Version 10.5

For Use With Excel 2011

Premium Solver Platform

for Mac

User Guide

®enon OptimizationExamples.xlsm —
PG E® 00 -0 2-85- ¥ (&5 dhos-| @ (Qr (search in sheet J
Home | Layoeut Tables | Charts | Smartart | Formulas Data | Review A fET
Edit Font Alignment Number Format Cells Themes
. w Fil + [MssansSerf |=|14 | aEv 59 Wrap Text ~ General - . % B %I‘_ . @' as.
paste (A Cears B I | U [d-A/ &= merge ~ ¢ (BR|x % | 3 || %8| 55 onouinal Styles Insert Delete Formar ~ Themes Aa-:
G8 P fx -
- A [B | C | D [E [F] H | 1 | | K [L T m T N T o [P
1 Example 4: Portfolio Optimization - Markowitz Method M
| 2z |This model finds the optimal allocation of funds to stocks that minimizes the portfolio risk, measured by }
| 3 |portfolio Variance (a quadratic function) at cell 115. This quadratic programming (QP) madel can be \
| 4 |solved with the GRG Nonlinear Solver, or more efficiently in the Premium Solver Platform with the |
5 |LP/Quadratic Solver or the SOCP Barrier Solver. }
°
| 7 | Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 Total |
| 1 |Portfolio % | 20.00% 20.00% 20.00% 20.00% 20.00%[l 100.00% |
9 |Expected Return 7.00% B.00% 9.50% 6.50% 14.00% }
10 |
| 11 |Variance/Covariance Matrix |
|12 | Stock 1 Stock 2 Stock3 Stock 4 Stock 5 L
13 Stock 1 2.50% 0.10% 1.00% -0.50% 1.00%
E Stock 2 0.10% 4.00% -0.10% 1.20% -0.85%
| 15 | Stock3 1.00% -0.10% 1.20% 0.65% 0.75%
|16 | Stock4 -0.50% 1.20% 0.65% 8.00% 1.00% 11.17%
17 Stock 5 1.00% -0.85% 0.75% 1.00% _ 7.00%||Return 9.00%
18 |Variance Terms 0.16% 0.17% _ 0.14% 0.41% _ 0.36%|
)
| 20 [Click Tools Premium Solver... and select an appropriate Solver Engine in the dropdown list. Then click
| 21 |Solve to find a minimum risk portfolio with a Portfolio Return of at least 9.5% — it has a Variance of about
| 22 [0.85%. Now try reversing the problem to find the maximum return portfolio with a Variance not exceeding
| 23 [19%: Select 117 as the Set Cell and choose Maximize, then select the first constraint, click Change, click
| 24 |on cell 115 as the Cell Reference, select <= as the Relation, and enter 0.01 as the Constraint. Select
| 25 [the GRG Nonlinear Solver, or solve the quadratically constrained model more efficiently in the Premium
26 |Solver Platform with the SOCP Barrier Solver — then click Solve to find a portfolio returning 10.2%.
27
v
E:J":“T_[EXAMPLEL [EXAMPLEZ | EXAMPLES | EXAMPLE4 [EXAMPLES | EXAMPLEG | ExaMPLE7 J+ I TE—— e 3 T
Normal View Ready Sum=0 - A

\ll
I \

FRONTLINE

solvers

Copyright

Software copyright © 1991-2010 by Frontline Systems, Inc.

Portions copyright © 1989 by Optimal Methods, Inc. ; portions copyright © 2002 by Masakazu Muramatsu.
LP/QP Solver: Portions © 2000-2010 by International Business Machines Corp. and others.

User Guide copyright © 2010 by Frontline Systems, Inc.

Neither the Software nor this User Guide may be copied, photocopied, reproduced, translated, or reduced to any
electronic medium or machine-readable form without the express written consent of Frontline Systems, Inc., except as
permitted by the Software License agreement on the following pages.

Trademarks

Premium Solver Platform is a trademark of Frontline Systems, Inc. Windows and Excel are

trademarks of Microsoft Corp. Gurobi is a trademark of Gurobi Optimization, Inc. KNITRO is a trademark of
Ziena Optimization, Inc. MOSEK is a trademark of MOSEK ApS.

How to Order

Contact Frontline Systems, Inc., P.O. Box 4288, Incline Village, NV 89450.
Tel (775) 831-0300 o Fax (775) 831-0314 e Toll-Free (888) 831-0333
Email info@solver.com e Web http://www.solver.com

SOFTWARE LICENSE AND LIMITED WARRANTY

This is an agreement between Frontline Systems, Inc. (“Frontline”) and the person or organization acquiring a license
(“Licensee”) to use the computer program products described in this User Guide (the “Software”), in exchange for
Licensee’s payment to Frontline. Licensee may designate the individual(s) who will use the Software from time to time,
in accordance with the terms of this agreement. Unless replaced by a separate written agreement signed by an officer of
Frontline, this agreement, including the Software License, Limited Warranty, and U.S. Government Restricted Rights
sections below, shall govern Licensee’s use of the Software; by accepting delivery of the Software or allowing Use of the
Software, Licensee accepts all terms and conditions of this agreement, and agrees that this agreement supersedes the
terms and conditions of any purchase order issued in connection with the license purchase.

“Use” of the Software means the use of any of its functions to define, analyze, solve (optimize, simulate, etc.) and/or
obtain results for a single user-defined model. Use with multiple models at the same time, whether on one computer or
multiple computers, requires either a Flexible Use License or multiple Standalone Licenses. Use occurs only during the
time that the computer’s processor is executing the Software; it does not include time when the Software is loaded into
memory without being executed. The minimum time period for Use on any one computer shall be ten (10) minutes, but
may be longer depending on the Software function used and the size and complexity of the model.

STANDALONE LICENSE

If Licensee pays for a Standalone License, Frontline grants to Licensee the right to Use the Software on one computer
(the “PC”) at a time, and will provide Licensee with a license code enabling such Use. The Software may be stored on
one or more computers, servers or storage devices, but it may be Used only on the PC. Use of the Software may depend
upon unique components of the PC, such as its hard disk ID or MAC address; in the event these components fail,
Frontline will provide Licensee with a new license code, enabling Use with replacement components, at no charge. A
Standalone License may be transferred to a different PC while the first PC remains in operation only if (i) Licensee
requests a new license code from Frontline, (ii) Licensee certifies in writing that the Software will no longer be Used on
the first PC, and (iii) Licensee pays a license transfer fee, unless such fee is waived by Frontline.

FLEXIBLE USE LICENSE

If Licensee pays for a Flexible Use License, Frontline grants to Licensee the right to Use the Software as described in this
paragraph, and will provide Licensee with License Server software and a license code enabling such Use. For purposes
of this agreement, a “Network™ is a group of computers interconnected by any networking technology that supports the
TCP/IP protocol or the IPX/SPX protocol. The Software may be (i) stored on one or more computers, servers or storage
devices on the Network, (ii) accessed by and copied into the memory of other computers on the Network, and (iii) Used
on any of the computers on the Network, provided that only one Use occurs at any one time. Licensee must install and
run the License Server software on one of the computers on the Network (the “LS”); other computers will temporarily
obtain the right to Use the Software from the License Server. Operation of the License Server may depend upon unique
components of the LS, such as its hard disk ID or MAC address; in the event these components fail, Frontline will
provide Licensee with a new license code, enabling operation of the License Server with replacement components, at no
charge. The License Server software may be transferred to a different LS while the first LS remains in operation only if
(1) Licensee requests a new license code from Frontline, (ii) Licensee certifies in writing that the License Server will no
longer be run on the first LS, and (iii) Licensee pays a license transfer fee, unless such fee is waived by Frontline.

ADDITIONAL TERMS

This agreement does not grant to Licensee the right to make copies of the Software or otherwise enable use of the
Software in any manner other than as described above, by any persons or on any computers except as described above, or
by any entity other than Licensee. Licensee agrees that it will not rent or lease the Software, nor “share” use of the
Software with anyone else, nor make the Software available over the Internet, a company or institutional intranet, or any
similar networking technology, except as explicitly provided above in the case of a Flexible Use License. Licensee agrees
that it will not attempt to alter or circumvent license control features of the Software or the License Server, nor reverse
compile or reverse engineer the Software or the License Server. This agreement may be assigned to any entity that
succeeds by operation of law to Licensee or that purchases all or substantially all of Licensee’s assets (the “Successor”),
provided that Frontline is notified of the transfer, and that Successor agrees to all terms and conditions of this agreement.

COPYRIGHT WARNING

The Software is protected by United States copyright laws and international copyright treaty provisions. It is unlawful for
any person or entity to copy or use the Software, except as permitted by the license explicitly granted by Frontline. For
the LP/Quadratic Solver only: Source code is available, as part of an open source project, for portions of this software;
please contact Frontline for information if you want to obtain this copyrighted source code. The law provides for both
civil and criminal penalties for copyright infringement.

LIMITED WARRANTY

Frontline Systems, Inc. (“Frontline”) warrants that the CD-ROM, diskette or other media on which the Software is
distributed and the accompanying User Guide (collectively, the “Goods”), but not the digital or printed content recorded
thereon, is free from defects in materials and workmanship under normal use and service for a period of ninety (90) days
after purchase, and any implied warranties on the Goods are also limited to ninety (90) days. SOME STATES DO NOT
ALLOW LIMITATIONS ON THE DURATION OF AN IMPLIED WARRANTY, SO THE ABOVE LIMITATION
MAY NOT APPLY TO YOU. Frontline’s entire liability and your exclusive remedy under this warranty shall be, at
Frontline's option, either (i) return of the purchase price or (ii) replacement of the Goods that do not meet Frontline’s
limited warranty. You may return any defective Goods under warranty to Frontline or to your authorized dealer, either of
which will serve as a service and repair facility.

If you purchase an Annual Support Contract from Frontline, then Frontline warrants, during the contract term, that the
Software will perform substantially as described in the User Guide, when it is properly used as described in the User
Guide. Frontline’s entire liability and your exclusive remedy under this warranty shall be to make reasonable commercial
efforts to correct any “bugs” (failures to perform as so described) reported by you, and to timely provide such corrections
in the Software to you. If you do not purchase an Annual Support Contract from Frontline, or if you allow your Annual
Support Contract to expire, then THE SOFTWARE IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND.

Whether or not you purchase an Annual Support Contract from Frontline, you understand and agree that any results
obtained through your use of the Software are entirely dependent on your design and implementation of an optimization
or simulation model, for which you are entirely responsible, even if you seek advice on modeling from Frontline. You
understand and agree that THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE SOFTWARE
AS USED WITH YOUR OPTIMIZATION OR SIMULATION MODEL IS ASSUMED BY YOU.

EXCEPT AS PROVIDED ABOVE, FRONTLINE DISCLAIMS, AND WITHOUT EXCEPTION ITS SUPPLIERS
DISCLAIM ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE, WITH RESPECT TO THE SOFTWARE. THIS WARRANTY GIVES YOU SPECIFIC
RIGHTS, AND YOU MAY HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

IN NO EVENT SHALL FRONTLINE OR ITS SUPPLIERS HAVE ANY LIABILITY FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING
WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THE SOFTWARE OR THE EXERCISE OF ANY RIGHTS
GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY TO YOU. In states that allow the
limitation but not the exclusion of such liability, Frontline’s and its Suppliers’ liability to you for damages of any kind is
limited to the price of one copy of the Goods and one Standalone License to use the Software.

U.S. GOVERNMENT RESTRICTED RIGHTS

The Software and Media are provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the Government
is subject to restrictions as set forth in subdivision (b)(3)(ii) of The Rights in Technical Data and Computer Software
clause at 252.227-7013. Contractor/manufacturer is Frontline Systems, Inc., P.O. Box 4288, Incline Village, NV 89450.

THANK YOU FOR YOUR INTEREST IN FRONTLINE SYSTEMS’ PRODUCTS.

Contents

Introduction 11
Using Premium Solver Platform for Macccoccvevieiieciinienceie et 11
What’s New in Version 10.5c.cccviieiiiiieiieniteieeieeteit ettt aeseeesseeaeseee s esesnnesnneens 11

Solving Large Scale, Multi-Worksheet Modelsccceveverieniiceniieeeeeieeeenn 12
Speeding Up Analysis, Solving and Reporting............ceeeeeverveneevienienieeieeiesieenens 12
Reporting Multiple Solutions from Optimization...........cceceeeeeeeeieneenreeieieneeienens 12
Full Model Compatibility Across Platforms............cccevieviirienieiieiie et 12
Compatibility with the Standard Excel SOIVer.........c.cocverinininiiiininiicniccceee 12
Compatibility with our Windows Productscccccceveeviircienie e, 12
A Brief Tour Of NeW FEatUIEScccviiieriieiieiecit ettt st nes 13
Model Analysis: The Polymorphic Spreadsheet Interpreter...........ccoceverencncnecnnene 13
Multistart Methods for Global Optimization............cccceevuveierieriierriesieseeee e 15
The EvOlutionary SOLVETccceouieiiiiieiieiieeie ettt et 15
The SOCP BarTier SOLVETc.cecuieiiieieiieiieie ettt ettt sse e s eees 16
Second Order Cone CONSLIAINESccueeuerieriieiieieeeiereeeeeeeseeeaeeeeseessseesesnnessees 16
Alldifferent CONSIIAINESccververiieiieriieie et e ete st ebeetesee s eeeeeesseeseensesseenes 17
NEW TYPES OF REPOIS...ccuviieiiiieieiieciieie ettt ettt esseenes 17
User Interface IMProvVementscceeveriieiieriieniiiesiieiesiesee et eeeesee e e seesneeseeneeses 19
Speed IMPIOVEMENLScc.eeeereieiieieetetieeieeie st sieeae e steete e eesesseesseensessaesseensennsens 20
Programmability IMProvementsc.ecverereuerieniiieieeiesiieee e seeeie e eeee e eeeeee 21
HOW t0 USE ThiS GUIAEcuveeeiieiieiieiieie ettt ettt ettt saestaesseensesnesreesseennesenaenseens 21
USING ONINE HEIP ..ottt s e e ne e enteenaenseenseens 22
Solver-Related Seminars and BOOKS...........ccooieriieiiirienit et 23
Academic References for Premium Solver Platform.............ccooveveiiiiinniiiiis 24

Installation and Licensing 25
WHRHAL YOU NEEAoeiiiieiiicieeieeeee ettt ettt ettt e s ee et e b e esaesseesseeenseensenseenseensenns 25
Installing the SOTIWATEc.eeciiiieiieieeee e ettt e e s reese e aeesaeseens 25
Uninstalling the SOTEWATEcceiiiiieiiciee e et sseens 27
Licensing the SOTIWATEcccvevieiiieiecieciie ettt ettt st e e reese e s e esaeseens 27
Installing SOIVETr ENGINEScccuivieiiieiieieiiiesie ettt te et et et e saeseaesseesesaesneenseensesnnnenseens 29

Solver Models and Optimization 30
INEEOAUCLION ...ttt e ettt et e s et e et e esae s s e e seenseeseenseenseennenseenes 30
Elements of SOIVEr MOMEIS........cueiiiiiieieiieciieiit ettt st aesnne s sneens 30

Decision Variables and Parameters...........ccocvevverieeieneieienieeeie e e 30
The ODbjJectiVe FUNCHONcceeiieieciieiieiee ettt et 31
COMSLIAINES. ...etveveeeiesiieeteeteeteeeteeteesteetaesseessessaesseeseessesseenseenseessenseenseenssesneenseensesnes 31
Solutions: Feasible, “Good” and Optimalcccoeeerienieiie e 32
MOTE ADOUL CONSIIAINESuveeuveeiieiieieeiesiteteeerteetesseesseeteeseesseesseaessesseesseensessnesseesseensesasnensenns 34
Functions 0f the Variablesc.coieriiiiiieiieii ettt eenens 36
CONVEX FUNCLIONScoiiiiiiieii ettt sttt sttt et e s e enaessee s e enes 36
LiNear FUNCHONS.cccviiieieieiteeeetes ettt sttt te e nbeenaesseenseensesseeenseenes 37

QuUAdratic FUNCLIONSoooiiieiiiiiieeie et ettt e s veesaneesaae e e 39

Nonlinear and Smooth FUNCHONSc..ooooiviiiiiiiiieeeee e 40

Discontinuous and Non-Smooth FUNCHONSccceeieriirieiieniieieeiecee e 40
Derivatives, Gradients, Jacobians, and HeSSIansc.cccoeveveeeveeeeeecveeeeineee e 41
Optimization Problems and Solution Methodsccoccveeiieiienienin i 43
Linear Programming.............cceceioierienieeiieeieneeie et eieesieetesie e seeesesseesaeeseensesseessee s 43
Quadratic Proramimingcccocuervveriiesierieeeiiesiestesieenteeeeseesseeseessesseensesssesseenseens 44
Quadratically Constrained Programmingc.ecceeverieeieneieneenieeiesieseeeeeeeneens 45

