Simulation and Risk Analysis

Using Analytic Solver Platform

REVIEW BASED ON MANAGEMENT SCIENCE
What We’ll Cover Today

• Introduction
 • Frontline Systems
 • Session I Beta Training Program Goals
 • Overview of Analytic Solver Platform (ASP)

• Model Building
 • Sensitivity Analysis
 • Distribution Wizard
 • Correlation
 • Parametric Simulation

• Decision Tree
Frontline Systems Inc.

- Software Products for:
 - Conventional and Stochastic Optimization
 - Simulation/Risk Analysis
 - Data Mining and Visualization
- 26 Years in Business (Founded 1988)
- 7,000 Companies as Customers:
 - Commercial
 - Academic
 - Software vendors
- 500,000 Users
Sima Maleki
PhD – Industrial and Systems Engineering (Operations Research) University of Tennessee.

Frontline Systems Consulting Lead and Modeling Specialist.

Experience – Network design, supply chain simulation and optimization, facility location, 3D layout optimization, scheduling, and "lean healthcare" resource utilization.
Session I Online Beta Training Goals

To familiarize you with the following concepts:

- Building Monte Carlo simulation models in Excel using ASP
- Using sensitivity analysis (Parameters-Identify)
- Using historical data to fit a distribution
- Applying parametric simulation technique
- Using decision trees in decision analysis

To empower you to achieve success

- State of the art tools
- Online educational training
- User guides and video demos
Business Analytics Techniques

- **Descriptive Analytics**
 - Analyze what has happened
 - Business intelligence queries/reports
 - Data visualization
 - Data transformation

- **Predictive Analytics**
 - Use data to segment or classify customers
 - Use data to predict future behavior
 - Data mining
 - Forecasting

- **Prescriptive Analytics**
 - Determine the best course of action to take
 - Optimization
 - Simulation
 - Decision analysis
Why Use Risk Analysis?

• Almost every business outcome has some uncertainty.
• “Expected case” or “average” estimates are typically wrong when there is uncertainty.
• What-if analysis is insufficient when you have multiple uncertain factors.
• Quickly quantify the full range of possible outcomes.
• Graphically show management / stakeholders the range of outcomes.
• Risk analysis skills are a career enhancer.
 • Know what factors really matter.
 • Give yourself a competitive advantage.
 • Be better prepared for executive decisions.
What is Monte Carlo Simulation?

• A flexible technique for modeling a real system in which uncertainty is a key factor.
 • Uses repeated random sampling to represent uncertainty.

• With appropriate sampling, outputs are representative of results from all possible combinations of uncertain inputs.

• For a given decision (values of inputs under your control), simulation describes the outcomes and the probabilities that these outcomes will occur.

• Analytic Solver Platform helps you perform Monte Carlo simulation in spreadsheet models.
To apply the Monte Carlo method, you can construct a mathematical model that simulates a real situation.

1. Construct a what-if spreadsheet model.
2. Identify uncertain inputs & specify probability distributions.
3. Select outputs to record over the simulation trials.
4. Execute simulation for a number of trials.
5. Analyze the outputs.
Frontline Solvers
Risk Analysis Software

Monte Carlo Simulation & Decision Trees

Stochastic & Robust Optimization

Risk Solver Platform & Analytic Solver Platform

Risk Solver Pro
Brief Overview of Analytic Solver Platform (ASP)

Ribbon
Gateway to Analytic Solver Platform’s graphical user interface.

- **Model**: to display the Task Pane, defining dimensional models.
- **Optimization Model**: to set up optimization models.
- **Simulation Model**: to set up simulation models.
- **Parameter**: to run multiple optimizations or simulations.
- **Solve Action**: to solve optimization or simulation model.
- **Analysis**: to analyze the results, create reports and charts.
Brief Overview of Analytic Solver Platform (ASP)

Ribbon

- **Tools:** to create decision trees, fit distributions, examine simulation or optimization results.
- **Options:** to set options for optimization, simulation, charts and graphs.
- **Help:** to display online Help, use Live Chat, control Guided Mode, open examples or an online tutorial, access User and Reference Guides, and check the license status.
Brief Overview of ASP

Task Pane

- **Model button**: to display or hide the Task Pane.
- **Model tab**: to view the model in outline form and optionally edit model elements in place.
- **Platform tab**: to view or change Platform options.
- **Engine tab**: to select simulation options for Risk Solver Engine.
- **Output tab**: to view a log of simulation messages.
Example – Corporate Valuation

- Netscape Communications – Powell and Baker, page 375.
- How simulation can be applied to the valuation of company?
- Underwriter’s valuation – offer five million shares at $28 per share, raising $140 million.
 - Annual revenue growth 65%.
 - Terminal-value growth 4%, calculated under the assumption that the free cash flows after 2005 would grow forever at a constant rate.
 - Tax rate 34%.

