your own 
   interpreter, to evaluate the problem functions.  We will define and 
   solve two example problems: 
 
   Nonlinear problem: 
 
   Minimize X^2 + Y^2 
   Subject to: 



Dynamic Link Library Solver User's Guide Calling the Solver DLL from C/C++  ••••  47 

      X + Y  = 1 
      X * Y >= 0 
 
   (Solution is X = Y = 0.5, Objective = 0.5) 
 
   Alternate linear problem: 
 
   Minimize 2 * X + Y 
   Subject to: 
      X + Y  = 1 
      3 * X - Y >= 0 
 
   (Solution is X = 0.25, Y = 0.75, Objective = 1.25) 
 
   In this example, we call testnltype() to determine whether 
   the problem is linear or nonlinear.  If it is linear, we 
   solve it first with the nonlinear Solver engine, then solve 
   it again with the linear (Simplex) Solver engine. 
*/ 
 
typedef enum { Nonlin, Linear } Problem; 
Problem Ex1 = Nonlin; 
 
/*  
   We define one funceval() routine, which can compute the 
   objective and constraint values for both of the example 
   problems.  The values returned by this funceval() depend 
   on the setting of the global variable Ex1. 
*/ 
 
INTARG _CC funceval4 (HPROBLEM lp, INTARG numcols, INTARG numrows, 
   LPREALARG objval, LPREALARG lhs, LPREALARG var, INTARG varone, 
   INTARG vartwo) 
{ 
   switch (Ex1) 
   { 
   case Nonlin: 
      objval[0] = var[0] * var[0]  + var[1] * var[1] ; /* objective */ 
      lhs[0] = var[0] + var[1]; /* constraint left hand side */ 
      lhs[1] = var[0] * var[1]; /* constraint left hand side */ 
      break; 
   case Linear: 
      objval[0] = 2.0 * var[0] + var[1] ; /* objective */ 
      lhs[0] = var[0] + var[1]; /* constraint left hand side */ 
      lhs[1] = 3.0 * var[0] - var[1]; /* constraint left hand side */ 
      break; 
   } 
   return 0; 
} 
 
 
void example4(void) 
{ 
   double obj[2]; 
   double rhs[2] = {  1.0, 0.0 }; 
   char sense[2] = "EG"; 
   double matval[4]; 
   double lb[] = { -10.0, -10.0 }; 
   double ub[] = { +10.0, +10.0 }; 
   long stat, nlstat; double objval; 
   double x[2] = { 0.0, 0.0 }; 
   double piout[2], slack[2], dj[2]; 
   HPROBLEM lp = NULL; 
 
   printf("\nExample NLP/LP problem 4\n"); 
   setintparam (lp, PARAM_ARGCK, 1); 
 



48  ••••  Calling the Solver DLL from C/C++ Dynamic Link Library Solver User's Guide 

   /* Set up the problem for solution by the NLP Solver */ 
   lp = loadnlp (PROBNAME, 2, 2, 1, obj, rhs, sense, 
      NULL, NULL, NULL, matval, x, lb, ub, NULL, 4, 
      funceval4, NULL); 
   if (!lp) return; 
 
   /* Test the problem to determine linearity / nonlinearity */ 
   testnltype(lp, 1, NULL, &nlstat, NULL, NULL); 
   printf("\ntestnltype: %s\n", nlstat ? "NONLINEAR" : "LINEAR"); 
  
   /* Solve the problem (using the NLP Solver) */ 
   optimize (lp); 
 
   solution (lp, &stat, &objval, x, piout, slack, dj); 
   printf("Status = %ld  Objective = %g\n", stat, objval); 
   printf("Final values: x1 = %g  x2 = %g\n", x[0], x[1]); 
 
   unloadprob (&lp); 
   if (nlstat) return; 
 
   /* The problem was linear.  Set it up to be solved by the 
      linear Simplex Solver -- it should find the same solution. */ 
   printf("\nSolve same problem with loadlp\n"); 
   lp = loadlp (PROBNAME, 2, 2, 1, obj, rhs, sense, 
      NULL, NULL, NULL, matval, lb, ub, NULL, 2, 2, 4); 
  
   /* Solve the problem (using the LP Solver) */ 
   optimize (lp); 
 
   solution (lp, &stat, &objval, x, piout, slack, dj); 
   printf("Status = %ld  Objective = %g\n", stat, objval); 
   printf("Final values: x1 = %g  x2 = %g\n\n", x[0], x[1]); 
 
   unloadprob (&lp); 
} 
 
 
/*  
   Example C program calling the Evolutionary Solver DLL. 
   Solves the problem: 
 
   Minimize the Branin function: 
   term1 = X/PI * (5.1 * X/PI/4 - 5) 
   term2 = (Y - term1 - 6)^2 
   term3 = 10 * (1 - 1/PI/8) * cos X + 10 
   objective = term2 + term3 
   -5 <= X, Y <= 10 
 
   (3 local optima; 1 global optimum = approx 0.3978) 
*/ 
 
#define PI 3.141593 
 
 
INTARG _CC funceval5 (HPROBLEM lp, INTARG numcols, INTARG numrows, 
   LPREALARG objval, LPREALARG lhs, LPREALARG var, INTARG varone, 
   INTARG vartwo) 
{ 
   double term1, term2, term3; 
   term1 = var[0] / PI * (5.1 * var[0] / PI / 4.0 - 5.0); 
   term2 = (var[1] - term1 - 6) * (var[1] - term1 - 6); 
   term3 = 10.0 * (1.0 - 1.0 / PI / 8.0) * cos(var[0]) + 10.0; 
   objval[0] = term2 + term3; 
   return 0; 
} 
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INTARG _CC showiter5 (HPROBLEM lpinfo, INTARG wherefrom) 
{ 
   int itercount; double objval; 
   getcallbackinfo (lpinfo, wherefrom, CBINFO_ITCOUNT, &itercount); 
   getcallbackinfo (lpinfo, wherefrom, CBINFO_PRIMAL_OBJ, &objval); 
   printf("Iteration %ld:  Objective = %g\n", itercount, objval); 
   return 0; 
} 
 
 
int example5() 
{ 
   double obj[2]; 
   double lb[2] = { -5.0, -5.0 }; 
   double ub[2] = { 10.0, 10.0 }; 
   int stat; double objval; 
   double x[2] = { 1.0, 1.0 }; 
   double mid[2], disp[2], lower[2], upper[2]; 
   HPROBLEM lp = NULL; 
 
   printf("\nExample NSP problem 5: Branin function\n"); 
   setintparam (lp, PARAM_ARGCK, 1); 
 
   lp = loadnlp (PROBNAME, 2, 0, 1, obj, NULL, NULL, 
      NULL, NULL, NULL, NULL, x, lb, ub, NULL, 0, 
      funceval5, NULL); 
   if (!lp) return 1; 
   setintparam (lp, PARAM_NOIMP, 1); /* 1 second */ 
   setlpcallbackfunc (lp, showiter5); 
 
   printf("Calling loadnltype\n"); 
   loadnltype (lp, NULL, NULL); 
 
   optimize (lp); 
 
   solution (lp, &stat, &objval, x, NULL, NULL, NULL); 
   printf("\nStatus = %ld  Objective = %g\n", stat, objval); 
   printf("Final values: x1 = %g  x2 = %g\n", x[0], x[1]); 
 
   varstat (lp, 0, 1, mid, disp, lower, upper); 
   printf("\nx1: mid = %g  disp = %g  lower = %g  upper = %g\n", 
      mid[0], disp[0], lower[0], upper[0]); 
   printf("x2: mid = %g  disp = %g  lower = %g  upper = %g\n", 
      mid[1], disp[1], lower[1], upper[1]); 
 
   unloadprob (&lp); 
   return 0; 
} 
 
 
/*  
   Example C program calling the Evolutionary Solver DLL. 
   Solves the problem: 
 
   Maximize (if X > 10 then Y + Z else Y - Z) 
   0 <= X, Y, Z <= 20 
 
   (Solution is X > 10, Y = Z = 20, objective = 40) 
*/ 
 
INTARG _CC funceval6 (HPROBLEM lp, INTARG numcols, INTARG numrows, 
   LPREALARG objval, LPREALARG lhs, LPREALARG var, INTARG varone, 
   INTARG vartwo) 
{ 
   objval[0] = (var[0] > 10.0 ? var[1] + var[2] : var[1] - var[2]); 
      /* objective */ 
   return 0; 
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} 
 
int example6() 
{ 
   double obj[3]; 
   double lb[3] = { 0.0, 0.0, 0.0 }; 
   double ub[3] = { 20.0, 20.0, 20.0 }; 
   int stat; double objval; 
   double x[3] = { 5.0, 5.0, 5.0 }; 
   HPROBLEM lp = NULL; 
 
   printf("\nExample NSP problem 6: IF function\n"); 
   setintparam (lp, PARAM_ARGCK, 1); 
 
   lp = loadnlp (PROBNAME, 3, 0, -1, obj, NULL, NULL, 
      NULL, NULL, NULL, NULL, x, lb, ub, NULL, 0, 
      funceval6, NULL); 
   if (!lp) return 1; 
   setintparam (lp, PARAM_NOIMP, 1); /* 1 second */ 
 
   printf("Calling loadnltype\n"); 
   loadnltype (lp, NULL, NULL); 
 
   optimize (lp); 
 
   solution (lp, &stat, &objval, x, NULL, NULL, NULL); 
   printf("\nStatus = %ld  Objective = %g\n", stat, objval); 
   printf("Final values: x1 = %g  x2 = %g  x3 = %g\n", x[0], x[1], x[2]); 
 
   unloadprob (&lp); 
   return 0; 
} 
 
int main() 
{ 
   char buf[80]; 
   printf("NONLINEAR TEST CASES FOR FRONTMIP.DLL\n\n"); 
   getlimits(); gets(buf); 
   example1(); gets(buf); 
   example2(); gets(buf); 
   example3(); gets(buf); 
   Ex1 = Nonlin; 
   example4(); gets(buf); 
   Ex1 = Linear; 
   example4(); gets(buf); 
   example5(); gets(buf); 
   example6(); 
   return 0; 
} 

 

Solver Memory Usage 
When you pass array arguments to the loadlp(), loadnlp(), loadquad() and 
loadctype() routines, the Solver DLL stores pointers to these arrays – it does not 
make copies of the data.  When you call optimize() or mipoptimize() to solve a 
problem, these arrays are used, and additional storage is allocated internally by the 
Solver DLL.  Some of the additional storage is maintained after optimize() or 
mipoptimize() returns, so that you can retrieve solution and sensitivity data by calling 
routines such as solution(), objsa() and rhssa().  This remaining storage is freed when 
you call unloadprob(). 
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Lifetime of Solver Arguments 
Storage for the arguments passed to the Solver DLL routines may be allocated 
statically (outside a function definition or by using the static keyword), on the 
stack at runtime (the normal case for a variable declared within a function), or on the 
heap when allocated with  malloc or operator new.  But you must ensure that storage 
remains allocated for the arguments from the time you call loadlp() or loadnlp() to 
the time you call unloadprob() or exit your program. 

Statically allocated and heap-based arguments normally will not present a problem in 
this regard.  The situation you must avoid is illustrated below. 
void main() 
{ 
   HPROBLEM lp; 
   lp = setup(); 
   solve(lp); 
} 

HPROBLEM setup() 
{ 
   long matbeg[100], matcnt[100], ... 
   return loadlp( ... matbeg, matcnt, ...); 
} 

void solve (HPROBLEM lp) 
{ 
   optimize(lp); 
}  

The arrays matbeg and matcnt (and perhaps others) are allocated on the stack when 
the routine setup() is entered.  When setup() exits, it returns the “problem handle” 
provided by loadlp(), but at this point the arrays matbeg, matcnt, etc. are deallocated 
and the stack space is reused in subsequent calls.  This means that the call to 
optimize() in the routine solve() will fail (probably with a General Protection fault in 
the Solver DLL) when the Solver tries to reference the memory formerly allocated to 
matbeg and matcnt.  You can avoid this situation by ensuring that arguments passed 
to the Solver DLL are always allocated statically or on the heap, or by calling all of 
the Solver DLL routines from a single function in your program.  

Solving Multiple Problems Sequentially 
In all versions of the Solver DLL, you can call the DLL routines repeatedly to solve a 
series of optimization problems in memory.  But you must start each problem with a 
call to loadlp() or loadnlp(), and end each problem with a call to unloadprob(), in 
order to ensure that all memory allocated by the Solver DLL is freed before the next 
problem begins.  You must also ensure that any memory allocated by your own 
application code is freed at the appropriate time. 

In the single-threaded versions of the Solver DLL, which are serially reusable but not 
reentrant, you can solve a series of problems sequentially, but you cannot solve 
multiple problems at the same time.  If you call loadlp() or loadnlp() a second time, 
without calling unloadprob() to end the first problem, the returned “problem handle” 
will be NULL, and if PARAM_ARGCK is 1, an error message will appear. 
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Solving Multiple Problems Concurrently 
In the multi-threaded versions of the Solver DLL, you can solve multiple problems at 
the same time.  Even in a single-threaded application, you can start multiple problems 
with calls to loadlp() or loadnlp(), keeping track of the separate “problem handles” 
that they return, and freely call the other DLL routines, passing the appropriate 
problem handle as an argument.  In a multi-threaded application, you can call 
loadlp() or loadnlp() as required in each thread – you need only keep track of the 
returned problem handles in variables that are local to each thread.  In any case, you 
must end each problem with a call to unloadprob() to free memory. 

Multi-threaded versions of the Solver DLL can also solve problems recursively, 
where an optimization subproblem must be solved in order to compute the objective 
and/or constraints for a larger problem.  In this scenario, you would call loadlp() or 
loadnlp(), optimize() or mipoptimize(), and unloadprob(), passing the new problem 
handle as an argument, from within your own funceval() or other callback routine. 

One sequence of calls that is illegal in every version of the Solver DLL is a call to 
optimize() or mipoptimize() for a given problem, then a second call to optimize() or 
mipoptimize() for that same problem, made before the first call returns (e.g. made 
from within your funceval() or other callback routine).  Such a second call will return 
–1, and if PARAM_ARGCK is 1, an error message will appear; the status value 
returned by a subsequent call to solution() will be PSTAT_ENTRY_ERROR.  
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Special Considerations for 
Windows 3.x 

Programming for 32-bit systems such as Windows 95/98 and Windows NT/2000 is 
simpler than programming for 16-bit Windows 3.x, most notably because the 32-bit 
systems feature a “flat address space” whereas Windows 3.x assumes a “segmented 
address space.”  In a flat address space, all pointers are alike, and can address any 
location in memory.  In the Windows 3.x segmented address space, there are “near” 
pointers, which can address only the current segment (limited to 64K bytes in size); 
“far” pointers, which can address other segments; and “huge” pointers, which are 
used to address arrays or other data objects which are greater than 64K bytes and 
therefore must span more than one segment.  Programs can be compiled for various 
“memory models,” which use certain types of pointers for code and for data. 

The 16-bit Solver DLL code and data are in segments different from those of your 
application program.  This means that the Solver DLL routines, and argument data 
passed to the DLL, must be referenced through far pointers.  Moreover, when the 
Solver DLL makes calls during the solution process to a callback function in your 
application, it must (i) call your function through a far pointer and (ii) ensure that the 
data referenced by your function is addressable when it is called from the Solver 
DLL.  This chapter discusses these special considerations for 16-bit Windows 3.x. 

Far and Huge Pointers 
In Windows 3.x, the Solver DLL routines themselves must be called through far 
pointers.  In the header file frontmip.h, these routines are prototyped with the _CC 
calling convention, which is #defined as _export _far _pascal (versus _stdcall in 32-
bit Windows) – ensuring that the C/C++ compiler will call them appropriately. 

Far Pointers 
The Solver DLL expects many of its arguments to be passed by reference, which 
means that a pointer to the actual data is passed to the DLL.  As noted above, these 
must be far pointers in Windows 3.x.  The header file frontmip.h defines typedefs for 
the required data types, such as LPINTARG (far pointer to long integer) and 
LPREALARG (far pointer to double).  Since the arguments of each DLL routine are 
prototyped in frontmip.h, the C/C++ compiler will perform default conversions for 
you, so you can (for example) write: 



54  ••••  Special Considerations for Windows 3.x Dynamic Link Library Solver User's Guide 

char sense[] = "LLEEGG"; lp = loadlp (...,sense,...); 

and sense will be converted, if necessary, to type LPSTR (i.e. far pointer to character 
in Windows 3.1).  Remember that array names represent the base address of the array 
and do not need a leading & when passed as arguments. 

Huge Pointers 
“Far” pointers can address data located in any segment, anywhere in memory.  
However, far pointers are designed to manipulate data objects that are at most 64K 
bytes long (the maximum segment size in the Intel 8086 architecture).  Larger data 
objects in a 16-bit environment require special address arithmetic, which is provided 
by the C/C++ compilers when you declare “huge” pointers.  For example, imagine 
that the following C code appears in a Solver DLL routine, where numcols = 10000 
and x is an array of double: 

for (i = 0; i < numcols; i++) x[i] = 0.0; 

Since a double value requires 8 bytes, the array x occupies 80,000 bytes.  In the for 
loop, the address of the ith element of x is determined by adding 8 * i to the base 
address of x.  Even if the array x is located at the very beginning of a 64K segment, 
when i reaches 8192 the address will overflow the segment boundary.  The C/C++ 
compiler will provide for this situation if the base address of x is a huge pointer – at 
the expense of extra space and time, for code to handle the overflow situation. 

In frontmip.h, the two arguments matind and matval, representing the nonzero 
coefficients of the LP matrix, are prototyped as HPINTARG and HPREALARG 
respectively.  (Similar comments apply to the arguments qmatind and qmatval for 
quadratic problems.)  In 16-bit Windows, these typedefs represent huge pointers.  
Hence these arrays can specify as many nonzeroes as desired.  For efficiency, other 
arguments such as obj and rhs are prototyped as far pointers; since the maximum size 
of a far data object is 64K bytes and a double value requires 8 bytes, you must use no 
more than 8192 variables and 8192 constraints with the 16-bit versions of the Large-
Scale LP/MIP Solver DLL. 

Default conversions are performed for huge pointer arguments, just as they are for far 
pointers, so you can, for example, declare double arrays for matind and matval and 
use them without any special casting as arguments to loadlp(). 

Callback Functions 
The loadnlp() routine and the setlpcallbackfunc() and setmipcallbackfunc() routines 
take arguments which are the addresses of “callback” functions.  Using these 
callbacks, you can more closely control the optimization process and create user-
responsive “native Windows” applications. 

In the example program vcexamp1.c, a callback function is used only when a 32-bit 
version of the program is compiled.  This was done for simplicity, to avoid the 
complications discussed in this chapter.  In the first example program shown in the 
next chapter, “Native Windows Applications”, we will create a very simple LP pivot 
callback procedure, and pass its address as an argument to setlpcallbackfunc().  To 
make this program work in 16-bit Windows 3.x as well as in 32-bit Windows 95/98 
and NT/2000, we must deal with the issues described in this section. 



Dynamic Link Library Solver User's Guide Special Considerations for Windows 3.x  ••••  55 

MakeProcInstance 
Windows allows more than one “instance” of your application to be run at the same 
time.  Each instance executes the same compiled code, but maintains its data in a 
different data segment.  Windows supplies the address of the proper instance data 
segment (in the Data Segment or DS register) when it starts up your program.  As you 
call different procedures and functions in your own code, this data segment address is 
maintained. 

When you call a Solver DLL routine, which has its own code and data segments, and 
the Solver DLL in turn makes a call to one of your functions (which you have set up 
as a callback function), the proper data segment address must be restored so that your 
function can execute and reference its local data.  This data segment address will be 
different for each instance of your application.  How can the Solver DLL call the 
same callback function every time, yet have different data segment addresses restored 
in each instance? 

In Windows, this is done by calling the API function MakeProcInstance() with the 
address of your callback function, and the “instance handle” which Windows passes 
to your main entry point when an instance of your application is started.  The return 
value of MakeProcInstance() is actually a pointer to code within Windows (called a 
“thunk”) which restores the data segment address and then passes control to your 
callback function.  You pass this special “thunk” pointer to setlpcallbackfunc() or 
setmipcallbackfunc(), and the Solver DLL uses it to call your function. 

For example, you can write: 
long _CC pivot (HPROBLEM lpinfo, long wherefrom); 
_CCPROC lpPivot; 

lpPivot = (_CCPROC)MakeProcInstance ((FARPROC)pivot, hInst); 
setlpcallbackfunc (lpPivot); 

Now the Solver DLL will be able to call your callback function through the lpPivot 
pointer.  This same code will work in 32-bit Windows 95/98 and Windows NT/2000, 
but in these environments the MakeProcInstance() call is superfluous, and Microsoft 
recommends that you omit it.  Life is simpler in 32 bits! 

Using Callback Functions 
Your callback routines can perform any actions you want.  Usually, however, the LP 
pivot or the MIP branch callback routine will inform the user of the progress of the 
optimization, perhaps displaying the current value of the objective function.  It may 
also check for a user interaction, such as a key press or mouse click, signalling that 
the optimization process should be aborted.  Here is an excerpt from the code in the 
next chapter, “Native Windows Applications”, which shows how the callback 
function can be used: 

getcallbackinfo( lpinfo, wherefrom, CBINFO_ITCOUNT, 
   &NumPivot); 
getcallbackinfo( lpinfo, wherefrom, CBINFO_PRIMAL_OBJ, 
   &Objective); 
FPSTR (Objective, ObjStr); 
wsprintf( PivotMsg, "Pivot # %ld:  Obj = %s", NumPivot, 
   (LPSTR)ObjStr); 
SetWindowText (hWnd, PivotMsg); 
if (PeekMessage ((MSG FAR *) &msg, hWnd, 
    WM_KEYDOWN, WM_KEYDOWN, PM_NOREMOVE)) 
   if (msg.wParam == VK_ESCAPE) return PSTAT_USER_ABORT; 
return PSTAT_CONTINUE; 
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This code uses the Solver API function getcallbackinfo() to obtain the LP pivot 
number and the current value of the objective.  It formats these values into a string 
that is displayed in the application window title bar (a “real” application would use a 
dialog box or other user interface element).  Then it returns with a code indicating 
whether the solution process should continue, or stop at this point. 

The PeekMessage() function lets you “peek” at a message in the application’s 
message queue without actually processing it.  If there are no pending messages, 
PeekMessage() returns 0.  In this code, we look for the specific Windows message 
WM_KEYDOWN (the user pressed a key while our application had the focus) and if 
it arrives, we check the virtual key code.  We take the ESCape key as a signal from 
the user that he or she wants to interrupt the optimization process, and we return the 
value PSTAT_USER_ABORT (defined in frontmip.h) to the DLL. 

A similar approach can be used to respond to a mouse click or a menu command.  
Another strategy would be to set a global flag when the appropriate message was 
processed in your window procedure, and check this flag in the LP pivot or MIP 
branch callback routine. 

Non-Preemptive Multitasking 
The Solver DLL lets you easily write applications that will “optimize in the back-
ground” while the user performs other tasks.  In Windows 95/98 and Window 
NT/2000, which are preemptive multitasking systems, this is straightforward – the 
operating system periodically interrupts each application and lets another one run.  
However, Windows 3.x relies on cooperative, “non-preemptive multitasking,” which 
requires that each running application periodically yield control to Windows, which 
then allows another application to run. 

The Solver DLL takes care of this for you.  In addition to calling your callback 
functions (if specified), the Solver DLL will periodically call the Windows API 
function PeekMessage() in order to yield control to Windows.  These calls are more 
frequent than calls to the callback functions, since in a large problem a single LP 
pivot or Simplex iteration can take several seconds.  
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Native Windows Applications 

The programs winexamp1.c and winexamp2.c are “native Windows” applications 
that call Windows API functions to create a window, and write the results of calling 
the Solver DLL into it.  To compile and link these programs, follow the steps in the 
chapter “Calling the Solver DLL from C/C++,” but substitute the file winexamp1.c or 
winexamp2.c for vcexamp1.c, and select a project type of “Win32 Application” in 
Visual C++ 6.x, or “Windows Application (.EXE)” in Visual C++ 1.5x. (The multi-
threaded behavior of winexamp2.c can be seen only on Win32 systems.) 

A Single-Threaded Application 
The source file winexamp1.c (found in the Examples/Vcexamp subdirectory) begins 
with some #includes and prototypes, followed by the WinMain(), InitApplication() 
and InitInstance() procedures common to almost all Windows applications.  In the 
window procedure MainWndProc(), we set up a device context, paint structure and 
text metrics and call the API procedure TextOut() to write text into the application 
window whenever a WM_PAINT message arrives.  On the first such message, we 
call RunLPSolver() and RunNLPSolver() to solve two example problems.  (Note:  if 
your copy of the Solver DLL does not include both the linear and nonlinear Solver 
engines, one of these routines will display a MessageBox noting this fact, and the 
corresponding example problem will display 0.0 for the variables and objective.) 

RunNLPSolver() uses the callback routine funceval1() to compute values for the 
objective and the left hand sides of constraints during the solution process – as 
required for all nonlinear problems.  Both RunLPSolver() and RunNLPSolver() use 
the callback routine pivot() to display information on each major iteration about the 
progress of the optimization. 

The pivot() procedure uses wsprintf() and a supporting procedure FPSTR() to build a 
text message reporting the iteration number and the current objective function value.  
These values are obtained through calls to the function getcallbackinfo().  The text 
message is set into the application window’s title bar.  (The title bar is reset after the 
example problems are solved in MainWndProc().)  The pivot() procedure then 
executes the code described in the previous chapter to watch for a press of the ESC 
key.  If ESC is pressed before the optimization is complete, pivot() returns 
PSTAT_USER_ABORT to its caller (the DLL), which will result in a return to your 
main line code from optimize().  The return status code, which may be either 
PSTAT_ABORT_FEAS or PSTAT_ABORT_INFEAS depending on whether a 
feasible solution was found, is passed back to the main line code in the pstat 
argument of solution(). 
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Since the example problems are solved in a small fraction of a second, the winexamp 
program will normally run to completion, displaying a window like the one shown 
below. 

 

The complete C source code of winexamp1.c is shown on the following pages.  For 
newly-written application programs, you will find it preferable to use a C++ class 
library such as MFC (Microsoft Foundation Classes) together with the “wizards” or 
“experts” included in your C/C++ development system (such as the AppWizard in 
Visual C++) to create the basic structure of your application program. 

 
/* ********************************************************************* 
   Frontline Systems Small-Scale Solver Dynamic Link Library Version 3.5 
   Frontline Systems Inc., P.O. Box 4288, Incline Village, NV 89450 USA 
   Tel (775) 831-0300 ** Fax (775) 831-0314 ** Email info@frontsys.com 
   ********************************************************************* */ 
 
/* 
   Problem 1: Solve the MIP model: 
   Maximize   2 x1 +  3 x2 
   Subj to    9 x1 +  6 x2 <= 54 
              6 x1 +  7 x2 <= 42 
              5 x1 + 10 x2 <= 50 
   x1, x2 non-negative, integer 
   MIP solution: x1 = 2, x2 = 4 
   Objective = 16.0 
 
   Problem 2: Solve the NLP model: 
   Minimize X^2 + Y^2 
   Subject to: 
      X + Y  = 1 
      X * Y >= 0 
   x1, x2 non-negative 
   Solution is X = Y = 0.5, Objective = 0.5 
 
   This is a "native Windows" application.  It includes two examples of 
   "callback" routines:  One to compute the objective and constraints 
   for the nonlinear Solver, and another which displays the iteration 
   and current objective value, & quits if the user presses the ESC key. 
    