Second Order Cone Programming............cceecueeeerieeeieeineenienieeieneeneeeeeseeeeeesesnennes 45
Nonlinear OPtiMIZATIONcc.eeevieieriertieieeteseeesteeeesetesseeteesesseeeseesessaesseessesssesses 46

G1obal OPIMIZALION ...e.evevieiieie ettt ettt et et te e seeessessaesaeesseensesseensee s 47
Non-Smooth OPtiMIZALION.eecuieierrieiieieeiiiereerteete st et eteeee e eesesaeseeenseesesnnes 48

Integer Programimingcoccieieriieiiieieeeiieieete et ettt e et et e tessae e esesnaessaesseensesseaenseensensnens 50
The Branch & Bound Methodcccoeoieiiiienieieecee e 50

CUE GENETALION ..ttt ettt ettt sttt sbe sttt ebe bt et e b bt ebe bt ebtebs et saeeneene 51

The Alldifferent CONSIrAINTcc.eecvereieriieieeier ettt see st eseees e eeeesseenseeeaeseeens 51
Building Solver Models 53
INEEOAUCTION ..ottt ettt ettt e ne e 53
From Algebra to SPreadSNEetscuiiieriieiieiieciei ettt ens 53
Setting Up @ MOdeL.......oouiiiiiiecietee ettt e 53

A Sample Linear Programming Model............cceovriirieniniiieiecieeeeeeeeee e 54
Decision Variables and CONSIAINEScceevuerieriierieeiieriieieetesieeiesaeseessessseeseesseesessnesseens 57
Variables and Multiple Selections..........ccevieriieierieniieie et 57

Using the Range SEIECtOrc.oeoiiiieriieiiiieciiiesiee ettt 59
Constraint Left and Right Hand Sidescoccveeiirierieiieieceee e 59

More Readable MOEIS.......cccoeeuiiiiiiiiiiiieiete ettt e 62
Layout and FOrmMattingccceeeverieriieiieiiieieece ettt eee e enaessaeneeens 63

Using Defined NAMES.........ocieiiiiieiieie ettt enaesseenseens 64

Models Defined Across Multiple WOrksSheetscevveeiieienieniiiieiieeee e 65
Analyzing and Solving Models 67
INEEOAUCTION ..ottt ettt ettt et ettt ne e 67
Using the Solver Model DIalogccveviieiiiiienieies ettt sttt esesnae s e 67
Analyzing MOdel StrUCTUIC........eeiviiierieeie ettt ettt e ese e seenseensaeens 69
USING MOAEL STAtISTICS. . .evvevreieiiesieieeieeetieieeiestesteesteeaeseeseeenbeeseesseenseessenseenseens 69

Using the Check Model BUtONccvevvieiiiieieie ettt 70
Analyzing Model CONVEXILY........cciruerrieriieieriesseteseeetestesseeseeeeesseessseesesseesseessesnnes 71
Diagnosis Tab: Analyzing Model EXCEPHONS........c.eecveruieiieieriieiieeieseesieeee e see e sne e 71
The Structure REPOITccveiiieieiiecieie ettt et enaeenaenneens 71
Transforming a Non-Smooth Model..........coooiiieiieiiiiie e 73
Effects of Model Transformationccecveceeeierieniieecie e s 73

Using Automatic Model Transformation............ccceceeveveeeienienienieeieseese e 74

Model Analysis WHhen SOIVINGcc.ociiiiiiiiiieiieie ettt ee e 76
Using the Check FOr OPtionsccoeveviieiiieienie ettt eeaesnnens 76

Options Tab: Using Advanced OPtionsSccecveruierueeieriersieeiestesieesieseesseessessaeseesseesessnens 77
More on the Polymorphic Spreadsheet INterpreterocvveveeierieciieiieniei e 79
The Microsoft Excel Recalculator..........ccvevvieiieienieieieie et 79

The Polymorphic Spreadsheet INterpreterocvvveeieriecieeie e 81
Building Large-Scale Models 84
INEEOAUCTION ..ottt ettt et ettt 84

Designing Large SoIver MOEISccoovieiiiiieiieieeieeeeee ettt ens 84

Spreadsheet Modeling Hintsccoecveierieriieiieiieneee e e 85

Optimization Modeling Hints...........cccoeviririiiieniieeceeeee e 86

Using Multiple Worksheets and Data SOUICEScc.eeevereieriieienierieeieciesieeee e 86

Quick Steps Towards Better Performance............ccoeveevieiirieniiienieiiecieeee e 87
Improving the Formulation of Your Modelccocveiieiiiiiinie et 88
Techniques Using Linear and Quadratic Functions.............ccceeceevieieneniienienicnicnennens 89
Techniques Using Linear Functions and Binary Integer Variablesc..cccceceeuee 90

Using Piecewise-Linear FUNCHONSc.cccvevviriiiiieriieiieeeecceieee e e 92
Diagnosing Solver Results 94
If You Aren’t Getting the Solution You EXPectccoccvevieiiirienieii et 94
During the SOIUtION PrOCESSoccviiiieiiieiiiieeiienies ettt ettt et aeseesaeesesnneeneaens 95
Choosing to Continue, Stop Or REStartccceveveieiienieriee et 95

When the SOIVEr FINISHEScoeiuiririiiiiiiiiciieeec e e 95
Standard Solver Result MESSaAZeS.......cc.eecuirieriieiieieniiierie et eie e eeee e eeee e seeas 96
Problems with Poorly Scaled MOdeIS..........ccoerieiiiriirieie et 106
Dealing with POOT SCaliNg........cccoeviieiiieiiieie e 106
Historical Note on Scaling and Linearity Testsccccvceverereiieiinineeieieeeenn 107

The Tolerance Option and Integer CONSLIAINESc.eecveereerieeiieeieniieeie et ereeeeeseeeeeeenees 107
Limitations on Smooth Nonlinear OptimiZation..........c..ccueeeeruereiereeereeerienieneeeeeeesseeseeennes 108
GRG Solver Stopping CONAItIONSccueeverieriieiieriee ettt eeeseeeee e seees 109

GRG Solver with Multistart Methods...........ccevveriiriirieiiiecceeee e 110

GRG Solver and Integer CONSIrAINESc.eeverrierieriesiesieereeeeseeeee e seeeseeeeeesenes 110
Limitations on Global OptimiZationcccevverueeierieesieeieseeseeeesee st esaessaesreesessesseesens 110
Limitations on Non-Smooth OptimiZation............ccecueeierieerirreienieseeeeseeseeseeeeseeeessesneseees 110
Effect on the GRG and Simplex SOIVETScccevveriieiiiiieieie e 111
Evolutionary Solver Stopping Conditionscceecverevereerierieeniierieeieseesieeieeenens 112
Solver Options 114
The Standard Microsoft EXCEl SOIVET.........cccuevieiiieiirieie ettt 114
ComMmON SOIVET OPLIONSveeeveeieiieieiiierieerieeeetestteteeteestesteeaeesaessseesseeseesseenseassesseenseanssesnns 115
PrECISIONuietit ettt bbbttt et ettt ettt et 115

Use AUtomMatic SCAIINGc.eecieriieiieieeiieit ettt sttt nse e 116

Show Iteration RESUILS.......c.cveriririiiiiiie ettt 116

Ignore Integer CONSIIAINESccueeriieriieieriieieeete sttt e ete e seeeee s teenseseaesseenneas 117

INtEEET TOICTANCEeovieniieiieiieie ettt ettt e eseeseenseenneas 118

Make Unconstrained Variables NOn-Negativeccceevvveeerieneeiies e 118

Max Time and [ETAtIONScovevuereriireriniine ettt 119

MaxX SUDPIODICIIScvieuiiiiiiiiieii et ettt et esra et enseennaes 119

Max Feasible (Integer) SOIULIONScccuveeerieriieiienie et 119
COMVEIZEIICEeuteeeutieitieriieeiteetite et e e bt e sttt estteebeeeabee e eabeesabeesbteenabesnbeesaseessnbeesaseenes 119
DIETIVALIVES ...ttt sttt e eb ettt et ettt 120
MUIEISTATt SEATCH ...c.veveiiieciiciietcte et 120
POPUIALION SIZE.....eeieieiieieciecit ettt ettt et et e e aeenees 120
RaNdOmM SEEAoveiiiiiiiieiiee e e 121
MULAtION RALE.....eteiiitiiiiieeieeiee et 121

Max Time without IMProvement...........ccoccveeiereerieniieniee et e 121
LP/Quadratic SOIVET OPHIONS.ciieriiiieriierieetesiiieiteieetesteeeeeaessaesseeensesnsenseenseessesseensennsens 122
Primal Tolerance and Dual Tolerance...........ccecvereeierienieieiieeeeieeeee e 122
PrESOIVE ...ttt ettt 122
Derivatives for the QUadratic SOIVETc..cccvieiiieiiieiie et 122

INte@Er CULOTT ..ottt e 122

Preprocessing, Cuts, HEUTISTICSeevvievieieriieieeies ettt 123

SOCP Barrier SOIVET OPtONSccvervierieieiiertieieeetiesteeteetesseesessessaessseessesssesseensessesseensenns 123

GAP TOLETANCEovveiieiieieeee ettt ettt ettt e e st e e e s e st eseenseeennennes 123

SEEP S1Z€ FACIOT....eeuviiieiieiecie ettt et st sae e b e eneesneaenneas 123
Feasibility TOIETANCEcvevuieieeiecieieee ettt se e ses 123

SEArCh DITECHIONcuveueiiiierieetererteee ettt ettt 123

POWET INACX ...ttt ettt 124

GRG Nonlinear SOIVET OPLiONScccuerieriieiierieriieeieeieeeeieetesseesseeseesaesseesseeaesseesseensensns 124
Search and EStIMAtesccceciioierierieie ettt st eneesseenseens 124
Recognize Linear Variables............occvvverierieiiieicieiieie et 125
TopographiC SEArCh........cc.oeviiiieiiet e 126
Evolutionary SOIVET OPHONS.cc.vecvieieriieiieieeieiesiteteetestesteeeesstesteeesesnaessaesseessesssesseensennns 126
COMVEIZEIICE ...t enteeeiieesittesiteeitee ettt e bt e eabeesabeesate e bte e sbte e bteenbeesabeesabeessteeaeesenasesnsees 126
POPUIALION SIZE....cueiieieiieiieiectee ettt ettt ettt et e e ente e snneens 126

RaNdOM SEEA.......eoueeiiiiiiiiiiiice e e 127

Require Bounds on VariabIes..........cccecerieriieiiiiie et 127

LOCAL SEATCH ..c..eiiiiiiiiiiiicicee e 128

The Problem Tab ..ottt 130
Loading, Saving and Merging Solver MOdelScccoeoierieriireieniieiieieceseee e e 131
Using Multiple SOIVer MOdELScceecverierieiieieeiiieieeie et 131
Transferring Models Between Spreadsheets..........ocvvvveierieciieiienienieieeeeseeeee 131
Merging SOIVEr MOAEISccuveiiieiiiieiieieee ettt e 131
Solver Reports 133
INEEOAUCTION ..ottt ettt ettt ettt saenes 133
Selecting the REPOTLSccuiiiieiieiieiieieete sttt ettt ae e sseenee s ssaeseeneeas 135
The Scaling REPOITc.eieieriieiieieeiieee ettt sttt e s et e esaessaese e enseeneenneenes 138
AN EXaMPLe MOAECL.....ooiiiiiiieiececiee e sttt sttt nnaen 139
The ANSWET REPOTT.......eieieiieiieiesiieite ettt ettt ettt et e e ssaesseenseensessaeseeenseeneenseenes 141
The Sensitivity REPOTLocieiieiieieieit ettt e e enne e 142
Interpreting Dual Valuesccoeviiiiiiieniee e 143
Interpreting Range Informationc..oceveeeiieieniieniieie e e 144

The LAmits REPOTL......occiieiieiieiieiieiieie ettt ettt ettt e sae s e ae e e e eneenneenes 145
The Feasibility REPOTTccieiieiieieieie ettt ae e sneeeneenne e 145
The Population REPOTL........ceeeuieiiiriieiieiieie ettt ettt te e eenaeenne e 146
The SOIUtIONS REPOTtiieeieiieiieiieiieieie ettt ettt eeae s e s e enneenne e 147
Integer Programming Problems...........ccoocierieiiiiiiniieieiececee e e 148

Global Optimization Problemscccecverieiiiiieniieieeie e 148
Non-Smooth Optimization Problems............ccccevierieriiiiienieieeieseeee e 149

Using VBA Functions 151
Controlling the SOIVEr’s OPErationccceeruereierierieeieeieniieieeeesreesreese e e sseeaeeneesseenseenns 151
Running Predefined Solver Models..........cccovrierieiiiiieniiieieeeeeee e 151
Limitations in VBA 0n the Maccccoeviiriiiieieies e 151
Referencing Functions in Visual BasiC........ccecerieriiecierieniiieieeeeeee e 151
Checking Function Return Values..........ccoecveieiiieiiinie e 152
Standard, Model and Premium Macro Functionsccocceeeeereeneeriieneenieeienenens 152
Standard VBA FUNCLIONSc.eecuiiieiieieeiecie ettt ettt seeaessnesseeseennesneaensens 152
SOIVErAdd (FOIM 1) .eiiiiieiieit ettt ettt e s ens 152
SOIVErAdd (FOIM 2) ..eiiiieiieit ettt ettt ettt esnee s e 153
SolverChange (FOTM 1)ooouiiiiiiieiieieeiee sttt seens 154
SolverChange (FOTM 2)ccouiiieiieiieieeiee ettt et essaeseens 154
SolverDelete (FOrmM 1)ooiioiiieiieieie et ettt ens 154

SolverDelete (FOMM 2)coieiiiieiieeeie ettt et esneeseens 155

SOIVEIFINISI ... e 155

SOIVErFIniShDIAlOE.c..ieiieiieiieieiiee e 156
SOIVEIGET ..ttt ettt ettt et e et e et eete e e b e e s abeestaeeseeeraeseseeenseenenes 157
SOIVEILOAA ...ttt ettt ettt e b s b e et e e re e e teeeneeeanas 159
SOIVETOK ...ttt et e ettt e e be e e b e e tbeestaeeteeereaeenteeenseenenas 159
SOIVETOKDIALOE. ... eeuieiieeiieie ettt ettt eae st be e e sa e eeenes 160
SOIVETOPLIONS.eeneieeieeeieiieie ettt tete ettt te e sreete s seaesseenseenseesaenseenseensensseenseenns 160
SOIVETRESELvviieiiiiii ettt ettt ettt et e e b e e e b e e s tbeeeaeeeeteeeasaeeenreesanes 162
SOIVEISAVE.....cuviiiiiiciie ettt ettt et e et e et e e e b e e s b e e staeeteeevee s ebeeenseesanas 162
SOIVEISOIVE ..ottt ettt et et e b e e e b e e s taeeetbeeeteeeasaeeenreeeenis 162
Solver Model VBA FUNCHONScc.veiiuiiiiiiiiieeiieciieeete ettt esive e s eveeseveeaaeeaeeevaesaveas 163
SOIVEIMOME]......ccuiiiiiieie ettt ettt et s e e eab e e eteeere e ereeeenes 163
SOIVEIrMOAEICHECK.ccuviiiiiiiieciee ettt ettt 164
SOIVEIMOAEIGETceviiiiieiii ettt et ettt ete e s ebe e sabeeteeeaee e enes 164
Premium VBA FUNCHONS.c.coiiiiiiiiieiii ettt ettt vee s evee s veeeabe e tseeseesaveesannee e 165
SOIVETEVGEL ...ttt ettt et e s e e e e etaeebee s enreeeenis 165
SOIVETEVOPLIONS ...ccueieeiiiieiieiieiieie ettt sttt st et et eeaessaeseensesnaenseeenes 166
SOIVEIGRGGELviiiiiiiiieiie ettt ettt et et e et e beesabe e saaeereeeasseeenns 167
SOIVETGRGOPLIONSoeeieieneieiiieiieeiieieeeteste sttt st etesae e saenteensessaesseensesssesseenses 168
SOIVEIINTGEL ...ttt ettt e e e v e e e v e e sabeeaaeeetaeeareseenneeeenis 169
SOIVETINOPLIONSeevvieeieiieie ettt e ettt sttt et e e eeaesseenseensessaeseeenes 170
SOIVETLAMGETcuviiiiieiieeiie ettt ettt eteeeveestbeeeaseesaaeeavee s ereeennis 171
SOIVETLAMOPLIONSveeeveiieiieie ettt ete st ste et ste st e e steeeseenbeestessaeseensesseenseennes 171
SOIVEILPGEL.....oeiiiiiiiieiie ettt ettt e v e e b e e s tbeeabeeeraeeabeseenneeennis 172
SOIVETLPOPLIONSccuvieeiiiieiieieeiiesiee ettt sttt e e eeaesseenseensessaeseeenes 173

SOIVETOKGEL ... e ee e e neeeeennens 174

Introduction

Using Premium Solver Platform for Mac

Thank you for using Premium Solver Platform Version 10.5, Frontline Systems’
newest and most powerful Solver product for Microsoft Excel for Mac 2011.
Premium Solver Platform is a fully compatible upgrade for the Excel Solver for Mac,
which was developed by Frontline Systems for Microsoft. This Guide covers all the
features of Premium Solver Platform and the four “Solver engines” bundled with it:
the standard LP/Quadratic Solver, standard SOCP Barrier Solver, standard GRG
Nonlinear Solver, and standard Evolutionary Solver.