<table>
<thead>
<tr>
<th>Assumptions</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue growth rate</td>
<td>65%</td>
</tr>
<tr>
<td>Terminal value growth rate</td>
<td>4.00%</td>
</tr>
<tr>
<td>Cost of sales (% revenues)</td>
<td>10.40%</td>
</tr>
<tr>
<td>R&D (% revenues)</td>
<td>36.80%</td>
</tr>
<tr>
<td>Tax rate</td>
<td>34.00%</td>
</tr>
<tr>
<td>Other operating expenses</td>
<td></td>
</tr>
<tr>
<td>Capital expenditure</td>
<td></td>
</tr>
<tr>
<td>Depreciation (% revenues)</td>
<td>5.50%</td>
</tr>
<tr>
<td>ΔNWC</td>
<td>0.00%</td>
</tr>
<tr>
<td>Beta</td>
<td>1.50</td>
</tr>
<tr>
<td>Riskless rate</td>
<td>6.71%</td>
</tr>
<tr>
<td>Market risk premium</td>
<td>7.50%</td>
</tr>
<tr>
<td>Cost of equity</td>
<td>17.96%</td>
</tr>
<tr>
<td>Shares outstanding</td>
<td>38,000</td>
</tr>
</tbody>
</table>
Example – Corporate Valuation Sensitivity Analysis

• Before incorporating uncertainty, undertake some sensitivity analysis.

• How sensitive the terminal value (cell B36) is to the driving variables.
 • Terminal-value growth rate and market risk premium.
 • Terminal value makes up 77% of total present value.

• Create a Tornado chart to evaluate which parameters most affect the valuation.

• Select Cell B37, Total PV, then choose Parameters – Identify from the Ribbon.
Summary – Sensitivity Analysis Report

• Define an input cell as a parameter by simply selecting the cell, choosing Parameters and Sensitivity from the Ribbon.

• Enter a lower and upper limit on values for the parameter, or a list of explicit values for the parameter.

• Choose Reports – Sensitivity – Parameter Analysis from the Ribbon.

• Use the arrow buttons select one or more result cells (exactly one if you check the box “Vary Parameters Independently”).

• Use the arrow buttons to select one or more sensitivity parameter cells (exactly two if you check the box “Vary Parameters Independently”).

• Then click OK to produce the report.
Example – Corporate Valuation
Selecting Probability Distributions

• How does the uncertainty in these parameters affect the valuation of Netscape?
• Was the IPO valuation justified in light of these uncertainties?
 • Revenue growth rate: Normal, with a mean of 65 percent and a standard deviation of 5 percent.
 • R&D as a percentage of revenues: Triangular, with a minimum of 32 percent, most likely value of 37 percent, and a maximum of 42 percent.
 • Market-risk premium: Uniform, with a minimum of 5 percent and a maximum of 10 percent.
Example – Corporate Valuation
Selecting Probability Distributions

• Distribution of Total Value for Netscape

• Ratio of Terminal Value to Total Value

• Stock Price
Summary of Steps – Selecting Probability Distributions

- Choose a currently empty cell, then select **Distributions - Discrete** on the Ribbon.
- Choose your desired discrete distribution from the gallery.
- Enter the appropriate parameters.
- Click on the Save and Close icon.
Summary of Steps – Specifying Statistics and Outputs

- Choose your desired formula cell, then select **Results – Statistics** from the Ribbon.
- Drag and drop a statistics functions, into a worksheet cell.
- To designate a cell as an uncertain function without calculating any summary statistic for it on the worksheet, highlight the cell, then select **Results – Output – In Cell**.
Example – Corporate Valuation
What-If with Interactive Simulation

• Question: how our simulation estimates would vary if one of the underlying parameters were to change.
 • How sensitive the expected NPV is to the terminal-value growth rate.
• ASP allows us to ask what-if and run a new simulation on each change.

Simulation Results - NPV

Terminal-value growth rate = 1%

Simulation Results - NPV

Terminal-value growth rate = 10%
Example – Corporate Valuation Parametric Simulation

- Question: how our simulation estimates would vary if one of the underlying parameters were to change.
 - How sensitive the expected NPV is to the terminal-value growth rate.
- Use parametric simulation techniques to run a simulation once for each value of the parameter we wish to test.
Summary – Parametric Simulation

• Select the cell, choose **Parameters – Simulation** from the Ribbon.