   If your copy of the Solver DLL does not include the LP or NLP Solver 
   "engine", a MessageBox will appear, and the results will show all 
   zeroes for the solution status, objective and final variable values. 
*/ 
 
#include <windows.h> 
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#include <string.h> 
#include "frontmip.h" 
#include "frontkey.h" 
 
/* Prototype the procedures to follow... */ 
int WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR, int); 
BOOL InitApplication(HINSTANCE); 
BOOL InitInstance(HINSTANCE, int); 
LRESULT CALLBACK MainWndProc(HWND, UINT, WPARAM, LPARAM); 
PBYTE FPSTR( double value, PBYTE lpstr); 
long _CC pivot (HPROBLEM lpinfo, long wherefrom); 
void RunLPSolver(long *pstat, double *pobj, double *x); 
void RunNLPSolver(long *pstat, double *pobj, double *x); 
 
/* Global data... */ 
HANDLE hInst;  /* current instance */ 
HWND hWnd;     /* main window handle */ 
char szClassName[] = "ExampleClass"; 
char szAppTitle[] = "FRONTMIP WinExamp"; 
 
 
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance, 
     LPSTR lpCmdLine, int nCmdShow) 
{ 
    MSG msg; 
    if (!hPrevInstance) 
        if (!InitApplication(hInstance)) 
            return (FALSE); 
 
    if (!InitInstance(hInstance, nCmdShow)) 
        return (FALSE); 
 
    while (GetMessage(&msg, 0, 0, 0)) { 
        TranslateMessage(&msg); 
        DispatchMessage(&msg); 
    } 
    return (msg.wParam); 
} 
 
 
BOOL InitApplication (HINSTANCE hInstance) 
{ 
    WNDCLASS  wc; 
    wc.style = 0; 
    wc.lpfnWndProc = MainWndProc; 
    wc.cbClsExtra = 0; 
    wc.cbWndExtra = 0; 
    wc.hInstance = hInstance; 
    wc.hIcon = LoadIcon(NULL, IDI_APPLICATION); 
    wc.hCursor = LoadCursor(NULL, IDC_ARROW); 
    wc.hbrBackground = GetStockObject(WHITE_BRUSH);  
    wc.lpszMenuName =  NULL; 
    wc.lpszClassName = szClassName; 
    return (RegisterClass(&wc)); 
} 
 
 
BOOL InitInstance (HINSTANCE hInstance, int nCmdShow) 
{ 
 
    hInst = hInstance; 
 
    hWnd = CreateWindow( 
        szClassName, 
        szAppTitle, 
        WS_OVERLAPPEDWINDOW, 
        CW_USEDEFAULT, CW_USEDEFAULT, 
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        CW_USEDEFAULT, CW_USEDEFAULT, 
        NULL, 
        NULL, 
        hInstance, 
        NULL); 
    if (!hWnd) return (FALSE); 
 
    ShowWindow(hWnd, nCmdShow); 
    UpdateWindow(hWnd); 
    return (TRUE); 
} 
 
 
LRESULT CALLBACK MainWndProc 
    (HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam) 
{ 
    HDC hDC;                          /* display-context variable  */ 
    PAINTSTRUCT ps;                   /* paint structure           */ 
    TEXTMETRIC textmetric; 
    int nDrawX, nDrawY, nSpacing; 
    char szText[80], szObj[12], szVar1[12], szVar2[12]; 
 
    /* We call the Solver DLL on the 1st WM_PAINT message */ 
    static long LPstat = 0, NLPstat = 0; 
    static double LPobj = 0.0, NLPobj = 0.0; 
    static double LPx[2] = { 0.0, 0.0 }, NLPx[2] = { 0.0, 0.0 }; 
    static char LPtitle[] = "MIP Problem Results:"; 
    static char NLPtitle[] = "NLP Problem Results:"; 
 
    switch (message) { 
 
    case WM_PAINT: 
        hDC = BeginPaint (hWnd, &ps); 
        GetTextMetrics (hDC, &textmetric); 
        nSpacing = textmetric.tmExternalLeading + textmetric.tmHeight; 
 
        /* Initialize drawing position to 1/4" from the top left */ 
        nDrawX = GetDeviceCaps (hDC, LOGPIXELSX) / 4;    /* 1/4" */ 
        nDrawY = GetDeviceCaps (hDC, LOGPIXELSY) / 4;    /* 1/4" */ 
 
        strcpy (szText, "WinExamp:  MIP and NLP problems with callbacks"); 
        TextOut (hDC, nDrawX, nDrawY, szText, strlen (szText)); 
        nDrawY += 2 * nSpacing; 
 
        if (!LPstat) 
        { 
          RunLPSolver (&LPstat, &LPobj, LPx); 
          RunNLPSolver (&NLPstat, &NLPobj, NLPx); 
          SetWindowText (hWnd, szAppTitle); 
        } 
 
        FPSTR (LPobj, szObj); 
        FPSTR (LPx[0], szVar1); FPSTR (LPx[1], szVar2); 
 
        TextOut (hDC, nDrawX, nDrawY, LPtitle, strlen (LPtitle)); 
        nDrawY += nSpacing; 
 
        wsprintf (szText, "LPstatus = %ld  Objective = %s", 
          LPstat, (LPSTR)szObj); 
        TextOut (hDC, nDrawX, nDrawY, szText, strlen (szText)); 
        nDrawY += nSpacing; 
 
        wsprintf(szText, "x1 = %s  x2 = %s", (LPSTR)szVar1, (LPSTR)szVar2); 
        TextOut (hDC, nDrawX, nDrawY, szText, strlen (szText)); 
        nDrawY += 2 * nSpacing; 
 
        FPSTR (NLPobj, szObj); 
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        FPSTR (NLPx[0], szVar1); FPSTR (NLPx[1], szVar2); 
 
        TextOut (hDC, nDrawX, nDrawY, NLPtitle, strlen (NLPtitle)); 
        nDrawY += nSpacing; 
 
        wsprintf (szText, "LPstatus = %ld  Objective = %s", 
          NLPstat, (LPSTR)szObj); 
        TextOut (hDC, nDrawX, nDrawY, szText, strlen (szText)); 
        nDrawY += nSpacing; 
 
        wsprintf(szText, "x1 = %s  x2 = %s", (LPSTR)szVar1, (LPSTR)szVar2); 
        TextOut (hDC, nDrawX, nDrawY, szText, strlen (szText)); 
        nDrawY += 2 * nSpacing; 
 
        EndPaint (hWnd,  &ps); 
        break; 
 
      case WM_DESTROY: 
        PostQuitMessage(0); 
        break; 
 
      default: 
        return (DefWindowProc(hWnd, message, wParam, lParam)); 
    } 
    return 0; 
} 
 
 
PBYTE FPSTR( double value, PBYTE lpstr) 
{ 
    PBYTE   buf = lpstr; 
    int     length = 0; 
    DWORD   dwFraction; 
    if (value < 0.00) { *buf = '-'; length++; value = -value; } 
    length += wsprintf( &buf[ length ], "%lu.", (DWORD) value); 
    dwFraction = (DWORD) (1.00E+04 * (value - (DWORD) value)); 
    length += wsprintf( &buf[ length ], "%4.4lu", dwFraction); 
    return lpstr; 
} 
 
 
/* Define a "callback" function which displays the iteration and current 
   objective value in the window title bar, and checks for the ESC key */ 
 
long _CC pivot (HPROBLEM lpinfo, long wherefrom) 
{ 
    long NumPivot; double Objective; 
    char PivotMsg[64], ObjStr[12]; 
    MSG msg; 
 
    getcallbackinfo( lpinfo, wherefrom, CBINFO_ITCOUNT, &NumPivot); 
    getcallbackinfo( lpinfo, wherefrom, CBINFO_PRIMAL_OBJ, &Objective); 
    FPSTR (Objective, ObjStr); 
    wsprintf( PivotMsg, "Pivot # %ld:  Obj = %s", NumPivot, (LPSTR)ObjStr); 
    SetWindowText (hWnd, PivotMsg); 
    if (PeekMessage ((MSG FAR *) &msg, hWnd, 
        WM_KEYDOWN, WM_KEYDOWN, PM_NOREMOVE)) 
        if (msg.wParam == VK_ESCAPE) return PSTAT_USER_ABORT; 
    return PSTAT_CONTINUE; 
} 
 
/* Define and solve the example MIP problem */ 
 
void RunLPSolver (long *pstat, double *pobj, double *x) 
{ 
    double obj[] = { 2.0, 3.0 }; 
    double rhs[] = { 54.0, 42.0, 50.0 }; 
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    char sense[] = "LLL"; 
    long matbeg[] = { 0, 3 }; 
    long matcnt[] = { 3, 3 }; 
    long matind[] =   {   0,   1,   2,   0,   1,    2 }; 
    double matval[] = { 9.0, 6.0, 5.0, 6.0, 7.0, 10.0 }; 
    double lb[] = { 0.0, 0.0 }; 
    double ub[] = { INFBOUND, INFBOUND }; 
    char ctype[] = "II"; 
    HPROBLEM lp = NULL; 
    _CCPROC lpPivot; 
 
    setintparam( lp, PARAM_ARGCK, 1); 
    lp = loadlp (PROBNAME, 2, 3, -1, obj, rhs, sense, 
         matbeg, matcnt, matind, matval, lb, ub, NULL, 2, 3, 6); 
    if (!lp) return; 
    loadctype (lp, ctype); 
 
    lpPivot = (_CCPROC)MakeProcInstance ((FARPROC)pivot, hInst); 
    setlpcallbackfunc( lp, lpPivot); 
    optimize (lp); 
    solution (lp, pstat, pobj, x, NULL, NULL, NULL); 
    unloadprob (&lp); 
    return; 
} 
 
 
/* Define a "callback" function that computes the objective and constraint 
   left hand sides, for any supplied values of the decision variables. */ 
 
INTARG _CC funceval1 (HPROBLEM lp, INTARG numcols, INTARG numrows, 
   LPREALARG objval, LPREALARG lhs, LPREALARG var, INTARG varone, 
   INTARG vartwo) 
{ 
    objval[0] = var[0] * var[0]  + var[1] * var[1] ; /* objective */ 
    lhs[0] = var[0] + var[1]; /* constraint left hand side */ 
    lhs[1] = var[0] * var[1]; /* constraint left hand side */ 
    return 0; 
} 
 
/* Define and solve the example NLP problem */ 
 
void RunNLPSolver (long *pstat, double *pobj, double *x) 
{ 
    double obj[2]; 
    double rhs[2] = {  1.0, 0.0 }; 
    char sense[2] = "EG"; 
    double matval[4]; 
    double lb[] = { -INFBOUND, -INFBOUND }; 
    double ub[] = { +INFBOUND, +INFBOUND }; 
    HPROBLEM lp = NULL; 
    _FUNCEVAL lpFuncEval; 
    _CCPROC lpPivot; 
 
    setintparam( lp, PARAM_ARGCK, 1); 
    lpFuncEval = (_FUNCEVAL)MakeProcInstance ((FARPROC)funceval1, hInst); 
    lp = loadnlp (PROBNAME, 2, 2, 1, obj, rhs, sense, 
          NULL, NULL, NULL, matval, x, lb, ub, NULL, 4, lpFuncEval, NULL); 
    if (!lp) return; 
 
    lpPivot = (_CCPROC)MakeProcInstance ((FARPROC)pivot, hInst); 
    setlpcallbackfunc( lp, lpPivot); 
    optimize (lp); 
    solution (lp, pstat, pobj, x, NULL, NULL, NULL); 
    unloadprob (&lp); 
    return; 
} 
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A Multi-Threaded Application 
The source file winexamp2.c (found in the Examples/Vcexamp subdirectory) is a 
very simple example of a multi-threaded application.  It will run and exhibit multi-
threaded behavior only when compiled for a Win32 target system and only when 
used with a multi-threaded version of the Solver DLL.  Since the Win32 API calls to 
create threads are surrounded by #ifdefs, winexamp2.c will compile and run on 
Win16 systems such as Windows 3.1, but it won’t exhibit multi-threaded behavior. 

Winexamp2.c is similar in structure to winexamp1.c, in that it begins with the 
WinMain(), InitApplication() and InitInstance() procedures common to almost all 
Windows applications.  However, in WinMain() we call InitInstance() twice to create 
two windows – both using the same window procedure MainWndProc() – and, on 
Win32 systems, we create a thread corresponding to each window.  A Solver DLL 
problem is created and solved in each window.  Code at the beginning of 
MainWndProc() selects the appropriate problem based on the window handle passed 
on each call by Windows. 

MainWndProc() is similar to the corresponding function in winexamp1.c, with one 
important difference:  Whereas in winexamp1.c we set up and solve both problems 
only on the first WM_PAINT message (and we save the results in static variables for 
redisplay on subsequent WM_PAINT messages), in winexamp2.c we re-create and 
re-solve a problem on each WM_PAINT message in each window.  We do this to 
demonstrate what happens when both problems are being solved concurrently.  
(Note:  if your copy of the Solver DLL doesn’t include both the linear and nonlinear 
Solver engines, you can change the #defines PROBLEM1 and PROBLEM2 at the 
beginning of winexamp2.c so that the same problem will be created and solved in 
both windows.) 

The two threads we create in WinMain() execute a common function RunThread(), 
which receives as an argument the window handle of the first or second window.  
RunThread() simply calls the Win32 Sleep() function to wait for a randomly chosen 
number of seconds, then calls InvalidateRect() and UpdateWindow() to generate a 
new WM_PAINT message for the argument window.  The effect is to cause the 
MainWndProc() function and the Solver DLL routines to be executed at randomly 
chosen, and often overlapping, times in the two windows. 

If you compile, link and run winexamp2.c on a Win32 system with a single-threaded 
version of the Solver DLL, you will see one or more error MessageBoxes informing 
you that “another problem is currently loaded.”  If you run it with a multi-threaded 
version of the Solver DLL, you’ll see both windows updating concurrently with 
results from calling the Solver DLL routines. 

 
/* ********************************************************************* 
   Frontline Systems Small-Scale Solver Dynamic Link Library Version 3.5 
   Frontline Systems Inc., P.O. Box 4288, Incline Village, NV 89450 USA 
   Tel (775) 831-0300 ** Fax (775) 831-0314 ** Email info@frontsys.com 
   ********************************************************************* */ 
 
/* 
   Problem 1: Solve the MIP model: 
   Maximize   2 x1 +  3 x2 
   Subj to    9 x1 +  6 x2 <= 54 
              6 x1 +  7 x2 <= 42 
              5 x1 + 10 x2 <= 50 
   x1, x2 non-negative, integer 
   MIP solution: x1 = 2, x2 = 4 
   Objective = 16.0 
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   Problem 2: Solve the NLP model: 
   Minimize X^2 + Y^2 
   Subject to: 
      X + Y  = 1 
      X * Y >= 0 
   x1, x2 non-negative 
   Solution is X = Y = 0.5, Objective = 0.5 
 
   This is a multi-threaded Windows application.  It creates two threads 
   and two windows:  One thread repeatedly solves Problem 1 and displays 
   the results in the first window, while the other thread repeatedly  
   solves Problem 2 and displays the results in the second window. 
    
   If your copy of the Solver DLL does not include the LP or NLP Solver 
   "engine", you may change the #defines PROBLEM1 and PROBLEM2 so that 
   they both refer to the routine (either RunLPSolver or RunNLPSolver)  
   that calls the Solver engine that you have -- then the same results 
   will appear in both windows. 
*/ 
 
#include <windows.h> 
#include <stdlib.h> 
#include <string.h> 
#include "frontmip.h" 
#include "frontkey.h" 
 
#define PROBLEM1 RunLPSolver 
#define PROBLEM2 RunNLPSolver 
 
/* Prototype the procedures to follow... */ 
 
int WINAPI WinMain (HINSTANCE, HINSTANCE, LPSTR, int); 
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM); 
BOOL InitApplication(HINSTANCE); 
BOOL InitInstance(HINSTANCE, HWND *, char *, long, long, long, long); 
 
/* Threads are not available in Win16... */ 
#ifdef WIN32 
    DWORD WINAPI RunThread(LPVOID); 
#endif 
 
PBYTE FPSTR( double value, PBYTE lpstr); 
long _CC pivot (HPROBLEM lpinfo, long wherefrom); 
typedef long RunSolver(HWND hWnd, long *pstat, double *pobj, double *x); 
RunSolver RunLPSolver, RunNLPSolver; 
 
/* Global data... */ 
HANDLE hInst;  /* current instance */ 
HWND hWnd1, hWnd2;  /* window handles */ 
HPROBLEM lp1, lp2;  /* problem handles */ 
DWORD dwID1, dwID2; /* thread IDs in Win32 */ 
char szWinTitle1[] = "FRONTMIP Example 1"; 
char szWinTitle2[] = "FRONTMIP Example 2"; 
char szClassName[] = "FRONTMIP Class"; 
long Calls = 0; /* counts calls to RunLPSolver / RunNLPSolver */ 
 
 
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance, 
     LPSTR lpCmdLine, int nCmdShow) 
{ 
    MSG msg; 
    if (!hPrevInstance) 
        if (!InitApplication (hInstance)) 
            return (FALSE); 
 
    if (!InitInstance (hInstance, &hWnd1, szWinTitle1, 10, 10, 300, 300)) 
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        return (FALSE); 
    if (!InitInstance (hInstance, &hWnd2, szWinTitle2, 330, 10, 300, 300)) 
        return (FALSE); 
 
#ifdef WIN32 
    srand( GetTickCount()); 
    CreateThread( NULL, 0, RunThread, (LPVOID)hWnd1, 0, &dwID1); 
    CreateThread( NULL, 0, RunThread, (LPVOID)hWnd2, 0, &dwID1); 
#endif 
 
    while (GetMessage(&msg, 0, 0, 0)) { 
        TranslateMessage(&msg); 
        DispatchMessage(&msg); 
    } 
    return (msg.wParam); 
} 
 
 
BOOL InitApplication (HINSTANCE hInstance) 
{ 
    WNDCLASS  wc; 
    wc.style = 0; 
    wc.lpfnWndProc = MainWndProc; 
    wc.cbClsExtra = 0; 
    wc.cbWndExtra = 0; 
    wc.hInstance = hInstance; 
    wc.hIcon = LoadIcon(NULL, IDI_APPLICATION); 
    wc.hCursor = LoadCursor(NULL, IDC_ARROW); 
    wc.hbrBackground = GetStockObject(WHITE_BRUSH);  
    wc.lpszMenuName =  NULL; 
    wc.lpszClassName = szClassName; 
    return (RegisterClass(&wc)); 
} 
 
 
BOOL InitInstance(HINSTANCE hInstance, HWND *hWnd, char *szWinTitle, 
                  long nX, long nY, long nWidth, long nHeight) 
{ 
 
    hInst = hInstance; 
 
    *hWnd = CreateWindow( 
        szClassName, 
        szWinTitle, 
        WS_OVERLAPPEDWINDOW, 
        nX, nY, nWidth, nHeight, 
        NULL, NULL, hInstance, NULL); 
    if (!*hWnd) return (FALSE); 
 
    ShowWindow(*hWnd, SW_SHOW); 
    UpdateWindow(*hWnd); 
    return (TRUE); 
} 
 
 
#ifdef WIN32 
DWORD WINAPI RunThread( LPVOID lpVoid) 
{ 
    HWND hWnd = (HWND)lpVoid; 
    int i; 
    /* Cause Solver DLL to be called 9 more times for each window... */ 
    for (i = 1; i < 10; i++) 
    { 
        Sleep( rand() * 1000 / RAND_MAX ); /* wait random time (0-1 sec) */ 
        InvalidateRect( hWnd, NULL, TRUE); /* cause WM_PAINT for window  */ 
        UpdateWindow( hWnd); 
    } 
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    return 0; 
} 
#endif 
 
 
LRESULT CALLBACK MainWndProc 
    (HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam) 
{ 
    HDC hDC;                          /* display-context variable  */ 
    PAINTSTRUCT ps;                   /* paint structure           */ 
    TEXTMETRIC textmetric; 
    int nDrawX, nDrawY, nSpacing; 
    char szText[80], szObj[12], szVar1[12], szVar2[12]; 
 
    /* We call the Solver DLL on each WM_PAINT message */ 
    RunSolver *lpRunSolver; 
    char *szWinTitle, *szProblem, *szResults; 
    long stat = 0, calls = 0; 
    double obj = 0.0; 
    double x[2] = { 0.0, 0.0 }; 
 
    if (hWnd == hWnd1) 
    { 
        lpRunSolver = PROBLEM1; 
        szWinTitle = szWinTitle1; 
    } 
    else /* hWnd == hWnd2 */ 
    { 
        lpRunSolver = PROBLEM2; 
        szWinTitle = szWinTitle2; 
    } 
    if (lpRunSolver == RunLPSolver) 
    { 
        szProblem = "WinExamp:  MIP problem"; 
        szResults = "MIP Problem Results:"; 
    } 
    else /* lpRunSolver == RunNLPSolver */ 
    { 
        szProblem = "WinExamp:  NLP problem"; 
        szResults = "NLP Problem Results:"; 
    } 
 
    switch (message) { 
 
    case WM_PAINT: 
        hDC = BeginPaint (hWnd, &ps); 
        GetTextMetrics (hDC, &textmetric); 
        nSpacing = textmetric.tmExternalLeading + textmetric.tmHeight; 
 
        /* Initialize drawing position to 1/4" from the top left */ 
        nDrawX = GetDeviceCaps (hDC, LOGPIXELSX) / 4;    /* 1/4" */ 
        nDrawY = GetDeviceCaps (hDC, LOGPIXELSY) / 4;    /* 1/4" */ 
 
        calls = lpRunSolver (hWnd, &stat, &obj, x); 
        /* SetWindowText (hWnd, szWinTitle); */ 
 
        wsprintf (szText, "Call %ld:  %s", calls, szProblem); 
        TextOut (hDC, nDrawX, nDrawY, szText, strlen (szText)); 
        nDrawY += 2 * nSpacing; 
 
        FPSTR (obj, szObj); 
        FPSTR (x[0], szVar1); FPSTR (x[1], szVar2); 
 
        TextOut (hDC, nDrawX, nDrawY, szResults, strlen (szResults)); 
        nDrawY += nSpacing; 
 
        wsprintf (szText, "Status = %ld  Objective = %s", 



Dynamic Link Library Solver User's Guide Native Windows Applications  ••••  67 

          stat, (LPSTR)szObj); 
        TextOut (hDC, nDrawX, nDrawY, szText, strlen (szText)); 
        nDrawY += nSpacing; 
 
        wsprintf(szText, "x1 = %s  x2 = %s", (LPSTR)szVar1, (LPSTR)szVar2); 
        TextOut (hDC, nDrawX, nDrawY, szText, strlen (szText)); 
        nDrawY += 2 * nSpacing; 
 
        EndPaint (hWnd,  &ps); 
        break; 
 
      case WM_DESTROY: 
        PostQuitMessage(0); 
        break; 
 
      default: 
        return (DefWindowProc(hWnd, message, wParam, lParam)); 
    } 
    return 0; 
} 
 
 
PBYTE FPSTR( double value, PBYTE lpstr) 
{ 
    PBYTE   buf = lpstr; 
    int     length = 0; 
    DWORD   dwFraction; 
    if (value < 0.00) { *buf = '-'; length++; value = -value; } 
    length += wsprintf( &buf[ length ], "%lu.", (DWORD) value); 
    dwFraction = (DWORD) (1.00E+04 * (value - (DWORD) value)); 
    length += wsprintf( &buf[ length ], "%4.4lu", dwFraction); 
    return lpstr; 
} 
 
 
/* Define a "callback" function which displays the iteration and current 
   objective value in the window title bar, and checks for the ESC key */ 
 
long _CC pivot (HPROBLEM lpinfo, long wherefrom) 
{ 
    long NumPivot; double Objective; 
    char PivotMsg[64], ObjStr[12]; 
    MSG msg; HWND hWnd; 
 
    getcallbackinfo( lpinfo, wherefrom, CBINFO_ITCOUNT, &NumPivot); 
    getcallbackinfo( lpinfo, wherefrom, CBINFO_PRIMAL_OBJ, &Objective); 
    FPSTR (Objective, ObjStr); 
    wsprintf( PivotMsg, "Pivot # %ld:  Obj = %s", NumPivot, (LPSTR)ObjStr); 
    hWnd = (lpinfo == lp1 ? hWnd1 : hWnd2); 
    SetWindowText (hWnd, PivotMsg); 
    if (PeekMessage ((MSG FAR *) &msg, hWnd, 
        WM_KEYDOWN, WM_KEYDOWN, PM_NOREMOVE)) 
       if (msg.wParam == VK_ESCAPE) return PSTAT_USER_ABORT; 
    return PSTAT_CONTINUE; 
} 
 
/* Define and solve the example MIP problem */ 
 
long RunLPSolver (HWND hWnd, long *pstat, double *pobj, double *x) 
{ 
    double obj[] = { 2.0, 3.0 }; 
    double rhs[] = { 54.0, 42.0, 50.0 }; 
    char sense[] = "LLL"; 
    long matbeg[] = { 0, 3 }; 
    long matcnt[] = { 3, 3 }; 
    long matind[] =   {   0,   1,   2,   0,   1,    2 }; 
    double matval[] = { 9.0, 6.0, 5.0, 6.0, 7.0, 10.0 }; 
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    double lb[] = { 0.0, 0.0 }; 
    double ub[] = { INFBOUND, INFBOUND }; 
    char ctype[] = "II"; 
    HPROBLEM lp = NULL; 
    _CCPROC lpPivot; 
 
    setintparam( lp, PARAM_ARGCK, 1); 
    lp = loadlp (PROBNAME, 2, 3, -1, obj, rhs, sense, 
         matbeg, matcnt, matind, matval, lb, ub, NULL, 2, 3, 6); 
    if (!lp) return 0; 
    if (hWnd == hWnd1) lp1 = lp; else lp2 = lp; 
    loadctype (lp, ctype); 
 
    lpPivot = (_CCPROC)MakeProcInstance ((FARPROC)pivot, hInst); 
    setlpcallbackfunc( lp, lpPivot); 
    optimize (lp); 
    solution (lp, pstat, pobj, x, NULL, NULL, NULL); 
    unloadprob (&lp); 
    return ++Calls; 
} 
 
 
/* Define a "callback" function which computes the objective and constraint 
   left hand sides, for any supplied values of the decision variables. */ 
 
INTARG _CC funceval1 (HPROBLEM lp, INTARG numcols, INTARG numrows, 
    LPREALARG objval, LPREALARG lhs, LPREALARG var, INTARG varone, 
    INTARG vartwo) 
{ 
    objval[0] = var[0] * var[0]  + var[1] * var[1] ; /* objective */ 
    lhs[0] = var[0] + var[1]; /* constraint left hand side */ 
    lhs[1] = var[0] * var[1]; /* constraint left hand side */ 
    return 0; 
} 
 
/* Define and solve the example NLP problem */ 
 
long RunNLPSolver (HWND hWnd, long *pstat, double *pobj, double *x) 
{ 
    double obj[2]; 
    double rhs[2] = {  1.0, 0.0 }; 
    char sense[2] = "EG"; 
    double matval[4]; 
    double lb[] = { -INFBOUND, -INFBOUND }; 
    double ub[] = { +INFBOUND, +INFBOUND }; 
    HPROBLEM lp = NULL; 
    _FUNCEVAL lpFuncEval; 
    _CCPROC lpPivot; 
 
    setintparam( lp, PARAM_ARGCK, 1); 
    lpFuncEval = (_FUNCEVAL)MakeProcInstance ((FARPROC)funceval1, hInst); 
    lp = loadnlp (PROBNAME, 2, 2, 1, obj, rhs, sense, 
         NULL, NULL, NULL, matval, x, lb, ub, NULL, 4, lpFuncEval, NULL); 
    if (!lp) return 0; 
    if (hWnd == hWnd1) lp1 = lp; else lp2 = lp; 
 
    lpPivot = (_CCPROC)MakeProcInstance ((FARPROC)pivot, hInst); 
    setlpcallbackfunc( lp, lpPivot); 
    optimize (lp); 
    solution (lp, pstat, pobj, x, NULL, NULL, NULL); 
    unloadprob (&lp); 
    return ++Calls; 
} 
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Calling the Solver DLL from 
Visual Basic 

You can use many features of the Solver DLL with both 32-bit and 16-bit versions of 
Visual Basic 4.0 and above, and with most versions of Visual Basic Application 
Edition as embedded in various application programs such as Microsoft Office. 

To use the nonlinear GRG Solver or the Evolutionary Solver with Visual Basic, 
however, you must use Visual Basic 5.0 or above, or Visual Basic Application 
Edition in Microsoft Office 2000 or above.  Earlier versions of Visual Basic do not 
support the AddressOf operator, which is needed to pass the addresses of callback 
functions to the Solver DLL. 

It is straightforward to use the Solver DLL with Visual Basic.  You need only include 
the header file frontmip.bas or safrontmip.bas in your Visual Basic project, supply 
your license key (for example by including the header file frontkey.bas), and make 
calls to the Solver DLL entry points at the appropriate points in your program. 

Basic Steps 
To create a Visual Basic application that calls the Solver DLL, you must perform the 
following steps: 

1. Include one of the header files frontmip.bas or safrontmip.bas in your Visual 
Basic project. (You should also include the license file frontkey.bas to obtain 
the license key string.) 

2. Call at least the routines loadlp() or loadnlp(), optimize(), solution() and 
unloadprob() in that order. 

You can use the example Visual Basic code in vbexamp1.frm and examp1.frm (when 
using frontmip.bas), or vbexamp2.frm and examp2.frm (when using safrontmip.bas) 
as a guide for getting the arguments right. 

Passing Array Arguments 
Before you write a Visual Basic application using the Solver DLL, you should read 
the section “Arrays and Callback Functions in Visual Basic” in the chapter “Design-
ing Your Application.”  You must decide whether to pass array arguments as C-style 
arrays or as SAFEARRAYs.  C-style arrays were the only option in the Solver DLL 
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Versions 2.0 and 1.0 – but they cannot be used with the nonlinear GRG Solver or the 
Evolutionary Solver in the Solver DLL Version 3.5.  For new applications built with 
the Solver DLL V3.5 and Visual Basic 5.0 or above, we recommend that you use 
SAFEARRAYs. 

To pass arguments as SAFEARRAYs, follow all of these steps: 

1. Include the header file safrontmip.bas in your project. 

2. Set the parameter PARAM_ARRAY to 1 before you call any of the other Solver 
DLL routines (except as needed to set other parameters).  To do this, use a 
statement such as: 

setintparam PARAM_ARRAY, 1 

3. When you pass an array argument, use the name of the array (such as obj or 
matval) without any subscript. 

To pass array arguments as C-style arrays, follow all of these steps: 

1. Include the header file frontmip.bas in your project. 

2. Ensure that the parameter PARAM_ARRAY is 0 before you call any of the other 
Solver DLL routines (it is 0 by default, unless you change it). 

3. When you pass an array argument, use the first element of the array (such as 
obj(0) or matval(0)), with a subscript . 

The example Visual Basic project vbexamp1.vbp uses frontmip.bas and C-style 
arrays; it can be opened and run in Visual Basic 4.0 (16-bit or 32-bit) or in Visual 
Basic 5.0 and above (32-bit only).  The example project vbexamp2.vbp uses 
safrontmip.bas and SAFEARRAYs; it can be opened and run only in Visual Basic 
5.0 and above. 

You can pass array arguments as C-style arrays in Visual Basic 5.0 or above, if you 
wish.  However, any callback function funceval() that you write for use with the 
nonlinear or nonsmooth Solver “engines” will only be able to access the first element 
of the array arguments passed to it – which means that you can solve at most a 
nonlinear problem with one variable and one constraint. 

Building a 32-Bit Visual Basic Program 
You can run the compiled versions of the Visual Basic examples vbexamp1.exe and 
vbexamp2.exe using Start Run.  These programs, like all Visual Basic applications, 
rely on the Visual Basic runtime system DLLs; if you have installed either the Visual 
Basic programming system or some other Visual Basic program, these DLLs should 
already be present in your Windows system directory. 

You can edit, build and test the source code of vbexamp1.exe (vbexamp2.exe is 
similar) as follows: 

1. Start the Visual Basic programming system.  In the New Project dialog, click on 
the Existing tab, navigate to the Visual Basic example subdirectory (for example 
c:\frontmip\examples\vbexamp), select vbexamp1.vbp and click Open. 

2. The Visual Basic system will load the project file, the related form files 
(vbexamp1.frm and examp1.frm) and the related module file (vbexamp1.bas) as 
well as the header files frontmip.bas and frontkey.bas. (Note:  Since the form 
files in this project were saved in a format compatible with Visual Basic 4.0, you 
may see the message “This file was saved in a previous version of Visual Basic” 
– just click OK (or OK For All) in response to this message.) 
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3. By selecting these files in the project list and clicking on View Form or View 
Code, you can examine and (if desired) modify the elements of this application.  
After opening vbexamp1.vbp and clicking on View Form and View Code, your 
screen should resemble the picture below. 

 

3. To test-run the program within the Visual Basic programming system, select 
Run Start and then click on one of the buttons labeled “Example 1” through 
“Example 5.”  This will display a form with comments, output fields, and 
“Solve” and “Exit” buttons.  If you click the button “Example 1” and then click 
“Solve,” for example, the output fields will appear filled with values, as shown 
on the following page. 

4. Example 2 uses the lpwrite() function to create a file vbexamp1, containing an 
algebraic statement of its problem, in the Visual Basic program directory (for 
example C:\DevStudio\VB).  Example 5 uses the lpread() function to read this 
file and define and solve the same problem, without setting up all of the array 
arguments normally required.  To end execution of the program, click the Exit 
button on the Example Problem form, and the Quit button on the main form.   

5. To trace execution of this program, select Debug Step Into and press the F8 key 
to execute one Visual Basic statement at a time.  You will see that the routine 
Sub Command1_Click() that is executed when you click the “Example 1” button 
sets up the various array arguments needed to call the Solver DLL, then loads the 
form examp1.frm.  The routine Sub Command1_Click() on this form that is 
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executed when you click “Solve” calls the various Solver DLL routines such as 
loadlp(), optimize() and solution(). 