Note: Premium Solver Platform for Mac requires Excel 2011 to work. It will not
work with Excel for Mac 2008, for example, as Excel for Mac 2008 doesn’t support
either VBA or Apple’s Scripting Bridge technology which are required for Premium
Solver Platform for Mac to work with Excel.

Before reading this User Guide, you may find it helpful to read the Solver-related
topics in the online Help supplied with Microsoft Excel. These topics document the
standard Solver’s features and take you through the basic steps of using the Solver.
We recommend that you try out the standard Solver on at least one problem of your
own, or on one or more of the examples in the SOLVSAMP.XLS workbook which
comes with Microsoft Excel.

This Guide goes well beyond the basics covered in the Microsoft Excel Help system.
Premium Solver Platform can solve far larger versions of the problems handled by
the standard Excel Solver, and new kinds of problems using conic and global
optimization, non-smooth functions, and new types of constraints. And Premium
Solver Platform can analyze and interpret your model in ways not possible with
Microsoft Excel alone. This Guide will help you set up and solve much larger Solver
problems, design your models for the fastest solutions, and understand the results of
analyzing and solving your model — solutions, messages, and reports.

What’s New in Version 10.5

Premium Solver Platform for Mac V10.5 is a major new release, designed to analyze
and solve much larger models, faster than ever before. Version 10.5 is designed to
work specifically with Microsoft Excel for Mac 2011 which re-introduced VBA in
Excel for Mac and also includes Apple’s Scripting Bridge technology, both required
by Premium Solver Platform for Mac.

Solver User Guide

Introduction ¢ 11

Solving Large Scale, Multi-Worksheet Models
Models Defined Across Multiple Worksheets

The Premium Solver Platform V10.5 supports Solver models spread across multiple
worksheets in a workbook. It is not necessary to keep all of your decision variables
and constraint left hand sides on the active worksheet. Yet you can still define a
different Solver model (if desired) on each worksheet — and each of these models can
include variables and constraints on any sheet in the workbook! You can still use the
Load Model and Save Model buttons to create as many sets of model specifications
as you like.

Worksheets of 16K Columns and 1 Million Rows

When used with Excel for Mac 2011, Premium Solver Platform for Mac V10.5
supports worksheets with up to 16,384 columns and 1,048,576 rows — far beyond the
limits of 256 columns and 65,536 rows in previous versions of Excel. This makes it
much easier to lay out your models on a worksheet, without having to split up large
tables of information. Many other limits, such as the maximum length of labels and
formulas, are also greatly increased in Excel for Mac 2011.

Speeding Up Analysis, Solving and Reporting

Many of the built-in Solvers and field-installable Solver Engines in Version 10.5
feature improvements in the speed of solution. But Premium Solver Platform for
Mac V10.5 concentrates on speeding up “end-to-end solution time,” which includes
setup time, report preparation and report generation time.

Reporting Multiple Solutions from Optimization

For global optimization, non-smooth optimization, and mixed-integer programming
problems, the solution process used by most Solver engines finds several candidate
solutions — for example, locally optimal solutions in searching for a globally optimal
solution, or feasible integer solutions with good objective values (“incumbents”) for
an integer programming problem. In Premium Solver Platform for Mac V10.5, the
full range of built-in and plug-in Solver engines support the new Solutions Report,
which lists objective and decision variable values for each of these candidate
solutions (the best solution is ‘plugged in’ to the decision variable cells in your
model, as usual).

Full Model Compatibility Across Platforms

Compatibility with the Standard Excel Solver

Premium Solver Platform for Mac is designed to be fully upward compatible with the
Standard Excel Solver for Mac. Your models and any existing VBA code will work
as-is.

Compatibility with our Windows Products

Models build in Premium Solver Platform for Mac will also work without any
changes in our full line of optimization products for Windows. If you have previously

12 o Introduction

Solver User Guide

built a model in a Windows version or need to share a model you’ve built on a Mac
version you may do either with no changes to the model required.

A Brief Tour of New Features

Premium Solver Platform for Mac provides a wide range of new features for Solver
users, including the ability to solve entirely new kinds of problems vs. the standard
Excel Solver for Mac. This section provides a tour of these new features, with brief
explanations of what they mean for your ability to create models and find optimal
solutions.

Model Analysis: The Polymorphic Spreadsheet
Interpreter

The Excel Solver relies on Microsoft Excel itself to read and analyze (“parse”) the
formulas you enter in spreadsheet cells, and calculate values for (“interpret”) these
formulas whenever the Solver changes values of input cells.

Premium Solver Platform for Mac includes a new Polymorphic Spreadsheet
Interpreter (PSI technology) for Excel formulas, developed by Frontline Systems.
The term “polymorphic” has much the same meaning as it does in programming
languages such as C++ and Java, but for Microsoft Excel formulas. The Interpreter
does much more than simply recalculate values for Excel formulas — it can interpret
the formulas in many other ways that are advantageous for the Solver.

The Interpreter can handle nearly any Microsoft Excel formula syntax, including
array formulas, and almost all of the Excel built-in functions, including the financial,
statistical, and engineering functions in the Analysis Toolkit

Automatic Model Diagnosis

The Polymorphic Spreadsheet Interpreter can diagnose your model by evaluating
your Excel formulas with an ‘overloaded’ type for each cell, operator and function.
It determines which input cells are decision variables, and which are constant in the
model; then it evaluates each arithmetic operation or function in your model to
determine how the formula depends on each decision variable: Whether it is
independent (i.e. constant), linear, quadratic, smooth nonlinear, or non-smooth as a
function of that variable.

This enables the Interpreter to diagnose your model as a linear programming,
quadratic programming, conic programming, smooth nonlinear, or non-smooth
optimization model. Further, you can tell the Interpreter that your goal or intent was
to create (say) a linear model, and the Interpreter will pinpoint the specific cells
containing formulas that create a nonlinear relationship in your model. Similarly, if
you intended to create a smooth nonlinear model, the Interpreter will pinpoint cells
containing non-smooth operations or functions of each decision variable.

The Interpreter can also help diagnose problems of poor scaling in your model: It can
evaluate your formulas while keeping track of the magnitude of each intermediate
result, and pinpoint the formulas that are likely to yield a loss of accuracy due to poor
scaling, that cannot be handled via automatic rescaling in the Solver engines.

Solver User Guide Introduction ¢ 13

Automatic Tests for Convexity

Once your model goes beyond linear programming to include quadratic or nonlinear
functions, it may remain ‘easy’ or it may become very difficult to solve. If your
model is convex, it can be solved quickly and reliably to a globally optimal solution,
even if it grows very large. But if your model is non-convex, you’ll find that Solvers
(of all types) can find only a locally optimal solution, and may even have trouble
finding a feasible solution — and the time taken to find a solution may be so long that
it limits the size of model you can solve. But most users have found it difficult or
impossible to determine whether their nonlinear model is convex.

Premium Solver Platform for Mac V10.5 includes a unique, automatic test for
convexity of your model and its objective and constraints in Excel, based on
pioneering work by Frontline Systems developers. The convexity test is not always
conclusive, because a conclusive test would take time exponential in the number of
variables. But in many cases, with Premium Solver Platform for Mac you can
determine whether your model is convex, and identify specific functions that make
your model non-convex, by pressing a button.

Automatic Transformation of Non-Smooth Models

As described in the chapter “Solver Models and Optimization,” using even one non-
smooth function (such as IF, MIN, MAX, ABS, AND, OR, or NOT, with arguments
that depend on the decision variables) in a model that is otherwise linear (using
functions such as SUM and SUMPRODUCT) changes the model from a linear
programming (LP) problem to a non-smooth optimization (NSP) problem.

Thanks to the Evolutionary Solver in Premium Solver Platform for Mac, you can still
solve such models. But the consequences of such non-smooth functions for the
Solver are considerable: Where an LP can be solved very quickly and reliably up to
very large size, and the solution is basically guaranteed to be optimal, an NSP takes
far more time to solve, requires inherently less reliable methods, and there are no
guarantees as to whether the solution is truly optimal.

In Version 10.5, Premium Solver Platform for Mac can automatically transform
your model, replacing IF, MIN, MAX, ABS, AND, OR, and NOT functions and <=
and >= operators with additional variables and linear constraints that achieve the
same effect, for optimization purposes, as these functions. If all non-smooth
functions in your model can be transformed, the result will be a linear mixed-integer
(LP/MIP) model that can be solved by a variety of Solver engines, from the standard
LP/Quadratic Solver to the Gurobi Solver — giving you a better chance of finding an
optimal solution with certainty, in a reasonable amount of time.

Automatic Differentiation

Most Solvers make heavy use of derivatives or gradients of the problem functions
(the objective and constraints) with respect to the decision variables. Linear
programming algorithms require that derivatives be evaluated once, to obtain the LP
coefficient matrix. Nonlinear optimization algorithms typically require that
derivatives be evaluated many times, once at each major iteration or trial point.
Hence, derivative evaluation is key to both the speed and accuracy of such
optimization algorithms.

The Excel Solver estimates derivative values by the method of finite differencing: It
uses Microsoft Excel itself to recalculate values for the objective and constraints at
the “current point” (i.e. values of the decision variables), and at nearby points with
small changes (“perturbations”) in each decision variable. This process, while often

14 o Introduction

Solver User Guide

adequate, is relatively slow and inaccurate — it takes many recalculations and may
lose significant digits as it performs many division operations.

Premium Solver Platform’s Polymorphic Spreadsheet Interpreter can compute
derivatives directly, by evaluating your Excel formulas with an overloaded ‘gradient’
type for each cell, operator and function, using the methods of automatic differentia-
tion. Analytic formulas for the derivatives are applied to each arithmetic operator
and elementary function, and the chain rule is applied to compute derivatives for
composite functions. Hence, derivative values can be obtained many times faster,
and without any loss of accuracy beyond the actual function values themselves.

The Interpreter goes further to support the new SOCP Barrier Solver, MOSEK
Solver, and KNITRO Solver in Version 10.5: It computes the Hessian (matrix of
second order derivatives) of each problem function using the methods of automatic
differentiation. The method of finite differencing is far too slow and inaccurate for
this purpose — the Polymorphic Spreadsheet Interpreter makes such new methods and
Solver engines practical in Microsoft Excel.

Multistart Methods for Global Optimization

As explained in the chapter “Solver Models and Optimization,” the nonlinear GRG
Solver — like virtually all “classical” nonlinear optimizers — will find only a locally
optimal solution to a non-convex problem. Imagine a graph of the objective function
with “hills” and “valleys:” The GRG Solver will typically find the peak of a hill near
the starting point you specified (if maximizing), but it may not find an even higher
peak on another hill that is far from your starting point. In some problems this is
sufficient, but in other cases you may want to find a globally optimal solution.

With multistart methods in Premium Solver Platform for Mac, the nonlinear GRG
Solver can be automatically run many times from judiciously chosen starting points,
and the best solution found (the “highest peak” if maximizing) will be returned as the
optimal solution. An algorithm called “multi-level single linkage” randomly samples
starting points, collects them into “clusters” that are likely to lead to the same locally
optimal solution, and runs the GRG Solver from a representative point in each
cluster. This process continues until a Bayesian statistical test estimates that all
locally optimal solutions have likely been found. Then the best of these solutions is
returned as the ‘probable globally optimal’ solution.

The Evolutionary Solver

The Evolutionary Solver provides an alternative to multistart methods to seek a
globally optimal solution to a non-convex problem, even if all the problem functions
are smooth. Rather than search in the neighborhood of a single starting point, it
maintains a population of candidate solutions “scattered around the landscape,” and
(based in part on random choices) it will attempt to improve each one.

The Evolutionary Solver is based on the principles of “genetic algorithms” and
“evolutionary algorithms.” In tests on a wide variety of Excel models, it outperforms
competitive products whose main (or only) feature is a genetic algorithm, by finding
better solutions in significantly less time. And the Evolutionary Solver doesn’t
require that you learn new terminology or choose from a variety of complicated
“solving methods.” You just select the Evolutionary Solver engine and click Solve.

A Solver based on genetic or evolutionary algorithms is not a panacea, however.
Unlike the Simplex and GRG Solvers which are deterministic optimization methods,
the Evolutionary Solver is a nondeterministic method: Because it is based partly on

Solver User Guide

Introduction ¢ 15

random choices of trial solutions, by default it will often find a different “best
solution” each time you run it, even if you haven’t changed the model at all. And
unlike the Simplex and GRG Solvers, the Evolutionary Solver has no way of
knowing for certain that a given solution is optimal — even “locally optimal.”
Similarly, the Evolutionary Solver has no way of knowing for certain whether it
should stop, or continue searching for a better solution. With Premium Solver
Platform for Mac, however, you are not limited to a genetic algorithm — you can
apply the most appropriate Solver engine to each problem you encounter.

Hybrid Evolutionary Solver Methods

The Evolutionary Solver in Premium Solver Platform for Mac is actually a hybrid of
genetic and evolutionary algorithms and classical optimization methods, including
gradient-free ‘direct search’ methods, classical gradient-based quasi-Newton
methods, and even the Simplex method for linear subsets of the constraints. The
classical methods sometimes yield rapid “local improvement” of a trial solution, and
they also help to “solve for” sets of constraints. The Evolutionary Solver also
includes new “filtered local search” methods that greatly improve performance on
smooth global optimization problems; and new “integer heuristic” methods from the
local search literature that improve performance on problems with integer variables.

Working with the Polymorphic Spreadsheet Interpreter, the Evolutionary Solver can
automatically apply genetic algorithm methods to the non-smooth parts of a problem,
and apply classical methods to the smooth nonlinear and linear parts of the problem.
The Evolutionary Solver is often able to solve problems with hundreds of constraints,
which are typically beyond the capabilities of genetic and evolutionary algorithms
working alone.

The SOCP Barrier Solver

Premium Solver Platform for Mac Version 10.5 includes a new, built-in Solver
engine, the Standard SOCP Barrier Solver. This Solver finds optimal solutions for
second-order cone programming (SOCP) problems, which are a superset of linear
programming (LP), quadratic programming (QP), and quadratically constrained
programming (QCP) problems, with up to 2,000 decision variables. It supports the
new second order cone (SOC) constraints in Premium Solver Platform for Mac (see
below). To use the SOCP Barrier Solver, you simply select it from the dropdown list
of Solver engines, and click Solve — no changes to your model are necessary.

The term “Barrier” comes from the optimization algorithms used by this Solver
engine. Where the LP/Quadratic Solver uses the Simplex method, augmented for
quadratic objectives, the SOCP Barrier Solver uses a Barrier method, also called an
Interior Point method. Where the Simplex method’s trial solutions are always at
‘corners’ on the surface of the feasible region, the Barrier method’s trial solutions are
always in the interior of the feasible region, until the final steps where the optimal
solution is reached. Where the number of Simplex iterations typically grows with the
number of constraints, the number of Barrier iterations is independent of the number
of constraints, and is usually between 10 and 50 (but the time taken per iteration
grows with problem size).

Second Order Cone Constraints

Premium Solver Platform for Mac Version 10.5 supports a new type of constraint,
called a second-order cone (SOC) constraint. An SOC constraint is created like any
other constraint, by clicking the Add button to display the Add Constraint dialog,

16 e Introduction

Solver User Guide

selecting a range of decision variable cells for the Cell Reference or left hand side,
and selecting soc or src (rotated second order cone) from the Relation dropdown list.
This specifies that the vector formed by the n decision variables must lie in the
second order cone (also called the Lorentz cone or “ice cream” cone) of dimension 7.

