DATA MINING
REVIEW BASED ON
MANAGEMENT SCIENCE
The Art of Modeling with Spreadsheets

Using Analytic Solver Platform

FrontlineSolvers
What We’ll Cover Today

• Introduction
 • Session II beta training program goals
 • Brief overview of XLMiner
• Overfitting problem
• Partitioning the data
• Supervised learning – classification
Session II Online Beta Training Goals

• To empower you to achieve success
 • State of the art tools
 • Online educational training
 • Training documents and demos

• To familiarize you with the following concepts:
 • Understanding the ideas behind the classification techniques
 • Fitting classification models to data
 • Assessing the performance of methods
 • Applying the models to predict unseen test cases
Data Mining Steps

1. Identify Opportunity
2. Collect Data
3. Explore, Understand, and Prepare Data
4. Identify Task and Tools
5. Build and Evaluate Models
6. Deploy Models

(Images of each step)

3/20/2014
Unsupervised Learning Algorithms

• No outcome variable in the data set, just a set of variables (features) measured on a set of samples.
 • Market basket analysis.
 • Social network analysis.
Supervised Learning Algorithms

- For each record:
 - Outcome measurement y (dependent variable, response, target).
 - Vector of predictor measurements x (feature vector consisting of independent variables).

- Prediction:
 - Housing market: Price.
 - Product: Demand.

- Classification:
 - Online Transactions: Fraudulent (Yes / No)?
 - Email: Spam / Not Spam?
 - Insurance Applicant: High / Medium / Low Risk?
Brief Overview of XLMiner

- Analytic Solver Platform's XLMiner component offers over 30 different methods for analyzing a dataset to gain new insights.

Data Analysis
- Draw a sample of data from a spreadsheet, or from external database (MS-Access, SQL Server, Oracle, PowerPivot)
- Explore your data, identify outliers, verify the accuracy, and completeness of the data
- Transform your data, define appropriate way to represent variables, find the simplest way to convey maximum useful information
- Identify relationships between observations, segment observations
Brief Overview of XLMiner

• Analytic Solver Platform's XLMiner component offers over 30 different methods for analyzing a dataset to gain new insights.

Time Series
• Forecast the future values of a time series from current and past values
• Smooth out the variations to reveal underlying trends in data
 • Economic and business planning
 • Sales forecasting
 • Inventory and production planning
Brief Overview of XLMiner

Data Mining
- Partition the data so a model can be fitted and then evaluated
- Classify a categorical outcome – good/bad credit risk
- Predict a value for a continuous outcome – house prices
- Find groups of similar observations – market basket analysis
Chapter 6 - Part I
Classification Methods

Using XLMiner
The Problem of Overfitting

• If we have a complicated model, the model may fit and explain the training data very well, yet fails to generalize to new data.

\[
f(\alpha_0 + \alpha_1 x_1 + \alpha_2 x_2)
\]
Decreasing Generalization Error

\[
f(\alpha_0 + \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_1^2 + \alpha_4 x_2^2 + \alpha_5 x_1 x_2)
\]
Underfit

\[
f(\alpha_0 + \alpha_1 x_1 + \alpha_2 x_1^2 + \alpha_3 x_1^2 x_2 + \alpha_4 x_1^2 x_2^2 + \alpha_5 x_1^2 x_2^3 + \alpha_6 x_1^3 x_2 + \ldots)
\]
Overfit
Partitioning the Database

• Helps to avoid overfitting by testing the model on validation part.
• Partitioning is segmenting the data into following groups.
 • **Training set:** used for learning the parameters of model.
 • **Validation set:** used for evaluating the model error and tuning parameters.
 • **Test set (optional):** used for a final, independent test of the performance of the model on new data that was not part of the model building.
Partitioning the Database

XLMiner

• Standard Partitioning
 • Random partitioning
 • User-defined Partitioning

• Partitioning with Oversampling
 • Use Oversampling when there are only two categories and the group of interest is rare.
 • Example: Universal Bank data – personal loans solicitations.
Summary - Partitioning with Oversampling Using XLMiner

- Click any cell within the dataset, then click **Partition – Partition with Oversampling** (in the Data Mining section of the XLMiner ribbon).

- Select all variables in the **Variables** list box then click > to move all variables to the **Variables in the partitioned data** listbox.