 

6. To produce a binary executable version of your Visual Basic application, select 
File Make vbexamp1.exe  Note that this executable version still requires the 
Visual Basic runtime system DLLs, as well as the Solver DLL frontmip.dll. 

Building a 16-Bit Visual Basic Program 
In 16-bit Visual Basic 4.0, you may open the same project file vbexamp1.vbp 
illustrated above for 32-bit Visual Basic 5.0.  To do so: 

1. Start the Visual Basic programming system.  Select File Open Project… and 
navigate to the Visual Basic example subdirectory (for example 
c:\frontmip\examples\vbexamp), select vbexamp1.vbp and click OK. 

2. The Visual Basic system will load the project file, the related form and module 
files, and the header files frontmip.bas and frontkey.bas.  Because this project (i) 
was saved in Visual Basic 4.0 format and (ii) uses frontmip.bas and C-style 
arrays, it is backward compatible with the 16-bit Visual Basic system. 

3. When you run the program, the forms and buttons look and behave in the same 
way.  You simply need to ensure that your program finds and loads the 16-bit 
version of frontmip.dll instead of the 32-bit version, by placing it in the current 
directory, or a directory in your PATH. 

However, you cannot open and run the project file vbexamp2.vbp.  This project was 
saved in Visual Basic 5.0 format, and it uses safrontmip.bas, SAFEARRAYs, and the 
AddressOf operator, which are not compatible with the 16-bit Visual Basic system.  
Most new Visual Basic applications are targeted for 32-bit systems such as Windows 
95/98 and Windows NT/2000, and new features of the Solver DLL are likely to be 
targeted to these platforms as well. 
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Visual Basic Source Code: Linear / Quadratic Problems 
The Visual Basic source code from the files vbexamp1.bas, vbexamp1.frm and 
examp1.frm is listed below.  It includes five example problems for the Solver DLL, 
which are set up and solved when you click on the appropriate buttons.  The first 
example is a simple two-variable LP problem.  The second example – for which 
source code in Delphi Pascal and FORTRAN is also included – is a MIP problem, 
identical to the previous LP problem except that the decision variables are required to 
have integer values.  The third example attempts to solve an LP problem that is 
infeasible, then it uses the IIS finder to diagnose the infeasibility.  The fourth 
example is a quadratic programming problem, using the classic Markowitz method to 
find an efficient portfolio of five securities.  The fifth example uses the lpread() 
function to read in a problem in “algebraic notation” from a text file that was created 
by the lpwrite() function in the second example. 

You are encouraged to study this source code (or the C/C++ source code) and 
the comments in each problem, even if you plan to use a language other than 
Visual Basic for most of your work.  The C/C++ and Visual Basic example code is 
more extensive than the examples for the other languages, and illustrates most of the 
features of the Solver DLL including the Quadratic Solver, the Evolutionary Solver, 
automatic diagnosis of infeasible problems, and use of the lpread() and lpwrite() 
functions. 

 
VBEXAMP1.BAS 
------------ 
 
Global obj() As Double 
Global rhs() As Double 
Global sense() As Byte 
Global ctype() As Byte 
Global matbeg() As Long 
Global matcnt() As Long 
Global matind() As Long 
Global matval() As Double 
Global qmatbeg() As Long 
Global qmatcnt() As Long 
Global qmatind() As Long 
Global qmatval() As Double 
Global lb() As Double 
Global ub() As Double 
Global stat As Long 
Global objval As Double 
Global x() As Double 
Global piout() As Double 
Global slack() As Double 
Global dj() As Double 
Global varlow() As Double 
Global varupp() As Double 
Global conlow() As Double 
Global conupp() As Double 
Global lp As Long 
 
'  The call to lpcallback in EXAMP1.FRM is commented out for compatibility 
'  with 16-bit Visual Basic 4.0. 
  
 
Function lpcallback(ByVal lpinfo As Long, ByVal wherefrom As Long) As Long 
   Dim iters As Long 
   Dim obj As Double 
   Dim ret As Long 
   ret = getcallbackinfo(lpinfo, wherefrom, CBINFO_ITCOUNT, iters) 
   ret = getcallbackinfo(lpinfo, wherefrom, CBINFO_PRIMAL_OBJ, obj) 
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   MsgBox "Iteration: " & Trim(Str(iters)) & "  Obj = " & Trim(Str(obj)) 
   lpcallback = PSTAT_CONTINUE 
End Function 
 
Sub AdjustFormforExample2() 
   [detail omitted] 
End Sub 
 
Sub AdjustFormforExample3() 
   [detail omitted] 
End Sub 
  
Sub AdjustFormforExample4() 
   [detail omitted] 
End Sub 
 
Sub AdjustFormforExample5() 
   [detail omitted] 
End Sub 
 
 
VBEXAMP1.FRM 
------------ 
 
Private Sub Command1_Click() 
'  Example 1: Solves the LP model: 
'  Maximize   2 x1 +  3 x2 
'  Subj to    9 x1 +  6 x2 <= 54 
'             6 x1 +  7 x2 <= 42 
'             5 x1 + 10 x2 <= 50 
'  x1, x2 non-negative 
'  LP solution: x1 = 2.8, x2 = 3.6 
'  Objective = 16.4 
 
'  This example shows the simple form of passing arguments to loadlp(): 
'  A dense (full-size N by M) matrix is passed as the matval argument 
'  and NULL pointers are passed as the matbeg, matcnt & matind arguments. 
 
'  This example also shows how to obtain LP sensitivity analysis info 
'  by calling the objsa() and rhssa() functions.  These calls are valid 
'  only for LP problems.  For QP problems, only dual values (the piout 
'  and dj arguments of solution()) are available; for MIP problems, no 
'  sensitivity analysis info is available (none would be meaningful). 
' 
'  This example uses a callback function to display the LP iterations. 
 
   ReDim obj(0 To 1) As Double 
   obj(0) = 2 
   obj(1) = 3 
   ReDim rhs(0 To 2) As Double 
   rhs(0) = 54 
   rhs(1) = 42 
   rhs(2) = 50 
   ReDim sense(0 To 2) As Byte 
   ' L's for <=, E's for =, G's for >= 
   sense(0) = Asc("L") 
   sense(1) = Asc("L") 
   sense(2) = Asc("L") 
   ReDim matval(0 To 5) As Double 
   matval(0) = 9 
   matval(1) = 6 
   matval(2) = 5 
   matval(3) = 6 
   matval(4) = 7 
   matval(5) = 10 
   ReDim lb(0 To 1) As Double 
   lb(0) = 0 
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   lb(1) = 0 
   ReDim ub(0 To 1) As Double 
   ub(0) = INFBOUND 
   ub(1) = INFBOUND 
   ReDim x(0 To 1) As Double 
   ReDim piout(0 To 2) As Double 
   ReDim slack(0 To 2) As Double 
   ReDim dj(0 To 1) As Double 
   ReDim varlow(0 To 1) As Double 
   ReDim varupp(0 To 1) As Double 
   ReDim conlow(0 To 2) As Double 
   ReDim conupp(0 To 2) As Double 
 
   Form2.Show 
End Sub 
 
 
Private Sub Command2_Click() 
 
'  Example 2: Solves the MIP model: 
'  Maximize   2 x1 +  3 x2 
'  Subj to    9 x1 +  6 x2 <= 54 
'             6 x1 +  7 x2 <= 42 
'             5 x1 + 10 x2 <= 50 
'  x1, x2 non-negative, integer 
'  MIP solution: x1 = 2, x2 = 4 
'  Objective = 16 
 
'  This example illustrates the full set of arguments, used to pass a 
'  potentially sparse matrix to loadlp.  For each variable (column) i, 
'  matbeg[i] and matcnt[i] are the beginning index and count of non- 
'  zero coefficients in the matind and matval arrays.  For each such 
'  coefficient, matind[k] is the constraint (row) index and matval[i] 
'  is the coefficient value.  See the documentation for more details. 
 
'  In this example, we also use two debugging features of the Solver 
'  DLL:  (1) We call setintparam() to enable the display of error 
'  MessageBoxes by the DLL routines if they detect an invalid value 
'  in one of the arguments we pass (since there are no errors, none 
'  will appear).  (2) We call lpwrite() to write out a file which 
'  summarizes the LP/MIP problem in algebraic form.  This can help 
'  us verify that the arguments we pass have defined the right problem. 
' 
   ReDim obj(0 To 1) As Double 
   obj(0) = 2 
   obj(1) = 3 
   ReDim rhs(0 To 2) As Double 
   rhs(0) = 54 
   rhs(1) = 42 
   rhs(2) = 50 
   ReDim sense(0 To 2) As Byte 
   ' L's for <=, E's for =, G's for >= 
   sense(0) = Asc("L") 
   sense(1) = Asc("L") 
   sense(2) = Asc("L") 
   ReDim ctype(0 To 1) As Byte 
   ' I = integer, B = binary, C = continuous 
   ctype(0) = Asc("I") 
   ctype(1) = Asc("I") 
   ReDim matbeg(0 To 1) As Long 
   matbeg(0) = 0 
   matbeg(1) = 3 
   ReDim matcnt(0 To 1) As Long 
   matcnt(0) = 3 
   matcnt(1) = 3 
   ReDim matind(0 To 5) As Long 
   matind(0) = 0 



76  ••••  Calling the Solver DLL from Visual Basic Dynamic Link Library Solver User's Guide 

   matind(1) = 1 
   matind(2) = 2 
   matind(3) = 0 
   matind(4) = 1 
   matind(5) = 2 
   ReDim matval(0 To 5) As Double 
   matval(0) = 9 
   matval(1) = 6 
   matval(2) = 5 
   matval(3) = 6 
   matval(4) = 7 
   matval(5) = 10 
   ReDim lb(0 To 1) As Double 
   lb(0) = 0 
   lb(1) = 0 
   ReDim ub(0 To 1) As Double 
   ub(0) = INFBOUND 
   ub(1) = INFBOUND 
   ReDim x(0 To 1) As Double 
    
   AdjustFormforExample2 
   Form2.Show 
End Sub 
 
 
Private Sub Command3_Click() 
 
'  Example 3: Attempt to solve the LP model: 
'  Maximize   2 x1 +  3 x2 
'  Subj to    9 x1 +  6 x2 <= 54 
'             6 x1 +  7 x2 <= 42 
'             5 x1 + 10 x2 <= -50 
'  x1, x2 non-negative 
'  Infeasible (due to non-negative variables and negative RHS) 
 
'  When solution() returns stat = PSTAT_INFEASIBLE, ask Solver DLL 
'  to find an Irreducibly Infeasible Subset (IIS) of the constraints: 
'  Row 2 (with the negative RHS) and lower bounds on both variables 
 
'  The constraint matrix is passed in simple (dense) form in matval[]. 
 
   ReDim obj(0 To 1) As Double 
   obj(0) = 2 
   obj(1) = 3 
   ReDim rhs(0 To 2) As Double 
   rhs(0) = 54 
   rhs(1) = 42 
   rhs(2) = -50 
   ReDim sense(0 To 2) As Byte 
   ' L's for <=, E's for =, G's for >= 
   sense(0) = Asc("L") 
   sense(1) = Asc("L") 
   sense(2) = Asc("L") 
   ReDim matval(0 To 5) As Double 
   matval(0) = 9 
   matval(1) = 6 
   matval(2) = 5 
   matval(3) = 6 
   matval(4) = 7 
   matval(5) = 10 
   ReDim lb(0 To 1) As Double 
   lb(0) = 0 
   lb(1) = 0 
   ReDim ub(0 To 1) As Double 
   ub(0) = INFBOUND 
   ub(1) = INFBOUND 
   ReDim x(0 To 1) As Double 



Dynamic Link Library Solver User's Guide Calling the Solver DLL from Visual Basic  ••••  77 

     
   AdjustFormforExample3 
   Form2.Show 
End Sub 
 
 
Private Sub Command4_Click() 
 
'  Example 4: Use the QP solver to perform 
'  Markowitz-style portfolio optimization. 
'  Variables are the percentages to be allocated 
'  to each investment or asset class: 
'     0 <= x1, x2, x3, x4 x5 <= 1 
'  Minimize portfolio variance: [xi] Q [xi] 
'  Subj to allocations: Sum (xi) = 1 
'     and portfolio return: Sum (Ri xi) >= 0.085 
 
'  The efficient portfolio is the QP solution (approx): 
'     x1 = 0.462  x2 = 0  x3 = 0.313  x4 = 0  x5 = 0.225 
'  The objective = approx. 0.00014 (minimum variance) 
 
'  Both the constraint matrix and the Q matrix are passed 
'  using the full set of arguments for sparse matrices. 
 
   Dim i As Long 
   ReDim obj(0 To 4) As Double 
   For i = 0 To 4 
      obj(i) = 0 
   Next 
   ReDim rhs(0 To 1) As Double 
   rhs(0) = 1# 
   rhs(1) = 0.085 
   ReDim sense(0 To 1) As Byte 
   sense(0) = Asc("E") 
   sense(1) = Asc("G") 
   ReDim matbeg(0 To 4) As Long 
   ReDim matcnt(0 To 4) As Long 
   ReDim matind(0 To 9) As Long 
   ReDim lb(0 To 4) As Double 
   ReDim ub(0 To 4) As Double 
   For i = 0 To 4 
      matbeg(i) = 2 * i 
      matcnt(i) = 2 
      matind(2 * i) = 0 
      matind(2 * i + 1) = 1 
      lb(i) = 0 
      ub(i) = 1 
   Next 
   ReDim matval(0 To 9) As Double 
   matval(0) = 1 
   matval(1) = 0.086 
   matval(2) = 1 
   matval(3) = 0.071 
   matval(4) = 1 
   matval(5) = 0.095 
   matval(6) = 1 
   matval(7) = 0.107 
   matval(8) = 1 
   matval(9) = 0.069 
    
   ReDim qmatbeg(0 To 4) As Long 
   ReDim qmatcnt(0 To 4) As Long 
   ReDim qmatind(0 To 24) As Long 
   For i = 0 To 4 
       qmatbeg(i) = 5 * i 
       qmatcnt(i) = 5 
       qmatind(i) = i 
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       qmatind(i + 5) = i 
       qmatind(i + 10) = i 
       qmatind(i + 15) = i 
       qmatind(i + 20) = i 
   Next 
   ReDim qmatval(0 To 24) As Double 
   ' The Q matrix specifies the covariance between each pair of assets 
   qmatval(0) = 0.000204 
   qmatval(1) = 0.000424 
   qmatval(2) = 0.00017 
   qmatval(3) = 0.000448 
   qmatval(4) = -0.000014 
   qmatval(5) = 0.000424 
   qmatval(6) = 0.012329 
   qmatval(7) = 0.001785 
   qmatval(8) = 0.001633 
   qmatval(9) = -0.000539 
   qmatval(10) = 0.00017 
   qmatval(11) = 0.001785 
   qmatval(12) = 0.000365 
   qmatval(13) = 0.000425 
   qmatval(14) = -0.000075 
   qmatval(15) = 0.000448 
   qmatval(16) = 0.001633 
   qmatval(17) = 0.000425 
   qmatval(18) = 0.005141 
   qmatval(19) = 0.000237 
   qmatval(20) = -0.000014 
   qmatval(21) = -0.000539 
   qmatval(22) = -0.000075 
   qmatval(23) = 0.000237 
   qmatval(24) = 0.000509 
   ReDim x(0 To 4) As Double 
     
   AdjustFormforExample4 
   Form2.Show 
End Sub 
 
 
Private Sub Command5_Click() 
   End 
End Sub 

 
 

Private Sub Command6_Click() 
 
'  Here we use the lpread() function to read in the model. 
    
'  First, we assume that the dimensions of the problem 
'  are known.  We call loadlp(), passing array arguments 
'  of the proper dimension.  Since the sense[] and ctype[] 
'  arrays are checked for validity, we initialize them. 
 
   ReDim obj(0 To 1) As Double 
   ReDim rhs(0 To 2) As Double 
   ReDim sense(0 To 2) As Byte 
   ReDim ctype(0 To 1) As Byte 
   ReDim matbeg(0 To 1) As Long 
   ReDim matcnt(0 To 1) As Long 
   ReDim matind(0 To 5) As Long 
   ReDim matval(0 To 5) As Double 
   ReDim lb(0 To 1) As Double 
   ReDim ub(0 To 1) As Double 
   ReDim x(0 To 1) As Double 
       
   AdjustFormforExample5 
   Form2.Show 
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End Sub 
 
 
EXAMP1.FRM 
---------- 
 
Private Sub Command1_Click() 
 
   ' set up the LP problem 
    
   Select Case Left(Form2.Label1, 9) 
 
   Case "Example 1" 
       lp = loadlp(PROBNAME, 2, 3, -1, obj(0), rhs(0), sense(0), _ 
             -1, -1, -1, matval(0), lb(0), ub(0), -1, 2, 3, 6) 
              
       If (lp = 0) Then Exit Sub 
        
       ' set up the callback 
       ' setlpcallbackfunc lp, AddressOf lpcallback 
     
       ' solve the problem 
       optimize lp 
     
       ' obtain the solution: display objective and variables 
       solution lp, stat, objval, x(0), piout(0), slack(0), dj(0) 
       Form2.Text3 = "LPStatus = " & Trim(Str(stat)) 
       Form2.Text4 = "Objective = " & Trim(Str(objval)) 
        
       ' display constraint slacks and dual values 
       Form2.Text1 = "x1 = " & x(0) 
       Form2.Text2 = "x2 = " & x(1) 
        
       Form2.Text5 = "slack1 = " & slack(0) 
       Form2.Text6 = "piout1 = " & piout(0) 
       Form2.Text7 = "slack2 = " & slack(1) 
       Form2.Text8 = "piout2 = " & piout(1) 
       Form2.Text24 = "slack3 = " & slack(2) 
       Form2.Text25 = "piout3 = " & piout(2) 
        
       ' obtain and display sensitivity analysis information 
       objsa lp, 0, 1, varlow(0), varupp(0) 
       Form2.Text9 = obj(0) 
       Form2.Text10 = varlow(0) 
       Form2.Text11 = varupp(0) 
       Form2.Text12 = obj(1) 
       Form2.Text13 = varlow(1) 
       Form2.Text14 = varupp(1) 
        
       rhssa lp, 0, 2, conlow(0), conupp(0) 
        
       Form2.Text15 = rhs(0) 
       Form2.Text16 = conlow(0) 
       Form2.Text17 = conupp(0) 
       Form2.Text18 = rhs(1) 
       Form2.Text19 = conlow(1) 
       Form2.Text20 = conupp(1) 
       Form2.Text21 = rhs(2) 
       Form2.Text22 = conlow(2) 
       Form2.Text23 = conupp(2) 
       
       ' remove the callback function 
       setlpcallbackfunc lp, 0 
     
       ' call unloadprob() to release memory 
       unloadprob lp 
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   Case "Example 2" 
       lp = loadlp(PROBNAME, 2, 3, -1, obj(0), rhs(0), sense(0), _ 
             matbeg(0), matcnt(0), matind(0), matval(0), lb(0), ub(0), _ 
             -1, 2, 3, 6) 
              
       If (lp = 0) Then Exit Sub 
        
       loadctype lp, ctype(0) 
        
       ' lpwrite() can be called anytime after the problem 
       ' is defined, and before unloadprob() is called.  It 
       ' will write out the following text in file vbexamp1: 
       ' Maximize LP / MIP 
       ' obj: 2.0 x1 + 3.0 x2 
       ' Subject To 
       ' c1:  9.0 x1 + 6.0 x2 <= 54.0 
       ' c2:  6.0 x1 + 7.0 x2 <= 42.0 
       ' c3:  5.0 x1 + 10.0 x2 <= 50.0 
       ' Bounds 
       ' 0.0 <= x1 <= +infinity 
       ' 0.0 <= x2 <= +infinity 
       ' Integers 
       ' x1 
       ' x2 
       ' End 
       lpwrite lp, "vbexamp1" 
       
       'solve the problem 
       mipoptimize lp 
     
       ' obtain the solution: display objective and variables 
       solution lp, stat, objval, x(0), -1, -1, -1 
       Form2.Text3 = "LPStatus = " & Trim(Str(stat)) 
       Form2.Text4 = "Objective = " & Trim(Str(objval)) 
        
       Form2.Text1 = "x1 = " & x(0) 
       Form2.Text2 = "x2 = " & x(1) 
        
       ' call unloadprob() to release memory 
       unloadprob lp 
 
 
    Case "Example 3" 
       Dim iisrows As Long 
       Dim iiscols As Long 
       lp = loadlp(PROBNAME, 2, 3, -1, obj(0), rhs(0), sense(0), _ 
             -1, -1, -1, matval(0), lb(0), ub(0), -1, 2, 3, 6) 
              
       If (lp = 0) Then Exit Sub 
        
       ' solve the problem 
       optimize lp 
     
       ' obtain the solution: display objective and variables 
       solution lp, stat, objval, x(0), -1, -1, -1 
       Form2.Text3 = "LPStatus = " & Trim(Str(stat)) 
       Form2.Text4 = "Objective = " & Trim(Str(objval)) 
                        
       ' if infeasible, find and display an Irreducibly 
       ' Infeasible Subset (IIS) of the constraints 
 
       If stat = PSTAT_INFEASIBLE Then 
          findiis lp, iisrows, iiscols 
          MsgBox "Findiis: iisrows = " & Trim(Str(iisrows)) _ 
             & " iiscols = " & Trim(Str(iiscols)) 
          Form2.Text1 = "iisrows = " & Trim(Str(iisrows)) 
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          Form2.Text2 = "iiscols = " & Trim(Str(iiscols)) 
       
          ReDim rowbdstat(iisrows - 1) As Long 
          ReDim colbdstat(iiscols - 1) As Long 
          ReDim rowind(iisrows - 1) As Long 
          ReDim colind(iiscols - 1) As Long 
          getiis lp, stat, rowind(0), rowbdstat(0), iisrows, _ 
             colind(0), colbdstat(0), iiscols 
          Form2.Text5 = "rowind1 = " & rowind(0) 
          Form2.Text6 = "rowbdstat1 = " & rowbdstat(0) 
          Form2.Text7 = "colind1 = " & colind(0) 
          Form2.Text8 = "colbdstat1 = " & colbdstat(0) 
          Form2.Text24 = "colind2 = " & colind(1) 
          Form2.Text25 = "colbdstat2 = " & colbdstat(1) 
           
          iiswrite lp, "iisexamp.txt" 
       End If 
 
       ' call unloadprob() to release memory 
       unloadprob lp 
 
 
    Case "Example Q" 
       ' set up the LP portion of the problem.  The LP portion 
       ' of the objective is all 0's here; it could be elaborated 
       ' to include transaction costs or other factors. 
 
       lp = loadlp(PROBNAME, 5, 2, 1, obj(0), rhs(0), sense(0), _ 
             matbeg(0), matcnt(0), matind(0), matval(0), lb(0), ub(0), _ 
             -1, 5, 2, 10) 
        
       If (lp = 0) Then Exit Sub 
    
       ' now set up the Q matrix to define the quadratic objective 
       loadquad lp, qmatbeg(0), qmatcnt(0), qmatind(0), qmatval(0), _ 
             25, x(0) 
 
       ' solve the problem; obtain and display the solution 
       optimize lp 
       solution lp, stat, objval, x(0), -1, -1, -1 
    
       Form2.Text3 = "LPStatus = " & Trim(Str(stat)) 
       Form2.Text4 = "Obj = " & Trim(Format(objval, "0.0####")) 
        
       Form2.Text1 = "x1 = " & x(0) 
       Form2.Text2 = "x2 = " & x(1) 
       Form2.Text5 = "x3 = " & x(2) 
       Form2.Text6 = "x4 = " & x(3) 
       Form2.Text7 = "x5 = " & x(4) 
 
       ' call unloadprob() to release memory 
       unloadprob lp 
 
 
    Case "Example 5" 
       ' we merely pass the right sizes on. Since "sense" and "ctype" get 
       ' checked for validity, we do initialize them 
        
       sense(0) = Asc("L") 
       sense(1) = Asc("L") 
       sense(2) = Asc("L") 
       ctype(0) = Asc("C") 
       ctype(1) = Asc("C") 
        
       lp = loadlp(PROBNAME, 2, 3, -1, obj(0), rhs(0), sense(0), _ 
             -1, -1, -1, matval(0), lb(0), ub(0), -1, 2, 3, 6) 
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       If (lp = 0) Then Exit Sub 
       loadctype lp, ctype(0) 
          
       ' Now we read in the textfile "vbexamp1", and all arrays 
       ' are filled in automatically 
                 
       ret = lpread(lp, "vbexamp1", -1, -1, -1, -1, -1, -1) 
        
       If (ret <> 0) Then 
          MsgBox "Please run Example 2 first to create a textfile containing 
the problem." 
          unloadprob lp 
          Exit Sub 
       End If 
 
       ' we can immediately solve the problem.        
       mipoptimize lp 
     
       ' obtain the solution: display objective and variables 
       solution lp, stat, objval, x(0), -1, -1, -1 
       Form2.Text3 = "LPStatus = " & Trim(Str(stat)) 
       Form2.Text4 = "Objective = " & Trim(Str(objval)) 
        
       Form2.Text1 = "x1 = " & x(0) 
       Form2.Text2 = "x2 = " & x(1) 
        
       ' call unloadprob() to release memory 
       unloadprob lp 
           
 
       ' Next, we assume that the dimensions of the problem are 
       ' not known in advance.  We can call lpread() with a NULL 
       ' first argument to read the file and obtain the actual 
       ' problem dimensions.  Then, we would allocate arrays of 
       ' appropriate size (to keep this example simple, we'll 
       ' re-use the arrays from the first example above).  We call 
       ' loadlp() to define a problem and return a pointer to it. 
       ' Next, we call lpread() again to read in the actual array 
       ' values.  Then we'll be ready to call mipoptimize(). 
 
       ' Call lpread() to obtain the problem dimensions.  If 
       ' the matcnt argument is passed (needed only for sparse 
       ' problems), it must have at least as many elements as the 
       ' number of variables in the largest problem to be handled. 
       ' (If necessary, you can call lpread() twice, the first 
       ' time to get this size via the numcols argument.) 
    
       Dim objsen As Long 
       Dim numcols As Long 
       Dim numrows As Long 
       Dim numints As Long 
       Dim nzspace As Long 
       Dim i As Long 
             
       MsgBox "Read problem of unknown size" 
       Form2.Text1 = "" 
       Form2.Text2 = "" 
       Form2.Text3 = "" 
       Form2.Text4 = "" 
        
       lpread 0, "vbexamp1", objsen, numcols, numrows, numints, _ 
          matcnt(0), -1 
        
       ' We would now allocate the x[], obj[], lb[], ub[], and 
       ' (if used) ctype[] and matbeg[] arrays to have numcols 
       ' elements, and the rhs[] and sense[] arrays to have 
       ' numrows elements.  For a dense problem, matval[] should 
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       ' be allocated to have numcols * numrows elements.  For a 
       ' sparse problem, the matind[] and matval[] arrays should 
       ' be allocated to have nzspace elements, where nzspace is 
       ' the sum of the counts in matcnt[] as returned by lpread(). 
       ' (To keep this example simple, we'll re-use the arrays 
       ' from the first example above). 
  
       nzspace = 0 
       For i = 0 To numcols - 1 
          nzspace = nzspace + matcnt(i) 
       Next 
       ' (we could now allocate matind[] and matval[] based on nzspace) 
       For i = 0 To nzspace - 1 
          matval(i) = 0 
          matind(i) = 0 
       Next 
       ' matval[] and matind[] will be filled in by our next call to 
       ' lpread(); we need only initialize matbeg[] based on matcnt[] 
       matbeg(0) = 0 
       For i = 1 To numcols - 1 
          matbeg(i) = matbeg(i - 1) + matcnt(i - 1) 
       Next 
       ' Next, call loadlp() and loadctype() to define the problem 
       ' and pass in arrays of appropriate dimension. 
 
       lp = loadlp(PROBNAME, numcols, numrows, objsen, obj(0), rhs(0), 
          sense(0), -1, -1, -1, matval(0), lb(0), ub(0), -1, _ 
          numcols, numrows, nzspace) 
       
       If (lp = 0) Then Exit Sub 
       loadctype lp, ctype(0) 
          
       ' Now we call lpread() to read in the actual array values. 
 
       lpread lp, "vbexamp1", -1, -1, -1, -1, -1, -1 
 
       'Finally, we call mipoptimize() and display the solution. 
 
       mipoptimize lp 
     
       ' obtain the solution: display objective and variables 
       solution lp, stat, objval, x(0), -1, -1, -1 
       Form2.Text3 = "LPStatus = " & Trim(Str(stat)) 
       Form2.Text4 = "Objective = " & Trim(Str(objval)) 
        
       Form2.Text1 = "x1 = " & x(0) 
       Form2.Text2 = "x2 = " & x(1) 
        
       ' call unloadprob() to release memory 
       unloadprob lp 
   End Select 
End Sub 
 
Private Sub Command2_Click() 
    Unload Form2 
End Sub 
 
Private Sub Form_Activate() 
   Form2.Command1.SetFocus 
End Sub 
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Visual Basic Source Code: Nonlinear / Nonsmooth 
Problems 

The Visual Basic source code from the files vbexamp2.frm, examp2.frm and 
vbexamp2.bas is listed below.  It includes four example problems for the nonlinear 
GRG Solver, which are set up and solved when you click on the appropriate buttons.  
The first example is a simple two-variable nonlinear optimization problem, which 
defines a funceval() routine to evaluate the problem functions.  The second example 
is identical to the first one, except that a jacobian() routine is also defined, to give the 
Solver faster and more accurate partial derivatives of the problem functions.  The 
third example attempts to solve a nonlinear problem that is infeasible, then it uses the 
IIS finder to diagnose the infeasibility.  The fourth example illustrates how you can 
solve a series of linear and nonlinear problems, using the testnltype() function to 
determine whether the problem defined by your funceval() routine is linear, and how 
you can switch to the LP Solver engine if testnltype() finds that a problem is entirely 
linear. 

Also included in vbexamp2.frm, examp2.frm and vbexamp2.bas are two example 
problems using the Evolutionary Solver.  The first of these finds the global optimum 
of a classic two-variable problem, the Branin function, which has three local optima.  
The second one finds the optimal solution of a three-variable problem where the 
objective function involves an “IF statement,” which is nonsmooth (in fact 
discontinuous) in the variable X. 

You are encouraged to study this source code (or the C/C++ source code) and 
the comments in each problem, even if you plan to use a language other than 
Visual Basic for most of your work.  Like the example source code for linear and 
quadratic problems, these example files are more extensive than the ones for the 
other languages. 