A linear programming problem plus one or more SOC constraints defines a second
order cone programming (SOCP) problem. All “ordinary” non-negative decision
variables also belong to a cone, called the non-negative orthant — hence a linear
programming (LP) problem is a special case of a conic programming problem, where
the only cone constraint is non-negativity. Second order cone programming is the
natural generalization of linear programming: It includes all quadratic program-
ming (QP) and quadratically constrained programming (QCP) problems, and many
other problems in quantitative finance and engineering design. SOCP problems are
always convex, and they can be solved quickly and reliably to very large size.

Since the Polymorphic Spreadsheet Interpreter in Premium Solver Platform for Mac
supports second order cone constraints, SOCP problems can be solved by either
special-purpose, high-performance Solvers (the SOCP Barrier Solver and MOSEK
Solver), or by general-purpose nonlinear Solvers such as the standard GRG Solver,
the Large-Scale GRG and SQP Solvers, and the KNITRO Solver engine.

Alldifferent Constraints

At times, you’ll encounter a problem where you want to specify that a set of integer
variables (typically representing an ordering of choices) must all be different at the
solution. An example is the Traveling Salesman Problem (TSP), where a salesman
must choose the order of cities to visit so as to minimize travel time, and each city
must be visited exactly once. This condition is difficult to model using conventional
constraints and integer variables.

In Premium Solver Platform for Mac, you can specify directly that a set of variables
must be “alldifferent.” Such variables will then have integer values from 1 to N (the
number of variables), all of them different at the solution. All of the bundled Solver
engines support this new type of constraint: The Branch & Bound method used by
the Simplex LP (or LP/Quadratic), SOCP Barrier, nonlinear GRG, and the
Evolutionary Solver implements these constraints using mutation and crossover
operators for permutations. Field-installable Solver engines also support the
alldifferent constraint, implementing it in different ways. This allows you to model
your problem in a high-level way, and try a variety of Solver engines to see which
one yields the best performance on your problem.

New Types of Reports

The standard Excel Solver offers six types of reports — the Answer Report,
Sensitivity Report, Limits Report, Linearity Report, Feasibility Report, and
Population Report. In addition to these reports, Premium solver Platform for Mac
also includes Block Selection and Comments, Solutions Report, Scaling Report,
Structure/Convexity Report, and Transformation Report. You can also select
automatic outlining for the first six reports, which will organize the variables and
constraints into outlined groups corresponding to the blocks you entered in the Solver
Parameters dialog. You can identify each block of variables and constraints with
descriptive comments. This can make it much easier to find the information you need
in the reports, for models with hundreds or thousands of variables and constraints.

Solver User Guide

Introduction ¢ 17

Feasibility, and Population Reports

When you receive the message that “Solver could not find a feasible solution,” this
often means that you’ve made a mistake entering some constraint, such as using a >=
relation when you meant <=. But it can be difficult to pinpoint the source of the
error, especially if you have hundreds or thousands of constraints to examine. With
Premium Solver Platform For Mac, you can produce a Feasibility Report and let the
Solver do the work. It will automatically re-solve the problem with subsets of the
original constraints, until it isolates a subset of constraints (called an “Irreducibly
Infeasible System” or IIS) which is infeasible, but which becomes feasible if any one
of the constraints is removed. By examining just the constraints in the Feasibility
Report, you can usually pinpoint the problem with your model very quickly.

When the Evolutionary Solver stops with a “best solution,” you have the option of
producing a standard Answer Report and/or a new Population Report. Where the
Answer Report gives you detailed information about the single “best solution”
returned by the Solver, the Population Report gives you summary information about
the entire population of candidate solutions at the end of the solution process. The
Population Report can give you insight into the performance of the Evolutionary
Solver as well as the characteristics of your model, and help you decide whether
additional runs of the Evolutionary Solver are likely to yield even better solutions.

Solutions, Scaling, Structure, and Transformation Reports

The Solutions Report gives you objective function and decision variable values for a
number of alternative solutions found during the optimization process. For mixed-
integer problems, the report shows each ‘incumbent’ or feasible integer solution
found by the Branch & Bound method. For global optimization problems solved
with the GRG, LSGRG, LSSQP, and KNITRO Solver engines, the report shows each
locally optimal solution found by the Multistart method. For the Evolutionary and
OptQuest Solvers, the report shows members of the final population of solutions.

Using Premium Solver Platform for Mac’s new Solver Model dialog, which controls
the Polymorphic Spreadsheet Interpreter, you can diagnose and transform your model
before you solve it, produce the Structure Report to pinpoint problems in your model,
and produce the Transformation Report to show how certain problematic functions
were automatically replaced with “better” functions.

For the Structure Report, you simply select the type of model you meant to create —
linear, quadratic, smooth nonlinear, or non-smooth — and ask the Solver to report any
exceptions to this desired model type. The Structure Report is both more useful and
more reliable than the Linearity Report, because it evaluates your model symbolically
rather than numerically (so it cannot be “fooled” by poorly scaled models), and it can
pinpoint not just overall constraints and variables, but individual cell formulas where
the dependence of constraints on variables is nonlinear (if your assumed model is an
LP) or non-smooth (if your assumed model is an NLP). These cell formulas are
reported as “exceptions” in the Structure Report, with hyperlinks to the actual cells
containing the formulas in question. In Premium Solver Platform for Mac, the
Structure Report also tells you whether your objective and each constraint are convex
or non-convex functions, when you ask the Interpreter to check the model for
convexity.

The Transformation Report in Premium Solver Platform for Mac can be produced
when you ask the Interpreter to automatically transform your model to replace non-
smooth functions such as IF, MIN, MAX, ABS, AND, OR, or NOT with additional
variables and linear constraints that have the same effect as the replaced functions.
This report lists the new variables and constraints that are added to your model by the

18 e Introduction

Solver User Guide

transformation process. See the chapter “Analyzing and Solving Models” for more
details.

The Scaling Report can be available when the Polymorphic Spreadsheet Interpreter
evaluates all Excel formulas in your model while keeping track of the magnitudes or
scales of intermediate results, and reports cases that may lead to a loss of accuracy.

User Interface Improvements

User interface for Premium Solver Platform for Mac is designed to give you more
information, help you move more quickly through the Solver dialogs, and accomplish
what you want in fewer steps.

Have you ever wondered whether your model was truly linear or smooth nonlinear,
or (if it wasn’t) exactly which formulas caused the model to be nonlinear or non-
smooth? Or — having learned about how the large-scale Solver engines exploit
sparsity in a model — have you wondered just how sparse your model actually is, or
whether it could be solved faster — for example, by the Evolutionary Solver — by
exploiting linear constraints or linearly occurring variables wherever possible? The
Solver Model dialog in Premium Solver Platform for Mac gives you answers to all
these questions.

Have you ever wondered about the size of the problem you’ve defined, and whether
it’s getting close to the size limits supported by a given Solver engine? In Premium
Solver Platform For Mac, you can examine the number of variables, constraints,
variable bounds and integer variables in your problem and the corresponding size
limits at any time, by displaying the Problem tab in the Solver Options dialog
available for each external Solver engine.

Have you ever had trouble remembering the purpose of a block of constraints in your
model? In Premium Solver Platform for Mac, you can add descriptive comments to
each block, which will appear in each of the Solver’s reports.

Have you ever wanted to see more of the constraints at one time in the Constraints
List box in the Solver Parameters dialog? In Premium Solver Platform for Mac,
simply use your mouse to resize this dialog like any other window — as shown in the
example on the next page.

Solver User Guide

Introduction ¢ 19

Ml Premium Solver Platform

| —
| Add

|

|

§D318(Max)

Variables [Change]
M 5D59:5F50 [?]

Constraints i
Normal

B(E:csu:scns <= $B511:$B515 [7“5&“,]
M D9:5F$9 >= 0 Load/Save

Conic
Integer
Model
[IMake Unconstrained Variables Non-MNegative
Select a Solving Method: Standard LP/Quadratic ﬂ Options

Solving Methed

Select the GRG Nonlinear engine for Solver problems that are smooth
' nonlinear. Select the LP/Quadratic engine for linear Solver problems, the
! Evolutionary engine for non-smooth preblems, and the SOCP Barrier engine
| for conic problems.
|

[Solve J [Close J

If you solve an integer problem and find that there is no feasible solution, the Solver
Results dialog provides an option to immediately solve the “relaxation,” temporarily
ignoring the integer constraints. And if there is still no feasible solution, you’ll have
the option to create a Feasibility Report, to find out why.

Have you ever found it difficult to enter all of your variables (Changing Cells) via a
multiple selection in the single edit box provided by the standard Solver? Premium
Solver Platform for Mac allows you to enter and modify an unlimited number of
variable selections.

Finally, Premium Solver Platform for Mac provides access to algorithmic methods
and tolerances used in each of the bundled Solver engines. By simply clicking on
check boxes and radio buttons, or entering values in edit boxes in the Solver Options
dialogs, you can control key tolerances in the Simplex method, stopping conditions
for the nonlinear GRG Solver, the number of sub-problems and integer solutions to
be explored by the Branch & Bound method, the population size, mutation rate, and
other options for the Evolutionary Solver, and interior point methods and tolerances
used by the SOCP Barrier Solver.

Speed Improvements

Premium Solver Platform for Mac offers a range of speed and accuracy
improvements over the standard Excel Solver. Premium Solver Platform realizes a
whole new level of speed and accuracy, compared to Excel Solver thanks to model
analysis and automatic differentiation performed by the new Polymorphic
Spreadsheet Interpreter.

20 e Introduction

Solver User Guide

Premium Solver Platform for Mac

In Premium Solver Platform for Mac, fast problem setup is still available for LP and
QP models in restricted format, but the Polymorphic Spreadsheet Interpreter can
speed up problem setup for virtually all models, regardless of the Excel formulas and
functions they use.

The Polymorphic Spreadsheet Interpreter also greatly speeds up the solution process.
Although solution times vary from model to model, on a comparative test of actual
user LP models, Premium Solver Platform for Mac was up to 20 times faster than the
Excel Solver on average. And with the Interpreter’s automatic differentiation
facilities, on a comparative test of actual user NLP models, Premium Solver Platform
was seven to 15 times faster than the Excel Solver on average!

On LP/MIP models, speedups are even more dramatic, thanks to powerful branching
and cut generation methods in Premium Solver Platform’s LP/Quadratic Solver.
Although solution times vary greatly, hundreds of times faster than the standard
Excel Solver would not be unusual.

Even more dramatic is the effect of the SOCP Barrier Solver in Premium Solver
Platform for Mac Version 10.5 on problems with quadratic constraints that formerly
required the GRG Nonlinear Solver, and on problems with second order cone
constraints that could only be expressed with nonlinear analytic formulas previously:
The SOCP Barrier Solver solves these nonlinear problems nearly as fast as linear
problems of equivalent size!

Programmability Improvements

Premium Solver Platform for Mac is fully programmable from Excel’s Visual Basic
Application Edition. This means that you can build an application using the GRG
Nonlinear Solver, Simplex LP (or LP/Quadratic) Solver, Evolutionary Solver, SOCP
Barrier Solver, or a field-installable Solver engine, hide Premium Solver Platform
user interface, and present your own customized user interface for your end users.

A complete summary of the VBA functions supported by both the standard Excel
Solver and Premium Solver Platform For Mac is included in this Guide.

Premium Solver Platform for Mac also provide programmatic access to new features
such as the Variables list, the Solver Model dialog, the seven new types of reports,
report outlining, and new options in the Solver Options dialogs for all Solver engines.
Since the programmatic interface is upward compatible with the standard Excel
Solver, you can use your existing VBA code, and extend it as much as you wish to
utilize the new Premium Solver features.

How to Use This Guide

“Installation” takes you through the simple steps required to install Premium Solver
Platform for Mac to work with your copy of Microsoft Excel. In Premium Solver
Platform for Mac, installation and licensing is easier and more flexible than ever:
You can install Premium Solver Platform for Mac without first installing the standard
Excel Solver, share a Flexible Use license over a network, and add new license codes
in Excel while the Solver is running, without re-running the Setup program.

“Solver Models and Optimization” — reviews the basic framework of the optimization
problems that can be handled by the Solver, from linear programming problems to
the non-smooth optimization problems handled by the Evolutionary Solver, and the
use of new cone constraints and alldifferent constraints. It describes how a model is

Solver User Guide

Introduction ¢ 21

made up of variables, constraints and an objective, and it covers the major types of
optimization problems that you can solve — including convex and non-convex
problems — and the tradeoffs involved.

“Building Solver Models” — provides an introduction to the art of building
optimization models in Microsoft Excel, translating from algebraic notation to
spreadsheet formulas and Solver Parameters dialog choices. It covers multiple
selections for decision variables, use of the new Variables button, the possible forms
of constraint left- and right-hand sides, use of the soc and src dropdowns for cone
constraints, and use of the dif dropdown for alldifferent constraints. It also provides
hints on how to build more readable, better-documented models, such as layout and
formatting and use of defined names. It also describes models with variables and
constraints spread across multiple worksheets.

“Analyzing and Solving Models” — describes how to use the new Solver Model
dialog to analyze your model for linear, quadratic, smooth nonlinear, and non-smooth
constraints and decision variables, automatically transform your model to replace
non-smooth functions with additional variables and linear constraints, automatically
find nonlinear or non-smooth formulas that are “exceptions” to your desired model
type, and control the operation of the Polymorphic Spreadsheet Interpreter when your
model is solved.

“Building Large-Scale Models” — provides a number of valuable hints when building
large-scale spreadsheet models and using external data sources. It describes
modeling techniques such as ratio constraints, fixed-charge constraints, either-or
constraints, constraints for IF functions, piecewise linear constraints, and more.

“Diagnosing Solver Results” — helps you determine what is wrong if you don’t get
the solution you expect from the Solver, or if you encounter a message other than
“Solver found a solution.” It outlines the most common problems that users have,
based on our technical support experience with the Solver. This chapter covers in
some detail the strengths and limitations of the GRG Solver for smooth nonlinear
problems, the multistart methods,, the Evolutionary Solver for non-smooth problems,
and Simplex versus interior point methods for linear, quadratic, and conic
optimization problems. It also provides hints on “what to do next” when you have a
solution.

“Solver Options” — documents in depth the advanced options and tolerances used by
each of the bundled Solver engines — including the new SOCP Barrier Solver — which
can be set using new multi-tabbed Solver Options dialogs. The effect of each option
and situations where you would likely choose it are described.

“Solver Reports” — describes the contents of reports that may be chosen from the
Solver Results dialog. It shows you how to interpret the numbers in the reports, and
how to use the Sensitivity Report to predict changes in the optimal solution in
response to certain kinds of changes in your input data. This chapter also provides a
detailed look at the new Population Report, Feasibility Report and the new Solutions
Report, Scaling Report, Structure Report, and Transformation Report in Premium
Solver Platform for Mac.

“Using VBA Functions” — describes how you can control the Solver using the VBA
functions, upward compatible from the standard Excel Solver.

Using Online Help

The enhanced Help system included with Premium Solver Platform for Mac gives
you online access to much of the information in this Guide. To access this

22 e Introduction Solver User Guide

information, from within Premium Solver Platform just click on the Help menu item
and you will see a drop down menu with available help resources.

Help
Search

Premium Solver Platform Help

License Code
Examples

Support Online
Video Demos Online
Turtorial Online

If you’re just getting started with Premium Solver Platform for Mac, we highly
recommend that you click the “Examples” link, which will open the
OptimizationExamples.xIsm workbook that is installed with the other Solver files.
This workbook contains seven worksheets with examples illustrating many new
Premium Solver Platform for Mac features, including conic optimization and
automatic transformation of a model with IF functions into an equivalent model with
integer variables and linear constraints.

Clicking the Support Online menu item will open a Web browser to our main
Solutions page on www.solver.com, where you can download a series of additional
example workbooks in Finance, Investment, Production, Distribution, Purchasing,
and Scheduling. Clicking the Tutorial Online link will open a Web browser to the
start of our highly regarded online tutorial about optimization.

You’ll find a wealth of other useful information about the standard Solver and
Premium Solver Platform For Mac at Frontline Systems’ Web site, www.solver.com.
Since Solver.com is frequently updated, you’ll want to check it periodically for the
latest news about the Solver.

If you have questions, check the Index in this Guide or in the online Help system.
You can also submit questions via the Contact Us page on Solver.com, or send email
to info@solver.com.

Solver-Related Seminars and Books

Although this Guide will provide many valuable hints for making effective use of the
Solver, it does not attempt to teach you how to formulate Solver models or apply
linear and quadratic programming, smooth nonlinear and non-smooth optimization,
or integer programming techniques. To make the most of the Solver, we strongly
recommend that you consult one of the books cited below, or discuss your problem
with someone in your firm or at your local university with a background in operations
research and/or management science. There is a vast literature on problems of
various types and for various industries and business situations that have been solved
successfully with the methods available in the Solver. Don’t reinvent the wheel —
find out how others have solved problems similar to yours!