• Enter a lower and upper limit on values for the parameter, or a list of explicit values for the parameter.

• Change the desired number of simulation in task pane Platform tab.

• Create a table (Report) or chart of values for specific statistics of an output cell by running simulations for each value of the input.
Distribution Wizard

Analytic Solver Platform
Summary of Steps – Distribution Wizard \textbf{without} Historical Data

- Choose a currently empty cell, then select \textbf{Distributions} - Distribution Wizard on the Ribbon.

- If you do not have historical data, select No, then determine whether to use a \textbf{discrete} or \textbf{continuous} form.

- Based on underlying process that the variable represents, select an appropriate option.

- Choose a distribution and impose bounds.

- Complete the remaining steps and save it.
Summary of Steps – Fit Distribution Using Distribution Wizard with Historical Data

• Choose a currently empty cell, then select **Distributions - Distribution Wizard** on the Ribbon.

• If you have historical data, select Yes, then select the data cell range.

• Based on data, select an appropriate option.

• Choose Fit data and select the fit options.

• Choose one of the suggested distributions and accept it.
Summary of Steps – **Resample** Historical Data Using Distribution Wizard

- Choose a currently empty cell, then select **Distributions** - Distribution Wizard on the Ribbon.
- If you have historical data, select Yes, then select the data cell range.
- Based on data, select an appropriate option.
- Choose Resample the Data.
- Select a cell to locate the Psi function.
- PsiDisUniform is a custom discrete distribution that takes on the specified values with equal probability.

=PsiDisUniform(C2:C86)
Dependence and Correlation

• Default ASP assumption: each of uncertain variables is independent of all the other uncertain variables.

• Dependent variables – there is a relationship between the uncertain values observed for both uncertain variables.

• Correlation is a statistical measure of the degree to which one variable is related to another.

• The most common parametric measure of correlation is the Pearson product moment correlation coefficient which ranges from -1 to +1.
 • +1 means the two variables are perfectly positively correlated.
 • -1 means the two variables are perfectly negatively correlated.
Summary – Using a Rank Correlation Matrix for Several Variables

- Click the Correlations button on the Ribbon.
- Choose the specific cells for the uncertain variables to correlate.
- Click the “>>” button to include all of them.
- Double click to manually change the black numerical values.
- Or click on any scatterplot, adjust the correlation, and accept it.
- Name the correlation matrix and choose the location in the worksheet to place it.
- Click “Save”.

6/11/2014
Decision Analysis

Using Decision Trees
Decision Analysis

• Decision analysis helps you develop an optimal strategy when faced with multiple stage decisions and uncertain outcomes at each stage.

• Risk analysis provides you with probability information about all possible outcomes at each stage.

• Decision trees provide a graphical representation of the decision-making process.
Example – Building Decision Trees

• Grant Decision Analysis — Multi-Stage— ASP Ribbon → Help → Examples → Decision Tree Examples.
 • Problem — Whether we should submit a grant request proposal, and if we receive the grant which kind of technology we should use to fulfill it.
 • There is a cost to prepare the grant proposal.
 • There is risk we may experience high R&D cost which varies by technology and could have a significant negative impact on our cash flow.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Equipment Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microwave</td>
<td>$4,000</td>
</tr>
<tr>
<td>Cellular</td>
<td>$5,000</td>
</tr>
<tr>
<td>Infrared</td>
<td>$4,000</td>
</tr>
</tbody>
</table>

Possible R&D Costs

<table>
<thead>
<tr>
<th>Technology</th>
<th>Best Case Cost</th>
<th>Prob.</th>
<th>Worst Case Cost</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microwave</td>
<td>$30,000</td>
<td>0.4</td>
<td>$60,000</td>
<td>0.6</td>
</tr>
<tr>
<td>Cellular</td>
<td>$40,000</td>
<td>0.8</td>
<td>$70,000</td>
<td>0.2</td>
</tr>
<tr>
<td>Infrared</td>
<td>$40,000</td>
<td>0.9</td>
<td>$80,000</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Example – Building Decision Trees – Using Strategy Table

• Question — how an optimal decision changes as we vary the probabilities for different outcomes?
 • What happens when there is a change in the chance of being awarded the research grant (I25, assumed at 50%), as well as a change in the chance of high research and development costs (Q33, assumed at 10%) when fulfilling the grant.