 
 

VBEXAMP2.BAS 
------------ 
 
Global Nonlinear As Boolean 
Global Example As Long 
  
 
Function funceval1(lp As Long, ByVal numcols As Integer, _ 
    ByVal numrows As Integer, ByRef objval As Double, _ 
    ByRef lhs() As Double, ByRef var() As Double, _ 
    ByVal varone As Integer, ByVal vartwo As Integer) As Long 
    Err = 0 
    On Error Resume Next 
    ' The use of the addressof operator can crash VB. We never return  
    ' an error value to the DLL.  Therefore, use on error resume next 
    objval = var(0) * var(0) + var(1) * var(1) ' objective 
    lhs(0) = var(0) + var(1) ' constraint left hand side 
    lhs(1) = var(0) * var(1) ' constraint left hand side 
    funceval = 0 
End Function 
 
 
Function showiter1(ByVal lp As Long, ByVal wherefrom As Long) As Long 
   Dim itercount As Long 
   Dim objval As Double 
   Dim ret As Long 
   ret = getcallbackinfo(lpinfo, wherefrom, CBINFO_ITCOUNT, itercount) 
   ret = getcallbackinfo(lpinfo, wherefrom, CBINFO_PRIMAL_OBJ, objval) 
   MsgBox "Iteration :" & itercount & "  Objective = " & objval 
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   showiter1 = 0 
End Function 
 
 
Function funceval3(lp As Long, ByVal numcols As Integer, _ 
   ByVal numrows As Integer, ByRef objval As Double, _ 
   ByRef lhs() As Double, ByRef var() As Double, _ 
   ByVal varone As Integer, ByVal vartwo As Integer) As Long 
    Err = 0 
    On Error Resume Next 
    ' The use of the addressof operator can crash VB. We never return  
    ' an error value to the DLL.  Therefore, use on error resume next 
    objval = var(0) * var(0) + var(1) * var(1) ' objective 
    lhs(0) = var(0) * var(1) ' constraint left hand side 
    lhs(1) = var(0) * var(1) ' constraint left hand side 
    funceval3 = 0 
End Function 
 
 
Function funceval4(lp As Long, ByVal numcols As Integer, _ 
   ByVal numrows As Integer, ByRef objval As Double, _ 
   ByRef lhs() As Double, ByRef var() As Double, _ 
   ByVal varone As Integer, ByVal vartwo As Integer) As Long 
    Err = 0 
    On Error Resume Next 
    ' The use of the addressof operator can crash VB. We never return  
    ' an error value to the DLL.  Therefore, use on error resume next 
    If Nonlinear Then 
        objval = var(0) * var(0) + var(1) * var(1) ' objective 
        lhs(0) = var(0) + var(1) ' constraint left hand side 
        lhs(1) = var(0) * var(1) ' constraint left hand side 
    Else 
        objval = 2 * var(0) + var(1) ' objective 
        lhs(0) = var(0) + var(1) ' constraint left hand side 
        lhs(1) = 3 * var(0) - var(1) ' constraint left hand side 
    End If 
    funceval4 = 0 
End Function 
 
 
Function funceval5(lp As Long, ByVal numcols As Integer, _ 
   ByVal numrows As Integer, ByRef objval As Double, _ 
   ByRef lhs() As Double, ByRef var() As Double, _ 
   ByVal varone As Integer, ByVal vartwo As Integer) As Long 
    Err = 0 
    On Error Resume Next 
    Dim term1 As Double, term2 As Double, term3 As Double 
    Dim PI As Double 
    PI = 3.141593 
    ' The use of the addressof operator can crash VB. We never return  
    ' an error value to the DLL.  Therefore, use on error resume next 
    term1 = var(0) / PI * (5.1 * var(0) / PI / 4# - 5#) 
    term2 = (var(1) - term1 - 6) * (var(1) - term1 - 6) 
    term3 = 10# * (1# - 1# / PI / 8#) * Cos(var(0)) + 10# 
    objval = term2 + term3 
    funceval5 = 0 
End Function 
 
 
Function funceval6(lp As Long, ByVal numcols As Integer, _ 
   ByVal numrows As Integer, ByRef objval As Double, _ 
   ByRef lhs() As Double, ByRef var() As Double, _ 
   ByVal varone As Integer, ByVal vartwo As Integer) As Long 
    Err = 0 
    On Error Resume Next 
    If var(0) > 10 Then 
       objval = var(1) + var(2) 
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    Else 
       objval = var(1) - var(2) 
    End If 
    funceval6 = 0 
End Function 
 
 
Function jacobian1(lp As Long, ByVal numcols As Integer, _ 
    ByVal numrows As Integer, ByVal nzspace As Integer, _ 
    ByRef objval As Double, ByRef obj() As Double, _ 
    ByRef matbeg() As Long, ByRef matcnt() As Long, _ 
    ByRef matind() As Long, ByRef matval() As Double, _ 
    ByRef var() As Double,  ByRef objtype() As Byte, _ 
    ByRef matvaltype() As Byte) As Long 
 
    Err = 0 
    On Error Resume Next 
    MsgBox "jacobian evaluated at: x1 = " & var(0) & " x2 = " & var(1) 
    ' Value of the objective function 
    objval = var(0) * var(0) + var(1) * var(1) 
    ' Partial derivatives of the objective 
    obj(0) = 2 * var(0) 
    obj(1) = 2 * var(1) 
    ' Partial derivatives of X + Y (constant) 
    matval(0) = 1 
    matval(2) = 1 
    ' Partial derivatives of X * Y (variable) 
    matval(1) = var(1) 
    matval(3) = var(0) 
    jacobian1 = 0 
End Function 
 
 
Function jacobian3(lp As Long, ByVal numcols As Integer, _ 
    ByVal numrows As Integer, ByVal nzspace As Integer, _ 
    ByRef objval As Double, ByRef obj() As Double, _ 
    ByRef matbeg() As Long, ByRef matcnt() As Long, _ 
    ByRef matind() As Long, ByRef matval() As Double, _ 
    ByRef var() As Double,  ByRef objtype() As Byte, _ 
    ByRef matvaltype() As Byte) As Long 
 
    Err = 0 
    On Error Resume Next 
    ' Value of the objective function 
    objval = var(0) * var(0) + var(1) * var(1) 
    ' Partial derivatives of the objective 
    obj(0) = 2 * var(0) 
    obj(1) = 2 * var(1) 
    ' Partial derivatives of X * Y (variable) 
    matval(0) = var(1) 
    matval(2) = var(0) 
    ' Partial derivatives of X * Y (variable) 
    matval(1) = var(1) 
    matval(3) = var(0) 
    jacobian3 = 0 
End Function 
 
 
Sub Showlimits() 
   Dim cols As Long, rows As Long, ints As Long 
 
   ret = getproblimits(PROB_LP, cols, rows, ints) 
   MsgBox "LP limits: " & Trim(Str(cols)) & " variables, " _ 
      & Trim(Str(rows)) & " constraints, " & Trim(Str(ints)) & " integers" 
 
   ret = getproblimits(PROB_QP, cols, rows, ints) 
   MsgBox "QP limits: " & Trim(Str(cols)) & " variables, " _ 
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      & Trim(Str(rows)) & " constraints, " & Trim(Str(ints)) & " integers" 
 
   ret = getproblimits(PROB_NLP, cols, rows, ints) 
   MsgBox "NLP limits: " & Trim(Str(cols)) & " variables, " _ 
      & Trim(Str(rows)) & " constraints, " & Trim(Str(ints)) & " integers" 
 
   ret = getproblimits(PROB_NSP, cols, rows, ints) 
   MsgBox "NSP limits: " & Trim(Str(cols)) & " variables, " _ 
      & Trim(Str(rows)) & " constraints, " & Trim(Str(ints)) & " integers" 
 
End Sub 
 
 
Sub AdjustFormforExample2() 
   [detail omitted] 
End Sub 
 
Sub AdjustFormforExample3() 
   [detail omitted] 
End Sub 
 
Sub AdjustFormforExample4() 
   [detail omitted] 
End Sub 
 
Sub Adjustfor4a() 
   [detail omitted] 
End Sub 
 
Sub AdjustFormforExample5() 
   [detail omitted] 
End Sub 
 
Sub AdjustFormforExample6() 
   [detail omitted] 
End Sub 
 
Sub AdjustFormforExample1() 
   [detail omitted] 
End Sub 
 
 
 
EXAMP2.FRM 
------------ 
 
Private Sub Command1_Click() 
    
   Dim obj(0 To 1) As Double    ' Dim obj(0 To number_of_variables - 1) 
   Dim rhs(0 To 1) As Double    ' Dim rhs(0 To number_of_constraints - 1) 
   Dim sense(0 To 1) As Byte    ' Dim sense(0 To number_of_constraints - 1) 
   Dim matbeg(0 To 1) As Long   ' Dim matbeg(0 To number_of_variables - 1) 
   Dim matcnt(0 To 1) As Long   ' Dim matcnt(0 To number_of_variables - 1) 
    
   Dim matind(0 To 3) As Long 
   Dim matval(0 To 3) As Double 
   ' The size of the arrays of matind and matval depends on the 
   ' number of nonzero elements in the LP matrix for linear problems. 
   ' For nonlinear problems, it is easiest to take the number of 
   ' constraints times the number of variables. See documentation 
   ' for details.  In this case 2 constraints x 2 variables = 4 
    
   Dim lb(0 To 1) As Double      ' Dim lb(0 To number_of_variables - 1) 
   Dim ub(0 To 1) As Double      ' Dim lb(0 To number_of_variables - 1) 
   Dim rngval(0 To 1) As Double  ' Dim rngval(0 To number constraints - 1) 
   ' Note that rngval can only be used with the Large Scale DLL 
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   Dim ctype(0 To 1) As Byte     ' Dim ctype(0 To number_of_variables - 1) 
   Dim stat As Long, objval As Double 
   Dim x(0 To 1) As Double       ' Dim x(0 To number_of_variables - 1) 
   Dim piout(0 To 1) As Double  ' Dim piout(0 To number_of_constraints - 1) 
   Dim slack(0 To 1) As Double  ' Dim slack(0 To number_of_constraints - 1) 
   Dim dj(0 To 1) As Double      ' Dim dj(0 To number_of_variables - 1) 
    
   Dim varlow(0 To 1) As Double, varupp(0 To 1) As Double 
   ' Dim varlow and varupp(0 to number_of_variables - 1) 
   Dim conlow(0 To 1) As Double, conupp(0 To 1) As Double 
   ' Dim conlow and conupp(0 to number of constraints - 1) 
   Dim objtype(0 To 1) As Byte, matvaltype(0 To 3) As Byte 
   ' Dim objtype(0 to number_of_variables - 1) 
   ' Dim matvaltype(same as matval) 
   Dim iisrows As Long, iiscols As Long 
   Dim rowbdstat() As Long, colbdstat() As Long 
   Dim rowind() As Long, colind() As Long 
   Dim lp As Long 
   Dim ret As Long 
   Dim nlstat As Long 
 
   ' set up the LP problem 
    
   ' use Safearrays: 
   setintparam 0, PARAM_ARRAY, 1 
    
   ' Note that in VB we can not use NULL as in C. 
   ' Therefor we define an array of size 1 with element -1 
   ' This is recognized by the DLL as NULL 
      
   Dim NullL(0) As Long, NullD(0) As Double, NullB(0) As Byte 
   NullL(0) = -1 
   NullD(0) = -1 
   NullB(0) = 0 
    
 
   Select Case Example 
 
 
   Case 1 
    
   'Example program calling the nonlinear Solver DLL. 
   'Solves the problem: 
 
   'Minimize x ^ 2 + Y ^ 2 
   'Subject to: 
   '   X + Y = 1 
   '   X * Y >= 0 
 
   '(Solution is X = Y = 0.5, Objective = 0.5) 
 
       rhs(0) = 1 
       rhs(1) = 0 
       sense(0) = Asc("E") 
       sense(1) = Asc("G") 
       lb(0) = -INFBOUND 
       lb(1) = -INFBOUND 
       ub(0) = INFBOUND 
       ub(1) = INFBOUND 
       x(0) = 0 
       x(1) = 1 
 
       setintparam 0, PARAM_ARGCK, 1 
    
       lp = loadnlp(PROBNAME, 2, 2, 1, obj, rhs, sense, _ 
               NullL, NullL, NullL, matval, x, lb, ub, NullD, 4, _ 
               AddressOf funceval1, 0) 
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       If lp = 0 Then Exit Sub 
 
       setlpcallbackfunc lp, AddressOf showiter1 
  
       optimize lp 
 
       solution lp, stat, objval, x, piout, slack, dj 
       Form2.Text3 = "Status = " & stat 
       Form2.Text4 = "Objective = " & objval 
       Form2.Text1 = "x1 = " & x(0) 
       Form2.Text2 = "x2 = " & x(1) 
       Form2.Text5 = "slack1 = " & slack(0) 
       Form2.Text7 = "slack2 = " & slack(1) 
       Form2.Text6 = "piout1 = " & piout(0) 
       Form2.Text8 = "piout2 = " & piout(1) 
    
       setlpcallbackfunc lp, 0 
       ' call unloadprob() to release memory 
       unloadprob lp 
 
 
   Case 2 
    
   'Example program calling the nonlinear Solver DLL. 
   'Solves the problem: 
 
   'Minimize x ^ 2 + Y ^ 2 
   'Subject to: 
   '   X + Y = 1 
   '   X * Y >= 0 
 
   '(Solution is X = Y = 0.5, Objective = 0.5) 
 
       rhs(0) = 1 
       rhs(1) = 0 
       sense(0) = Asc("E") 
       sense(1) = Asc("G") 
       lb(0) = -INFBOUND 
       lb(1) = -INFBOUND 
       ub(0) = INFBOUND 
       ub(1) = INFBOUND 
       x(0) = 0 
       x(1) = 1 
 
       setintparam 0, PARAM_ARGCK, 1 
     
       lp = loadnlp(PROBNAME, 2, 2, 1, obj, rhs, sense, _ 
               NullL, NullL, NullL, matval, x, lb, ub, NullD, 4, _ 
               AddressOf funceval1, AddressOf jacobian1) 
       If lp = 0 Then Exit Sub 
 
       ' Ask the Solver DLL to call our jacobian() routine, and *check* 
       ' the partial derivatives we supply against its own "rise over run" 
       ' derivative calculations 
       setintparam lp, PARAM_DERIV, 3 
  
       optimize lp 
 
       solution lp, stat, objval, x, piout, slack, dj 
       Form2.Text3 = "Status = " & stat 
       Form2.Text4 = "Objective = " & objval 
       Form2.Text1 = "x1 = " & x(0) 
       Form2.Text2 = "x2 = " & x(1) 
       Form2.Text5 = "slack1 = " & slack(0) 
       Form2.Text7 = "slack2 = " & slack(1) 
       Form2.Text6 = "piout1 = " & piout(0) 
       Form2.Text8 = "piout2 = " & piout(1) 
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       ' call unloadprob() to release memory 
       unloadprob lp 
 
 
    Case 3 
 
    'Example program calling the nonlinear Solver DLL. 
    'Attempt to solve the problem: 
 
    'Minimize x ^ 2 + Y ^ 2 
    'Subject to: 
    '   X * Y = 1 
    '   X * Y = 0 
 
    'This problem is infeasible, because the two constraints conflict. 
    'We will call findiis() and getiis() to help isolate the source 
    'of the infeasibility. 
 
       rhs(0) = 1 
       rhs(1) = 0 
       sense(0) = Asc("E") 
       sense(1) = Asc("E") 
       lb(0) = -INFBOUND 
       lb(1) = -INFBOUND 
       ub(0) = INFBOUND 
       ub(1) = INFBOUND 
       x(0) = 0.25 
       x(1) = 0.25 
 
       setintparam 0, PARAM_ARGCK, 1 
 
       lp = loadnlp(PROBNAME, 2, 2, 1, obj, rhs, sense, _ 
            NullL, NullL, NullL, matval, x, lb, ub, NullD, 4, _ 
            AddressOf funceval3, 0) 
       If lp = 0 Then Exit Sub 
  
       optimize lp 
 
       solution lp, stat, objval, x, piout, slack, dj 
       Form2.Text3 = "Status = " & stat 
       Form2.Text4 = "Objective = " & objval 
       
       If stat = PSTAT_INFEASIBLE Then 
          setlpcallbackfunc lp, 0 
          findiis lp, iisrows, iiscols 
          MsgBox "Findiis: iisrows = " & Trim(Str(iisrows)) _ 
             & " iiscols = " & Trim(Str(iiscols)) 
          Form2.Text1 = "iisrows = " & Trim(Str(iisrows)) 
          Form2.Text2 = "iiscols = " & Trim(Str(iiscols)) 
       
          ReDim rowbdstat(iisrows - 1) As Long 
          ReDim rowind(iisrows - 1) As Long 
          getiis lp, stat, rowind, rowbdstat, iisrows, _ 
             NullL, NullL, iiscols 
          Form2.Text5 = "rowind1 = " & rowind(0) 
          Form2.Text6 = "rowbdstat1 = " & rowbdstat(0) 
          Form2.Text7 = "rowind1 = " & rowind(1) 
          Form2.Text8 = "rowbdstat1 = " & rowbdstat(1) 
       End If 
   
       ' call unloadprob() to release memory 
       unloadprob lp 
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    Case 4 
 
    'Example program calling the nonlinear Solver DLL for a series of 
    'problems which may be linear or nonlinear.  This situation might 
    'arise if you are calling some external program, or using your own 
    'interpreter, to evaluate the problem functions.  We will define and 
    'solve two example problems: 
 
    'Nonlinear problem: 
 
    'Minimize x ^ 2 + Y ^ 2 
    'Subject to: 
    '   X + Y = 1 
    '   X * Y >= 0 
 
    '(Solution is X = Y = 0.5, Objective = 0.5) 
 
    'Alternate linear problem: 
 
    'Minimize 2 * X + Y 
    'Subject to: 
    '   X + Y = 1 
    '   3 * X - Y >= 0 
 
    '(Solution is X = 0.25, Y = 0.75, Objective = 1.25) 
 
    'In this example, we call testnltype() to determine whether 
    'the problem is linear or nonlinear.  If it is linear, we 
    'solve it first with the nonlinear Solver engine, then solve 
    'it again with the linear (Simplex) Solver engine. 
 
       rhs(0) = 1 
       rhs(1) = 0 
       sense(0) = Asc("E") 
       sense(1) = Asc("G") 
       lb(0) = -10 
       lb(1) = -10 
       ub(0) = 10 
       ub(1) = 10 
       x(0) = 0 
       x(1) = 0 
 
       setintparam 0, PARAM_ARGCK, 1 
       
       lp = loadnlp(PROBNAME, 2, 2, 1, obj, rhs, sense, _ 
            NullL, NullL, NullL, matval, x, lb, ub, NullD, 4, _ 
            AddressOf funceval4, 0) 
       If lp = 0 Then Exit Sub 
  
       ' Test the problem to determine linearity / nonlinearity 
        
       testnltype lp, 1, NullD, nlstat, NullB, NullB 
       If nlstat Then 
          MsgBox "Testnltype: NONLINEAR" 
       Else 
          MsgBox "Testnltype: LINEAR" 
       End If 
 
       ' Solve the problem (using the NLP Solver) 
       optimize lp 
       solution lp, stat, objval, x, piout, slack, dj 
       Form2.Text3 = "Status = " & stat 
       Form2.Text4 = "Obj = " & objval 
       Form2.Text1 = "x1 = " & x(0) 
       Form2.Text2 = "x2 = " & x(1) 
       If nlstat Then Exit Sub 
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       unloadprob lp 
 

' Re-solve the problem using the LP Solver 
       Form2.Label6 = "First solution via loadnlp, second via loadlp" 
       Form2.Label6.Visible = True 
 
       lp = loadlp(PROBNAME, 2, 2, 1, obj, rhs, sense, _ 
               NullL, NullL, NullL, matval, lb, ub, NullD, 2, 2, 4) 
       optimize lp 
       solution lp, stat, objval, x, piout, slack, dj 
       Form2.Text5 = "Status = " & stat 
       Form2.Text6 = "Obj = " & objval 
       Form2.Text7 = "x1 = " & x(0) 
       Form2.Text8 = "x2 = " & x(1) 
        
       ' call unloadprob() to release memory 
       unloadprob lp 
 
 
    Case 5 
 
    'Example program calling the Evolutionary Solver DLL. 
    'Minimize the Branin function: 
    'term1 = X/PI * (5.1 * X/PI/4 - 5) 
    'term2 = (Y - term1 - 6)^2 
    'term3 = 10 * (1 - 1/PI/8) * cos X + 10 
    'objective = term2 + term3 
    '-5 <= X, Y <= 10 
    '(3 local optima; 1 global optimum = approx 0.3978) 
 
       Dim mid(0 To 1) As Double 
       Dim disp(0 To 1) As Double 
       Dim lower(0 To 1) As Double 
       Dim upper(0 To 1) As Double 
        
       lb(0) = -5 
       lb(1) = -5 
       ub(0) = 10 
       ub(1) = 10 
       x(0) = 1 
       x(1) = 1 
        
       setintparam 0, PARAM_ARGCK, 1 
       lp = loadnlp(PROBNAME, 2, 0, 1, obj, NullD, NullB, _ 
            NullL, NullL, NullL, NullD, x, lb, ub, NullD, 0, _ 
            AddressOf funceval5, 0) 
       If lp = 0 Then Exit Sub 
       loadnltype lp, NullB, NullB ' indicate nonsmooth  
        
       setintparam lp, PARAM_NOIMP, 1 ' 1 second 
        
       setlpcallbackfunc lp, AddressOf showiter1 
       optimize lp 
 
       solution lp, stat, objval, x, NullD, NullD, NullD 
        
       varstat lp, 0, 1, mid, disp, lower, upper 
        
       Form2.Text3 = "Status = " & stat 
       Form2.Text4 = "Objective = " & objval 
       Form2.Text1 = "x1 = " & x(0) 
       Form2.Text2 = "x2 = " & x(1) 
       Form2.Text5 = "mid1 = " & mid(0) 
       Form2.Text7 = "mid2 = " & mid(1) 
       Form2.Text6 = "disp1 = " & disp(0) 
       Form2.Text8 = "disp2 = " & disp(1) 
       Form2.Text10 = "lower1 = " & lower(0) 
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       Form2.Text11 = "lower2 = " & lower(1) 
       Form2.Text24 = "upper1 = " & upper(0) 
       Form2.Text25 = "upper2 = " & upper(1) 
     
       setlpcallbackfunc lp, 0 
       ' call unloadprob() to release memory 
       unloadprob lp 
     
 
    Case 6 
    'Example C program calling the Evolutionary Solver DLL. 
    'Solves the problem: 
 
    'Maximize (if X > 10 then Y + Z else Y - Z) 
    '0 <= X, Y, Z <= 20 
 
    '(Solution is X > 10, Y = Z = 20, objective = 40) 
 
       Dim lb2(0 To 2) As Double 
       Dim ub2(0 To 2) As Double 
       Dim x2(0 To 2) As Double 
       Dim obj2(0 To 2) As Double 
       lb2(0) = 0 
       lb2(1) = 0 
       lb2(2) = 0 
       ub2(0) = 20 
       ub2(1) = 20 
       ub2(2) = 20 
       x2(0) = 5 
       x2(1) = 5 
       x2(2) = 5 
        
       setintparam 0, PARAM_ARGCK, 1 
       lp = loadnlp(PROBNAME, 3, 0, -1, obj2, NullD, NullB, _ 
            NullL, NullL, NullL, NullD, x2, lb2, ub2, NullD, 0, _ 
            AddressOf funceval6, 0) 
       If lp = 0 Then Exit Sub 
       loadnltype lp, NullB, NullB ' indicate nonsmooth  
        
       setintparam lp, PARAM_NOIMP, 1 ' 1 second 
        
       setlpcallbackfunc lp, 0 
       optimize lp 
 
       solution lp, stat, objval, x2, NullD, NullD, NullD 
        
       Form2.Text3 = "Status = " & stat 
       Form2.Text4 = "Objective = " & objval 
       Form2.Text1 = "X = " & x2(0) 
       Form2.Text2 = "Y = " & x2(1) 
       Form2.Text5 = "Z = " & x2(1) 
     
       ' call unloadprob() to release memory 
       unloadprob lp 
 
    End Select 
End Sub 
 
Private Sub Command2_Click() 
    Unload Form2 
End Sub 
 
Private Sub Form_Activate() 
   Form2.Command1.SetFocus 
End Sub 
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Limitations of 16-Bit Visual Basic 
Visual Basic 4.0 is the last version of Visual Basic offered in a 16-bit version; newer 
versions of Visual Basic support only 32-bit applications and operating systems such 
as Windows 95/98 and Windows NT/2000.  Support for 16-bit applications in the 
Solver DLL will be limited in the future.  If you need to build applications for older 
16-bit operating systems such as Windows 3.1, you will need to take into account the 
issues discussed in this section. 

Callback Functions 
Because Visual Basic 4.0 does not support the AddressOf operator, you cannot write 
callback functions in this version of Visual Basic and pass their addresses to the 
Solver DLL routines loadnlp(), setlpcallbackfunc() and setmipcallbackfunc(). 

You can, however, write your callback functions in C/C++, and use a few more lines 
of C/C++ code to pass these function addresses to the Solver DLL routines.  Then 
your main program can still be written in Visual Basic, and the Solver DLL will call 
your C/C++ callback functions at the appropriate times.  These callback functions 
would be written independently of the rest of your Visual Basic program, but could 
display a message or dialog box using direct calls to the Windows API. 

You should not use the header file safrontmip.bas with Visual Basic 4.0.  Because of 
the different representation of SAFEARRAYs in 16-bits, Visual Basic 4.0 will not 
accept array names passed as arguments to the Solver DLL routines.  Instead, use 
frontmip.bas and pass the first element of each array argument (e.g. obj(0)) to the 
Solver DLL routines. 

Array Size Limitations 
The 16-bit version of Visual Basic has limitations on the size of data objects it can 
handle.  In particular, the maximum array subscript value is 32,767.  Although this is 
larger than any array you might use with the Small-Scale Solver DLL, in exceptional 
cases it can be a limiting factor when using the Large-Scale Solver DLL.  For 
example, if you were trying to solve a problem with 8,192 decision variables and 
8,192 constraints, you might have more than 32,767 nonzero coefficients in the LP 
matrix (depending on the sparsity of the problem); but you could not construct the 
matind[] and matval[] arrays that you would need in 16-bit Visual Basic. 

The most straightforward solution is, of course, to use the 32-bit version of Visual 
Basic.  Another approach is to write the part of your application which calls the 
Large-Scale Solver DLL in C/C++, where you can declare matind[] and matval[] as 
“huge” arrays, while writing the rest of the application (including the user interface) 
in Visual Basic.  Your Visual Basic code would then declare your own C/C++ 
routine and call it as a DLL.  Your DLL, in turn, would call the Solver DLL. 
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Calling the Solver DLL from 
Delphi Pascal 

You can use Version 3.5 of the Solver DLL in Pascal programs created in Borland 
Delphi – either the 32-bit versions (Delphi 2.0 and above) under Windows 95/98 and 
Windows NT/2000, or the 16-bit version (Delphi 1.0) under Windows 3.x. 

It is straightforward to use the Solver DLL with Delphi.  You need only include the 
header file frontmip.pas (which defines a Pascal “unit”) in your Delphi project, and 
make calls to the Solver DLL entry points at the appropriate points in your code. 

Basic Steps 
To create a Delphi application that calls the Solver DLL, you must perform the 
following steps: 

1. Include the header file frontmip.pas in your Delphi project, and ensure that the 
unit Frontmip appears in your Use statement(s).  (You should also include the 
directive {$I frontkey} to obtain a license key string from frontkey.pas.) 

2. Call at least the routines loadlp() or loadnlp(), optimize(), solution() and 
unloadprob() in that order. 

You can use the example code in psunit.pas as a guide for getting the arguments 
right. This source file, in combination with the form file psunit.dfm, defines a simple 
form, with four edit boxes to display results, and two buttons that call the Solver DLL 
routines to solve a mixed-integer linear (MIP) and a nonlinear (NLP) problem, 
respectively, when they are pressed.  In the Pascal source code, the arrays and other 
variables used as Solver DLL arguments are declared as public.  The argument 
values are set up, and the appropriate DLL routines are called in the procedures 
TForm1.LPButtonClick and TForm1.NLPButtonClick, which run when the 
appropriate button is pressed. 

Passing Array and Function Arguments 
Delphi Pascal imposes “strong type checking” on arguments to the Solver DLL 
functions – requiring, for example, an exact match in the number of elements 
between actual array arguments and array parameters.  To permit flexibility in the 
Solver DLL’s array arguments, the header file frontmip.pas declares array 
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parameters as (for example) var obj:Double.  For the corresponding array 
argument, you should pass the first element of the array (for example obj[0]). 

In many Solver DLL routines, certain array arguments are optional – you can instead 
pass a “NULL value,” as described in “NULL Values for Arrays” in the chapter 
“Solver API Reference.”  The most convenient such value to use in Delphi Pascal is a 
variable of the appropriate type (Longint or Double) initialized to –1.  (You cannot 
pass the constant –1 because the corresponding parameters have the var attribute.) 

In loadnlp(), setlpcallbackfunc() and setmipcallbackfunc(), you pass procedure 
pointers as actual arguments.  There are types defined for these arguments 
(FUNCEVAL and JACOBIAN for loadnlp(), and CCPROC for setlpcallbackfunc() 
and setmipcallbackfunc()) in the header file frontmip.pas.  As long as your 
procedures have “signatures” that match these types, Delphi will allow you to pass 
the procedure name as the actual argument.  To pass a NULL or empty pointer for a 
procedure argument (e.g. to omit a jacobian function in loadnlp(), or to reset the 
callback function in setlpcallbackfunc()), use the special constant Nil. 

Building a 32-Bit Delphi Pascal Program 
You can run the compiled version of the Delphi example psexamp.exe using Start 
Run...  You can edit, compile and test the source code of this example as follows: 

1. Start the Delphi programming system.  Select File Open Project..., navigate to 
the Delphi example subdirectory (c:\frontmip\examples\psexamp), select 
psexamp.dpr and click OK. 

2. The Delphi system will load the project’s form and related code (found in 
psunit.pas).  Select View Units… or View Forms… (View Project Source in 
earlier versions of Delphi) to examine and, if desired, modify the elements of 
this application.  Delphi doesn’t automatically display the header file 
frontmip.pas (which is referenced in the project’s Use statements), but you can 
add it to the project source display with File Open...  After you open 
psexamp.dpr, select View Project Source and open frontmip.pas, your screen 
should resemble the picture on the next page. 
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3. To test-run the program within the Delphi programming system, select Run Run 

and then click on the button labeled “Solve LP/MIP.”  This will execute the 
statements found in procedure TForm1.LPButtonClick, calling loadlp(), 
loadctype(), lpwrite(),setlpcallbackfunc(), optimize(), solution() and 
unloadprob().  During the execution of optimize(), the Solver DLL will call the 
callback function, which displays a MessageBox like the one shown below. 