You may also want to attend a public seminar on spreadsheet optimization and other
advanced techniques in Excel. Because of the popularity of the Excel Solver,
seminars taught by highly regarded instructors are offered in a variety of U.S. cities
and other parts of the world. For the latest information on these seminars, visit
www.solver.com or contact us at info@solver.com.

Solver User Guide

Introduction ¢ 23

The Art of Modeling with Spreadsheets: Management Science, Spreadsheet
Engineering, and Modeling Craft by Stephen G. Powell and Kenneth R. Baker,
published by John Wiley & Sons, ISBN 978-0-470-53067-2. This new textbook is a
valuable aid for anyone using Premium Solver Platform, especially for users building
large-scale models. Unlike any other current textbook, this book teaches you “best
practices” in modeling and spreadsheet engineering, as well as techniques of linear
and nonlinear optimization, Monte Carlo simulation, and data analysis using Excel.
Risk Solver Platform for Education for Windows is included free as a download with
this book..

Spreadsheet Modeling and Decision Analysis: A Practical Introduction to
Management Science, 6" Edition by CIiff T. Ragsdale, published by South-Western
College Publishing, ISBN 0-538-74631-9. This book, a favorite in new MBA
courses on management science and decision analysis, features an in-depth tutorial
treatment of optimization, simulation, decision analysis, queuing models, and
forecasting. This textbook also includes Risk Solver Platform for Education which is
included as a free download with this book.

Academic References for Premium Solver Platform

The following academic journal articles, written by the developers of the Excel
Solver, Premium Solver and Premium Solver Platform, describe many of the
algorithms and technical methods used in these products. The first article describes
the design of the original Excel Solver. You can download PDF versions of the first
three articles at http://www.solver.com/academic.htm:

D. Fylstra, L. Lasdon, J. Watson and A. Waren. Design and Use of the Microsoft
Excel Solver. INFORMS Interfaces 28:5 (Sept-Oct 1998), pp. 29-55.

I. Nenov and D. Fylstra. Interval Methods for Accelerated Global Search in the
Microsoft Excel Solver. Reliable Computing 9 (2003): pp. 143—159.

D. Fylstra, “Introducing Convex and Conic Optimization for the Quantitative Finance
Professional,” Wilmott Magazine (March 2005), pp. 18-22.

For a technical description of the nonlinear GRG solver included with the standard
Microsoft Excel Solver and Premium Solver, please consult the following:

L.S. Lasdon, A. Waren, A. Jain and M. Ratner. Design and Testing of a Generalized
Reduced Gradient Code for Nonlinear Programming. ACM Transactions on
Mathematical Software 4:1 (1978), pp. 34-50.

L.S. Lasdon and S. Smith. Solving Sparse Nonlinear Programs Using GRG.
INFORMS Journal on Computing 4:1 (1992), pp. 2-15.

24 e Introduction Solver User Guide

Installation and Licensing

What You Need

In order to install Premium Solver Platform V10.5, you must have first installed
Excel for Mac 2011.1t is not necessary to have the standard Excel Solver installed.

Premium Solver Platform will run on the same hardware and system software
configuration that you’ve used to run Microsoft Excel. If you try to solve very large
models, however, performance may depend on the amount of main memory (RAM)
in your system. Large models with many integer constraints can take substantially
more time to solve, and require more memory than models without such constraints.
Use of the Polymorphic Spreadsheet Interpreter in Premium Solver Platform may
also require considerable memory. Steps you can take to improve performance are
outlined in the chapter “Building Large-Scale Models.”

Installing the Software

Installing Premium Solver Platform or Premium Solver is a straightforward process.
The Premium Solver Platform installer package, which contains all of the Solver files
in compressed form, will guide you through the steps involved.

To begin the installation, insert the Frontline Systems CD or other media into your
CD or disk drive. Double click on the Premium Solver Platform package on the CD
to start the installation program.

A dialog box like the one shown on the next page should appear:

Solver User Guide Installation and Licensing ¢ 25

ano '« Install Premium Solver Platform

Welcome to the Premium Solver Platform Installer

© Introduction This program installs Premium Solver Platform for
® License Microsoft Excel 2011.
® Destination Select Premium Solver Platform, from Frontline Systems, can

automatically adjust multiple input cells representing
decisions in your Excel model, to maximize an objective such
® Installation as profit, or minimize cost or risk, while satisfying constraints
on the computed values of other cells.

@ Installation Type

® Summary

Go Back [Continue)

A

Press ENTER or click Continue to proceed.

After agreeing with the license agreement, the program will show a dialog like the
one below, where you can select or confirm the folder to which files will be copied.
We recommend that you simply click Install.

800 ‘o Install Premium Solver Platform

Standard Install on “Macintosh HD”

© Introduction
© License This will take 14.4 MB of space on your computer.

© Destination Select Click Install to perform a standard installation of

@ Installation Type this software on the disk "Macintosh HD".

@ Installation

® Summary

(Change Install Location...

(GoBack) { Install)

|

When the installation is complete, you’ll see a dialog box like the one on the next
page.

26 e Installation and Licensing Solver User Guide

YeYs = Install Premium Solver Platform

The installation was completed successfully.

© Introduction In Excel, go to Tools-Addins, and choose "Select...” to
browse to the location where Premium Solver Platform is
installed (typically Applications/Premium Solver Platform), and
© Destination Select open the PSP.xlam file.

O License

© Installation Type Visit www.solver.com/mac for more information on the

@ Installation Solver for Microsoft Excel 2011.

& Summary

Be sure to read any special messages in the final dialog box(es) — they may give you
important hints about new developments since this User Guide was updated. Then
press ENTER or click Close. Premium Solver Platform V10.5 is now installed. Run
Microsoft Excel, choose Tools Addins, press Select and choose Psp.xlam from the
folder where the Solver was installed (Typically Applications\Premium Solver
Platform). Them, go to Tools-Premium Solver... to display the new Solver
Parameters dialog. Initially, the Solver engine dropdown list will contain the names
of the four built-in Version 10.5 Solver engines. If you install additional Solver
engines V10.5, they will also appear in this dropdown list.

Uninstalling the Software

To uninstall or remove any of Premium Solver Platform For Mac, go to Tools-
Addins in Excel, and unselect Psp.xlam. Then simply drag the Applications\Premium
Solver Platform folder into your trash can.

Licensing the Software

A license is a grant of rights, from Frontline Systems to you, to use our software in
specified ways. Information about a license is encoded in a license code. Several
types of licenses are available for both Premium Solver Platform for Mac and the
field-installable Solver engines.

Frontline offers two basic types of licenses for development of your model and
application: Standalone Licenses and Flexible Use (often called “Concurrent™)
Licenses. A Standalone License enables use on a single PC; a Flexible Use License
enables shared use among several PCs on a network. The “Software License and
Limited Warranty” section in the front of this User Guide describes the details of
these licenses. Other types of licenses are available for runtime use: See the
discussion on www.solver.com, then contact Frontline Systems for advice on license
types best suited for your situation.

Solver User Guide

Installation and Licensing ¢ 27

You can evaluate Premium Solver Platform for Mac free of charge for a limited
period — typically 15 days — using a special trial license code that is copied to your
Mac by the setup program. To obtain license codes that enable use of Premium
Solver Platform for longer periods of time or on a permanent basis, please contact
Frontline Systems at (775) 831-0300 or info@solver.com.

If your trial or time-limited license code is expired, or if some other licensing
problem was detected, you’ll see a dialog box like the one below when you first
select Tools Premium Solver... You can display this dialog at any time by clicking
the Help —License Code menu item when the Solver Parameters dialog is visible.

Enter License or Activation Code

Current License 5tatus:

A permanent license for Premium Solver Platform is installed.

Activation Code:

If you have received an activation code, enter it here to activate your
license. We recommend that you select the whole activation code string.

3 -C to copy, then click in the edit box below and 3-V to paste. Then click
the OK button.

If you have purchased, but do not have your license code, you can press
Email Lock Code, to receive a license code.

Lock code: 001lec2036a0b | Email Lock Code |

License code:

If you have received a license code via email, after sending Frontline the
above lock code, you can enter it here. We recommend that you select the
whole license code string. 26-C to copy, then click in the edit box below
and #-V to paste. Then click the QK button.

Frontline Systems, Inc. Email info@solver.com
Incline Village, Mevada, US Tel +1 (775) 831-0300 x2

[oK JL Cancel J

Click the Cancel button to return or continue to the Solver Parameters dialog; you
will be able to create or edit a Solver model using the Add, Change and Delete
buttons, but if your trial license is expired, you’ll receive a licensing error message if
you click the Solve button or the Check Model button in the Solver Model dialog.

If you have received an activation code or license code from Frontline Systems, you
can enter it in the dialog, and press OK. The license file on your machine will be
updated, and take effect next time you go to Tools-Premium Solver.

If you have received no code, you can email the displayed lock code to
info@solver.com, to receive either an activation code or license code.

If you are unable to add the license code using the Enter License Code dialog box,
you can use NotePad or WordPad to edit the file Solver.lic (it is a plain ASCII text

28 e Installation and Licensing

Solver User Guide

file), and append the license code to the end of the file. The Solver.lic file is located
in the Package Contents, of the Premium Solver, under MacOS.

If you’re just getting started with Premium Solver Platform, the initial Help menu is a
great place to start. We highly recommend that you click the Examples menu item ,
which will open the OptimiztionExamples.xIsm workbook that is installed with the
other Solver files. You can also click the Support Online menu or the Tutorial
Online menu, which will open a Web browser to additional examples or our tutorial
on www.solver.com.

Installing Solver Engines

To install additional Solver engines, you’ll follow steps similar to those outlined
above for the Premium Solver Platform for Mac, but you’ll be running the Engines
package install program.

You can evaluate any or all of the field-installable Solver engines free of charge for a
limited period — typically 15 days — using a special trial license code that is copied to
your PC by the EngineSetup program. (This 15-day period runs independently from
any evaluation period for Premium Solver Platform for Mac.) To obtain license
codes that enable use of a specific Solver engine for longer periods of time or on a
permanent basis, please contact Frontline Systems at (775) 831-0300 or
info@solver.com.

After you press ENTER or click Close in the final Engine install dialog box, your
Solver engine is installed and ready to use. Simply run Microsoft Excel and choose
Tools Premium Solver... to display the Solver Parameters dialog. Then open the
Solver engine dropdown list — the name of your new Solver engine should appear in
the list. Click the Options button to display a Solver Options dialog for your new
Solver engine.

You can enter a new license code for a Solver engine just as described above for
Premium Solver Platform for Mac: Click the Help License Code menu item.

Solver User Guide

Installation and Licensing ¢ 29

Solver Models and Optimization

Introduction

This chapter explains the principles behind spreadsheet Solvers, including the types
of problems you can solve, types of constraints (regular, integer, conic, alldifferent)
you can specify, the nature of linear, quadratic and nonlinear functions, convex and
non-convex functions, smooth and non-smooth functions, and the algorithms and
methods used by Premium Solver Platform for Mac and field-installable Solver
engines.

If you are just starting out with the Solver, you may find it helpful to read the first
section below, “Elements of Solver Models,” and then proceed to the next chapter,
“Building Solver Models,” for a hands-on example. If you have been using the
Solver for a while, and you’d like a more in-depth review of the mathematical
relationships found in Solver models, and the optimization methods and algorithms
used by the Solver, read the later, more advanced sections of this chapter. We
recommend that even experienced users read the new sections on convex and conic
optimization in this chapter.

Elements of Solver Models

The basic purpose of the Solver is to find a solution — that is, values for the variables
or Changing Cells in your model — that satisfies the constraints and that maximizes or
minimizes the objective or Set Cell value (if there is one). Let’s examine this
framework more closely.

The model you create for use with the Solver is no different from any other
spreadsheet model. It consists of input values; formulas that calculate values based
on the input values or on other formulas; and other elements such as formatting. You
can practice “what if” with a Solver model just as easily as with any other spread-
sheet model. This familiar concept can be very useful when you wish to present your
results to managers or clients, who are usually “spreadsheet literate” even if they are
unfamiliar with Solvers or optimization.

Decision Variables and Parameters

Some of the input values may be fixed numbers, which you cannot change in the
course of finding a solution — for example, prevailing interest rates or supplier’s
prices. We’ll call these values parameters of the model. Often you will have several

30 e Solver Models and Optimization Solver User Guide

99 <

“cases,” “scenarios,” or variations of the same problem to solve, and the parameter
values will change in each problem variation. Such parameter values may be
conveniently captured using the Excel Scenario Manager. But the parameter values
will be fixed numbers for any given run of the Solver.

Other input values may be quantities that are variable, or under your control in the
course of finding a solution. We’ll refer to these as the variables, decision variables,
or Changing Cells. The Solver will find optimal values for these variables or cells.
Often, some of the same cell values you use to play “what if”” are the ones for which
you’ll want the Solver to find solution values. These cells are listed in the By
Changing Variable Cells edit box of the Solver Parameters dialog.

The Objective Function

The quantity you want to maximize or minimize is called the objective function or
Set Cell. This cell is listed in the Set Cell edit box of the Solver Parameters dialog.
For example, this could be a calculated value for projected profits (to be maximized),
or costs, risk, or error values (to be minimized).

You may have a Solver model that has nothing to maximize or minimize, in which
case the Set Cell edit box will be blank. In this situation the Solver will simply find a
solution that satisfies the constraints. Typically this will be only one of (infinitely)
many such solutions, located close to the starting values of the decision variables.

The Excel Solver also permits you to enter a specific value that you want the
objective function or Set Cell to achieve. This feature was included for compatibility
with the Goal Seek... command in Excel, which allows you to seek a specific value
for a cell by adjusting the value of one other cell on which it depends. In fact,
entering a specific value for the Solver’s Set Cell is exactly the same as leaving the
Set Cell blank and entering an equality constraint for the Set Cell in the Constraint
List Box.

There is rarely a good reason to use the Set Cell Value of edit box in the Solver
Parameters dialog. If your problem requires only a single Set Cell value and a single
variable or Changing Cell with no constraints, you can just use the Goal Seek...
command. If you have nothing to maximize or minimize, we recommend that you
leave the Set Cell blank and enter all of your constraints in the Constraint List Box.

Constraints

Constraints are relations such as A1 >= 0. A constraint is satisfied if the condition it
specifies is true within a small tolerance. This is a little different from a logical
formula such as =A1>=0 evaluating to TRUE or FALSE which you might enter in a
cell. In this example, if A1 were -0.0000001, the logical formula would evaluate to
FALSE, but with the default Solver Precision setting, the constraint would be
satisfied. Because of the numerical methods used to find solutions to Solver models
and the finite precision of computer arithmetic, it would be unrealistic to require that
constraints like A1 >= 0 be satisfied exactly — such solutions would rarely be found.

In the Excel Solver, constraints are specified by giving a cell reference such as Al or
A1:A5 (the “left hand side”), a relation (<=, = or >=), and an expression for the
“right hand side.” Although Excel allows you to enter any numeric expression on the
right hand side, for reasons that will be explained in the chapter “Building Large-
Scale Models,” we strongly encourage you to use only constants, or references to
cells that contain constant values on the right hand side. (A constant value to the
Solver is any value that does not depend on any of the decision variables.)

Solver User Guide

Solver Models and Optimization ¢ 31

A constraint such as A1:A5 <= 10 is shorthand for A1 <= 10, A2 <= 10, A3 <= 10,
A4 <=10, A5 <=10. A constraint such as A1:A5 <= B1:B5 is shorthand for Al <=
Bl1, A2 <= B2, A3 <= B3, A4 <= B4, A5 <=BS5.

Another type of constraint is of the form A1:A5 = integer, where A1:AS5 are decision
variables. This specifies that the solution values for A1 through AS must be integers
or whole numbers, such as -1, 0 or 2, fo within a small tolerance. This form of
constraint, and related forms such as A1:A5 = binary and A1:AS = alldifferent, are
explored in the next section.

A new type of constraint supported by Premium Solver Platform for Mac is of the
form A1:A5 = conic, where A1:A5 are decision variables. This is called a second
order cone constraint and is further described in the next section.

Solutions: Feasible, “Good” and Optimal

A solution (set of values for the decision variables) for which all of the constraints in
the Solver model are satisfied is called a feasible solution. In some problems, a
feasible solution is already known; in others, finding a feasible solution may be the
hardest part of the problem.