- Highlight the target variable in the **Variables in the partitioned data listbox** then click the > to the left of **Output variable** to designate this variable as the output variable, then click OK.
Classification Using XLMiner

• Discriminant Analysis
• Logistic Regression
• k-Nearest Neighbor
• Classification Tree
• Naïve Bayes
• Neural Networks
Discriminant Analysis (DA)

- Estimates the probabilities that a given record falls into one of the possible classes.
- Estimates means and covariance(s) of groups using training data.
- Models distribution of each group separately.
- Bayes theorem - posterior probabilities (adjusted with prior frequencies of classes).
- Independent variables are assumed to be normally distributed.
- Linear discriminant analysis (LDA) - linear decision boundaries.
- Quadratic discriminant analysis (QDA) - quadratic decision boundaries.
Scoring New Data

- XLMiner’s dialogs for classification routines provide an option to score new data in a database or from worksheet.
- In the Discriminant Analysis – Step 3 of 3 dialog.
- Score new data in a database using XLMiner: MS-Access, SQL Server, Oracle.
 - Example: Scoring to MS-Access Database
- XLMiner’s “Score” in the Tools group, will allow you to score new data after you have fitted your model. XLMiner produces Stored Worksheet with saved model.
Summary - Scoring to a Database

- In the Discriminant Analysis method, this feature is found on the Step 3 of 3 dialog.

- In the Score new data in group, select **Database**. The Scoring to Database

- The first step on this dialog is to select the **Data source**.

- Once the **Data source** is selected, **Connect to a database...** will be enabled.

- Enter the appropriate details, then click **OK** to be connected to the database.

- Match variables in the dataset to variables in the database and click **OK**.
Summary-Score Test Data Using DA Model

- Click **Score** on the XLMiner ribbon.
- Select the new data and the Stored Model worksheets.

- Click **Next**. XLMiner will open the *Match variables* – Step 2 dialog.
- Match the Input variables to the New Data variables using **Match variable(s) with same names(s)** or **Match variables in stored model in same sequence**.
- Then click **OK**.
Strengths and Weaknesses of Discriminant Analysis

Strengths:

- Very fast even for large data.
- Useful and well-interpretable – number of features is not large.
- Perfect fit – normal group distributions.
- Stable model – well-separated groups.
- Multiclass learning – can explain data in lower dimensions.
 - Similar to PCA, but in a supervised way.
Strengths and Weaknesses of Discriminant Analysis

Weaknesses:

• Does not apply – number of features exceeds number of records.
• Overcomplicated and less stable – high-dimensional data.
• May fail to capture structure of the data – highly non-Normal distributions.
Summary-Discriminant Analysis

- Partition the data.
- Select a cell on the Data_Partition1 worksheet then click Classify – Discriminant Analysis.

- Select the **Output variable and Input Variables**.
- Click **Next** and select the desired method of computing **Prior class probabilities**.
- Select the output and score training and validation data options.
Classification Using XLMiner

- Discriminant Analysis
- Logistic Regression
- k-Nearest Neighbor
- Classification Tree
- Naïve Bayes
- Neural Networks
Logistic Regression (LR)

• Extremely powerful and widely used.
• Extends Linear Regression.
• XLMiner – binary classification problems.
• Fitted parameters – estimate the probability of given records belonging to one of two possible groups.
Logistic Regression

• Models *Logit* transformation – linear combination of predictors:

 \[
 \text{Logit}(P\{\text{success}|x\}) = b_0 + b_1 x_{i1} + b_2 x_{i2} + \cdots + b_p x_{ip}
 \]

• LR – conditional probabilities (**generative learning**)

• DA – joint probabilities (**discriminative learning**)

3/20/2014
Strengths and Weaknesses of Logistic Regression

Strengths:

• Very popular – 2 classes.
• No assumption – distribution of independent variables.
• Unlike Linear Regression – error terms are not assumed to be normally distributed.
• No assumption – linear relationship between independent and response variables.
• Performs well – data containing categorical predictors.
• Handles large high-dimensional datasets.
Weaknesses:

• Less stable – low dimensional data where classes are well-separated.
 • Discriminant Analysis.
• Less efficient – number of records are less than number of features and when collinearity is present.
 • XLMiner – *embedded variable selection* and *best subset*.
Summary - Logistic Regression