 
After optimize() returns, the Pascal code calls solution() and places the solution 
values in the first pair of text edit fields. Clicking on the button “Solve NLP” will 
execute the statements found in procedure TForm1.NLPButtonClick, calling 
loadnlp(), setlpcallbackfunc(), optimize(), solution() and unloadprob().  This will 
display the iterations of the nonlinear Solver (assuming that your version of the 
Solver DLL includes the nonlinear Solver engine).  In this case, the Pascal code will 
call solution() and place the solution values in the second pair of text edit fields.  At 
this point, the Delphi Pascal form should look like the one shown on the next page. 
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4. To end execution of the program, click on the Close button in the upper right 

hand corner of the window.  If you now look in the Delphi example directory, 
you should find a new file named psexamp, which was written by the call to 
lpwrite().  You can examine this file in Notepad or another text editor; it contains 
an algebraic statement of the LP/MIP problem that you have solved. 

5. Delphi compiles and links your application into a binary executable before 
running it.  The file psexamp.exe can be run by itself, outside the Delphi 
environment, as long as it can find and load the Solver DLL frontmip.dll. 

Building a 16-Bit Delphi Pascal Program 
The 16-bit Delphi 1.0 programming system is quite similar to the 32-bit Delphi 2.0 
version.  Although there are minor differences in the menus, toolbars, palettes and 
other features, you can open and use the same project file (psexamp.dpr), example 
program (psunit.pas), and header file (frontmip.pas) as in the 32-bit system.  The 
step-by-step instructions outlined above for the 32-bit Delphi system can be used as-
is with the 16-bit system, with only minor differences (for example, Delphi 1.0 
displays the project source code by default, so you don’t have to select View 
Units…, View Forms… or View Project Source).  The on-screen appearance of 
Delphi 1.0 is very similar to Delphi 2.0.  You simply need to ensure that your 
program finds and loads the correct (16-bit) version of frontmip.dll. 

When you run the program as compiled by 16-bit Delphi 1.0, you will see the 
solution of the LP/MIP problem, but you will also find that the MessageBoxes 
displaying the iterations of the LP Solver engine don’t appear, and pressing the 
“Solve NLP” button doesn’t seem to have any effect.  This is explained below. 

Delphi Pascal Example Source Code 
The Delphi Pascal source code for the example problems is shown below.  This 
source code can be used in both the 32-bit and 16-bit Delphi systems, but you will 
notice conditional compilation directives {$IFDEF WIN32} and {$ENDIF} around 
the definition of the callback functions and the code to call the nonlinear Solver.  
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This is also done in the C/C++ example file vcexamp1.c in an earlier chapter, for 
similar reasons:  The 16-bit version would have to take special steps to ensure that 
the callback function’s local data is addressable in each application instance – and 
this complication was left out of this simple example.  This topic is more fully 
explored in the chapter “Special Considerations for Windows 3.x.” 

The header file frontmip.pas can also be used in both the 32-bit and 16-bit Delphi 
systems; however, it makes extensive use of conditional compilation directives in 
order to declare the proper calling conventions (far pascal versus stdcall) for 16-bit 
and 32-bit DLL routines. 

 
   { 
   Problem 1: Solve the MIP model: 
   Maximize   2 x1 +  3 x2 
   Subj to    9 x1 +  6 x2 <= 54 
              6 x1 +  7 x2 <= 42 
              5 x1 + 10 x2 <= 50 
   x1, x2 non-negative, integer 
   MIP solution: x1 = 2, x2 = 4 
   Objective = 16.0 
 
   Problem 2: Solve the NLP model: 
   Minimize X^2 + Y^2 
   Subject to: 
      X + Y  = 1 
      X * Y >= 0 
   x1, x2 non-negative 
   Solution is X = Y = 0.5, Objective = 0.5 
   } 
 
unit Psunit; 
 
interface 
 
uses 
  SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, 
  Forms, Dialogs, StdCtrls, Frontmip; 
{$I Frontkey} 
 
type 
  TForm1 = class(TForm) 
    LPLabel: TLabel; 
    LPEdit1: TEdit; 
    LPEdit2: TEdit; 
    LPButton: TButton; 
    NLPLabel: TLabel; 
    NLPEdit1: TEdit; 
    NLPEdit2: TEdit; 
    NLPButton: TButton; 
    procedure LPButtonClick(Sender: TObject); 
    procedure NLPButtonClick(Sender: TObject); 
 
  private 
    { Private declarations } 
  public 
     obj: array[0..1] of double; 
     rhs: array[0..2] of double; 
     sense: array[0..2] of char; 
     matbeg: array[0..1] of Longint; 
     matcnt: array[0..1] of Longint; 
     matind: array[0..5] of Longint; 
     matval: array[0..5] of double; 
     lb: array[0..1] of double; 
     ub: array[0..1] of double; 
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     ctype: array[0..1] of char; 
     stat: Longint; 
     objval: double; 
     x: array[0..1] of double; 
     NullL: Longint; 
     NullD: Double; 
     lp: Longint; 
     ret: Longint; 
  end; 
 
var 
  Form1: TForm1; 
 
implementation 
 
{$R *.DFM} 
 
{$IFDEF WIN32} 
 
{ Define a "callback" function that displays the iteration number 
  and current objective value } 
 
function callback(lpinfo: Longint; wherefrom: Longint): Longint; 
stdcall; 
var 
   iters: Longint; 
   obj: Double; 
   objtext, Msg: String; 
begin 
   getcallbackinfo (lpinfo, wherefrom, CBINFO_ITCOUNT, iters); 
   getcallbackinfo (lpinfo, wherefrom, CBINFO_PRIMAL_OBJ, obj); 
   str (obj:4:4,objtext); 
   Msg := 'Iteration: ' + inttostr(iters) + '  Objective: ' + objtext; 
   Application.MessageBox (PChar(Msg), 'callback', IDOK); 
   Result := PSTAT_CONTINUE; 
end; 
 
{ Define a "callback" function that computes the objective and constraint 
  left hand sides, for any supplied values of the decision variables. } 
 
function funceval1(lp: Longint; numcols: Longint; numrows: Longint; 
   var objval: Double; var lhs: DimD; var pvar: DimD; 
   varone: Longint; vartwo: Longint): Longint; 
stdcall; 
begin 
   objval := pvar[0] * pvar[0] + pvar[1] * pvar[1] ; { objective } 
   lhs[0] := pvar[0] + pvar[1]; { constraint left hand side } 
   lhs[1] := pvar[0] * pvar[1]; { constraint left hand side } 
   Result := 0; 
end; 
 
{$ENDIF} 
 
{ Define and solve the example LP/MIP problem } 
 
procedure TForm1.LPButtonClick(Sender: TObject); 
var 
   objtext:string; 
   x0:string; 
   x1:string; 
begin 
     { objective coefficients } 
     obj[0]:=2; 
     obj[1]:=3; 
     { right hand sides of constraints } 
     rhs[0]:=54; 
     rhs[1]:=42; 
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     rhs[2]:=50; 
     { sense of constraints: 'L' is <= } 
     sense[0]:='L'; 
     sense[1]:='L'; 
     sense[2]:='L'; 
     { define constraint coefficients using the "sparse 
       matrix" form -- See Solver User Guide for details } 
     matbeg[0]:=0; 
     matbeg[1]:=3; 
     matcnt[0]:=3; 
     matcnt[1]:=3; 
     matind[0]:=0; 
     matind[1]:=1; 
     matind[2]:=2; 
     matind[3]:=0; 
     matind[4]:=1; 
     matind[5]:=2; 
     matval[0]:=9; 
     matval[1]:=6; 
     matval[2]:=5; 
     matval[3]:=6; 
     matval[4]:=7; 
     matval[5]:=10; 
     { bounds on variables } 
     lb[0]:=0; 
     lb[1]:=0; 
     ub[0]:=INFBOUND; 
     ub[1]:=INFBOUND; 
     { integer variables } 
     ctype[0]:='I'; 
     ctype[1]:='I'; 
     { to pass a NULL or empty array } 
     NullL := -1; 
     NullD := -1; 
 
     setintparam (NullL, PARAM_ARGCK, 1); 
     lp := loadlp (PROBNAME, 2, 3, -1, obj[0], rhs[0], sense, matbeg[0], 
          matcnt[0], matind[0], matval[0], lb[0], ub[0], NullD, 2, 3, 6); 
     if (lp = 0) then Exit; 
     ret := loadctype (lp, ctype); 
     ret := lpwrite (lp, 'psexamp'); 
{$IFDEF WIN32} 
     setlpcallbackfunc (lp, callback); 
{$ENDIF} 
     ret := optimize (lp); 
     ret := solution (lp, stat, objval, x[0], NullD, NullD, NullD); 
     str (objval:4:4,objtext); 
     LPEdit1.text := 'Status = ' + inttostr(stat) 
          + ' Objective = ' + objtext; 
     str (x[0]:4:4, x0); 
     str (x[1]:4:4, x1); 
     LPEdit2.text := 'x1 = ' + x0 + ' x2 = ' + x1; 
end; 
 
{ Define and solve the example NLP problem. 
  This works only in 32-bit Delphi 2.0 or above. } 
 
procedure TForm1.NLPButtonClick(Sender: TObject); 
var 
   objtext:string; 
   x0:string; 
   x1:string; 
begin 
     { right hand sides of constraints } 
     rhs[0]:=1; 
     rhs[1]:=0; 
     { sense of constraints: 'E' is =, 'G' is >= } 
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     sense[0]:='E'; 
     sense[1]:='G'; 
     { bounds on variables } 
     lb[0]:=-INFBOUND; 
     lb[1]:=-INFBOUND; 
     ub[0]:=INFBOUND; 
     ub[1]:=INFBOUND; 
     { to pass NULL or empty arrays } 
     NullL := -1; 
     NullD := -1; 
{$IFDEF WIN32} 
     setintparam (NullL, PARAM_ARGCK, 1); 
     lp := loadnlp (PROBNAME, 2, 2, 1, obj[0], rhs[0], sense, NullL, 
           NullL, NullL, matval[0], x[0], lb[0], ub[0], NullD, 
           4, funceval1, nil); 
     if (lp = 0) then Exit; 
     setlpcallbackfunc (lp, callback); 
     ret := optimize (lp); 
     ret := solution (lp, stat, objval, x[0], NullD, NullD, NullD); 
     str (objval:4:4,objtext); 
     NLPEdit1.text := 'Status = ' + inttostr(stat) 
          + ' Objective = ' + objtext; 
     str (x[0]:4:4, x0); 
     str (x[1]:4:4, x1); 
     NLPEdit2.text := 'x1 = ' + x0 + ' x2 = ' + x1; 
{$ENDIF} 
end; 
 
end. 
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Calling the Solver DLL from 
FORTRAN 

FORTRAN Compilers 
To use the Solver DLL from FORTRAN, you must have an appropriate compiler 
capable of building 32-bit or 16-bit Windows applications and calling DLLs.  This 
Guide will give explicit instructions for use with Microsoft FORTRAN PowerStation 
4.0 (32-bit) and Microsoft FORTRAN 5.1 (16-bit), but use with other compilers 
should be similar. 

Microsoft FORTRAN PowerStation 4.0 and FORTRAN 5.1 both allow you to easily 
“port” applications written for DOS, UNIX or other systems to Windows, displaying 
WRITE statement output in a window and entering keyboard input in response to 
READ statements.  To simplify the input/output and focus on the Solver DLL 
routines and arguments, the example application in this chapter uses simple WRITE 
statements for output and will be built as a “QuickWin” application in FORTRAN 
PowerStation, and with equivalent options in FORTRAN 5.1. 

Basic Steps 
To create a FORTRAN application that calls the Solver DLL, you must perform the 
three following steps: 

1. Include the header file frontmip.for in your FORTRAN source program.  (You 
must also include – or copy and paste – the one-line declaration in frontkey.for, 
to define your license key string.) 

2. Include the import library file frontmip.lib in your project or your linker 
response file. 

3. Call at least the routines loadlp() or loadnlp(), optimize(), solution() and 
unloadprob() in that order. 

You can use the example code in flexamp.for as a guide for getting the arguments 
right.  It calls the Solver DLL routines to solve both a simple mixed-integer linear 
(MIP) problem and a simple nonlinear (NLP) problem. 

Bear in mind that the Solver DLL uses the C convention for array indices, 
starting from 0 rather than 1; to make your FORTRAN arrays compatible with this 



104  ••••  Calling the Solver DLL from FORTRAN Dynamic Link Library Solver User's Guide 

convention, it is easiest to use lower and upper bounds in your DIMENSION 
statements, as shown in the example below. 

If you call the Solver DLL routine getcallbackinfo() in your own callback routine, 
you should include the file frontcbi.for in your source code, immediately after you 
declare your own callback routine arguments – as shown in the example flexamp.for. 

Building a 32-Bit FORTRAN Program 
This section will outline the steps required to compile, link and run the example 
Solver DLL application flexamp.exe, using 32-bit Microsoft FORTRAN Power-
Station 4.0 under Windows 95/98 or Windows NT/2000.  The steps involved in using 
other FORTRAN compilers should be similar.  First, follow the steps in the 
“Installation” chapter, which will copy the example programs into the examples 
subdirectory of the frontmip directory on your hard disk.  If you wish, you can run 
the pre-built version of flexamp.exe (by simply double-clicking on its name), before 
you try to compile and link it from the source code. 

1. Create a Project.  Start the Microsoft Developer Studio.  Select File New... and 
in the resulting dialog, select Project Workspace and click OK.  In the New 
Project Workspace dialog, select QuickWin Application in the Type list box, 
type flexamp in the Name edit box, and type c:\frontmip\examples\flexamp (or 
another path of your choosing) in the Location edit box.  Then click Create. 

2. Add Files.  Select Insert Files into Project... In the resulting dialog, navigate if 
necessary to the proper directory, select the file flexamp.for, and click Add. 

Now select Insert Files into Project... again.  In the dialog, open the Files of type 
dropdown list and select Library Files (*.lib).  Navigate to the Win32 subdirec-
tory that contains the 32-bit version of the import library frontmip.lib.  Select 
frontmip.lib and click Add. 

3. Check Build Settings.  Before compiling flexamp.for, you must ensure that the 
preprocessor symbol WIN32 is defined.  Select Build Settings..., click on the 
Fortran tab, open the Category dropdown list, and select Preprocessor.  The 
Predefined Preprocessor Variables edit box should contain the symbol WIN32; 
if not, type WIN32 in this box and then click OK. 

4. Build and Run the Application.  To compile and link flexamp.for and produce 
flexamp.exe, select Build Rebuild All.  Then select Build Execute flexamp.exe 
to run the program.  An output window like the one on the next page should 
appear. 
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Building a 16-Bit FORTRAN Program 
A 16-bit version of the example Solver DLL application flexamp.exe, which runs 
under Windows 3.x, may be built using the Microsoft FORTRAN 5.1 Programmer's 
Workbench as follows.  Note that the FORTRAN Programmer's Workbench is a 
DOS application. 

1. Start the Programmer's Workbench.  Select File Open..., navigate to the 
appropriate directory and select the file flexamp.for. 

2. Select Options Environment..., and add the path to the import library (for 
example, c:\frontmip\win16) to the Library Files Search Path. 

3. Select Options Build Options....  Set the Main Language to FORTRAN and the 
Initial Build Options to Windows EXE. 

4. Select Options LINK Options....  In the Additional Libraries field, enter 
frontmip.lib. 

5. Select Options FORTRAN Compiler Options... and check that the choice for 
FORTRAN Libraries is Windows, and that the Windows Entry/Exit Code box is 
checked. 

6. Select Rebuild All to compile flexamp.for and produce the program flexamp.exe. 

You may run the program from the Windows Program Manager or File Manager 
using File Run..., or from the Programmer's Workbench.  (The latter option starts up 
Windows automatically.)  The result should be a window display like the one shown 
on the next page. 
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As you can see, the 16-bit version of the example program solves the same LP/MIP 
problem as the 32-bit version, but the output from the callback function lpcallback 
does not appear, and the nonlinear Solver example (which uses the funceval1 and 
jacobian1 callback routines) is not solved.  This is explained below. 

FORTRAN Example Source Code 
The FORTRAN source code for the example problems is shown below.  This source 
code can be used with both the 32-bit and 16-bit FORTRAN compilers, but you will 
notice conditional compilation directives $IF DEFINED( WIN32) and $ENDIF 
around the definition of the callback functions and the code to call the nonlinear 
Solver.  This is also done in the Delphi Pascal example file psunit.pas and the C/C++ 
example file vcexamp1.c in earlier chapters, for similar reasons:  The 16-bit version 
would have to take special steps to ensure that the callback function’s local data is 
addressable in each application instance – and this complication was left out of this 
simple example.  This topic is more fully explored in the chapter “Special 
Considerations for Windows 3.x.” 

The header file frontmip.for can also be used with both the 32-bit and 16-bit 
FORTRAN compilers; however, it makes extensive use of conditional compilation 
directives in order to declare the proper calling for 16-bit and 32-bit DLL routines. 

 
C ************************************************************************* 
C     Frontline Systems Solver DLL (Dynamic Link Library) Version 3.5 
C     Frontline Systems Inc., P.O. Box 4288, Incline Village, NV 89450 USA 
C     Tel (775) 831-0300 ** Fax (775) 831-0314 ** Email info@frontsys.com 
C 
C     Example LP/MIP problem in FORTRAN: Build as QuickWin project contain- 
C     ing files FLEXAMP.FOR and FRONTMIP.LIB (the import library).  Use 
C     FORTRAN Powerstation 4.0 with WIN32 defined, or FORTRAN 5.1 (16-bit). 
C ************************************************************************* 
 
$IF DEFINED( WIN32) 
C     Define a "callback" function that displays the iteration number 
C     and current objective value  
      INTEGER*4 FUNCTION lpcallback[STDCALL] (lp, wherefrom) 
      INTEGER*4 lp[VALUE], wherefrom[VALUE] 
      INCLUDE 'frontcbi.for' 
      INTEGER*4 ret, iter, mip 
 
      ret = getcallbackinfo (lp, wherefrom, CBINFO_MIP_ITERATIONS, mip) 
      ret = getcallbackinfo (lp, wherefrom, CBINFO_ITCOUNT, iter) 
      WRITE (*, 10) mip, iter 
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10    FORMAT (' MIP subproblem 'I3' LP Iteration'I3) 
      lpcallback = 0 
      END FUNCTION 
 
C     Define a "callback" function that computes the objective and 
C     constraint left hand sides, for any supplied values of the variables. 
 
      INTEGER*4 FUNCTION funceval1[STDCALL] (lp, numcols, numrows, 
     +  objval, lhs, var, varone, vartwo) 
      INTEGER*4 lp[VALUE], numcols[VALUE], numrows[VALUE] 
      REAL*8 objval[REFERENCE] 
      REAL*8 lhs(0:1), var(0:1) 
      INTEGER*4 varone[VALUE], vartwo[VALUE] 
 
      objval = var(0) * var(0) + var(1) * var(1) 
      lhs(0) = var(0) + var(1) 
      lhs(1) = var(0) * var(1) 
      funceval1 = 0 
      END FUNCTION 
 
C     Define a "callback" function that computes the objective gradient and 
C     Jacobian of the constraints for any supplied values of the variables. 
 
      INTEGER*4 FUNCTION jacobian1[STDCALL] (lp, numcols, numrows, 
     +  nzspace, objval, obj, matbeg, matcnt, matind, matval, var, 
     +  objtype, matvaltype) 
      INTEGER*4 lp[VALUE], numcols[VALUE], numrows[VALUE] 
      INTEGER*4 nzspace[VALUE] 
      REAL*8 objval[REFERENCE], obj(0:1) 
      INTEGER*4 matbeg(0:1), matcnt(0:1), matind(0:1) 
      REAL*8 matval(0:1), var(0:1) 
      CHARACTER*2 objtype[REFERENCE] 
      CHARACTER*2 matvaltype[REFERENCE] 
 
      WRITE (*, 20) var(0), var(1) 
20    FORMAT (' Jacobian evaluated at: x1 = 'F7.2'  x2 = 'F7.2) 
C     Value of the objective function 
      objval = var(0) * var(0) + var(1) * var(1) 
C     Partial derivatives of the objective 
      obj(0) = 2.0 * var(0); 
      obj(1) = 2.0 * var(1); 
C     Partial derivatives of X + Y (constant) 
      matval(0) = 1.0; 
      matval(2) = 1.0; 
C     Partial derivatives of X * Y (variable) 
      matval(1) = var(1); 
      matval(3) = var(0); 
      jacobian1 = 0 
      END FUNCTION 
$ENDIF 
 
      INCLUDE 'frontmip.for' 
C     You must initialize PROBNAME with your own license key string! 
      INCLUDE 'frontkey.for' 
$IF (.NOT.DEFINED( WIN32)) 
      INTEGER*4 setintparam, loadlp, loadctype, optimize, solution 
      INTEGER*4 lpwrite 
$ENDIF 
      EXTERNAL lpcallback, funceval1, jacobian1 
      INTEGER*4 lpcallback, funceval1, jacobian1 
 
      REAL*8 obj(0:1) / 2.0, 3.0 / 
      REAL*8 rhs(0:2) /  54.0, 42.0, 50.0 / 
      CHARACTER*3 sense /'LLL'/ 
      INTEGER*4 matbeg(0:1) / 0, 3 / 
      INTEGER*4 matcnt(0:1) / 3, 3 / 
      INTEGER*4 matind(0:5) / 0, 1, 2, 0, 1, 2 / 
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      REAL*8 matval(0:5) / 9.0, 6.0, 5.0, 6.0, 7.0, 10.0 / 
      REAL*8 lb(0:1) / 0.0, 0.0 / 
      REAL*8 ub(0:1) / 1.0e30, 1.0e30 / 
      CHARACTER*2 ctype /'II'/ 
      INTEGER*4 stat, ret 
      REAL*8 objval, x(0:1) 
      INTEGER*4 lp 
      INTEGER*4 NullL(0:1) / -1, -1 / 
      REAL*8 NullD(0:1) / -1.0, -1.0 / 
 
C     Display MessageBoxes on invalid arguments, for both problems 
      ret = setintparam (0, PARAM_ARGCK, 1 ) 
 
      WRITE (*, 100) 
100   FORMAT (' Example LP/MIP problem') 
C     Set up the LP portion of the problem 
      lp = loadlp (PROBNAME, 2, 3, -1, obj, rhs, sense, 
     + matbeg, matcnt, matind, matval, lb, ub, NullD, 2, 3, 6) 
C     Now define the integer variables 
      ret = loadctype (lp, ctype) 
C     Write out the problem as a text file, in "algebraic" format 
      ret = lpwrite (lp, 'flexamp') 
$IF DEFINED( WIN32) 
C     Set up the callback function to display iteration # and objective 
      ret = setlpcallbackfunc (lp, lpcallback ) 
$ENDIF 
C     Solve the mixed-integer problem 
      ret = optimize (lp) 
C     Obtain and write out the solution 
      ret = solution (lp, stat, objval, x, NullD, NullD, NullD) 
      WRITE (*, 110) stat, objval 
110   FORMAT (' LPstatus = 'I3,'  Objective = 'F7.2) 
      WRITE (*, 120) x(0), x(1) 
120   FORMAT (' x1 = 'F7.2,'  x2 = 'F7.2) 
 
$IF DEFINED( WIN32) 
      WRITE (*, 200) 
200   FORMAT (/' Example NLP problem') 
C     Re-initialize the values of the rhs, sense, and lb arrays 
      rhs(0) = 1.0 
      rhs(1) = 0.0 
      sense = 'EG' 
      lb(0) = -INFBOUND 
      lb(1) = -INFBOUND 
C     Initialize the values of the variables 
      x(0) = 0.25 
      x(1) = 0.25 
C     Set up the NLP problem 
      lp = loadnlp (PROBNAME, 2, 2, 1, obj, rhs, sense, 
     + NullL, NullL, NullL, matval, x, lb, ub, NullD, 4, 
     +    funceval1, jacobian1) 
C     Set up the callback function to display iteration # and objective 
      ret = setlpcallbackfunc (lp, lpcallback ) 
C     Solve the nonlinear problem 
      ret = optimize (lp) 
C     Obtain and write out the solution 
      ret = solution (lp, stat, objval, x, NullD, NullD, NullD) 
      WRITE (*, 110) stat, objval 
      WRITE (*, 120) x(0), x(1) 
$ENDIF 
END 

The Microsoft compilers also support various extensions to FORTRAN that you can 
use to add Windows user interface features to your FORTRAN application.  Consult 
the Microsoft FORTRAN PowerStation or FORTRAN 5.1 manuals for details. 
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Solver API Reference 

Overview 
In this section, we present the detailed arguments and return values of each of the 
Solver DLL’s callable routines.  The declaration syntax used is that of C; you will 
find prototypes and symbolic constants for all of the callable routines in the C/C++ 
header file frontmip.h.  To see the corresponding declaration syntax in Visual 
Basic, Delphi Pascal and FORTRAN, examine the header files frontmip.bas or 
safrontmip.bas, frontmip.pas, and frontmip.for respectively. 

Linking may be accomplished with the supplied import library, via entries in the 
IMPORTS section of a module definition file, or at runtime with calls to the 
Windows routines LoadLibrary() and GetProcAddress().  The Visual Basic and 
Delphi Pascal systems do not require the import library or a module definition file; 
they use run-time dynamic linking and implicitly call LoadLibrary() and 
GetProcAddress() for you. 

A typical program to solve a linear programming problem consists of the following 
calls: 
main() 
{ 
/* Get data and set up an LP problem */ 
... 
loadlp(..., matval, ...);       /* Load the problem */ 
optimize(...);                  /* Solve it         */ 
solution(...);                  /* Get the solution */ 
unloadprob(...);                /* Free memory      */ 
... 
} 

In linear and quadratic problems, you pass an array or matrix of coefficients (called 
matval above); the Solver DLL can determine values for the objective and constraints 
by computing the sums of products of the variables with the supplied coefficients.  In 
nonlinear and nonsmooth problems, however, the problem functions cannot be 
described this way.  Instead, you must write a “callback” function (called funceval 
below) which computes values for the problem functions (objective and constraints) 
for any given values of the variables.  The Solver DLL will call this function 
repeatedly during the solution process.  You supply the address of this callback 
function as an argument to loadnlp(). 
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A typical program to solve a nonlinear or nonsmooth optimization problem consists 
of the following calls: 
funceval(...) 
{ 
/* Receive values for the variables, compute values */ 
/* for the constraints and the objective function   */ 
} 

main() 
{ 
/* Get data and set up an LP problem */ 
... 
loadnlp(..., funceval, ...);    /* Load the problem */ 
optimize(...);                  /* Solve it         */ 
solution(...);                  /* Get the solution */ 
unloadprob(...);                /* Free memory      */ 
... 
} 

For more information, consult the chapter “Designing Your Application.” 

Argument Types 
In the Solver DLL, all integer arguments (including array arguments such as matbeg, 
matcnt and matind) are defined as long, or 32-bit integers.  In Visual Basic, 
variables of this type must be declared as Long rather than Integer.  The 
corresponding type in Delphi Pascal is Longint, and in FORTRAN it is 
INTEGER*4.  In C/C++, type int is the same as type long in 32-bit compilers, but 
we recommend that such variables be declared as long. 

The sense argument of loadlp() and loadnlp(),  the ctype argument of loadctype(),  
and the objtype and matvaltype arguments of loadnltype() and testnltype() are defined 
as arrays of unsigned characters.  Visual Basic (Version 4.0 and above) treats these 
arguments as arrays of type Byte, whereas it treats ordinary (signed) character array 
arguments as type String.  (String variables in Visual Basic are actually BSTRs 
(OLE strings) which may be reallocated at any time – this would cause problems for 
the Solver DLL).  Hence, Visual Basic programs should define these arguments as 
arrays of Byte, and initialize them element by element. 

In the C/C++ header file frontmip.h, the name INTARG (a typedef for long) is 
used for integer arguments, and LPINTARG is used for integer array arguments.  The 
name REALARG is used for double arguments, and LPREALARG is used for double 
array arguments.  The names HPINTARG and HPREALARG are used for the matind 
and matval arrays in loadlp() so that these array arguments can be “huge” arrays 
(greater than 64K bytes) in 16-bit Windows; they are simply arrays of long and 
double in the 32-bit versions.  And the name LPBYTEARG (a typedef for pointer to 
unsigned char) is used for the sense, ctype, objtype and matvaltype arguments, 
for the reasons outlined above. 

NULL Values for Arrays 
Many of the Solver DLL routines accept arrays as arguments.  In a number of cases, 
these arrays are optional, and you may pass a “NULL value” in lieu of an array.  In 
order to support multiple programming languages, including those that use OLE 
SAFEARRAYs, the Solver DLL accepts any of the following as a “NULL value:” 

• A NULL pointer (i.e. an integer value of 0) 
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• A pointer to an integer value of –1 

• A pointer to a pointer to a SAFEARRAY containing exactly one element whose 
value is –1 

• For Byte arrays only (e.g. the sense argument of loadnlp() for an unconstrained 
nonlinear problem), a pointer to a Byte value of 0, or a pointer to a pointer to a 
SAFEARRAY containing exactly one Byte element whose value is 0 

In the first two cases, the integer value must be 4 bytes long.  In the third case, the 
single element of the SAFEARRAY may be a 4-byte integer or an 8-byte double as 
required by array’s normal data type.  An example declaration and initialization in 
Visual Basic would be: 

Dim NullL(0) As Long 
NullL(0) = -1 

or for an argument which is a Byte array: 
Dim NullB(0) As Byte 
NullB(0) = 0 

In languages such as C/C++ which can easily manipulate NULL pointers, you can use 
the symbolic name NULL which is defined as 0.  In Visual Basic using C-style arrays 
(header file frontmip.bas), you would use –1 (which will be passed by 
reference).  In Visual Basic when using SAFEARRAYs (and including header file 
safrontmip.bas), you would declare an array of one element, such as NullL or 
NullB above, and pass the array name as the argument.  In Delphi Pascal, use a 
variable of the appropriate type (Longint or Double) initialized to –1. 

Problem Definition Routines 
The following Solver DLL routines are used to define an optimization problem.  The 
definition of every problem starts with a call to either loadlp() or loadnlp(). 

A call to loadlp() may be followed by a call to loadquad(), for a quadratic problem, 
and/or a call to loadctype(), for a mixed-integer problem. 