An optimal solution is a feasible solution where the objective function reaches its
maximum (or minimum) value — for example, the most profit or the least cost. A
globally optimal solution is one where there are no other feasible solutions with
better objective function values. A locally optimal solution is one where there are no
other feasible solutions “in the vicinity” with better objective function values — you
can picture this as a point at the top of a “peak” or at the bottom of a “valley” which
may be formed by the objective function and/or the constraints.

The Solver is designed to find feasible and optimal solutions. In the best case, it will
find the globally optimal solution — but this is not always possible. In other cases, it
will find a locally optimal solution, and in still others, it will stop after a certain
amount of time with the best solution it has found so far. But like many users, you
may decide that it’s most important to find a good solution — one that is better than
the solution, or set of choices, you are using now.

The kind of solution the Solver can find depends on the nature of the mathematical
relationships between the variables and the objective function and constraints (and
the solution algorithm used). As explained below, if your model is smooth convex,
you can expect to find a globally optimal solution; if it is smooth but non-convex,
you will usually be able to find a locally optimal solution; if it is non-smooth, you
may have to settle for a “good” solution that may or may not be optimal.

Below, we summarize the capabilities of the five Solver engines bundled with
Premium Solver Platform for Mac: the LP/Quadratic Solver, SOCP Barrier Solver,
nonlinear GRG Solver, and Evolutionary Solver. Later sections of this chapter
provide an overview of the optimization methods and algorithms employed by each
of these Solver engines.

LP/Quadratic Solver

The LP/Quadratic Solver finds optimal solutions to problems where the objective and
constraints are all linear functions of the variables. (The term linear function is
explained below, but you can imagine its graph as a straight line.) Since all linear
functions are convex, the Solver normally can find the globally optimal solution, if
one exists. Because a linear function (a straight line) can always be increased or
decreased without limit, the optimal solution is always determined by the constraints;
there is no natural “peak” or “valley” for the objective function itself.

32 e Solver Models and Optimization Solver User Guide

This Solver handles problems where the constraints are all linear, and the objective
may be linear or quadratic (explained further below). If the quadratic objective
function is convex (if minimizing, or concave if maximizing) the Solver will
normally find a globally optimal solution. If the objective is non-convex (further
explained below), the Solver will find only a locally optimal solution.

SOCP Barrier Solver

The SOCP Barrier Solver in Premium Solver Platform for Mac finds optimal
solutions to problems where the objective and constraints are all linear or convex
quadratic functions of the variables. (This is in contrast to the LP/Quadratic Solver,
which permits only the objective function to be quadratic.) It also finds optimal
solutions to problems with a linear objective, linear constraints, and second order
cone (SOC) constraints; this is called a second order cone programming (SOCP)
problem, as explained further below. Since all linear functions and SOC constraints
are convex, the SOCP Barrier Solver normally finds a globally optimal solution, if
one exists.

Nonlinear GRG Solver

The nonlinear GRG Solver finds optimal solutions to problems where the objective
and constraints are all smooth (convex or non-convex) functions of the variables.
(The term smooth function is explained below, but you can imagine a graph —
whether straight or curved — that contains no “breaks.”) For non-convex problems,
the Solver normally can find a locally optimal solution, if one exists — but this may or
may not be the globally optimal solution. A nonlinear objective function can have a
natural “peak” or “valley,” but in most problems the optimal solution is partly or
wholly determined by the constraints. The nonlinear GRG Solver can be used on
problems with all-linear functions, but it is much less effective and efficient than the
LP/Quadratic Solver or the SOCP Barrier Solver on such problems.

If you use multistart methods for global optimization with the nonlinear GRG Solver,
you will have a better chance (but not a guarantee) of finding the globally optimal
solution. The idea behind multistart methods is to automatically start the Solver from
a variety of starting points, to find the best of the locally optimal solutions — ideally
the globally optimal solution. These methods are more fully described (and
contrasted with other methods for global search) below under “Global Optimization”
and in the chapter “Solver Options.”

Evolutionary Solver

The Evolutionary Solver usually finds good solutions to problems where the
objective and constraints include non-smooth functions of the variables — in other
words, where there are no restrictions on the formulas that are used to compute the
objective and constraints. For this class of problems, the Solver will return the best
feasible solution (if any) that it can find in the time allowed.

The Evolutionary Solver can be used on problems with all-smooth functions that may
have multiple locally optimal solutions, in order to seek a globally optimal solution,
or simply a better solution than the one found by the nonlinear GRG Solver alone;
however, the combination of multistart methods and the GRG Solver are likely to do
as well or better than the Evolutionary Solver on such problems. It can be used on
problems with smooth convex functions, but it is usually less effective and efficient
than the nonlinear GRG Solver on such problems. Similarly, it can be used on
problems with all-linear functions, but there is little point in doing so when the
LP/Quadratic, or SOCP Barrier Solver is available.

Solver User Guide

Solver Models and Optimization e 33

More About Constraints

This section explains in greater depth the role of certain types of constraints,
including bounds on the decision variables, equality and inequality constraints,
second order cone constraints, and different forms of integer constraints.

Bounds on the Variables

Constraints of the form A1 >= -5 or A1 <= 10 (for example), where Al is a decision
variable, are called bounds on the variables and are treated specially by the Solver.
These constraints affect only one variable, whereas general constraints have an
indirect effect on several variables that have been used in a formula such as A1+A2.
Each of the Solver engines takes advantage of this fact to handle bounds on the
variables more efficiently than general constraints.

The most common type of bound on a variable is a lower bound of zero (Al >= 0),
which makes the variable non-negative. Many variables represent physical quantities
of some sort, which cannot be negative. As a convenience, the Solver Parameters
dialog offers a check box “Make Unconstrained Variables Non-Negative,” which
automatically places a lower bound of zero on every variable which has not been
given an explicit lower bound via a constraint in the Constraints list box.

Regardless of the Solver engine chosen, bounds on the variables always help speed
up the solution process, because they limit the range of values that the Solver must
explore. In many problems, you will be aware of realistic lower and upper bounds on
the variables, but they won’t be of any help to the Solver unless you include them in
the Constraints list box! Bounds on the variables are especially important to the
performance of the Evolutionary Solver, and multistart methods for global
optimization, as discussed below under “Global Optimization” and in the chapter
“Solver Options.” They are also very important if you want the Solver to
automatically transform your model, replacing non-smooth functions (such as IF)
with additional variables and linear constraints, as explained in the chapter
“Analyzing and Solving Models.”

Equations and Inequalities

Constraints such as A1 = 0 are called equality constraints or equations; constraints
such as A1 <=0 are called inequality constraints or simply inequalities. An equality
is much more restrictive than an inequality. For example, if Al contains the formula
=C1+C2, where C1 and C2 are decision variables, then A1 <= 0 restricts the possible
solutions to a half plane, whereas A1 = 0 restricts the solutions to a /ine where all
possible values of Cland C2 must sum to 0 (C1 = -C2 within a small tolerance, as
explained above). Since there is only a tiny chance that two randomly chosen values
for C1 and C2 will satisfy C1+C2 = 0, solution methods that rely on random choices,
such as genetic algorithms, may have a hard time finding any feasible solutions to
problems with equality constraints. To satisfy equality constraints, the Solver
generally must exploit properties of the constraint formula — such as linearity or
smoothness, discussed below — to solve for one variable in terms of another.

A linear equality constraint (like C1+C2 = 0 above) maintains the convexity of the
overall problem, but a nonlinear equality constraint is non-convex, and makes the
overall problem non-convex. Interior point methods may have difficulty solving
problems with nonlinear equality constraints, since they restrict the ability of the
Solver to follow the “central path” inside the feasible region.

34 o Solver Models and Optimization Solver User Guide

Second Order Cone Constraints

Premium Solver Platform for Mac supports constraints of the form A1:A5 = conic.
This is called a second order cone (SOC) constraint; it specifies that the vector
formed by the decision variables A1:AS5 must lie within the second-order cone (also
called the Lorentz cone, or “ice cream cone”) of dimension 5 — a convex set that
looks like the figure below in three dimensions.

Algebraically, a second-order cone constraint specifies that, given a value for one
variable, the L2-norm of the vector formed by the remaining variables must not
exceed this value: In linear algebra notation, a; > || aj.as || ». In Excel, this could be
written as A1 >= SQRT(SUMSQ(A2:AS5)). You can also use a variant called a
“rotated second order cone” constraint, as explained in the chapter “Building Solver
Models.” A problem with a linear objective and linear or SOC constraints is called a
second order cone programming (SOCP) problem,; it is always a convex
optimization problem.

Decision variables that are constrained to be non-negative also belong to a cone,
called the non-negative orthant. A problem with all linear functions — a linear
programming problem — is a special case of an SOCP problem, where the only cone
constraint is non-negativity.

A convex quadratic objective or constraint can be transformed into an equivalent
second order cone constraint. Hence, a problem with a quadratic objective — a
quadratic programming or QP problem — or a problem with quadratic constraints —
called a QCP problem — is also a special case of an SOCP problem. The SOCP
Barrier Solver and the MOSEK Solver will automatically transform quadratics into
SOC form internally; you can simply define your quadratic objective and/or con-
straints using ordinary Excel formulas and <= or >= relations, and use these Solver
engines to obtain fast, reliable, globally optimal solutions to your problem.

Integer, Binary and Alldifferent Constraints

As explained in the last section, integer constraints are of the form A1:AS = integer,
where A1:AS5 are decision variables. This specifies that the solution values for Al
through A5 must be integers or whole numbers, such as -1, 0 or 2, to within a small
tolerance. A common special case that can be entered directly in the Constraint List
Box is Al = binary, which is equivalent to specifying Al = integer, A1 >=0 and Al
<=1. This implies that A1 must be either 0 or I at the solution; hence Al can be
used to represent a “yes/no” decision. Integer constraints have many important
applications, but the presence of even one such constraint in a Solver model makes
the problem an integer programming problem (discussed below), which may be much
more difficult to solve than a similar problem without the integer constraint.

Premium Solver Platform for Mac supports a new type of integer constraint, called
the “alldifferent” constraint. Such a constraint is of the form (for example) A1:AS =
alldifferent, where A1:AS is a group of two or more decision variables, and it
specifies that these variables must be integers in the range 1 to N (N =5 in this
example), with each variable different from all the others at the solution. Hence,
Al:AS will contain a permutation of integers, such as 1,2,3,4,5 or 1,3,5,2,4. The

Solver User Guide

Solver Models and Optimization e 35

alldifferent constraint can be used to model problems involving ordering of choices,
such as the Traveling Salesman Problem.

Functions of the Variables

Since there are large differences in the time it takes to find a solution and the kinds of
solutions — globally optimal, locally optimal, or simply “good” — that you can expect
for different types of problems, it pays to understand the differences between linear,
quadratic, smooth nonlinear, and non-smooth functions, and especially convex and
non-convex functions. To begin, let’s clarify what it means to say that the spread-
sheet cells you select for the objective and constraints are “functions of the decision
variables.”

The objective function in a Solver problem is a cell calculating a value that depends
on the decision variable cells; the job of the Solver is to find some combination of
values for the decision variables that maximizes or minimizes this cell’s value.
During the optimization process, only the decision variable cells are changed; all
other “input” cells are held constant. If you analyze the chain of formulas that
calculates the objective function value, you will find that parts of those formulas
(those which refer to non-decision variable cells) are unchanging in value and could
be replaced by a numeric constant for the purposes of the optimization.

If you have constant values on the right hand sides of constraints, then the same
observation applies to the left hand sides of constraints: Parts of the constraint
formulas (those which refer to non-decision variable cells) are unchanging in value,
and only the parts that are dependent on the decision variables “count” during the
optimization.

When you consider whether your objective and constraints are linear, quadratic,
smooth nonlinear, or non-smooth, or convex or non-convex functions of the
variables, always bear in mind that only the parts of formulas that are dependent on
the decision variables “count.” Below, we explain that linear functions are most
desirable, and non-smooth and non-convex functions are least desirable in a Solver
model (if you want the fastest and most reliable solutions). A formula such as
=IF(C1>=10,D1,2*D1) is non-smooth if C1 depends on the decision variables; but if
C1 doesn’t depend on the variables, then only D1 or 2*D1 — not both — can be
selected during the solution process. Hence if D1 is a linear function of the variables,
then the IF expression is also a linear function of the variables.

You may also find that a function that is “bad” (non-smooth or non-convex) over its
full domain (any possible values for the decision variables) may be “good” (smooth
and/or convex) over the domain of interest to you, determined by other constraints
including bounds on the variables. For example, if C1 depends on the variables, then
=[F(C1>=10,D1,2*D1) is non-smooth over its full domain, but smooth — in fact
linear — if C1 is constrained to be 10 or more. =SIN(C1) is non-convex over its full
domain, but is convex from —pi to 0, or from pi to 2*pi.

Convex Functions

The key property of functions of the variables that makes a problem “easy” or “hard”
to solve is convexity. If all constraints in a problem are convex functions of the
variables, and if the objective is convex if minimizing, or concave if maximizing,
then you can be confident of finding a globally optimal solution (or determining that
there is no feasible solution), even if the problem is very large — thousands to
hundreds of thousands of variables and constraints.

36 o Solver Models and Optimization Solver User Guide

In contrast, if any of the constraints are non-convex, or if the objective is either non-
convex, concave if minimizing, or convex if maximizing, then the problem is far
more difficult: You cannot be certain of finding a feasible solution even if one exists;
you must either “settle for” a locally optimal solution, or else be prepared for very
long solution times and rather severe limits on the size of problems you can solve to
global optimality (a few hundred to perhaps one thousand variables and constraints),
even on the fastest computers. So it pays to understand convexity!

Geometrically, a function is convex if, at any two points x and y, the line drawn from
x to y (called the chord from x to y) lies on or above the function — as shown in the
diagram below, for a function of one variable. A function is concave if the chord
from x to y lies on or below the function. This property extends to any number of

‘dimensions’ or variables, where x = (X, Xy, ..., X,) and y =(y1, Y2, .., Yn)-
Jw ftv),””
S,

Algebraically, a function f'is convex if, for any points x and y, and any t between 0
and 1, f{ tx + (1-t)y) <= tf(x) + (1-t)Ay). A function fis concave if —f'is convex, i.e.
if L tx + (1-t)y) >=tfix) + (1-t)f{y). A linear function — described below — is both
convex and concave: The chord from x to y lies on the line, and f{ tx + (1-t)y) =
t(x) + (1-)f(y). As we’ll see, a problem with all linear functions is the simplest
example of a convex optimization problem that can be solved efficiently and reliably
to very large size.

A non-convex function “curves up and down.” A familiar example is the sine
function (SIN(C1) in Excel), which is pictured on the next page.

1

05

0.5

£ 5 4 3 2 1 10
The feasible region of an optimization problem is formed by the intersections of the
constraints. The intersection of several convex constraints is always a convex region,

but even one non-convex function can make the whole region non-convex — and
hence make the optimization problem far more difficult to solve.

Linear Functions

In many common cases, the objective and/or constraints are /inear functions of the
variables. This means that the function can be written as a sum of terms, where each
term consists of one decision variable multiplied by a (positive or negative) constant.
Algebraically, we can write:

ax, tax, +..tax,

where the as, which are called the coefficients, stand for constant values and the xs
stand for the decision variables. A common example is =SUM(C1:C5), where C1:C5
are decision variables and the a;s are all 1. Note that a linear function does not have
to be written in exactly the form shown above on the spreadsheet. For example, if

Solver User Guide

Solver Models and Optimization e 37

cells C1 and C2 are decision variables, B1 = C1+C2, and B2 = A1*B1 where Al is
constant in the problem, then B2 is a linear function (=A1*C1+ A1*C2).

Geometrically, a linear function is always a straight line, in n-dimensional space
where 7 is the number of decision variables. Below is a perspective plot of 2x, +1x..
As noted above, a linear function is always convex.

10 4
5 |
7 2
104
) 0

o -2

Remember that the as need only be constant in the optimization problem, i.e. not
dependent on any of the decision variables. For example, suppose that the function is
=B1/B2*C1 + (D1*2+E1)*C2, where only C1 and C2 are decision variables, and the
other cells contain constants (or formulas that don’t depend on the variables). This
would still be a linear function, where a, = B1/B2 and a, = (D1*2+E1) are the
coefficients, and x, = C1 and x, = C2 are the variables.

Note that the SUMPRODUCT function computes exactly the algebraic expression
shown above. If we were to place the formula =B1/B2 in cell A1, and the formula
=(D1*2+E1) in cell A2, then we could write the example function above as:

=SUMPRODUCT(A1:A2,C1:C2)

This is simple and clear, and is also useful for fast problem setup as described in the
chapter “Building Large-Scale Models.” As explained below in the section
“Derivatives, Gradients, Jacobians and Hessians,” each coefficient «, in the linear
expression a,x, + ax, + ... + ax, is the first partial derivative of the expression with
respect to variable x,. These partial derivatives are always constant in a linear
function — and all higher-order derivatives are zero.