- Select a cell on the *Data_Partition1* output worksheet, then click **Classify – Logistic Regression** on the XLMiner ribbon.
- Choose input and output variables.
- Choose the value that will be the indicator of “Success” by clicking the down arrow next to **Specify “Success” class (necessary)**.
- Specify the initial cutoff probability for success, and Click **Next**.
Summary - Logistic Regression

- Set confidence level and Click **Advanced**.
- Select the desired options and Click **OK** to return to the **Step 2 of 3** dialog.
- Click Best Subset and Select **Perform best subset selection**.
- Choose the desired selection procedures for selecting the best subset of variables.
- Click **OK** to return to the **Step 2 of 3** dialog.
- Click **Next** to advance to the **Step 3 of 3** dialog.
- Select **Covariance matrix of coefficients, Residuals, reports, and Lift charts**, then Click **Finish**.
Classification Using XLMiner

- Discriminant Analysis
- Logistic Regression
- k-Nearest Neighbors
- Classification Tree
- Naïve Bayes
- Neural Networks
k-Nearest Neighbor

- Very simple powerful algorithm – classification decision based on information from neighboring records.
 - k observations – most similar.
 - Majority voting – most frequent group among the k nearest neighbors.
- No learning stage – training data is our model.
- Similarity measure – Euclidean Distance.
- Independent variables – scaled appropriately.
- Best model – assessing the classification error for various values of k.
- Less chance of overfitting – validation error.
Strengths and Weaknesses of the k-Nearest Neighbor Algorithm

Strengths:
- Very often performs well in practice.
- Stable and easily interpretable results.

Weaknesses:
- Expensive – computationally.
- Focus – local structure.
 - Fails – global picture.
- “Curse of dimensionality.”
- Extremely sensitive – outliers and noise.
- Poor performance – undersampled/oversampled groups.
Summary - k-Nearest Neighbor

• Select a cell on the Data_Partition1 worksheet, then click **Classify – k-Nearest Neighbors** on the XLMiner ribbon.

• Select desired variables under **Variables in input data** then click > to select as input variables. Select the output variable or the variable to be classified.

• Specify “Success” class and the initial cutoff value, and click **Next**.

• Select **Normalize input data** and the reports and input **Number of nearest neighbors**. Click **Finish**.
Classification Using XLMiner

- Discriminant Analysis
- Logistic Regression
- k-Nearest Neighbor
- Classification Tree
- Naïve Bayes
- Neural Networks
Classification Tree

• Splitting rules – partitions space of independent variables.
 • Tree – summarized and visualized process.

• “Best” splits – measure (e.g., Gini index, Information Gain).
• Internal node – for splitting.
• Branch – two subsets of possible values of parent node.
• Leaf nodes – value of response.
Classification Tree

- Fully grown classification tree – overfitting.
- Solution – *pruning*.
- Over-pruned tree – lose ability to capture structural information.
 - What is the optimal size?
- Optimal pruning techniques – reduce size without sacrificing predictive accuracy.
Strengths and Weaknesses of Classification Trees

Strengths:
- Easily interpreted – if-then rules.
- Handles raw data.
- Implicit *feature selection*.
- No explicit assumptions – underlying relationships.

Weaknesses:
- Greedy heuristic approach – locally optimal solution.
Summary-Classification Tree

- Select a cell on the Data_Partition1 worksheet, then click Classify – Classification Tree on the XLMiner ribbon.

- Select Output and Input variables.

- Specify “Success” class and Specify initial cutoff probability, then click Next.

- Set Maximum # levels to be displayed, select Full tree, Best pruned tree, Minimum error tree, and reports, then click finish.

- Select Normalize input data, Minimum #records in a terminal node, and Prune tree, then click Next.
Classification Using XLMiner

• Discriminant Analysis
• Logistic Regression
• k-Nearest Neighbor
• Classification Tree
• Naïve Bayes
• Neural Networks
Naïve Bayes

- Bayes rule – posterior probabilities.
 - Assign classes – MAP (maximum a posteriori).
- Conditional independence of features.
- XLMiner – Multivariate Multinomial distribution.
 - XLMiner – Bin Continuous Data.
- “Naïve” assumptions – yet surprising efficiency.
Strengths and Weaknesses of the Naïve Bayes Algorithm

Strengths:

- Applicable – high-dimensional data.
- Parameter estimation – small training sample.
- Applicable – discrete and continuous data.
- Efficient – computationally.
- Robust with irrelevant features.
- Perfect classifier – independent features.
Strengths and Weaknesses of the Naïve Bayes Algorithm

Weaknesses:

- Independence assumption – strong.
- Multinomial model – must contain already observed values.
Naïve Bayes Data Preparation: Binning Continuous Data using XLMiner

• Click **Transform -- Bin Continuous Data** on the XLMiner ribbon.