A call to loadnlp() may be followed by a call to loadnltype(), for a nonsmooth 
problem, a call to loadnltype() or testnltype(), to specify linearly occurring variables, 
and/or a call to loadctype(), for a mixed-integer problem.  If your call to testnltype() 
reveals that a problem is entirely linear, you may call unloadprob() and then call 
loadlp() with the same arguments, to solve your problem with the faster and more 
reliable Simplex method. 

After calling the appropriate solution routines and/or diagnostic routines, you must 
call unloadprob() to free memory allocated by your calls to other routines. 

loadlp 
HPROBLEM loadlp (probname, numcols, numrows, objsen, obj, 
   rhs, sense, matbeg, matcnt, matind, matval, lb, ub, 
   rngval, colspace, rowspace, nzspace) 

LPSTR probname; 
INTARG numcols, numrows, objsen; 
LPREALARG obj, rhs; 
LPBYTEARG sense; 
LPINTARG matbeg, matcnt; 
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HPINTARG matind; 
HPREALARG matval; 
LPREALARG lb, ub, rngval; 
INTARG colspace, rowspace, nzspace; 

probname A character string (currently 16 characters plus a 0 terminator byte) containing a 
unique “key” which is assigned to you when you license the Solver DLL from 
Frontline Systems.  The DLL that is licensed to you recognizes your specific key 
string; if it is not supplied when loadlp() or loadnlp() is called, these routines will 
return NULL, and calls to these and other routines will not be successful. 

numcols The number of columns in the constraint matrix (i.e. the number of variables). 

numrows The number of rows in the constraint matrix, not including the objective function or 
bounds on the variables. 

objsen Indicates minimization or maximization:  1 = minimize, -1 = maximize. 

obj An array (of dimension numcols) containing the objective function coefficients. 

rhs An array (of dimension numrows) containing the constant or “right hand side” term 
for each row in the constraint matrix.  See also the rngval argument below. 

sense An array (of dimension numrows) containing the sense of each constraint (row): 
sense[i] = 'L' <= constraint 
sense[i] = 'E' = constraint 
sense[i] = 'G' >= constraint 
sense[i] = 'R' ranged constraint 
Note that the value 'R' cannot be used with the Small-Scale Solver DLL. 

matbeg 
matcnt 
matind 
matval 

These four arguments describe the nonzero elements of the constraint matrix.  You 
may pass “NULL values” for matbeg, matcnt, and matind if your matval array is a 
full-size dense matrix, i.e. consisting of numcols * numrows elements (where the 
elements for each column are consecutive). 
 
If matbeg, matcnt and matind are not NULL values, the array matval contains the 
nonzero coefficients grouped by column (i.e. all coefficients for the same variable are 
consecutive).  matbeg[i] contains the index in matval of the first coefficient for 
column i.  matcnt[i] contains the number of coefficients in column i.  Note that the 
indices in matbeg must be in ascending order.  Each entry matind[i] is the row 
number of the corresponding coefficient in matval[i].  The entries in matind are not 
required to be in ascending row order.  The coefficient M[i,j] in the full constraint 
matrix (if it is nonzero) would be stored in matval[matbeg[j]+k] where k is between 
0 and matcnt[j]-1 (inclusive) and the corresponding entry matind[matbeg[j]+k] = i, 
the row index. 

lb An array (of dimension numcols) containing the lower bound on each variable.  A 
lower bound less than or equal to -INFBOUND will be treated as “minus infinity.” 

ub An array (of dimension numcols) containing the upper bound on each variable.  A 
upper bound greater than or equal to +INFBOUND will be treated as “plus infinity.” 

rngval An array (of dimension rows) containing the range value of each constraint right 
hand side.  Ranged rows are specified in the sense array.  If the row is not ranged, the 
corresponding rngval element should be 0.0.  A range value for row i means that the 
constraint left hand side must be between rhs[i] and rhs[i]+rngval[i].  rngval[i] may 
be positive or negative.  If there are no ranged rows at all, rngval may be  NULL (it 
is ignored when the Small-Scale Solver DLL is used). 
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colspace 
rowspace 
nzspace 

These three arguments are included for compatibility with the Large-Scale Solver 
DLL.  In the Small-Scale Solver DLL, colspace should be equal to cols; rowspace 
should be equal to rows; and nzspace should be equal to the number of entries in 
matval.  When PARAM_ARRAY is 1, the actual size of the matval SAFEARRAY is 
checked and must match the value of nzspace. 

 Loadlp() returns NULL if there is an error in its arguments, if linear problems are not 
supported by this version of the Solver DLL, if the probname key string is not 
recognized, or in the single-threaded version of the DLL, if another problem is still 
active (i.e. if loadlp() or loadnlp() has been called without a corresponding call to 
unloadprob().).  You should not change or free the memory for arguments passed to 
loadlp() until after you make the corresponding call to unloadprob(). 

loadquad 
INTARG loadquad (lp, qmatbeg, qmatcnt, qmatind, qmatval, 
   qnzspace, var) 

HPROBLEM lp; 
LPINTARG qmatbeg, qmatcnt; 
HPINTARG qmatind; 
HPREALARG qmatval; 
INTARG qnzspace; 
LPREALARG var; 

This routine is called only for quadratic programming problems.  The first argument 
must be the value returned by a previous call to loadlp().  

qmatbeg 
qmatcnt 
qmatind 
qmatval 

These four arguments describe the nonzero elements of the Q matrix, which provides 
the coefficients of the quadratic portion of the objective function.  (The coefficients 
of the linear portion of the objective are still specified with the obj  argument of 
loadlp.)  They are analogous to the matxxx arguments of loadlp; however both the 
row and column indices refer to decision variables, which are multiplied together and 
by the coefficient, then summed to form the objective. 
 
You may pass “NULL values” for qmatbeg, qmatcnt, and qmatind if your qmatval 
array is a full-size dense matrix, i.e. consisting of numcols * numcols elements – 
which is often the case for quadratic problems.  In this case, the elements for each 
matrix column should be consecutive. 
 
If qmatbeg, qmatcnt and qmatind are not NULL values, the array qmatval contains 
the nonzero coefficients grouped by column (i.e. all coefficients for the same variable 
are consecutive).  qmatbeg[i] contains the index in qmatval of the first coefficient for 
column i.  qmatcnt[i] contains the number of coefficients in column i.  Note that the 
indices in qmatbeg[] must be in ascending order.  Each entry qmatind[i] is the row 
number of the corresponding coefficient in qmatval[i].  The entries in qmatind[] are 
not required to be in ascending row order.  The coefficient M[i,j] in the Q matrix (if 
it is nonzero) would be stored in qmatval[qmatbeg[j]+k] where k is between 0 and 
qmatcnt[j]-1 (inclusive) and the corresponding entry qmatind[qmatbeg[j]+k] = i, 
the row index. 

qnzspace This argument should be equal to the number of elements in the arrays qmatind and 
qmatval.  IF PARAM_ARRAY is 1, the actual sizes of the arrays are checked against 
this value. 

var This argument should be an array of numcols elements, containing initial values for 
the decision variables.  These initial values are relevant only if the Q matrix is semi-
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definite or indefinite, in which case they will influence the path that the Solver DLL 
takes, and the final solution to which it will converge. 

Loadquad() returns 0 unless there is an error in its arguments, in which case it returns 
an integer value indicating the ordinal position of the first argument found to be in 
error.  Note:  objsa() and rhssa() (which return LP range information) may not be 
used when loadquad() has been called. 

Loadquad() uses a numerical test to determine whether the Q matrix is at least 
positive semi-definite (for minimization problems) or negative semi-definite (for 
maximization problems).  If the Q matrix is indefinite, loadquad() will return 5 (the 
ordinal position of the qmatval argument) and, if PARAM_ARGCK is 1, it will 
display an error message dialog indicating this condition.  See the section “Solution 
Properties of Quadratic Problems” in the chapter “Designing Your Application.” 

loadctype 
INTARG loadctype (lp, ctype) 

HPROBLEM lp; 
LPBYTEARG ctype; 

This routine is called only for mixed-integer problems.  The first argument must be 
the value returned by a previous call to loadlp() or loadnlp().  

ctype An array (of dimension numcols) indicating the types of variables in MIP problems.  
The element ctype[i] indicates the type of variable i as follows: 
ctype[i] = 'C' Continuous variable 
ctype[i] = 'I' General integer variable 
ctype[i] = 'B' Binary (0-1) integer variable 

loadctype() returns 0 unless there is an error in its arguments, in which case it returns 
1 or 2 to indicate the ordinal position of the argument found to be in error. 

loadnlp 
HPROBLEM loadnlp (probname, numcols, numrows, objsen, 
   obj, rhs, sense, matbeg, matcnt, matind, matval, 
   var, lb, ub, rngval, nzspace, funceval, jacobian) 

LPSTR probname; 
INTARG numcols, numrows, objsen; 
LPREALARG obj, rhs; 
LPBYTEARG sense; 
LPINTARG matbeg, matcnt; 
HPINTARG matind; 
HPREALARG matval; 
LPREALARG var, lb, ub, rngval; 
INTARG nzspace; 
_FUNCEVAL funceval; 
_JACOBIAN jacobian; 

probname A character string (currently 16 characters plus a 0 terminator byte) containing a 
unique “key” which is assigned to you when you license the Solver DLL from 
Frontline Systems.  The DLL that is licensed to you recognizes your specific key 
string; if it is not supplied when loadlp() or loadnlp() is called, these routines will 
return NULL, and calls to these and other routines will not be successful. 
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numcols The number of columns in the constraint matrix (i.e. the number of variables). 

numrows The number of rows in the constraint matrix, not including the objective function or 
bounds on the variables. 

objsen Indicates minimization or maximization:  1 = minimize, -1 = maximize. 

obj An array (of dimension numcols) containing the objective function gradient.  This 
array must be present and of the appropriate size, but its contents need be initialized 
only if you are calling loadnltype() to specify that some or all of objective gradient 
elements are constant.  Otherwise, the Solver DLL will fill in this array when it calls 
your funceval() and/or jacobian() routines. 

rhs An array (of dimension numrows) containing the constant or “right hand side” term 
for each row in the constraint matrix.  See also the rngval argument below. 

sense An array (of dimension numrows) containing the sense of each constraint (row): 
sense[i] = 'L' <= constraint 
sense[i] = 'E' = constraint 
sense[i] = 'G' >= constraint 
sense[i] = 'R' ranged constraint 
Note that the value 'R' cannot be used with the Small-Scale Solver DLL. 

matbeg 
matcnt 
matind 
matval 

These four arguments describe the nonzero elements of the Jacobian matrix. If the 
problem has no constraints, you may pass “NULL values” for all of these arguments.  
Otherwise, the matval array, at a minimum, must be present and must be of the 
appropriate size, but its contents need be initialized only if you are calling 
loadnltype() to specify that some or all of Jacobian matrix elements are constant.  
Otherwise, the Solver DLL will fill in this array when it calls your funceval() and/or 
jacobian() routines. If the matbeg, matcnt, and matind arrays are present, these 
arrays and the matval array must account for all of the partial derivatives which could 
become nonzero at any time during the solution process. 

 You may pass “NULL values” for matbeg, matcnt, and matind if your matval array is 
a full-size dense matrix, i.e. consisting of numcols * numrows elements (and the 
elements of each column are consecutive). 
 
If matbeg, matcnt and matind are not NULL values, the array matval contains the 
nonzero coefficients grouped by column (i.e. all coefficients for the same variable are 
consecutive).  matbeg[i] contains the index in matval of the first coefficient for 
column i.  matcnt[i] contains the number of coefficients in column i.  Note that the 
indices in matbeg must be in ascending order.  Each entry matind[i] is the row 
number of the corresponding coefficient in matval[i].  The entries in matind are not 
required to be in ascending row order.  The coefficient M[i,j] in the full constraint 
matrix (if it is nonzero) would be stored in matval[matbeg[j]+k] where k is between 
0 and matcnt[j]-1 (inclusive) and the corresponding entry matind[matbeg[j]+k] = i, 
the row index. 

var An array (of dimension numcols) containing initial values for the variables.  These 
values may influence the progress of the nonlinear Solver “engine” and determine 
which of several locally optimal points are found during the solution process. 

lb An array (of dimension numcols) containing the lower bound on each variable.  A 
lower bound less than or equal to -INFBOUND will be treated as “minus infinity.” 

ub An array (of dimension numcols) containing the upper bound on each variable.  A 
upper bound greater than or equal to +INFBOUND will be treated as “plus infinity.” 

rngval An array (of dimension rows) containing the range value of each constraint right 
hand side.  Ranged rows are specified in the sense array.  If the row is not ranged, the 
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corresponding rngval element should be 0.0.  A range value for row i means that the 
constraint left hand side must be between rhs[i] and rhs[i]+rngval[i].  rngval[i] may 
be positive or negative.  If there are no ranged rows at all, rngval may be  NULL (it 
is ignored when the Small-Scale Solver DLL is used). 

nzspace This argument should be equal to the number of entries in matval.  When 
PARAM_ARRAY is 1, the actual size of the matval SAFEARRAY is checked and 
must match the value of nzspace. 

funceval The address of a user-written callback routine which computes the values of your 
objective function and constraints (i.e. a procedure pointer), declared as shown in the 
section “Callback Routines” below. 

jacobian The address of a user-written callback routine which computes a gradient for your 
objective function and a Jacobian matrix for your constraints (i.e. a procedure 
pointer), declared as shown in the section “Callback Routines” below 

 Loadnlp() returns NULL if there is an error in its arguments, if nonlinear problems 
are not supported by this version of the Solver DLL, if the probname key string is not 
recognized, or in the single-threaded version of the DLL, if another problem is still 
active (i.e. if loadlp() or loadnlp() has been called without a corresponding call to 
unloadprob().).  You should not change or free the memory for arguments passed to 
loadnlp() until after you make the corresponding call to unloadprob(). 

loadnltype 
INTARG loadnltype (lp, objtype, matvaltype) 

HPROBLEM lp; 
LPBYTEARG objtype, matvaltype; 

This routine is optional.  If called, it gives the Solver DLL information about whether 
each variable occurs in a linear, nonlinear, or nonsmooth/discontinuous way in each 
problem function.  The Solver can use this information to choose the appropriate 
Solver “engine” and/or to speed up the solution process.  The argument lp must be 
the value returned by a previous call to loadnlp(). 

You may pass “NULL values” for objtype, matvaltype, or both to indicate that the 
objective or the constraints are, in general, nonsmooth or discontinuous functions of 
the variables.  In Version 3.5 of the Solver DLL, if either of these arguments is 
NULL, or if any variable occurs in a nonsmooth/discontinuous way in the objective 
or in any constraint, the Evolutionary Solver “engine” is used to solve the problem. 

objtype An array (of dimension numcols) indicating whether the variables occur in a linear, 
smooth nonlinear, or nonsmooth/discontinuous way in the objective function: 
objtype[i] = 'L' Variable occurs linearly (or not at all) in the objective 
objtype[i] = 'N' Variable is (smooth) nonlinear in the objective 
objtype[i] = 'D' Variable is nonsmooth/discontinuous in the objective 

matvaltype An array (of dimension nzspace) indicating whether the variables occur in a linear, 
smooth nonlinear, or nonsmooth/discontinuous way in the constraint functions: 
matvaltype[i] = 'L' Matval[i] represents a linear occurrence of a  variable 
matvaltype[i] = 'N' Matval[i] represents a (smooth) nonlinear occurrence 
matvaltype[i] = 'D' Matval[i] represents a nonsmooth/discontinuous occurrence 
The relevant variable and constraint are identified by the corresponding elements of 
the matbeg, matcnt and matind arrays. 
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testnltype 
INTARG testnltype (lp, numtests, testvals, pstat, 
   objtype, matvaltype) 

HPROBLEM lp; 
INTARG numtests; 
LPREALARG testvals; 
LPINTARG pstat; 
LPBYTEARG objtype, matvaltype; 

This routine is optional.  It can be called to compute information about whether each 
variable occurs linearly or nonlinearly in each problem function, through a numerical 
test.  The lp argument is the “problem handle” returned by loadnlp(). 

Testnltype() computes the gradient for your objective function and Jacobian values 
for your constraints at the origin, storing them in the obj and matval arrays that you 
supplied in your call to loadnlp().  It then tests whether these gradient and Jacobian 
values remain constant over a range around the origin.  Your matval array must be of 
appropriate size, and if they are used, your matbeg, matcnt and matind arrays must be 
correctly initialized to indicate which elements of the Jacobian matrix can be nonzero 
for any variable values over the domain of your functions.  Testnltype() will ignore 
elements of the Jacobian that you have indicated are zero (through your matbeg, 
matcnt and matind arrays); hence it will not diagnose linearity correctly if you have 
“missed” some Jacobian entries which can be nonzero for certain variable values.  
(Remember that you can always pass “NULL values” for matbeg, matcnt and matind 
and pass a matval array of size numcols * numrows.) 

numtests Indicates the number of tests performed to validate the gradient and Jacobian values.  
Each test is performed by choosing test values for each variable, computing the 
objective and constraint values using the gradient and Jacobian just determined, 
computing the objective and constraint values by calling your funceval() routine, and 
comparing the results.  If you supply a “NULL value” for testvals, the test values for 
the variables are chosen randomly.  If you supply an array for testvals, the test values 
are drawn from this array. 

testvals An array (of dimension numtests * numcols) containing test values for the variables 
to be used in validating the gradient and Jacobian determined by testnltype(), as 
described above.  If you supply a “NULL value”, the Solver DLL will choose test 
values at random between the bounds you supply in the lb and ub arrays. 

pstat A pointer to a (long) integer indicating whether the entire problem was diagnosed as 
nonlinear or linear: 
 
pstat = 1 Problem was diagnosed as (smooth) nonlinear 
pstat = 0 Problem was diagnosed as linear 
pstat = -1 Diagnosis aborted because your funceval() routine returned 1 (failure) 
 
If pstat returns 1, at least one of the elements of either objtype or matvaltype will be 
'N'; if pstat returns 0, all elements of both arrays will be 'L'. 

objtype An array (of dimension numcols) which testnltype() will fill in to indicate whether the 
variables occur linearly or nonlinearly in the objective function: 
 
objtype[i] = 'L' Variable occurs linearly (or not at all) in the objective 
objtype[i] = 'N' Variable occurs nonlinearly in the objective 
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matvaltype An array (of dimension nzspace) which testnltype() will fill in to indicate whether the 
variables occur linearly or nonlinearly in the constraint functions: 
 
matvaltype[i] = 'L' Matval[i] represents a linear occurrence of a  variable 
matvaltype[i] = 'N' Matval[i] represents a nonlinear occurrence of a  variable 
 
The relevant variable and constraint are identified by the corresponding elements of 
the matbeg, matcnt and matind arrays. You may pass a “NULL value” for objtype 
and/or matvaltype if you are not interested in this information. 

The numerical test used by testnltype() is effective on a broad range of problems, but 
since it samples function values returned by the funceval() routine, it is not foolproof.  
An all-linear problem which is reasonably well-scaled will always return 0 (linear 
model) in pstat; but a very poorly scaled linear problem could return 1 (nonlinear 
model), and a nonlinear problem which behaves linearly over a significant region 
around the origin could return 0 (linear model).  Given the nature of the numerical 
test, testnltype() cannot determine whether any of the variables occur in a 
nonsmooth/discontinuous way in your problem.   

The information used to compute function values in your funceval() routine may 
provide a more certain way to determine the linearity or nonlinearity of your model.  
If you have this information, it is better to make the decision to call loadnlp() or 
loadlp() based on your own test, and optionally call loadnltype() to supply the 
information to the Solver DLL. 

If testnltype() returns 0 in pstat, the matval array will contain the (constant) Jacobian 
values which make up the LP coefficient matrix for the Simplex method.  You may 
switch to the Simplex method and solve the problem by calling unloadprob(), then 
calling loadlp() with the same arguments (including matval) you supplied in your call 
to loadnlp(). 

unloadprob 
INTARG unloadprob (lp) 

HPROBLEM *lp; 

This routine “erases” the current problem from the Solver DLL’s memory.  The 
argument lp must be a pointer to the value returned by a previous call to loadlp() or 
loadnlp().  After this call, the value of lp is invalid and should no longer be used.  As 
noted above, after calling unloadprob() you may change or free the memory for the 
arguments passed to loadlp() or loadnlp(). 

Note:  The single-threaded version of the Solver DLL handles only one problem at a 
time.  Hence, you may call loadlp() or loadnlp() for a second problem only after you 
have called unloadprob() for the first problem.  The multi-threaded version of the 
Solver DLL supports multiple concurrent or recursive calls to these routines.  

Unloadprob() returns 0 unless its lp argument is invalid, in which case it returns 1. 

Solution Routines 
The following Solver DLL routines are used to solve an optimization problem, which 
has been previously defined by a call to either loadlp() or loadnlp(). 
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You should call optimize() to find the solution to a linear, quadratic or nonlinear 
problem without integer variables (i.e. one where you have not called loadctype()).  
You should call mipoptimize() if the problem includes integer variables. 

During the call to optimize() or mipoptimize(), the Solver DLL may make repeated 
calls to one or more callback routines that you have written and passed as arguments 
to loadnlp(), setlpcallbackfunc() or setmipcallbackfunc().  These routines are 
discussed below under “Callback Routines for Nonlinear Problems” and “Other 
Callback Routines.” 

Call solution() to retrieve the final status of the optimization, the final value of the 
decision variables and the objective function, and if appropriate, dual values (basic 
sensitivity analysis information) for the variables and constraints.  For linear 
programming problems (only), you may call objsa() and/or rhssa() to obtain the 
ranges of values over which the sensitivity analysis information is valid.  For 
nonsmooth optimization problems (only), you may call varstat() and/or constat() to 
obtain statistical information about the final population of candidate solutions. 

optimize 
INTARG optimize (lp) 
HPROBLEM lp; 

The argument lp of optimize() must be the value returned by a previous call to 
loadlp() or loadnlp().  When this function is called, the Solver DLL will solve the 
specified linear, quadratic, nonlinear, or nonsmooth optimization problem.  
Optimize() returns a value of 0 if successful (i.e. the solution process ran to 
completion, though it may or may not have found an optimal solution – see solution() 
for details).  If the solution process cannot be carried out, optimize() returns a 
nonzero value. 

mipoptimize 
INTARG mipoptimize (lp) 
HPROBLEM lp; 

This routine is called in lieu of optimize() to solve a mixed-integer programming 
problem.  The argument lp of mipoptimize() must be the value returned by a previous 
call to loadlp() or loadnlp().  When this function is called, the Solver DLL will solve 
the specified optimization problem.  Mipoptimize() returns a value of 0 if successful 
(i.e. the solution process ran to completion, though it may or may not have found an 
optimal solution – see solution() for details).  If the solution process cannot be 
carried out, mipoptimize() returns a nonzero value. 

solution 
INTARG solution (lp, pstat, pobj, x, piout, slack, dj) 

HPROBLEM lp; 
LPINTARG pstat; 
LPREALARG pobj, x, piout, slack, dj; 

The argument lp of solution() must be the value returned by a previous call to 
loadlp() or loadnlp().  The other arguments are pointers to locations where data may 
be written.  This data may include the status of the optimization, the value of the 
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objective function, the values of the (primal) variables, the dual values, the slacks and 
the reduced costs.  If some of the data is not required, a “NULL value” may be 
passed for that argument.  If there is no optimal solution, sensitivity analysis 
information is not available, so the piout, slack and dj arguments will be ignored.  If 
you are solving a MIP problem, sensitivity analysis information is not meaningful 
and the piout, slack and dj arguments must be “NULL values.” 

Solution() returns 0 unless its lp argument is invalid, in which case it returns 1. 

pstat A pointer to a (long) integer where the result of the optimization will be stored.  The 
specific values which stat (pointed to by pstat) can take and their meanings are: 
stat = 1 = PSTAT_OPTIMAL optimal solution found 
stat = 2 = PSTAT_INFEASIBLE no feasible solution 
stat = 3 = PSTAT_UNBOUNDED objective unbounded 
stat = 5 = PSTAT_IT_LIM_FEAS iteration limit exceeded, feasible 
stat = 6 = PSTAT_IT_LIM_INFEAS iteration limit exceeded, not yet feas. 
stat = 7 = TIME_LIM_FEAS time limit exceeded, feasible 
stat = 8 = TIME_LIM_INFEAS time limit exceeded, not yet feasible 
stat = 12 = PSTAT_ABORT_FEAS user interrupted solution, feasible 
stat = 13 = PSTAT_ABORT_INFEAS user interrupted solution, not yet feas. 
stat = 65 = PSTAT_FRACT_CHANGE objective function changing too slowly 
stat = 66 = PSTAT_NO_REMEDIES all remedies failed to find a better point 
stat = 67 = PSTAT_FLOAT_ERROR error in evaluating problem functions 
stat = 68 = PSTAT_MEM_LIM could not allocate enough memory 
stat = 69 = PSTAT_ENTRY_ERROR attempt to re-enter DLL during solution 
stat = 101 = PSTAT_MIP_OPTIMAL MIP optimal solution found 
stat = 102 = PSTAT_MIP_OPTIMAL_TOL  MIP solution within epgap tolerance 
stat = 103 = PSTAT_MIP_INFEASIBLE no feasible integer solution 
stat = 104 = PSTAT_MIP_SOL_LIM integer solution limit exceeded 
stat = 105 = PSTAT_MIP_NODE_LIM_FEAS  node limit exceeded, feasible 
stat = 106 = PSTAT_MIP_NODE_LIM_INFEAS  node limit exceeded, not feas. 
stat = 107 = PSTAT_MIP_TIME_LIM_FEAS  time limit exceeded, feasible 
stat = 108 = PSTAT_MIP_TIME_LIM_INFEAS  time limit exceeded, not feas. 

A pstat value of 69 (PSTAT_ENTRY_ERROR) is returned only by the single-
threaded version of the Solver DLL, and only if optimize() or mipoptimize() is called, 
directly or indirectly, from a callback function that the Solver DLL called during 
execution of an earlier optimize() or mipoptimize() call.  In the multi-threaded version 
of the Solver DLL, these types of recursive calls are permitted. 

pobj A pointer to a double variable where the optimal objective function value will be 
stored. 

x A array of dimension equal to the number of columns (variables) in which the 
optimal values of the (primal) variables will be stored. 

piout An array of dimension equal to the number of rows (constraints) in which the dual 
values (shadow prices) of the constraints will be stored. The piout values are 
available only if an optimal solution to an LP or QP problem has been found. 

slack An array of dimension equal to the number of rows (constraints) in which the optimal 
slack or surplus values for the constraints will be stored. The slack values are 
available only if an optimal solution to an LP or QP problem has been found. 

dj An array of dimension equal to the number of columns (variables) in which the dual 
values (reduced costs) of the variables will be stored.  The dj values are available 
only if an optimal solution to an LP or QP problem has been found. 
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objsa 
INTARG objsa (lp, begidx, endidx, lower, upper) 

HPROBLEM lp; 
INTARG begidx, endidx; 
LPREALARG lower, upper; 

This routine need be called only if sensitivity ranges for the objective function 
coefficients are desired.  The argument lp of objsa() must be the value returned by a 
previous call to loadlp().  The arguments begidx and endidx are used to limit the set 
of columns (variables) for which the range information is computed.  Since range 
information is not meaningful for NSP, NLP, QP and MIP problems, objsa should 
not be called for them.  objsa returns 0 unless there is an error in its arguments, in 
which case it returns an integer value indicating the ordinal position of the first 
argument found to be in error. 

begidx The first column number (index as in loadlp arguments) for which sensitivity range 
information should be returned. 

endidx The last column number (index as in loadlp arguments) for which sensitivity range 
information should be returned. 

lower An array of dimension endidx - begidx + 1 where the objective function coefficient 
lower range values will be returned. 

upper An array of dimension endidx - begidx + 1 where the objective function coefficient 
upper range values will be returned. 

rhssa 
INTARG rhssa (lp, begidx, endidx, lower, upper) 

HPROBLEM lp; 
INTARG begidx, endidx; 
LPREALARG lower, upper; 

This routine need be called only if sensitivity ranges for the constraint right hand 
sides are desired. The argument lp of rhssa() must be the value returned by a 
previous call to loadlp().  The arguments begidx and endidx are used to limit the set 
of rows (constraints) for which the range information is computed.  Since range 
information is not meaningful for NSP, NLP, QP and MIP problems, rhssa should 
not be called for them.    rhssa returns 0 unless there is an error in its arguments, in 
which case it returns an integer value indicating the ordinal position of the first 
argument found to be in error. 

begidx The first row number (index as in loadlp arguments) for which sensitivity range 
information should be returned. 

endidx The last row number (index as in loadlp arguments) for which sensitivity range 
information should be returned. 

lower An array of dimension endidx - begidx + 1 where the constraint right hand side lower 
range values will be returned. 

upper An array of dimension endidx - begidx + 1 where the constraint right hand side upper 
range values will be returned. 



122  ••••  Solver API Reference Dynamic Link Library Solver User's Guide 

varstat 
INTARG varstat (lp, begidx, endidx, mid, disp,  
   lower, upper) 

HPROBLEM lp; 
INTARG begidx, endidx; 
LPREALARG mid, disp, lower, upper; 

This routine need be called only if statistical information about the variable values in 
the final population of candidate solutions (found by the Evolutionary Solver 
“engine”) is desired.  The argument lp of varstat() must be the value returned by a 
previous call to loadnlp().  The arguments begidx and endidx are used to limit the set 
of columns (variables) for which the statistical information is computed.  Since this 
information is meaningful only for NSP (nonsmooth optimization) problems, 
varstat() should not be called for other types of problems.  Varstat() returns 0 unless 
there is an error in its arguments, in which case it returns an integer value indicating 
the ordinal position of the first argument found to be in error. 

begidx The first column number (index as in loadnlp arguments) for which statistical 
information should be returned. 

endidx The last column number (index as in loadnlp arguments) for which statistical 
information should be returned. 

mid An array of dimension endidx - begidx + 1 where the mean of each variable’s values 
in the final population of candidate solutions will be returned. 

disp An array of dimension endidx - begidx + 1 where the standard deviation of each 
variable’s values in the final population of candidate solutions will be returned. 

lower An array of dimension endidx - begidx + 1 where the minimum of each variable’s 
values in the final population of candidate solutions will be returned. 

upper An array of dimension endidx - begidx + 1 where the maximum of each variable’s 
values in the final population of candidate solutions will be returned. 

constat 
INTARG constat (lp, begidx, endidx, mid, disp,  
   lower, upper) 

HPROBLEM lp; 
INTARG begidx, endidx; 
LPREALARG mid, disp, lower, upper; 

This routine need be called only if statistical information about the constraint values 
in the final population of candidate solutions (found by the Evolutionary Solver 
“engine”) is desired.  The argument lp of constat() must be the value returned by a 
previous call to loadnlp().  The arguments begidx and endidx are used to limit the set 
of rows (constraints) for which the statistical information is computed.  Since this 
information is meaningful only for NSP (nonsmooth optimization) problems, 
constat() should not be called for other types of problems.  Constat() returns 0 unless 
there is an error in its arguments, in which case it returns an integer value indicating 
the ordinal position of the first argument found to be in error. 

begidx The first row number (index as in loadnlp arguments) for which statistical 
information should be returned. 
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endidx The last row number (index as in loadnlp arguments) for which statistical information 
should be returned. 

mid An array of dimension endidx - begidx + 1 where the mean of each constraint’s 
values in the final population of candidate solutions will be returned. 

disp An array of dimension endidx - begidx + 1 where the standard deviation of each 
constraint’s values in the final population of candidate solutions will be returned. 

lower An array of dimension endidx - begidx + 1 where the minimum of each constraint’s 
values in the final population of candidate solutions will be returned. 

upper An array of dimension endidx - begidx + 1 where the maximum of each constraint’s 
values in the final population of candidate solutions will be returned. 