• Perform sensitivity analysis on our decision.

<table>
<thead>
<tr>
<th>Prob. of Receiving Grant</th>
<th>Probability of High R&D Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>Don't</td>
</tr>
<tr>
<td>0.1</td>
<td>Don't</td>
</tr>
<tr>
<td>0.2</td>
<td>Infared</td>
</tr>
<tr>
<td>0.3</td>
<td>Infared</td>
</tr>
<tr>
<td>0.4</td>
<td>Infared</td>
</tr>
<tr>
<td>0.5</td>
<td>Infared</td>
</tr>
<tr>
<td>0.6</td>
<td>Infared</td>
</tr>
<tr>
<td>0.7</td>
<td>Infared</td>
</tr>
<tr>
<td>0.8</td>
<td>Infared</td>
</tr>
<tr>
<td>0.9</td>
<td>Infared</td>
</tr>
<tr>
<td>1.0</td>
<td>Infared</td>
</tr>
</tbody>
</table>
Example – Building Decision Trees – Using Strategy Charts

• Question — how an optimal decision changes as we vary the probabilities for different outcomes?

• Strategy chart graphically shows how the optimal decision strategy changes in response to two simultaneous changes in probability estimate.
Example – Building Decision Trees – Exploring Risk

• Instead of simply varying parameters we can use the power of simulation to consider many more possibilities.

• Add distributions for the probabilities of certain events happening and the costs associated with certain outcomes.

• Investigate the mean expected value across each strategy, and compare the distribution of results to better understand risk associated with each strategy.

• The decision with the highest overall expected value.

<table>
<thead>
<tr>
<th>Potential Strategies</th>
<th>Resulting Expected Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Across All Trials</td>
</tr>
<tr>
<td>1. Submit Proposal, Microwave</td>
<td>$27,500</td>
</tr>
<tr>
<td>2. Submit Proposal, Cellular</td>
<td>$28,667</td>
</tr>
<tr>
<td>3. Submit Proposal, Infared</td>
<td>$26,000</td>
</tr>
<tr>
<td>4. Don’t submit</td>
<td>$0</td>
</tr>
</tbody>
</table>

Strategy with the highest Expected value: 2

Net expected value of winning strategy: $13,126 $14,345
Summary – Building Decision Trees

• Click on Decision Tree choice on the Ribbon to create and edit a decision tree.

• Choose Add Node to add a node.

• Select a cell on Excel worksheet – and choose Change Node to change the node.

• Use the Copy Node and Paste Node to copy a subtree (rooted at the selected node) and paste the copy at another position in the decision tree.

• Use Add Branch to add a branch.

• Select a cell on the Excel worksheet and then use Change Branch to change a branch.

• Highlight the best or worst decision strategy by selecting Highlight in the Decision Tree dropdown list.
Session I Recap

• Risk Solver offers the fastest (by far) Monte Carlo simulation in Excel.
 • Speed enables what-if with interactive simulation.
 • Speed matters for advanced analysis: multiple parameterized simulations.

• Risk analysis skills are a career enhancer for business analysts.
 • Know what factors really matter.
 • Give yourself a competitive advantage.
 • Be better prepared for executive decisions.

• Build decision trees by formulating the problem, identifying decision alternatives and chance events, and identifying the chance event outcomes.
Summary

- Business analytics techniques help you analyze existing data, predict future behavior, and find better options for decisions.
- Simulation is a method for better understanding a real-world situation by experimenting with a model that represents that situation.
- Monte Carlo simulation helps to evaluate the impact of uncertainty on a decision.
- Decision analysis helps you develop an optimal strategy when faced with multiple stage decisions and uncertain outcomes at each stage.
 - The goal of decision analysis is to identify the best decision option.
 - The “best” decision should consider the risk preference in evaluating outcomes.
Contact Info

• Dr. Sima Maleki
• Best way to contact me: Consulting@Solver.com
• You may also download this presentation from our website at www.solver.com/training/risksolver-1.
• You can download a free trial version of Analytic Solver Platform at Solver.com.
References

• MANAGEMENT SCIENCE-The Art of Modeling with Spreadsheets, 4th Edition

• Spreadsheet Modeling and Decision Analysis: A Practical Introduction to Business Analytics, 7th Edition
 http://www.cengage.com/us/

• Essentials of Business Analytics, 1st Edition
 http://www.cengage.com/us/
FRONTLINE SOLVERS

Q & A
Thank You!