• Select **Equal Count** for binning the variable.

• Select **Rank** to assign category label to bin intervals.

• Click on **Apply this option** and click on **ok**.
Summary - Naïve Bayes

- Partition the BinnedData1.
- Select a cell on the Data_Partition1 worksheet, then click Classify – Naïve Bayes.

- Select Input and Output variables.
- Specify “Success” class and Enter a value between 0 and 1 for Specify the initial cutoff probability for success. Click Next.

- Select an option for Prior class probabilities. Then Click Next.

- Select Detailed report, Summary report, and Lift charts. Click Finish.
Classification Using XLMiner

• Discriminant Analysis
• Logistic Regression
• k-Nearest Neighbor
• Classification Tree
• Naïve Bayes
• Neural Networks
Neural Networks (NN)

- Powerful machine learning technique – structure of the human brain.
- XLMiner – feed-forward back-propagation.
- Interconnected neurons – organized in layers.
- Neurons – computational units.
- Internally feature extraction.
- Dependency – settings and architecture.
Neural Networks Key Components

• Input neurons – features.

• Output layer prediction – fed-forwarded information.

• Back-propagated errors – learning.

• Epoch – processing of all training observations.

• Desired predictive accuracy (training, cross-validation errors) – many learning epochs.
Strengths and Weaknesses of Neural Networks

Strengths:

- “Universal Approximators.”
- Detects – independent and depended variables’ nonlinear relationships.
- Detects – predictors’ relationships.
- Automated Learning – less formal modeling.
- Robust model – large high-dimensional datasets.
- No strong explicit assumptions.
Strengths and Weaknesses of Neural Networks

Weaknesses:

• “Black-box” learning.
• Expensive – computationally.
• Prone to overfitting.
• Dependency – architecture, parameters, choice of activation and error functions.
 • XLMiner – Automatic Network Architecture option.
Summary - Neural Networks

- Select a cell on the Data_Partition1 worksheet, then click **Classify – Neural Network**.
- Select Input and Output variables.
- Specify “Success” class and Enter a value between 0 and 1 for **Specify the initial cutoff probability for success**. Click **Next**.
- Select **Normalize input data**. Manfully adjust the **Network Architecture and Training options**.
- Select the **Reports** and click **Finish**.
Comments on Classification

• No perfect model – different predictive power and accuracy.
• Build several models – best overall performance.
• Fundamental problems:
 • Overfitting.
 • Choose simple – best.
 • Use cross-validation.
 • Curse of dimensionality.
 • Choose algorithm – consider dimensions.
 • Reduce data dimension – explicitly or use XLMiner’s techniques.
• Final independent test – use test samples.
Summary

• Classification – whether a customer will buy a certain product.
• XLMiner classification techniques.
• Fitting classification models to data.
• Working with output of each method.
• Applying fitted models to classify new observations.
Summary

• Vital skill for business analysts – use data intelligently.
• Retrieve and combine data from SQL databases to Web data sources – use Excel.
• Visualize and transform your data, apply supervised and unsupervised learning methods – use XLMiner in Excel.
• A complete toolset for descriptive, predictive and prescriptive analytics – use Analytic Solver Platform including XLMiner.
Contact Info

• Dr. Sima Maleki
• Best way to contact me: Consulting@Solver.com
• You may also download this presentation from our website.
• You can download a free trial version of XLMiner at http://www.solver.com/xlminer-data-mining
References

• Spreadsheet Modeling and Decision Analysis: A Practical Introduction to Business Analytics, 7th Edition
 http://www.cengage.com/us/

• MANAGEMENT SCIENCE-The Art of Modeling with Spreadsheets, 4th Edition

• Essentials of Business Analytics, 1st Edition
 http://www.cengage.com/us/
Thank You!