Diagnostic Routines 
The following Solver DLL routines may be called to diagnose a problem when the 
linear, quadratic or nonlinear Solver “engine” has reported that no feasible solution 
could be found; to validate that your calls to loadlp(), loadquad() and/or loadctype() 
have programmatically defined the problem as you intended; or to read in a problem 
previously saved to disk or generated by another program. 

You may call findiis() or (for linear and quadratic problems) iiswrite() at any time 
after solution() has reported that a problem is infeasible (and before you’ve called 
unloadprob().  These routines compute an Irreducibly Infeasible Subset (IIS) of the 
constraints, such that your problem, with just those constraints, is still infeasible, but 
if any one constraint is dropped from the subset, the problem becomes feasible.  Call 
getiis() to programmatically examine the IIS. 

You may call lpwrite() (for linear and quadratic problems only) to write out a text file 
containing an algebraic description of the problem you have defined by calling to 
loadlp(), loadquad() and/or loadctype() and passing the necessary parameters and 
arrays.  If you are not getting the solution you expect, calling lpwrite() may reveal 
that you haven’t defined the problem you expected.  (For compatibility with previous 
versions of the Solver DLL, lprewrite() is a synonym for lpwrite().) 

You may call lpread() to read in a text file – previously written by lpwrite(), or 
perhaps hand-edited or generated by another program – containing an algebraic 
description of a linear, quadratic or mixed-integer programming problem.  This can 
save you the effort of writing and debugging your own code to set up the contents of 
the arrays needed by the loadlp(), loadquad() and/or loadctype() routines. 

findiis 
INTARG findiis (lp, pnumrows, pnumcols) 

HPROBLEM lp; 
LPINTARG pnumrows, pnumcols; 

Findiis() computes an Irreducibly Infeasible Subset (IIS) of the constraints, to help 
you identify problems in your constraint formulation which make the problem 
infeasible.  You may call this routine when the pstat argument value returned by 
solution() is 2 (PSTAT_INFEASIBLE). The argument lp must be the value returned 
by a previous call to loadlp() or loadnlp().  If the parameter PARAM_IISBND is 0 
(the default), both constraints and variable bounds will be considered and eliminated 
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from the IIS if possible.  If PARAM_IISBND is 1, only the constraints will be 
considered for elimination from the IIS, leaving all variable bounds in force. 

pnumrows On return, the variable pointed to by pnumrows will contain the number of 
constraints (rows) in the IIS. 

pnumcols On return, the variable pointed to by pnumcols will contain the number of variable 
bounds (columns) in the IIS. 

To obtain details of the IIS, call the routine getiis().  The routine iiswrite() calls 
findiis() automatically, if it has not already been called 

getiis 
INTARG getiis (lp, pstat, 
   rowind, rowbdstat, pnumrows, 
   colind, colbdstat, pnumcols) 

HPROBLEM lp; 
LPINTARG pstat; 
LPINTARG rowind, rowbdstat, pnumrows; 
LPINTARG colind, colbdstat, pnumcols; 

You may call this routine after calling findiis(), which returns the information you 
need to properly dimension the arrays rowind, rowbdstat, colind and colbdstat passed 
to getiis().  Getiis() returns information about the specific constraints (rows) and 
variable bounds (columns) included in the IIS. 

pstat On return, the variable pointed to pstat will contain 1 if a complete IIS was found, or 
2 if the IIS finder stopped prior to completing the isolation of an IIS (normally due to 
exceeding the time limit set by the PARAM_TILIM parameter).. 

rowind 
rowbdstat 
pnumrows 

The arguments rowind and rowbdstat should be arrays of integers with dimension at 
least equal to the pnumrows argument value returned by findiis().  On return, rowind 
contains the indices (same as those used in the sense and rhs arguments of loadlp() 
and loadnlp()) of the constraints (rows) included in the IIS.  The corresponding 
elements of rowbdstat will contain 0 if the constraint (normally with sense ‘G’) is at 
its lower bound; 1 if the constraint (normally with sense ‘E’) is fixed at one value; 
and 2 if the constraint (normally with sense ‘L’) is at its upper bound. 

colind 
colbdstat 
pnumcols 

The arguments colind and colbdstat should be arrays of integers with dimension at 
least equal to the pnumcols argument value returned by findiis().  On return, colind 
contains the indices (same as those used in the lb and ub arguments of loadlp() and 
loadnlp()) of the variable bounds (columns) included in the IIS. The corresponding 
elements of colbdstat will contain 0 if the variable is at its lower bound; 1 if the 
variable is fixed at one value; and 2 if the variable is at its upper bound. 

If the value returned via pstat is 2 – meaning that a complete IIS was not found – the 
information returned by getiis() may still be useful:  It will identify a subset of the 
constraints and variable bounds containing the source of infeasibility, even though 
this subset may contain more rows and columns than would be included in an IIS. 

iiswrite 
INTARG iiswrite (lp, filename) 

HPROBLEM lp; 
LPSTR filename; 
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You may call this routine (for linear or quadratic programming problems only) when 
the pstat argument value returned by solution() is 2 (PSTAT_INFEASIBLE).   The 
iiswrite() routine calls findiis(), if necessary, to compute an Irreducibly Infeasible Set 
of constraints and bounds, as described above.  It then writes an ASCII text file to 
disk, named filename, which lists the objective, the constraints included in the IIS, 
and the variable bounds included in the IIS, in the same “algebraic” format used by 
lpwrite().  This file is designed to be quickly readable in a text editor, and you can 
use it to identify the problem(s) in your constraints which are causing the overall 
model to be infeasible. 

lpwrite 
INTARG lpwrite (lp, filename) 

HPROBLEM lp; 
LPSTR filename; 

This routine may be called at any time after loadlp, loadquad and/or loadctype have 
been called (and before unloadprob is called).  It cannot be called for a nonlinear 
problem, defined via loadnlp().  Lpwrite() will write an output text file filename, 
containing an algebraic statement of the problem you have defined.  By calling 
lpwrite and examining the resulting file, you can verify that the problem defined by 
your arguments is the one you intended.  You can also use lpwrite() to save a 
problem to disk, and lpread() to read it in and solve it later.  (For compatibility with 
previous versions of the Solver DLL, lprewrite() is a synonym for lpwrite().) 

Lpwrite() returns 0 unless there is an error in its arguments, in which case it returns 1 
for an invalid lp argument, or 2 for any I/O error related to opening and writing the 
contents of filename. 

filename The name (or complete path) of the output text file.  Lpwrite() will create this file, 
which will replace any existing file of the same name.  If filename does not include 
an explicit path, the file will be created in the current directory. 

As an example, the following text appears in filename when lpwrite() is called for 
Example 2 in the sample source programs supplied with the Solver DLL: 
Maximize LP/MIP 
  obj: 2.0 x1 + 3.0 x2 
Subject To 
  c1:  9.0 x1 + 6.0 x2 <= 54.0 
  c2:  6.0 x1 + 7.0 x2 <= 42.0 
  c3:  5.0 x1 + 10.0 x2 <= 50.0 
Bounds 
  0.0 <= x1 <= +infinity 
  0.0 <= x2 <= +infinity 
Integers 
  x1 
  x2 
End 

lpread 
INTARG lpread (lp, filename, objsen_p, numcols_p, 
   numrows_p, numints_p, matcnt, qmatcnt) 

HPROBLEM lp; 
LPSTR filename; 
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LPINTARG objsen_p, numcols_p, numrows_p, numints_p; 
LPINTARG matcnt, qmatcnt; 

This routine can be used to read in the definition of a linear, quadratic, or mixed-
integer problem, in algebraic format, from a text file.  The file may be previously 
written by the lpwrite() routine, created by hand, or generated by another program.  
As long as the problem definition follows the format and syntax described here (and 
illustrated above under lpwrite()) and is within the size limits of your version of the 
Solver DLL, you can read it in through lpread() and solve it. 

The text file should consist of lines ending in a newline (linefeed) or a carriage 
return/linefeed combination.  The keywords Maximize or Minimize, Subject 
To, Bounds, Integers and End should appear on separate lines.  The objective 
expression must be preceded by obj: and each constraint expression preceded by 
c1:, c2:, etc., but otherwise the expressions may be split across multiple lines.  
Each variable occurrence must have a form such as x1, x123, etc.; the highest 
variable index found in the file is returned in the variable pointed to by numcols_p.  
Lower and upper bounds on variables should either be numbers, -infinity or 
+infinity.  The quadratic part of the objective (if used) must be surrounded by 
brackets, and each term should consist of a number followed by either two variable 
names separated by *, or one variable name followed by ^2.  For example: 
     [ x1^2 - x1*x2 + x2^2 ] 

lp Either NULL, or a pointer to a problem previously returned by loadlp().  If this 
argument is NULL, lpread() will scan the input text file and return values for the 
objsen_p, numcols_p, numrows_p, numints_p, matcnt and qmatcnt arguments (if 
they are specified), but it will not store any of the coefficient, bound or integer 
variable information.  If lp is non-NULL, lpread() will scan the file, return values for 
the other arguments mentioned above, and fill in values for all of the arguments 
previously passed to loadlp(), loadquad() and/or loadctype() when the problem was 
defined, except for matbeg and matcnt (if used) and qmatbeg and qmatcnt (if used).  
It is your responsibility to ensure that the arrays previously passed to these routines 
are of the correct dimensions for the problem being read. 

filename The name (or complete path) of the input text file. 

objsen_p On return, the variable pointed to by objsen_p will contain the “sense” of the 
optimization problem (1 for minimize, -1 for maximize), as used by loadlp().  You 
may pass a “NULL value” for this argument if you don’t need this information. 

numcols_p 
numrows_p 
numints_p 

On return, the variable pointed to by numcols_p will contain the number of columns 
(variables) in the problem defined by the input file; the variable pointed to by 
numrows_p will contain the number of rows (constraints) in the problem; and the 
variable pointed to by numints_p will contain the number of integer variables in the 
problem.  You may pass “NULL values” for any of these arguments if you don’t 
need the corresponding information. 

matcnt If used, this argument must be an integer array of dimension at least equal to the 
number of columns (variables) in the problem.  On return, each element of the array 
will contain the number of nonzero coefficients of the corresponding variable found 
in the constraints of the problem.  The resulting array has the same meaning as, and 
may be passed as, the matcnt argument of the loadlp() routine.  You may pass a 
“NULL value” for this argument if you don’t need this information, for example if 
you are using a dense matrix for the matval array of coefficients passed to loadlp(). 

qmatcnt If used, this argument must be an integer array of dimension at least equal to the 
number of columns (variables) in the problem.  On return, each element of the array 
will contain the number of nonzero coefficients of the corresponding variable found 
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in the quadratic objective (if any) of the problem.  The resulting array has the same 
meaning as, and may be passed as, the qmatcnt argument of the loadquad() routine.  
You may pass a “NULL value” for this argument if you don’t need this information, 
for example if you are using a dense matrix for the qmatval array of coefficients 
passed to loadquad(). 

If you know the sense and dimensions (number of variables, constraints and integers) 
of the problem you are going to read in and solve, you can simply call loadlp() (plus 
loadquad() and/or loadctype()) to define the problem with arrays of the correct 
dimension, then call lpread() once to fill in the coefficient, bound and integer 
variable information. 

If you do not know the sense and/or dimensions of the problem in advance, you can 
call lpread() with a NULL first argument to obtain this information; then allocate 
arrays of the appropriate size, and call loadlp() (plus loadquad() and/or loadctype()) 
to define the problem; and finally call lpread() again – this time with a non-NULL 
first argument – to fill in the coefficient, bound and integer variable information.   

To satisfy the Solver DLL’s checks for argument validity, you must initialize the 
sense array – say, with all elements equal to ‘E’, the ctype array (if used for integer 
problems) – say, with all elements equal to ‘C’, and the matbeg, matcnt and matind 
arrays (if used for sparse problems).  Matbeg and matcnt may be initialized as 
described below, and matind may be initialized with all elements equal to zero.  
(Qmatbeg, qmatcnt and qmatind should be treated similarly.) 

If you are using sparse arrays to define matval or qmatval, and you do not know the 
dimensions or sparsity pattern in advance, you will need to call lpread() twice as 
outlined above, passing the matcnt and/or qmatcnt array arguments on the first call.  
These arrays must be of dimension at least equal to the number of columns 
(variables) in the problem being read; to create them, you can either use the 
maximum number of columns returned by the getproblimits() routine, or you can call 
lpread() one more time in advance to obtain the actual number of columns defined in 
the text file.  The number of nonzeroes in the constraint matrix (the nzspace argument 
passed to loadlp()) is equal to the sum of the counts returned in the elements of 
matcnt (similarly for qmatcnt and qnzspace).  You can initialize the matbeg array 
based on the counts in matcnt (similarly for qmatbeg and qmatcnt).  For example, in 
C/C++: 
for (nzspace = i = 0; i < numcols; i++) nzspace += matcnt[i]; 
for (i = 0; i < nzspace; i++) matind[i] = 0; 
for (i = 0; i < numcols; i++) 
      matbeg[i] = (i == 0 ? 0 : matbeg[i-1] + matcnt[i-1]); 

Use Control Routines 
The multi-threaded version of the Solver DLL can be distributed under a license 
based either on the number of users (“seats”) or on the number of uses (calls to the 
optimize() or mipoptimize() routines.)  Use-based licensing is advantageous in 
situations, such as public Web server applications, where the number of users is not 
known, or is so large that user-based licensing would be potentially too expensive.  
To facilitate use-based licensing, the Solver DLL includes routines that can be called 
to determine the number of uses to date, write this information to a text file, or 
automatically email this information to Frontline Systems, all under the control of the 
application program. 

The Solver DLL is shipped in multiple configurations that include only the Solver 
“engines” that you need for your application, and that place specific upper limits on 
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problem sizes.  By calling getproblimits(), you can find out at runtime which Solver 
“engines” are available and how many decision variables, constraints and integer 
variables you can specify in calls to each “engine.” 

getuse 
INTARG getuse (lp, loadprob_p, optimize_p, verify_p, 
   repload_p, repopt_p, repdate_p) 

HPROBLEM lp; 
LPINTARG loadprob_p, optimize_p, verify_p; 
LPINTARG repload_p, repopt_p, repdate_p; 

This function returns information to your application about the number of uses (calls 
to loadlp() or loadnlp(), and calls to optimize() or mipoptimize()) since the Solver 
DLL was placed in service.  The lp argument is ignored and may be NULL.  You 
may also pass NULL for any of the other arguments, if you do not need the 
corresponding information. 

loadprob_p A pointer to a variable of type long, where getuse() will store the cumulative 
number of calls to loadlp() or loadnlp() to date. 

optimize_p A pointer to a variable of type long, where getuse() will store the cumulative 
number of calls to optimize() or mipoptimize() to date. 

verify_p A pointer to a variable of type long, where getuse() will store an encrypted form of 
the cumulative number of uses to date. 

repload_p A pointer to a variable of type long, where getuse() will store the number of calls to 
loadlp() or loadnlp() previously reported to Frontline Systems (via an earlier call to 
reportuse(), or automatically as determined by the PARAM_USERP setting). 

repopt_p A pointer to a variable of type long, where getuse() will store the number of calls to 
optimize() / mipoptimize() previously reported to Frontline Systems (via an earlier 
call to reportuse(), or automatically as determined by the PARAM_USERP setting). 

repdate_p A pointer to a variable of type long, where getuse() will store the date of the last 
report to Frontline Systems, as an integer of the form YYYYMMDD. 

The Solver DLL stores the information returned by getuse() in the system Registry, 
under the key: 
HKEY_LOCAL_MACHINE\SOFTWARE\FrontlineSystems\SolverDLL\3.5 

Under this key are six values – UseLoadProb, UseOptimize, UseVerify, 
UseRepLoad, UseRepOpt and UseRepDate – corresponding to loadprob_p, 
optimize_p, verify_p, repload_p, repopt_p and repdate_p respectively. 

Frontline’s use-based licensing terms can take into account the number of calls to 
loadlp() or loadnlp(), the number of calls to optimize() or mipoptimize(), or both 
counts.  In many Solver DLL applications these counts may be the same.  However, 
in some applications, one count or the other may correspond more closely to the 
number of “sessions” with individual users served by the application. 

reportuse 
INTARG reportuse (lp, probname, filename, 
   profilename, password) 
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HPROBLEM lp; 
LPSTR probname, filename, profilename, password; 

This function will either write a text file to disk, or automatically send an email 
message to Frontline Systems (info@frontsys.com), containing the use information 
returned by getuse(), plus your application-specific “key” string and the Windows 
name of the computer on which the application is running.  The email message, if 
used, is sent via the Win32 Messaging API (MAPI) which is normally available on 
the Windows system where the Solver DLL is running.  The lp argument is ignored 
and may be NULL. 

probname A character string (currently 16 characters plus a 0 terminator byte) containing a 
unique “key” which is assigned to you when you license the Solver DLL from 
Frontline Systems – the same as the argument you supply to loadlp() or loadnlp(). 

filename If used, the name (or complete path) of the output text file that will contain the use 
information.  Reportuse() will create this file, which will replace any existing file of 
the same name.  If filename does not include an explicit path, the file will be created 
in the current directory.  If this argument is NULL or an empty string, reportuse() 
will send an email message instead. 

profilename This argument is optional.  If reportuse() is sending an email message (i.e. the 
filename argument is NULL), this is the profile name (typically, the user name) of the 
email account used to send the message.  If this argument is NULL or an empty 
string, reportuse() uses the MAPI “shared session” to send the email message. 

password This argument is optional.  If reportuse() is sending an email message (i.e. the 
filename argument is NULL), this is the password of the email account used to send 
the message.  If this argument is NULL or an empty string, reportuse() uses the 
MAPI “shared session” to send the email message. 

getproblimits 
INTARG getproblimits (lp, type, pnumcols, pnumrows, 
   pnumints) 

HPROBLEM lp; 
INTARG type; 
LPINTARG pnumcols, pnumrows, pnumints; 

This function allows you to determine the capabilities of the Solver DLL version you 
are using, at runtime.  The Solver DLL V3.5 can be configured to include or exclude 
the nonlinear GRG and Evolutionary Solver “engines,” the linear Solver “engine,” or 
the quadratic Solver “engine,” and the maximum number of decision variables 
(columns) and constraints (rows) supported by each “engine” can also be configured.  
Getproblimits() returns information about these characteristics of the Solver DLL.  
The lp argument is ignored and may be NULL 

type This should be one of the following integer codes (the corresponding symbolic names 
are defined by the PROBTYPE enum in the header file FRONTMIP.H): 
 
type = 0 = PROB_LP Linear (Simplex) Solver 
type = 4 = PROB_QP  Quadratic extension to Simplex Solver 
type = 12 = PROB_NLP   Nonlinear (GRG) Solver 
type = 20 = PROB_NSP   Nonsmooth (Evolutionary) Solver 
 
(The mixed-integer variants of these codes return the same results as their 
corresponding codes listed here.). 
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pnumcols 
pnumrows 
pnumints 

These three arguments should be pointers to variables of type long, where 
getproblimits() will store the maximum number of decision variables (columns), 
constraints (rows), and integer variables supported by the Solver “engine” specified 
by the type argument.  If the number returned is zero, the corresponding “engine” is 
not supported in this configuration of the Solver DLL. 
 

Callback Routines for Nonlinear Problems 
For nonlinear and nonsmooth optimization problems, you must write a “callback” 
function (called funceval below) that computes values for the problem functions 
(objective and constraints) for any given values of the variables.  The Solver DLL 
will call this function repeatedly during the solution process.  You supply the address 
of this callback function as an argument to loadnlp(), which defines the overall 
nonlinear optimization problem.  In 16-bit Windows 3.x, the address you pass must 
be obtained from the Windows routine MakeProcInstance – for example:  
lpFuncEval = (_FUNCEVAL )MakeProcInstance ((FARPROC)MyFuncEval, hInst); 
where hInst is the “instance handle” of the currently running application. 

The nonlinear GRG Solver “engine” uses the callback function funceval() in two 
different ways: (i) to compute values for the problem functions at specific trial points 
as it seeks an optimum, and (ii) to compute estimates of the partial derivatives of the 
objective (the gradient) and the constraints (the Jacobian).  The partial derivatives are 
estimated by a “rise over run” calculation, in which the value of each variable in turn 
is perturbed, and the change in the problem function values is observed.  For a 
problem with N variables, the Solver DLL will call funceval() N times on each 
occasion when it needs new estimates of the partial derivatives (2*N times if the 
“central differencing” option is used).  This often accounts for 50% or more of the 
calls to funceval() during the solution process. 

The Evolutionary Solver “engine” does not assume that the problem functions are 
smooth or differentiable, and it does not attempt to estimate partial derivatives.  
However, it may make even more calls to funceval(), in total, than the nonlinear GRG 
Solver would make for a problem of a given size. 

To speed up the solution process (for smooth nonlinear problems only), and to give 
the Solver DLL more accurate estimates of the partial derivatives, you can supply a 
second callback function jacobian() which returns values for all elements of the 
objective gradient and constraint Jacobian matrix in one call.  The callback function 
is optional – you can supply NULL instead of a function address – but if it is present, 
the nonlinear GRG Solver “engine” will call it instead of making repeated calls to 
funceval() to evaluate partial derivatives. 

funceval 
INTARG funceval (lp, numcols, numrows, objval,  
   lhs, var, varone, vartwo) 

HPROBLEM lp; 
INTARG numcols, numrows; 
LPREALARG objval, lhs, var; 
INTARG varone, vartwo; 

The funceval() routine computes values for the problem functions.  It is passed a 
vector of variable values, and a vector of function values (including the objective) to 
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be computed.  It uses the variables to compute the functions, stores these into the 
vector of function values, and returns an integer indicating success or failure. 

The numcols and numrows arguments are the same values you supplied to loadnlp().  
The var array has dimension numcols, and the lhs array has dimension numrows.  
The objval argument is a pointer to a location where the (scalar) objective value 
should be stored.  The routine should compute and store the objective value, compute 
constraint left hand side values and store them in lhs, and return 0 for success or 1 for 
failure (1 will cause the Solver DLL to stop and return from its optimize() call). 

The varone and vartwo arguments may be ignored unless your function evaluation 
process is designed to take advantage of information about which elements of the var 
array have changed since the last call to funceval().  When the Solver is supplying 
entirely new variable values (i.e. exploring a new trial point), varone and vartwo will 
both be –1. 

When the Solver is computing partial derivatives on its own via finite differencing (in 
the absence of the jacobian() callback function), it calls funceval() repeatedly, 
perturbing one variable at a time (and resetting the previously perturbed variable).  
On these calls (usually about half of all funceval() calls), varone and vartwo are the 
indices (0 to numcols-1) of the (only) variables whose values have changed since the 
last call.  Your funceval() routine must still compute values for objval and all 
elements of the lhs array, but you may be able to do less work based on knowledge of 
which variables have changed. 

jacobian 
INTARG jacobian (lp, numcols, numrows, nzspace, 
   objval, obj, matbeg, matcnt, matind, matval, 
   var, objtype, matvaltype) 

HPROBLEM lp; 
INTARG numcols, numrows, nzspace; 
LPREALARG objval, obj; 
LPINTARG matbeg, matcnt; 
HPINTARG matind; 
HPREALARG matval; 
LPREALARG var; 
LPBYTEARG objtype, matvaltype; 

The jacobian() routine, if supplied, is called in preference to funceval() – but only by 
the nonlinear GRG Solver “engine” – to compute the objective gradient and the 
Jacobian matrix of partial derivatives of the problem functions, at a specific trial 
point found by the Solver.  (Each row of the Jacobian is the gradient of the 
corresponding constraint function.)  Note that if jacobian() is supplied, funceval() 
will still be called, but its varone and vartwo arguments will always be -1. 

The jacobian() routine should compute the value and gradient of the objective and 
the Jacobian at the trial point represented by the values in the var argument.  The 
numcols, numrows and nzspace values and the matbeg, matcnt and matind arrays are 
the same ones (possibly NULL pointers) that you supplied to loadnlp().  Objtype and 
matvaltype are the arrays of characters you supplied to loadnltype(); otherwise they 
will be NULL pointers.  The objval argument is a pointer to a location where the 
(scalar) objective value should be stored.  You should store the objective value in 
objval, the gradient of the objective in the obj array, and the partial derivative values 
in the appropriate elements of the matval array (taking care not to exceed the 
dimension nzspace for matind and matval).  If all elements of the objtype array are 
'L', you can skip computing and storing the objective value and gradient; if all 
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elements of the matvaltype array are 'L', you can skip computing the partial 
derivatives of the problem functions.  Your routine should return 0 for success or 1 
for failure (1 will cause the Solver DLL to stop and return from its optimize() call). 

Other Callback Routines 
For all types of problems – nonlinear, linear, quadratic, and mixed integer – you can 
arrange to have the Solver DLL periodically call a routine which you specify.  In this 
routine, you can access information about the progress of the optimization, check for 
external conditions such as a user interaction, etc.  Your routine can return a value to 
the Solver DLL signalling that it should continue, or halt the optimization and return 
to your program.  For LP problems, you can specify a callback routine which will 
obtain control on each “pivot” or Simplex iteration.  For MIP problems, you can also 
specify a routine which will obtain control on each “branch” or Branch & Bound LP 
subproblem. 

Both callback routines should be declared as follows: 
INTARG _CC MyCallback (lpinfo, wherefrom) 

HPROBLEM lpinfo; 
INTARG wherefrom; 

_CC (“calling convention”) is a typedef for callback routines under Windows:  It is 
export far pascal in 16-bit Windows 3.x, and stdcall in 32-bit Windows 95/98 and 
NT.  _CCPROC is a typedef for the address of a routine with this signature.  Both of 
these symbols are defined in frontmip.h.  You pass the address of your callback 
routine to the Solver DLL via a call to setlpcallbackfunc or setmipcallbackfunc. 

In 16-bit Windows 3.x, the address you pass should be obtained from the Windows 
routine MakeProcInstance.  An example would be: _CCPROC lpCallback = 
(_CCPROC )MakeProcInstance ((FARPROC)MyCallback, hInst); where hInst is the 
“instance handle” of the currently running application. 

The lpinfo argument is a “problem handle” identifying the current LP or MIP 
problem, but its only use should be as the first argument in calls to getcallbackinfo 
(see below).  The wherefrom argument indicates whether this is an LP pivot 
(wherefrom =  CALLBACK_PRIMAL = 1) or a MIP branch (wherefrom = 
CALLBACK_MIP = 101); this makes it easy to use a single routine for both types of 
callbacks. 

In the body of your callback routine, you can obtain information about the progress 
of the optimization by calling getcallbackinfo with arguments specifying exactly the 
information you want.  You return a zero value to indicate that the optimization 
process should continue, or a nonzero value to indicate that the optimization should 
be halted and the Solver DLL should return to its caller. 

There is a typedef enum PSTAT in frontmip.h, which can be used to return 
values from your callback routine, or to test the pstat values returned by solution.  
PSTAT_CONTINUE (which equals 0) means “continue the solution process;” 
PSTAT_USER_ABORT signals that the user wants to interrupt the solution process. 

setlpcallbackfunc 
INTARG setlpcallbackfunc (lp, callback) 
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HPROBLEM lp; 
_CCPROC callback; 

Your program should call this function, prior to calling optimize or mipoptimize, to 
specify the callback function which the Solver DLL should call on each “pivot” or 
Simplex iteration. 

callback The address of a user-written callback routine (i.e. a procedure pointer), declared as 
shown above.  To eliminate use of the callback function, pass an argument value of 
NULL to setlpcallbackfunc. 

getlpcallbackfunc 
void getlpcallbackfunc (lp, callback_p) 

HPROBLEM lp; 
_CCPROC *callback_p; 

callback_p The address of a procedure pointer variable which will be set to the address of the 
current LP pivot callback routine.  Before you set the callback with 
setlpcallbackfunc, getlpcallbackfunc will store NULL in this variable. 

setmipcallbackfunc 
INTARG setmipcallbackfunc (lp, callback) 

HPROBLEM lp; 
_CCPROC callback; 

Your program should call this function, prior to calling mipoptimize, to specify the 
callback function which the Solver DLL should call on each “branch” or LP 
subproblem in a MIP problem. 

callback The address of a user-written callback routine (i.e. a procedure pointer), declared as 
shown above.  To eliminate use of the callback function, pass an argument value of 
NULL to setmipcallbackfunc(). 

getmipcallbackfunc 
void getmipcallbackfunc (lp, callback_p) 

HPROBLEM lp; 
_CCPROC *callback_p; 

callback_p The address of a procedure pointer variable which will be set to the address of the 
current MIP callback routine.  Before you set the callback with setmipcallbackfunc(), 
getmipcallbackfunc() will store NULL in this variable. 

getcallbackinfo 
INTARG getcallbackinfo (lpinfo, wherefrom, infonumber, 
result_p) 

HPROBLEM lpinfo; 
INTARG wherefrom, infonumber; 
void *result_p; 
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lpinfo This argument identifies the problem; it must be the value of the lpinfo argument 
passed to your callback routine. 

wherefrom This argument identifies the callback type; it must be the value of the wherefrom 
argument passed to your callback routine. 

infonumber This selects the specific information to be returned in the result_p argument: 
CBINFO_PRIMAL_OBJ The current objective function value (double) 
CBINFO_PRIMAL_INFMEAS  The sum of the current infeasibilities (double) 
CBINFO_PRIMAL_FEAS = 1 if current solution is feasible, = 0 if not (long) 
CBINFO_ITCOUNT Number of iterations so far in the LP problem (long) 
CBINFO_NODE_COUNT Number of branches so far in the MIP problem (long) 
CBINFO_MIP_ITERATIONS  Total number of LP pivots/iterations so far (long) 
CBINFO_BEST_INTEGER Objective value of the “incumbent,” the best integer 
 solution found so far (double) 

result_p The address of a variable to receive the requested information; this variable must be 
of the data type implied by the infonumber argument, e.g. a pointer to a double for a 
call with infonumber = CBINFO_PRIMAL_OBJ, or a pointer to a long integer for 
infonumber = CBINFO_PRIMAL_ITCOUNT. 