A nonlinear function (explained further below), as its name implies, is any function
of the decision variables which is not linear, i.e. which cannot be written in the
algebraic form shown above — and its partial derivatives are not constant. Examples
would be = 1/C1, =LOG(C1), =C1”2 or =C1*C2 where both C1 and C2 are decision
variables. If the objective function or any of the constraints are nonlinear functions
of the variables, then the problem cannot be solved with an LP Solver.

Testing for a Linear Model

What if you have already created a complex spreadsheet model without using
functions like SUMPRODUCT, and you aren’t sure whether your objective function
and constraints are linear or nonlinear functions of the variables? With Premium
Solver Platform for Mac, you can easily find out by pressing the Check Model button
in the Solver Model dialog, as explained in the chapter “Analyzing and Solving
Models.” Moreover, you can easily obtain a report showing exactly which cells
contain formulas that are nonlinear.

38 e Solver Models and Optimization Solver User Guide

Quadratic Functions

The last two examples of nonlinear functions above, =C172 or =C1*C2, are simple
instances of quadratic functions of the variables. A more complex example is:

=2*C1"2+3*C2"2+4*C1*C2+5*C1

A quadratic function is a sum of terms, where each term is a (positive or negative)
constant (again called a coefficient) multiplied by a single variable or the product of
two variables. In linear algebra notation, we can write x'Qx + cx where x is a vector
of n decision variables, Q is an » x n matrix of coefficients, and c is an n vector of
linear coefficients.

Common uses for quadratic functions are to compute the mean squared error in a
curve-fitting application, or the variance or standard deviation of security returns in a
portfolio optimization application.

As explained below in the section “Derivatives, Gradients, Jacobians and Hessians,”
the coefficients that multiply single variables in a quadratic function are the first
partial derivatives of the function with respect to those variables; the coefficients that
multiply the products of two variables are the second partial derivatives of the
function, with respect to those two variables. In a quadratic function, these first and
second order derivatives are always constant, and higher order derivatives are zero.
The matrix Q of second partial derivatives is called the Hessian of the function.

Convex, Concave and Non-Convex Quadratics

A quadratic function of at least two variables may be convex, concave, or non-
convex. The matrix Q in the general form x'Qx has a closely related algebraic
property of definiteness. 1f the Q matrix is positive definite, the function is convex; if
the Q matrix is negative definite, the function is concave. You can picture the graph
of these functions as having a “round bowl” shape with a single bottom (or top). If
the Q matrix is semi-definite, the function has a bowl shape with a “trough” where
many points may have the same objective value, but it is still convex or concave. If
the Q matrix is indefinite, the function is non-convex: It has a “saddle” shape, but its
true minimum or maximum is not found in the “interior” of the function but on its
boundaries with the constraints, where there may be many locally optimal points.
Below is a plot of an example non-convex quadratic X? 42X, — V5 (X07 — 1):

A problem with convex quadratic functions is easily solved to global optimality up to
very large size, but a problem with non-convex quadratic functions is a difficult
global optimization problem that, in general, will require solution time that grows
exponentially with the number of variables. The way that the Solver handles such
functions is explained further below under “Quadratic Programming.”

Solver User Guide

Solver Models and Optimization e 39

Nonlinear and Smooth Functions

A nonlinear function is any function of the variables that is not linear, i.e. which
cannot be written in the algebraic form:

ax, tax,+..tax,

Examples, as before, are =1/C1, =LOG(C1), and =C1"2, where C1 is a decision
variable. All of these are called continuous functions, because their graphs are
curved but contain no “breaks.” =IF(C1>10,D1,2*D1) is also a nonlinear function,
but it is “worse” (from the Solver’s viewpoint) because it is discontinuous: Its graph
contains a “break” at C1=10 where the function value jumps from D1 to 2*D1. At
this break, the rate of change (i.e. the derivative) of the function is undefined. As
explained below in the section “Derivatives, Gradients, Jacobians and Hessians,”
most Solver algorithms rely on derivatives to seek improved solutions, so they may
have trouble with a Solver model containing functions such as =IF(C1>10,D1,2*D1).

If the graph of the function’s derivative also contains no breaks, then the original
function is called a smooth function. If it does contain breaks, then the original
function is non-smooth. Every discontinuous function is also non-smooth. An
example of a continuous function that is non-smooth is =ABS(C1) — its graph is an
unbroken “V” shape, but the graph of its derivative contains a break, jumping from —
1 to +1 at C1=0. Many nonlinear Solver algorithms rely on second order derivatives
of at least the objective function to make faster progress, and to test whether the
optimal solution has been found; they may have trouble with functions such as
=ABS(C1).

As explained below in the section “Derivatives, Gradients, Jacobians and Hessians,”
general nonlinear functions have first, second, and sometimes higher order
derivatives that change depending on the point (i.e. values of the decision variables)
at which the function is evaluated.

Convex, Concave and Non-Convex Smooth Functions

A general nonlinear function of even one variable may be convex, concave or non-
convex. A function can be convex but non-smooth: =ABS(C1) with its V shape is
an example. A function can also be smooth but non-convex: = SIN(C1) is an
example. But the “best” nonlinear functions, from the Solver’s point of view, are
both smooth and convex (concave for the objective if you are maximizing).

If a smooth function’s second derivative is always nonnegative, it is a convex
function; if its second derivative is always nonpositive, it is a concave function. This
property extends to any number of ‘dimensions’ or variables, where the second
derivative becomes the Hessian and “nonnegative” becomes “positive semidefinite.”

Discontinuous and Non-Smooth Functions

Microsoft Excel provides a very rich formula language, including many functions
that are discontinuous or non-smooth. As noted above, discontinuous functions cause
considerable difficulty, and non-smooth functions cause some difficulty for most
nonlinear Solvers. Some models can only be expressed with the aid of these
functions; in other cases, you have a degree of choice in how you model the real-
world problem, and which functions you use. Even when you have a “full arsenal” of
Solver engines available, as you do with Premium Solver Platform For Mac, you’ll
get better results if you try to use the most “Solver-friendly” functions in your model.

40 e Solver Models and Optimization Solver User Guide

By far the most common discontinuous function in Excel is the IF function where the
conditional test depends on the decision variables, as in the example
=IF(C1>10,D1,2*D1). Here is a short list of common discontinuous Excel functions:

IF, CHOOSE

LOOKUP, HLOOKUP, VLOOKUP
COUNT

INT, ROUND

CEILING, FLOOR

Here is a short list of common non-smooth Excel functions:

ABS
MIN, MAX

Formulas involving relations such as <=, = and >= (on the worksheet, not in the
Constraints list box) and logical functions such as AND, OR and NOT are
discontinuous at their points of transition from FALSE to TRUE values. Functions
such as SUMIF and the database functions are discontinuous if the criterion or
conditional argument depends on the decision variables.

If you aren’t sure about a particular function, try graphing it (by hand or in Microsoft
Excel) over the expected range of the variables; this will usually reveal whether the
function is discontinuous or non-smooth. If you have Premium Solver Platform, just
create a model using the function, and use the Solver Model dialog to automatically
diagnose the model type.

Premium Solver Platform for Mac Version 10.5 can automatically transform a
model that uses IF, AND, OR, NOT, ABS, MIN and MAX, and relations <, <=, >=
and > to an equivalent model where these functions and relations are replaced by
additional binary integer and continuous variables and additional constraints, that
have the same effect — for the purpose of optimization — as the replaced functions.
This powerful facility may be able to transform your non-smooth model into a
smooth or even linear model with integer variables. A real-life example is shown in
the EXAMPLES worksheet of the OptimizationExamples.xIsm workbook, installed
with the Solver files, which you can easily open from the Solver Parameters dialog by
clicking Help, then clicking Examples. For more information, see the chapter
“Analyzing and Solving Models.”

Derivatives, Gradients, Jacobians, and Hessians

To find feasible and optimal solutions, most optimization algorithms rely heavily on
derivatives of the problem functions (the objective and constraints) with respect to
the decision variables. First derivatives indicate the direction in which the function is
increasing or decreasing, while second derivatives provide curvature information.

The partial derivatives of a function f (x;,x,...,x,) with respect to each variable are
denoted 0f/0x,, 0f/0x,, ..., Of/Ox,. They give the rate of change of the function in each
dimension. For a linear function ax, + ax, + ... + ax,, the partial derivatives are the
coefficients: 0f/0x; = a;, 0f/0x, = a,, and so on.

To recap the comments about derivatives made in the sections above:

e Linear functions have constant first derivatives — the coefficients @, — and all
higher order derivatives (second, third, etc.) are zero.

e Quadratic functions have constant first and second derivatives, and all higher
order (third, etc.) derivatives are zero.

Solver User Guide

Solver Models and Optimization ¢ 41

e Smooth nonlinear functions have first and second derivatives that are defined,
but not constant — they change with the point at which the function is evaluated.

e Non-smooth functions have second derivatives that are undefined at some points;
discontinuous functions have first derivatives that are undefined at some points.

The gradient of a function f (x;,x,,...,x,) is the vector of its partial derivatives:
[of70x,, Of/ox,, ..., Of/0x, |

This vector points in the direction (in n-dimensional space) along which the function
increases most rapidly. Since a Solver model consists of an objective and constraints,
all of which are functions of the variables x,,x,,...,x,, it is often useful to collect these
gradients into a matrix, where each row is the gradient vector for one function:

ofi/ox;, Ofi/oxs, ..., Ofi/ox,
ofs/ox1, Of/oxs, ..., Of/ox,

/X1, Of/Oxsy ..., Of/Ox,

This matrix is called the Jacobian matrix. In a linear programming problem, this is
the LP coefficient matrix, and all of its elements (the ass) are constant.

The second partial derivatives of a function f (x;,x,...,x,) with respect to each pair of
variables x; and x; are denoted &°f/ Ox,0x;. There are n” second partial derivatives,
and they can be collected into an »n X n matrix:

Oflox,0x;, Of/ox0xs, ..., O°fldxox,
Oflox0x;, Of/ox:0xs, ..., O floxs0x,

Ofox,0x;, O1/Ox,0x, ..., O f1ox,0x,

This matrix is called the Hessian matrix. It provides second order (curvature)
information for a single problem function, such as the objective. The Hessian of a
linear function would have all zero elements; the Hessian of a quadratic function has
all constant elements; and the Hessian of a general nonlinear function may change
depending on the point (values of the decision variables) where it is evaluated.

When reading the next section, “Optimization Problems and Solution Methods,” bear
in mind that the different classes of Solver problems, and the computing time
required to solve these problems, is directly related to the nature of the derivatives
(constant, changing, or undefined) of their problem functions, as outlined above.

For example, because the first derivatives of linear functions are constant, they need
be computed only once — and second derivatives (which are zero) need not be
computed at all. For quadratic functions, the first and second derivatives can be
computed only once, whereas for general nonlinear functions, these derivatives may
have to be computed many times.

A major difference between Premium Solver Platform for Mac and Excel Solver is
the method used to compute derivatives. As described in the chapter “Analyzing and
Solving Models,” the Polymorphic Spreadsheet Interpreter in Premium Solver
Platform for Mac can supply fast, accurate derivatives to Solver engines via a process
called automatic differentiation.

What if your optimization problem requires the use of non-smooth or discontinuous
functions? With Premium Solver Platform for Mac, you have several choices. First,
for common non-smooth functions such as ABS, MAX and MIN, and even for some
IF functions, the nonlinear GRG, Large-Scale GRG and Large-Scale SQP Solvers
often yield acceptable results, though you may need to use multistart methods to
improve the chances of finding the optimal solution. Second, you can use the

42 e Solver Models and Optimization Solver User Guide

Evolutionary Solver (which does not require any derivative values) to find a “good”
solution, though you’ll have to give up guarantees of finding an optimal solution, and
it’s likely to take considerably more computing time to find a solution. Third, you
can use the automatic transformation feature to replace many of these functions with
additional variables and linear constraints; if all discontinuous or non-smooth
functions in the model are automatically replaced, the problem should be solvable
with the nonlinear Solvers, or even with the linear Solvers in some cases. Fourth,
you can manually reformulate your model with binary integer variables and
associated constraints. You can then use the nonlinear GRG Solver, or even the
LP/Quadratic Solver, in combination with the Branch & Bound method, to find the
true optimal solution to your problem. These ideas are explored further in the
chapter “Building Large-Scale Models.”

Optimization Problems and Solution Methods

A model in which the objective function and all of the constraints (other than integer
constraints) are linear functions of the decision variables is called a linear
programming (LP) problem. (The term “programming” dates from the 1940s and the
discipline of “planning and programming” where these solution methods were first
used; it has nothing to do with computer programming.) As noted earlier, a linear
programming problem is always convex.

If the problem includes integer constraints, it is called an integer linear programming
problem. A linear programming problem with some “regular” (continuous) decision
variables, and some variables that are constrained to integer values, is called a mixed-
integer programming (MIP) problem. Integer constraints are non-convex, and they
make the problem far more difficult to solve; see below for details.

A quadratic programming (QP) problem is a generalization of a linear programming
problem. Its objective is a convex quadratic function of the decision variables, and
all of its constraints must be /inear functions of the variables. A problem with linear
and convex quadratic constraints, and a linear or convex quadratic objective, is
called a quadratically constrained (QCP) problem.

A model in which the objective function and all of the constraints (other than integer
constraints) are smooth nonlinear functions of the decision variables is called a
nonlinear programming (NLP) or nonlinear optimization problem. If the problem
includes integer constraints, it is called an infeger nonlinear programming problem.
A model in which the objective or any of the constraints are non-smooth functions of
the variables is called a non-smooth optimization (NSP) problem.

Linear Programming

Linear programming (LP) problems are intrinsically easier to solve than nonlinear
(NLP) problems. First, they are convex, where a general nonlinear problem is often
non-convex. Second, since all constraints are linear, the globally optimal solution
always lies at an “extreme point” or “corner point” where two or more constraints
intersect. (In some problems there may be multiple solutions with the same objective
value, all lying on a line between two corner points.) This means that an LP Solver
needs to consider many fewer points than an NLP Solver, and it is always possible to
determine (subject to the limitations of finite precision computer arithmetic) that an
LP problem (i) has no feasible solution, (ii) has an unbounded objective, or (iii) has a
globally optimal solution.

Solver User Guide

Solver Models and Optimization ¢ 43

Problem Size and Numerical Stability

Because of their structural simplicity, the main limitations on the size of LP problems
that can be solved are time, memory, and the possibility of numerical “instabilities”
which are the cumulative result of the small errors intrinsic to finite precision
computer arithmetic. The larger the model, the more likely it is that numerical
instabilities will be encountered in solving it.

Most large LP models are sparse in nature: While they may include thousands of
decision variables and constraints, the typical constraint will depend upon only a few
of the variables. This means that the Jacobian matrix of partial derivatives of the
problem functions, described earlier, will have many elements that are zero. Such
sparsity can be exploited to save memory and gain speed in solving the problem.

The Simplex Method

LP problems are most often solved via the Simplex method. The standard Microsoft
Excel Solver uses a straightforward implementation of the Simplex method to solve
LP problems. Premium Solver Platform for Mac uses a far more sophisticated
implementation of the Simplex method which exploits sparsity in the LP model and
uses techniques such as presolving, matrix factorization using the LU decomposition
, a fast and stable LU update, and dynamic Markowitz refactorization.

The Large-Scale LP/QP Solver engine for Premium Solver Platform for Mac uses an
even more powerful implementation of the Simplex method, with performance
rivaling the best LP solvers available. It has been tested on LP problems with over
two million variables and constraints.

The Gurobi Solver engine is Frontline’s fastest and most powerful Solver for linear

programming and especially mixed-integer linear programming problems. Its ultra-
sophisticated primal and dual Simplex and Barrier methods, combined with state-of-
the-art Branch and Cut methods for integer problems, yield solutions in record time.

Quadratic Programming

Quadratic programming problems are more complex than LP problems, but simpler
than general NLP problems. They have only one feasible region with “flat faces” on
its surface (due to their linear constraints), but the optimal solution may be found
anywhere within the region or on its surface. Since a QP problem is a special case of
an NLP problem, it can be solved with the standard nonlinear GRG Solver, but this
may take considerably more time than solving an LP of the same size. Premium
Solver Platform for Mac’s LP/Quadratic Solver solves QP problems very efficiently,
using a variant of the Simplex method to determine the feasible region, and special
methods based on the properties of quadratic functions to find the optimal solution.