 

Solver Parameters 
The Solver DLL has a number of options and tolerances which you can control to 
influence the behavior of the LP, QP and MIP solution algorithms.  These are 
collectively called “parameters,” and may be of either integer or double type.  Integer 
parameters are used to select algorithmic options and to set “countable” limits, such 
as the maximum number of iterations.  Double parameters are used to set tolerances, 
such as how small an LP matrix pivot element can be. 

All integer parameters are manipulated with one set of routines (setintparam, 
getintparam, and infointparam), and all double parameters are manipulated with a 
similar set of routines (setdblparam, getdblparam and infodblparam).  You can set 
all parameters to their default values by calling setdefaults. 

Each parameter is identified by a numeric code, for which a symbolic name is 
defined in the C/C++ and Pascal header files.  The parameters are summarized in this 
section, and then each parameter manipulation routine is described in detail. 

Integer Parameters (General) 
The following parameters have (long) integer values.  They control general features 
of the Solver DLL such as array argument passing conventions and the IIS finder. 
 

Symbolic Name Code Usage in Solver DLLs 
PARAM_ARGCK 990 on argument errors: 1-MsgBox, 0-retval only 
PARAM_ARRAY 995 0 - Use C-style arrays, 1 - Use VB-style OLE 

SAFEARRAYs 
PARAM_USERP 997 0 - Eval/Test mode, 1 - automatic reports, 2 – 

user-controlled reports 
PARAM_IISBND 999 0 - Eliminate bounds, 1 - Don’t eliminate 

bounds in finding IIS 
PARAM_ITLIM 1020 limit on Solver “engine” iterations 
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PARAM_ARGCK This parameter is unique to the Solver DLL and is used for debugging:  When it is set 
to 1, if your program calls a Solver DLL routine which detects an invalid argument, 
that routine will display a Windows MessageBox describing the error.  This allows 
you to see the problem immediately, without having to write code to test the value 
returned by the DLL routine. 

PARAM_ARRAY This parameter affects all of the Solver DLL routines which take arrays as arguments.  
If this parameter is 0 (the default), all array arguments supplied to the Solver, and all 
array arguments of callback functions (i.e. funceval() and jacobian()) are C-style 
arrays:  The actual arguments are pointers to the base of the block of memory holding 
array values.  If this parameter is 1, all array arguments are Visual Basic or OLE-
style SAFEARRAYs:  The actual arguments are pointers to pointers to 
SAFEARRAY descriptors, which contain pointers to the base of the block of 
memory holding array values. 

PARAM_USERP This parameter controls the reporting of “use” information in certain licensed 
versions of the Solver DLL.  The default setting is 0, which means that the Solver 
DLL operates in “Evaluation/Test mode:”  It will not keep track of the number of 
uses, or store anything in the Registry, but once every 10 minutes, it will display a 
MessageBox on the system console.  Once the DLL is placed into service, this 
parameter should be set to 1 or 2:  In this case the Solver DLL will count uses (calls 
to optimize() or mipoptimize()) and will store this information in the Registry.  When 
PARAM_USERP is 1, the DLL will automatically send an updated report of the 
cumulative number of uses by email to Frontline Systems (info@frontsys.com) each 
time it is run in a new calendar month.  When PARAM_USERP is 2, the DLL will 
not send any reports automatically, but reports may be generated and written to a text 
file or emailed to Frontline Systems, under control of the user’s application, through 
calls to the reportuse() routine. 

PARAM_IISBND Setting this parameter to 1 causes the Solver DLL’s IIS finder to skip the steps (and 
computing time) required to eliminate variable bounds from an Irreducibly Infeasible 
Set of constraints.  When PARAM_IISBND is 1, any IIS which is found will include 
all of the variable bounds defined (in the lb and ub arrays) for the problem.  When 
this parameter is 0 (the default), as many variable bounds as possible will be 
eliminated from the IIS. 

PARAM_ITLIM This is the maximum number of iterations (pivots) that the Solver will perform on an 
NLP, LP or QP problem (or a subproblem of a MIP problem).  When this limit is 
exceeded, the optimize routine will return and the solution routine’s pstat argument 
will be set to PSTAT_IT_LIM_FEAS or PSTAT_IT_LIM_INFEAS, depending on 
whether a feasible solution has been found. 

Integer Parameters (Solver Engines) 
The following parameters have (long) integer values.  They control various features 
of the Nonlinear, Linear and Quadratic Solver “engines.” 

 
Symbolic Name Code Usage in Solver DLLs 
PARAM_SCAIND 1033 scaling: -1-none, 0-normal, 1-aggressive 
PARAM_CRAIND 1007 crashing: 0-none, 1-crash initial basis 
PARAM_LINVAR 5010 NLP linear variables: 0 - ignore, 1 - recognize 

linear variables 
PARAM_DERIV 5011 NLP derivatives: 0 - Forward, 1 - Central 

differencing; 2 - Use supplied jacobian 
function, 3 - Use and check supplied jacobian 
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PARAM_ESTIM 5012 NLP estimates of basic variables: 0 - Tangent, 
1 - Quadratic 

PARAM_DIREC 5013 NLP search direction: 0 - Quasi-Newton, 1 - 
Conjugate Gradient 

PARAM_SAMPSZ 6001 Evolutionary Solver population (sample) size 
PARAM_NOIMP 6002 Evol. Solver max time with no improvement 

 

PARAM_SCAIND  The scaling option determines how the LP matrix, variable and constraint bounds 
are (re)scaled during the solution process.  A value of -1 means no scaling, 0 means 
“normal” scaling, and 1 means “aggressive” scaling (used only by the Large-Scale 
LP/MIP Solver DLL).  The default value of 0 will usually yield good results, 
including more accurate solutions and fewer total iterations. 

PARAM_CRAIND  The “crashing” option is used only by the Large-Scale LP/MIP Solver DLL.  A 
value of 1 indicates that the Solver should start by constructing an advanced basis, in 
which so-called “artificial” variables are eliminated in favor of  “structural” variables 
wherever possible.  This often results in fewer total iterations.  A value of 0 means 
that the Solver should start from a “normal” basis. 

PARAM_LINVAR This parameter determines whether the nonlinear Solver “engine” will attempt to 
recognize variables occurring linearly in all of the problem functions, and then save 
time by assuming that first partial derivatives with respect to these variables are 
constant and need not be recomputed.  This is an “aggressive” strategy which should 
be used only when you know that the nonlinearly occurring variables will not appear 
to change linearly over the intervals around their starting values. 

PARAM_DERIV This parameter controls the method used by the Solver to compute approximate first 
partial derivatives.  0 means that “forward differencing” will be used, perturbing 
variable values in one direction from the current point.  1 means that “central 
differencing” will be used, perturbing variable values in two opposing directions 
from the current point.  Central differencing takes more computing time, but can 
yield better results and fewer total iterations, especially if the Solver’s path to the 
solution lies close to one or more constraint boundaries. 

 2 means that the jacobian() function, which must be supplied as an argument to 
loadnlp(), will be called to compute partial derivatives.  3 may be used for debugging 
purposes:  It means that the Solver will compute partial derivatives via forward 
differencing, then call the jacobian() function and compare the results.  If the 
derivatives do not match within a small tolerance, the Solver will stop and return 
PSTAT_FLOAT_ERROR; however if PARAM_ARGCK is 1, the Solver will 
display Windows MessageBoxes reporting each mismatching derivative, and will 
return PSTAT_FLOAT_ERROR only if you click Cancel in a MessageBox. 

PARAM_ESTIM This parameter controls the method used to estimate initial values for the basic 
variables at the beginning of each one-dimensional line search.  0 means that the 
Solver will use linear extrapolation from the line tangent to the reduced objective 
function.  1 means that the Solver will extrapolate to the minimum (or maximum) of a 
quadratic fitted to the reduced objective at its current point. 

PARAM_DIREC This parameter controls the method used by the Solver to determine a direction 
vector for the variables being changed on a given iteration.  0 means that the Solver 
will use a Quasi-Newton method, maintaining an approximate Hessian matrix for the 
reduced objective function.  1 means that the Solver will use a Conjugate Gradient 
method, which does not require the Hessian matrix. 

PARAM_SAMPSZ This parameter determines the number of points in the Evolutionary Solver’s 
population of candidate solutions.  The default value is 0, which instructs the 
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Evolutionary Solver to select a “reasonable” population size for the problem 
(currently 10 times the number of variables in the problem, but no more than 200).  
In general, a larger population size will permit more diversity among candidate 
solutions, but may slow down convergence towards an accepted solution. 

PARAM_NOIMP This parameter controls one of the stopping criteria used by the Evolutionary Solver 
“engine:”  If the Solver does not find an improved solution within the time (in 
seconds) specified by this parameter, it will stop and return from the call to 
optimize() with the best solution found so far.  An “improved solution” is a feasible 
solution where the relative improvement in the objective, compared to the best 
solution found previously, exceeds the PARAM_EPGAP setting. 



138  ••••  Solver API Reference Dynamic Link Library Solver User's Guide 

Integer Parameters (Mixed-Integer Problems) 
 

Symbolic Name Code Usage in Solver DLLs 
PARAM_NDLIM 2017 limit on Branch & Bound nodes explored 
PARAM_MIPLIM 2015 limit on Branch & Bound IP solutions found 
PARAM_RELAX 2501 Solve relaxation: 0 - normal problem, 1 - 

ignore integer variables 
PARAM_PREPRO 2502 P&P Probing: 0 - Off, 1 - On 
PARAM_OPTFIX 2503 P&P Optimality Fixing: 0 - Off, 1 - On 
PARAM_REORDR 2504 P&P Branch Var Reordering: 0 - Off, 1 - On 
PARAM_IMPBND 2505 P&P Bounds Improvement: 0 - Off, 1 - On 

 

PARAM_NDLIM This is the maximum number of nodes, or LP subproblems, that the Branch & Bound 
algorithm will fathom on a MIP problem.  When this limit is exceeded, the 
mipoptimize routine will return and the solution routine’s pstat argument will be set 
to PSTAT_MIP_NODE_LIM_FEAS or PSTAT_MIP_NODE_LIM_INFEAS, 
depending on whether a feasible integer solution has been found. 

PARAM_MIPLIM  This is the maximum number of feasible integer solutions that the Branch & Bound 
algorithm will find on a MIP problem.  When this limit is exceeded, the mipoptimize 
routine will return and the solution routine’s pstat argument will be set to 
PSTAT_MIP_SOL_LIM (there is always a feasible integer solution at this point). 

PARAM_RELAX Setting this parameter to 1 causes the Solver DLL to ignore any integer variables 
defined by a call to loadctype(), and instead to solve the “relaxation” of the mixed-
integer programming problem.  It is effective for both linear and nonlinear problems.  
When this parameter is set to 0 (the default), the integer variables are taken into 
account and the Branch & Bound algorithm is used to find an integer optimal 
solution. 

PARAM_PREPRO Setting this parameter to 1 activates the Probing strategy for MIP problems (in the 
Solver DLL Plus).  The Probing strategy allows the Solver to derive values for 
certain binary integer variables based on the settings of others, prior to actually 
solving the problem.  When the Branch & Bound method creates a subproblem with 
an additional (tighter) bound on a binary integer variable, this causes the variable to 
be fixed at 0 or 1.  In many problems, this has implications for the values of other 
binary integer variables which can be discovered through Probing.  For example, 
your model may have a constraint such as x1  +  x2  +  x3  +  x4  +  x5  ≤  1 where x1 
through x5 are all binary integer variables.  Whenever one of these variables is fixed 
at 1, all of the others are forced to be 0; Probing allows the Solver to determine this 
before solving the problem.  In some cases, the Feasibility tests performed as part of 
Probing will determine that the subproblem is infeasible, so it is unnecessary to solve 
it at all.  (This is a special case of a “clique” or “Special Ordered Set” (SOS) 
constraint; the Solver recognizes these constraints in their most general form.) 

PARAM_OPTFIX Setting this parameter to 1 activates the Optimality Fixing strategy for MIP problems 
(in the Solver DLL Plus).  The Optimality Fixing strategy is another way to fix the 
values of binary integer variables before the subproblem is solved, based on the signs 
of the coefficients of these variables in the objective and the constraints.  Optimality 
Fixing can lead to further opportunities for Probing and Bounds Improvement, and 
vice versa. 

PARAM_REORDR Setting this parameter to 1 activates the Variable Reordering strategy for MIP 
problems (in the Solver DLL Plus).  The Variable Reordering strategy attempts to 
improve the order in which the Branch & Bound algorithm chooses integer variables 
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to “branch” upon, based on the relative magnitudes of their coefficients in the 
objective and constraints.  The goal is to choose integer variables to “branch” upon 
which have a large impact on the values which may be assumed by other variables in 
the problem.  For example, you might have a binary integer variable which indicates 
whether or not a new plant will be built, and other variables which then determine 
whether certain manufacturing lines will be started up.  You would like the Solver to 
“branch” upon the plant-building variable as early as possible, since its setting will 
eliminate many other possibilities which would otherwise have to be considered 
during the solution of each subproblem.  If this parameter is set to 0, the selection of 
integer variables to branch upon is guided by the order of the variables in the arrays 
defining your problem. 

PARAM_IMPBND Setting this parameter to 1 activates the Bounds Improvement strategy for MIP 
problems (in the Solver DLL Plus).  The Bounds Improvement strategy allows the 
Solver to tighten the bounds on variables which are not 0-1 or binary integer 
variables, based on the values which have been derived for the binary variables, 
before the problem is solved.  Tightening the bounds usually reduces the effort 
required by the Simplex or other Solver engine to find the optimal solution, and it 
some cases it leads to an immediate determination that the subproblem is infeasible 
and need not be solved. 

Double Parameters 
The following parameters have double values.  Parameters whose names begin with 
EP are used to set tolerances in the LP, QP and MIP solution algorithms. 
 

Symbolic Name Code Usage in Solver DLLs 
PARAM_TILIM 1038 time limit for optimize/mipoptimize 
PARAM_EPOPT 1014 LP optimality tolerance 
PARAM_EPPIV 1091 LP pivot tolerance 
PARAM_EPSOL 1092 Large-Scale LP solution tolerance 
PARAM_EPRHS 1016 LP feasibility tolerance 
PARAM_EPGAP 2009 integer tolerance/MIP gap 
PARAM_CUTLO 2006 known incumbent for max MIP 
PARAM_CUTHI 2007 known incumbent for min MIP 
PARAM_EPNEWT 5001 NLP constraint satisfaction tolerance 
PARAM_EPCONV 5002 NLP tolerance for slowly changing objective 
PARAM_MUTATE 6010 Evolutionary Solver mutation probability 

 

PARAM_TILIM This is the maximum number of seconds that the Solver spend on the overall LP or 
MIP problem.  When this limit is exceeded, the optimize routine will return and the 
solution routine’s pstat argument will be set to  PSTAT_TIME_LIM_FEAS or 
PSTAT_TIME_LIM_INFEAS for an LP problem, depending on whether a feasible 
solution has been found.  On a MIP problem, the pstat argument will be set to 
PSTAT_MIP_TIME_LIM_FEAS or PSTAT_MIP_TIME_LIM_FEAS, depending 
on whether a feasible integer solution has been found. 

PARAM_EPOPT This is the “optimality tolerance” or “reduced cost tolerance” for LP problems.  
Variables whose reduced cost is less than the negative of this tolerance are candidates 
for entering the basis. 

PARAM_EPPIV This is the “pivot tolerance” for LP problems. LP matrix elements must have an 
absolute value greater than or equal to this tolerance to be candidates for pivoting. 
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PARAM_EPSOL This is the “solution tolerance” in the Large-Scale LP/MIP Solver DLL.  Any 
calculated basic variable whose absolute value is less than this tolerance is treated as 
zero. 

PARAM_EPRHS This is the “feasibility tolerance,” within which constraints are considered satisfied 
and values for decision variables are treated as integer in MIP problems. 

PARAM_EPGAP This is the (relative) integer objective “gap tolerance” for MIP problems. On such 
problems, it often happens that the Branch & Bound algorithm will find a good 
solution fairly quickly, but will require a great deal of time to find (or verify that it 
has found) the optimal integer solution.  The integer gap tolerance setting may be 
used to tell the Solver to stop if the best solution so far is “close enough.” 

The Solver computes the absolute value of the difference between the objective value 
for the best integer solution so far (the “incumbent”) and the “best bound” on the 
objective value found so far by the Branch & Bound process, divided by the best 
bound’s objective value.  If this relative difference is less than the integer gap toler-
ance, the Solver stops and returns the incumbent as the solution. 

Initially, the objective value of the LP “relaxation” of the problem (ignoring the 
integer constraints) serves as the best bound, since the all-integer solution can be no 
better than this.  During the Branch & Bound process, the best bound is updated 
based on the subproblems that have already been explored. 

By default, the integer gap tolerance is zero, which means that the Solver will 
continue searching until all alternatives have been explored and the optimal integer 
solution has been found.  You can often save significant solution time by setting an 
integer gap tolerance, greater than zero, which is sufficient for your application. 

PARAM_CUTLO This is the “integer objective cutoff value” for MIP maximization problems.  In the 
Branch & Bound algorithm, any subproblem whose objective is less than this value 
will not be fathomed.  If you have an objective value for a known integer solution to 
this problem, for example from a previous call to the Solver, you can use it to set this 
parameter and save on solution time. 

PARAM_CUTHI This is the “integer objective cutoff value” for MIP minimization problems.  In the 
Branch & Bound algorithm, any subproblem whose objective is greater than this 
value will not be fathomed.  If you have an objective value for a known integer 
solution to this problem, for example from a previous call to the Solver, you can use 
it to set this parameter and save on solution time. 

PARAM_EPNEWT This is the tolerance within which constraints will be considered “binding,” or 
satisfied with equality, during the solution process. 

PARAM_EPCONV This is the tolerance used in the nonlinear GRG Solver’s and the Evolutionary 
Solver’s test for a “slowly changing objective:”  In the GRG Solver, if the relative 
change in the objective function is less than this value for the last five iterations, the 
Solver stops and returns PSTAT_FRAC_CHANGE in the pstat argument of the 
solution() function.  In the Evolutionary Solver, if 99% of the population members 
have “fitness values” that differ by less than this value, the Solver stops and returns 
PSTAT_FRAC_CHANGE. 

PARAM_MUTATE This is the probability that the Evolutionary Solver “engine,” on one of its major 
iterations, will attempt to generate a new trial point by “mutating” or altering one or 
more variable values of a current point in the population of candidate solutions. 
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setintparam 
INTARG setintparam (lp, whichparam, newvalue) 

HPROBLEM lp; 
INTARG whichparam; 
INTARG newvalue; 

This routine is called to set the current value of one of the integer parameters in a 
specified problem.  It returns 0 if successful, 1 if whichparam isn’t one of the valid 
codes for integer parameters, or 2 if newvalue is outside the range of valid values for 
the chosen parameter. 

whichparam One of the symbolic names or codes for integer parameters:  PARAM_ARGCK, 
PARAM_ARRAY, PARAM_USERP, PARAM_IISBND, PARAM_ITLIM, 
PARAM_NDLIM, PARAM_MIPLIM, PARAM_SAMPSZ, PARAM_NOIMP, 
PARAM_SCAIND, PARAM_CRAIND, PARAM_LINVAR, PARAM_DERIV, 
PARAM_ESTIM, PARAM_DIREC, PARAM_RELAX, PARAM_PREPRO, 
PARAM_OPTFIX, PARAM_REORDR, PARAM_IMPBND, PARAM_REQBND. 

newvalue The desired new value for the chosen parameter. 

getintparam 
INTARG getintparam (lp, whichparam, value_p) 

HPROBLEM lp; 
INTARG whichparam; 
LPINTARG value_p; 

This routine is called to get the current value of one of the integer parameters in a 
specified problem.  It returns 0 if successful, or 1 if whichparam isn’t one of the valid 
codes for integer parameters. 

whichparam One of the symbolic names or codes for integer parameters:  PARAM_ARGCK, 
PARAM_ARRAY, PARAM_USERP, PARAM_IISBND, PARAM_ITLIM, 
PARAM_NDLIM, PARAM_MIPLIM, PARAM_SAMPSZ, PARAM_NOIMP, 
PARAM_SCAIND, PARAM_CRAIND, PARAM_LINVAR, PARAM_DERIV, 
PARAM_ESTIM, PARAM_DIREC, PARAM_RELAX, PARAM_PREPRO, 
PARAM_OPTFIX, PARAM_REORDR, PARAM_IMPBND, PARAM_REQBND. 

value_p A pointer to the location where the current value of the parameter will be stored. 

infointparam 
INTARG infointparam (lp, whichparam, defvalue_p, 
   minvalue_p, maxvalue_p) 

HPROBLEM lp; 
INTARG whichparam; 
LPINTARG defvalue_p, minvalue_p, maxvalue_p; 

This routine is called to get the minimum, maximum, and default values of one of the 
integer parameters.  It returns 0 if successful, or 1 if whichparam isn’t one of the 
valid codes for integer parameters.  The lp argument is ignored and may be NULL. 

whichparam One of the symbolic names or codes for integer parameters:  PARAM_ARGCK, 
PARAM_ARRAY, PARAM_USERP, PARAM_IISBND, PARAM_ITLIM, 
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PARAM_NDLIM, PARAM_MIPLIM, PARAM_SAMPSZ, PARAM_NOIMP, 
PARAM_SCAIND, PARAM_CRAIND, PARAM_LINVAR, PARAM_DERIV, 
PARAM_ESTIM, PARAM_DIREC, PARAM_RELAX, PARAM_PREPRO, 
PARAM_OPTFIX, PARAM_REORDR, PARAM_IMPBND, PARAM_REQBND. 

defvalue_p A pointer to the location where the default value of the parameter will be stored. 

minvalue_p A pointer to the location where the minimum value of the parameter will be stored. 

maxvalue_p A pointer to the location where the maximum value of the parameter will be stored. 

Below is a list of the default, minimum and maximum values of each of the integer 
parameters. 

 

Symbolic Name Default Minimum Maximum 

PARAM_ARGCK 0 0 1 

PARAM_ARRAY 0 0 1 

PARAM_USERP 0 0 2 

PARAM_IISBND 0 0 1 

PARAM_ITLIM 2147483647 0 2147483647 

PARAM_NDLIM 2147483647 0 2147483647 

PARAM_MIPLIM 2147483647 0 2147483647 

PARAM_SAMPSZ 0 0 2147483647 

PARAM_NOIMP 30 0 2147483647 

PARAM_SCAIND 0 -1 1 

PARAM_CRAIND 0 0 1 

PARAM_LINVAR 0 0 1 

PARAM_DERIV 0 0 3 

PARAM_ESTIM 0 0 1 

PARAM_DIREC 0 0 1 

PARAM_RELAX 0 0 1 

PARAM_PREPRO 0 0 1 

PARAM_OPTFIX 0 0 1 

PARAM_REORDR 0 0 1 

PARAM_IMPBND 0 0 1 

PARAM_REQBND 1 0 1 

setdblparam 
INTARG setdblparam (lp, whichparam, newvalue) 

HPROBLEM lp; 
INTARG whichparam; 
REALARG newvalue; 
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This routine is called to set the current value of one of the double parameters in a 
specified problem.  It returns 0 if successful, 1 if whichparam isn’t one of the valid 
codes for integer parameters, or 2 if newvalue is outside the range of valid values for 
the chosen parameter. 

whichparam One of the symbolic names or codes for double parameters:  PARAM_TILIM, 
PARAM_EPOPT, PARAM_EPPIV, PARAM_EPSOL, PARAM_EPRHS, 
PARAM_EPGAP, PARAM_CUTLO, PARAM_CUTHI, PARAM_EPNEWT, 
PARAM_EPCONV or PARAM_MUTATE. 

newvalue The desired new value for the chosen parameter. 

getdblparam 
INTARG getdblparam (lp, whichparam, value_p) 

HPROBLEM lp; 
INTARG whichparam; 
LPREALARG value_p; 

This routine is called to get the current value of one of the double parameters in a 
specified problem.  It returns 0 if successful, or 1 if whichparam isn’t one of the valid 
codes for double parameters. 

whichparam One of the symbolic names or codes for double parameters:  PARAM_TILIM, 
PARAM_EPOPT, PARAM_EPPIV, PARAM_EPSOL, PARAM_EPRHS, 
PARAM_EPGAP, PARAM_CUTLO, PARAM_CUTHI, PARAM_EPNEWT, 
PARAM_EPCONV or PARAM_MUTATE THI. 

value_p A pointer to the location where the current value of the parameter will be stored. 

infodblparam 
INTARG infodblparam (lp, whichparam, defvalue_p, 
   minvalue_p, maxvalue_p) 

HPROBLEM lp; 
INTARG whichparam; 
LPREALARG defvalue_p, minvalue_p, maxvalue_p; 

This routine is called to get the minimum, maximum, and default values of one of the 
double parameters.  It returns 0 if successful, or 1 if whichparam isn’t one of the 
valid codes for double parameters.  The lp argument is ignored and may be NULL. 

whichparam One of the symbolic names or codes for double parameters:  PARAM_TILIM, 
PARAM_EPOPT, PARAM_EPPIV, PARAM_EPSOL, PARAM_EPRHS, 
PARAM_EPGAP, PARAM_CUTLO, PARAM_CUTHI, PARAM_EPNEWT, 
PARAM_EPCONV or PARAM_MUTATE. 

defvalue_p A pointer to the location where the default value of the parameter will be stored. 

minvalue_p A pointer to the location where the minimum value of the parameter will be stored. 

maxvalue_p A pointer to the location where the maximum value of the parameter will be stored. 

A list of the default, minimum and maximum values of each of the double parameters 
is shown on the next page. 
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Symbolic Name Default Minimum Maximum 

PARAM_TILIM 65535.0 0.0 65535.0 

PARAM_EPOPT 1.0E-5 1.0E-9 1.0E-4 

PARAM_EPPIV 1.0E-6 1.0E-9 1.0E-4 

PARAM_EPSOL 1.0E-4 1.0E-9 1.0E-4 

PARAM_EPRHS 1.0E-8 1.0E-9 1.0E-4 

PARAM_EPGAP 0.0 0.0 1.0 

PARAM_CUTLO -2.0E+30 -2.0E+30 2.0E+30 

PARAM_CUTHI 2.0E+30 -2.0E+30 2.0E+30 

PARAM_EPNEWT 1.0E-6 1.0E-9 1.0E-4 

PARAM_EPCONV 1.0E-4 0.0 1.0 

PARAM_MUTATE 0.075 0.0 1.0 

setdefaults 
INTARG setdefaults (lp) 

HPROBLEM lp; 

This routine is called to set each of the integer and double parameters for a specified 
problem to their default values, as shown in the tables above for infointparam and 
infodblparam.  The return value is always 0. 


	How to Order
	Introduction
	The Solver Dynamic Link Libraries
	The Small-Scale Solver DLL
	The Large-Scale Solver DLL
	Which Solver DLL Should You Use?
	Linear Solver
	Quadratic Solver
	Nonlinear Solver
	Nonsmooth (Evolutionary) Solver
	Solving Mixed-Integer Problems
	16-Bit Versus 32-Bit Versions

	What’s New in Version 3.5
	Evolutionary Solver
	Multi-Threaded Applications
	Use-Based Licensing
	Problems in Algebraic Notation

	How to Use This Guide

	Installation
	Running the Installation Program
	Copying Disk Files Manually
	Directory Paths
	Licensing the Solver DLL
	Registry Entries for Use-Based Licensing

	Designing Your Application
	Calling the Solver DLL
	Solving Linear and Quadratic Problems
	Solving Nonlinear Problems
	Solving Nonsmooth Problems
	Genetic and Evolutionary Algorithms

	Problems in Algebraic Notation
	Using Other Solver DLL Routines
	Determining Linearity Automatically
	Supplying a Jacobian Matrix
	Diagnosing Infeasible Problems
	Solution Properties of Quadratic Problems
	Passing Dense and Sparse Array Arguments
	Arrays and Callback Functions in Visual Basic
	Using the Solver DLL in Multi-Threaded Applications
	Use-Based Licensing


	Calling the Solver DLL from C/C++
	C/C++ Compilers
	Basic Steps
	Building a 32-Bit C/C++ Program
	Building a 16-Bit C/C++ Program
	C/C++ Source Code: Linear / Quadratic Problems
	C/C++ Source Code: Nonlinear / Nonsmooth Problems
	Solver Memory Usage
	Lifetime of Solver Arguments
	Solving Multiple Problems Sequentially
	Solving Multiple Problems Concurrently


	Special Considerations for Windows 3.x
	Far and Huge Pointers
	Far Pointers
	Huge Pointers

	Callback Functions
	MakeProcInstance
	Using Callback Functions
	Non-Preemptive Multitasking


	Native Windows Applications
	A Single-Threaded Application
	A Multi-Threaded Application

	Calling the Solver DLL from Visual Basic
	Basic Steps
	Passing Array Arguments
	Building a 32-Bit Visual Basic Program
	Building a 16-Bit Visual Basic Program
	Visual Basic Source Code: Linear / Quadratic Problems
	Visual Basic Source Code: Nonlinear / Nonsmooth Problems
	Limitations of 16-Bit Visual Basic
	Callback Functions
	Array Size Limitations


	Calling the Solver DLL from Delphi Pascal
	Basic Steps
	Passing Array and Function Arguments
	Building a 32-Bit Delphi Pascal Program
	Building a 16-Bit Delphi Pascal Program
	Delphi Pascal Example Source Code

	Calling the Solver DLL from FORTRAN
	FORTRAN Compilers
	Basic Steps
	Building a 32-Bit FORTRAN Program
	Building a 16-Bit FORTRAN Program
	FORTRAN Example Source Code

	Solver API Reference
	Overview
	Argument Types
	NULL Values for Arrays

	Problem Definition Routines
	loadlp
	loadquad
	loadctype
	loadnlp
	loadnltype
	testnltype
	unloadprob

	Solution Routines
	optimize
	mipoptimize
	solution
	objsa
	rhssa
	varstat
	constat

	Diagnostic Routines
	findiis
	getiis
	iiswrite
	lpwrite
	lpread

	Use Control Routines
	getuse
	reportuse
	getproblimits

	Callback Routines for Nonlinear Problems
	funceval
	jacobian

	Other Callback Routines
	setlpcallbackfunc
	getlpcallbackfunc
	setmipcallbackfunc
	getmipcallbackfunc
	getcallbackinfo

	Solver Parameters
	Integer Parameters (General)
	Integer Parameters (Solver Engines)
	Integer Parameters (Mixed-Integer Problems)
	Double Parameters
	setintparam
	getintparam
	infointparam
	setdblparam
	getdblparam
	infodblparam
	setdefaults