Most quadratic programming algorithms are specialized to handle only positive
definite (or negative definite) quadratics. The LP/Quadratic Solver, however, can
also handle semi-definite quadratics; it will find one of the equivalent (globally)
optimal solutions — which one depends on the starting values of the decision
variables. When applied to an indefinite quadratic objective function, the
LP/Quadratic Solver provides only the guarantees of a general nonlinear Solver: It
will converge to a locally optimal solution (either a saddle point in the interior, or a
locally optimal solution on the constraint surface).

The Large-Scale LP/QP Solver, Large-Scale GRG Solver, MOSEK Solver, KNITRO
Solver, and Gurobi Solver engines can all be used to efficiently solve large QP
problems.

44 o Solver Models and Optimization Solver User Guide

Quadratically Constrained Programming

A problem with linear and convex quadratic constraints, and a linear or convex
quadratic objective, is called a quadratically constrained (QCP) problem. Such a
problem is more general than a QP or LP problem, but less general than a convex
nonlinear problem. The Simplex-based methods used in Premium Solver Platform’s
LP/Quadratic Solver, the Large-Scale LP/QP Solver, and the Gurobi Solver Engine
handle only quadratic objectives, not quadratic constraints. But QCP problems —
since they are convex — can be solved efficiently to global optimality with Barrier
methods, also called Interior Point methods.

Premium Solver Platform for Mac’s new SOCP Barrier Solver uses a Barrier method
to solve LP, QP, and QCP problems. The MOSEK Solver Engine uses an even more
powerful Barrier method to solve very large scale LP, QP, and QCP problems, as
well as smooth convex nonlinear problems. Both of these Solvers form a logarithmic
“barrier function” of the constraints, combine this with the objective, and take a step
towards a better point on each major iteration. Unlike the Simplex method, which
moves from one corner point to another on the boundary of the feasible region, a
Barrier method follows a path — called the central path — that lies strictly within the
feasible region.

A Barrier method relies heavily on second derivative information, specifically the
Hessian of the Lagrangian (combination of the constraints and objective) to
determine its search direction on each major iteration. The ability of the Poly-
morphic Spreadsheet Interpreter in Premium Solver Platform for Mac to efficiently
compute this second derivative information is key to the performance of this method.

Second Order Cone Programming

Second order cone programming (SOCP) problems are a further generalization of
LP, QP, and QCP problems. An SOCP has a linear objective and one or more linear
or second order cone (SOC) constraints. As explained earlier, a second order cone
constraint such as “A1:A5 = conic” specifies that the vector formed by the decision
variables A1:A5 must lie within the second-order cone (also called the Lorentz cone)
of dimension 5. Algebraically, the constraint specifies that a; > || ay.as || 5. SOCPs
are always convex; Premium Solver Platform’s new SOCP Barrier Solver and the
MOSEK Solver Engine are both designed to solve SOCP problems, efficiently to
global optimality.

Any convex quadratic constraint can be converted into an SOC constraint, with
several steps of linear algebra. A convex quadratic objective x Qx + cx can be
handled by introducing a new variable ¢, making the objective minimize ¢, adding a
constraint X' Qx + c¢x <= ¢, and converting this constraint to SOC form. The SOCP
Barrier Solver and the MOSEK Solver Engine both make these transformations
automatically; in effect they solve all LP, QP, QCP and SOCP problems in the same
way. Second order cone programming can be viewed as the natural generalization
of linear programming, and is bound to become more popular in the future.

You can also solve an SOCP with the GRG Nonlinear Solver or the Large-Scale
GRG, or KNITRO Solver engines. Although these Solvers do not recognize SOC
constraints directly, Premium Solver Platform for Mac will compute values and
derivatives for SOC constraints, based on their algebraic form shown above. Hence,
these general nonlinear Solvers handle SOC constraints like other general nonlinear
constraints. Using these Solvers, you can find optimal solutions for problems
containing a mix of linear, general nonlinear, and SOC constraints — bearing in mind
that such problems may be non-convex.

Solver User Guide

Solver Models and Optimization e 45

Nonlinear Optimization

As outlined above, nonlinear programming (NLP) problems are intrinsically more
difficult to solve than LP, QP, QCP or SOCP problems. They may be convex or
non-convex, and since their second derivatives are not constant, an NLP Solver must
compute or approximate the Hessians of the problem functions many times during the
course of the optimization. Since a non-convex NLP may have multiple feasible
regions and multiple locally optimal points within such regions, there is no simple or
fast way to determine with certainty that the problem is infeasible, that the objective
function is unbounded, or that an optimal solution is the “global optimum” across all
feasible regions. But some NLP problems are convex, and many problems include
linear or convex quadratic constraints in addition to general nonlinear constraints.
Frontline’s field-installable nonlinear Solver engines are each designed to take
advantage of NLP problem structure in different ways, to improve performance.

If you use the GRG Nonlinear Solver — the only choice for NLPs in the standard
Excel Solver— bear in mind that it applies the same method to all problems, even
those that are really LPs or QPs. If you don’t select another Solver engine from the
dropdown list box in the Solver Parameters dialog (or, in the standard Microsoft
Excel Solver, if you don’t check the Assume Linear Model box in the Solver Options
dialog), this Solver will be used — and it may have difficulty with LP or QP problems
that could have been solved easily with one of the other Solvers. Premium Solver
Platform for Mac can automatically determine the type of problem, and select only
the “good” or “best” Solver engine(s) for that problem.

The GRG Method

The standard Excel Solver, Premium Solver and Premium Solver Platform include a
standard nonlinear GRG Solver, which uses the Generalized Reduced Gradient
method as implemented in Lasdon and Waren’s GRG2 code. The GRG method can
be viewed as a nonlinear extension of the Simplex method, which selects a basis,
determines a search direction, and performs a line search on each major iteration —
solving systems of nonlinear equations at each step to maintain feasibility. This
method and specific implementation have been proven in use over many years as one
of the most robust and reliable approaches to solving difficult NLP problems.

As with the Simplex method, the GRG method in the standard Excel Solver uses a
“dense” problem representation, and its memory and solution time increases with the
number of variables times the number of constraints. It is also subject to problems of
numerical instability, which may be even more severe than for LP and QP problems.
The Large-Scale GRG Solver engine for Premium Solver Platform for Mac uses
sparse storage methods and better numerical methods for nonlinear models, such as
matrix condition testing and degeneracy handling, to solve much larger NLP
problems.

Interior Point and SLQP Methods

The KNITRO Solver engine uses a Barrier or Interior Point method, specialized for
non-convex problems, to solve general nonlinear optimization problems. As with
the SOCP Barrier and MOSEK Solvers, this method forms a logarithmic “barrier
function” of the constraints, combines this with the objective, and takes a step
towards a better point on each major iteration. (The actual process of taking a step
and the path followed are more complex, because KNITRO assumes that the problem
may be non-convex.) The KNITRO Solver uses the Polymorphic Spreadsheet
Interpreter in Premium Solver Platform for Mac to efficiently compute second

46 e Solver Models and Optimization Solver User Guide

derivative information, but it also has options to work with only first derivative
information.

The KNITRO Solver engine also includes a new, high performance Sequential
Linear-Quadratic (SLQP) method, which is an “active set” method similar to the SQP
method. On highly constrained problems, notably those with equality constraints,
this method typically outperforms the Interior Point method. On loosely constrained
or unconstrained problems, the Interior Point method can greatly outperform SQP
and GRG methods, solving problems much larger than either of these methods.
Benchmark studies in the academic literature have demonstrated exceptionally good
performance for the KNITRO Solver, on a wide range of test problems.

The GRG, SQP and Interior Point methods are all subject to the intrinsic limitations
cited above for nonlinear optimization problems: For smooth convex nonlinear
problems, they will (subject to the limitations of finite precision computer arithmetic)
find the globally optimal solution; but for non-convex problems, they can only
guarantee a locally optimal solution. To have a reasonable chance — let alone a
guarantee — that you’ll find the globally optimal solution to a non-convex problem,
you must use special methods for global optimization.

Global Optimization

Premium Solver Platform for Mac includes powerful tools to help you find the
globally optimal solution for a smooth nonlinear non-convex problem. These tools
include multistart methods, which can be used with the nonlinear GRG Solver, the
Large-Scale GRG Solver , and the KNITRO Solver; and the Evolutionary Solver, for
global solutions of smooth and non-smooth problems.

The Multistart Method

The basic idea of the multistart method is to automatically run a nonlinear Solver
from different starting points, reaching different locally optimal solutions, then select
the best of these as the proposed globally optimal solution. Both clustering and
topographic search multistart methods are included in Premium Solver Platform for
Mac.

The multistart method operates by generating candidate starting points for the
nonlinear Solver (with randomly selected values between the bounds you specify for
the variables). These points are then grouped into “clusters” — through a method
called multi-level single linkage — that are likely to lead to the same locally optimal
solution, if used as starting points for the Solver. The nonlinear Solver is then run
repeatedly, once from (a representative starting point in) each cluster. The process
continues with successively smaller clusters that are increasingly likely to capture
each possible locally optimal solution. A Bayesian test is used to determine whether
the process should continue or stop.

For many smooth nonlinear problems, the multistart method has a limited guarantee
that it will “converge in probability” to a globally optimal solution. This means that
as the number of runs of the nonlinear Solver increases, the probability that the
globally optimal solution has been found also increases towards 100%. (To attain
convergence for constrained problems, an exact penalty function is used in the
process of “clustering” the starting points.) For most nonlinear problems, this
method will at least yield very good solutions. As discussed below, the multistart
method, like the Evolutionary Solver, is a nondeterministic method, which by default
may yield different solutions on different runs. (To obtain the same solution on each
run, you can set a Random Seed option for either of these solution algorithms, as
discussed in the chapter “Solver Options.”)

Solver User Guide

Solver Models and Optimization e 47

As discussed below, in recent versions of Premium Solver Platform for Mac, the
Evolutionary Solver has been enhanced with “filtered local search” methods that
offer many of the benefits of multistart methods — making the Evolutionary Solver
even more effective for global optimization problems.

The multistart method can be used on smooth nonlinear problems that also contain
integer variables and/or “alldifferent” constraints. But this can take a great deal of
solution time, since the multistart method is used for each subproblem generated by
the Branch & Bound method for integer problems, and it can also impact the Solver’s
ability to find feasible integer solutions, as described in the chapter “Diagnosing
Solver Results.” If you have many integer variables, or alldifferent constraints, try
the Evolutionary Solver as an alternative to the multistart method.

Non-Smooth Optimization

The most difficult type of optimization problem to solve is a non-smooth problem
(NSP). Such a problem may not only have multiple feasible regions and multiple
locally optimal points within each region — because some of the functions are non-
smooth or even discontinuous, derivative or gradient information generally cannot be
used to determine the direction in which the function is increasing (or decreasing). In
other words, the situation at one possible solution gives very little information about
where to look for a better solution.

In all but the simplest problems, it is impractical to exhaustively enumerate all of the
possible solutions and pick the best one, even on a fast computer. Hence, most
methods rely on some sort of controlled random search, or sampling of possible
solutions — combined with deterministic (non-random) methods for exploring the
search space. .

A drawback of these methods is that a solution is “better” only in comparison to
other, presently known solutions; the Evolutionary Solver normally Aas no way to

test whether a solution is optimal. This also means that these methods must use
heuristic rules to decide when to stop, or else stop after a length of time, or number of
iterations or candidate solutions, that you specify.

Genetic and Evolutionary Algorithms

A non-smooth optimization problem can be attacked — though not often solved to
optimality — using a genetic or evolutionary algorithm. (In a genetic algorithm the
problem is encoded in a series of bit strings that are manipulated by the algorithm; in
an “evolutionary algorithm,” the decision variables and problem functions are used
directly. Most commercial Solver products are based on evolutionary algorithms.)

An evolutionary algorithm for optimization is different from “classical” optimization
methods in several ways. First, it relies in part on random sampling. This makes it a
nondeterministic method, which may yield different solutions on different runs. (To
obtain the same solution on each run, you can set a Random Seed option for the
Evolutionary Solver, as discussed in the chapter “Solver Options.”)

Second, where most classical optimization methods maintain a single best solution
found so far, an evolutionary algorithm maintains a population of candidate
solutions. Only one (or a few, with equivalent objectives) of these is “best,” but the
other members of the population are “sample points” in other regions of the search
space, where a better solution may later be found. The use of a population of
solutions helps the evolutionary algorithm avoid becoming “trapped” at a local
optimum, when an even better optimum may be found outside the vicinity of the
current solution.

48 e Solver Models and Optimization Solver User Guide

Third — inspired by the role of mutation of an organism’s DNA in natural evolution —
an evolutionary algorithm periodically makes random changes or mutations in one or
more members of the current population, yielding a new candidate solution (which
may be better or worse than existing population members). There are many possible
ways to perform a “mutation,” and the Evolutionary Solver actually employs five
different mutation strategies. The result of a mutation may be an infeasible solution,
and the Evolutionary Solver attempts to “repair” such a solution to make it feasible;
this is sometimes, but not always, successful.

Fourth — inspired by the role of sexual reproduction in the evolution of living things —
an evolutionary algorithm attempts to combine elements of existing solutions in order
to create a new solution, with some of the features of each “parent.” The elements
(e.g. decision variable values) of existing solutions are combined in a crossover
operation, inspired by the crossover of DNA strands that occurs in reproduction of
biological organisms. As with mutation, there are many possible ways to perform a
“crossover” operation — some much better than others — and the Evolutionary Solver
actually employs multiple variations of four different crossover strategies.

Fifth — inspired by the role of natural selection in evolution — an evolutionary
algorithm performs a selection process in which the “most fit” members of the
population survive, and the “least fit” members are eliminated. In a constrained
optimization problem, the notion of “fitness” depends partly on whether a solution is
feasible (i.e. whether it satisfies all of the constraints), and partly on its objective
function value. The selection process is the step that guides the evolutionary
algorithm towards ever-better solutions.

Hybrid Evolutionary and Other Algorithms

You might imagine that better results could be obtained by combining the strategies
used by an evolutionary algorithm with the “classical” optimization methods used by
the nonlinear GRG and linear Simplex Solvers. In Premium Solver Platform for
Mac, Frontline Systems has done just that.

The Evolutionary Solver operates as described above, but it also employs classical
methods in two situations: First, when the evolutionary algorithm generates a new
best point, a local search is conducted to try to improve that point. This step can use
a “random local search” method, a gradient-free, deterministic direct search method,
a gradient-based quasi-Newton method, or a “linearized local gradient” method.
Second, when the evolutionary algorithm generates an infeasible point, the Solver
can use “repair methods”, a quasi-Newton method, or even a specialized Simplex
method (for subsets of the constraints that are linear) to transform the infeasible point
into a feasible one.

In Premium Solver Platform for Mac, the Evolutionary Solver takes maximum
advantage of the diagnostic information available from the Polymorphic Spreadsheet
Interpreter: It automatically applies genetic algorithm methods to non-smooth
variable occurrences (where classical methods cannot be used) and classical methods
to smooth and linear variable occurrences. In the local search phase, it can either fix
non-smooth variables, or allow them to vary. And it can automatically select the
most appropriate local search method, based on linearity and smoothness of the
problem functions.

The Evolutionary Solver uses a “distance filter” and a “merit filter” to determine
whether to carry out a local search when the genetic algorithm methods find an
improved starting point. The “distance filter” plays a role similar to “clustering” in
the multistart methods described earlier; both filters contribute to the excellent
performance of the Evolutionary Solver on global optimization problems.

Solver User Guide

Solver Models and Optimization e 49

The “Achilles’ heel” of most evolutionary algorithms is their handling of constraints
— they are typically unable to handle more than a few inequalities, or any equality
constraints at all. In contrast, the hybrid Evolutionary Solver in Premium Solver
Platform for Mac has been able to find good solutions to non-smooth problems with
many — even hundreds — of constraints.

Integer Programming

When a Solver model includes integer constraints (for example A1:A10 = integer,
Al:A10 = binary, or A1:A10 = alldifferent), it is called an integer programming
problem. Integer constraints effectively make a model non-convex, and finding the
optimal solution to an integer programming problem is equivalent to solving a global
optimization problem. Such problems may require far more computing time than the
same problem without the integer constraints.

The standard Microsoft Excel Solver uses a basic Branch & Bound method, in
conjunction with the linear Simplex or nonlinear GRG Solver, to find optimal
solutions to problems involving general integer or binary integer variables. Premium
Solver Platform for Mac uses a much more sophisticated Branch & Bound method
that is extended to handle alldifferent constraints, and that often greatly speeds up the
solution process for problems with integer variables. Premium Solver Platform for
Mac’s LP/Quadratic Solver uses improved pseudocost-based branch and variable
selection, reduced cost fixing, primal heuristics, cut generation, Dual Simplex and
preprocessing and probing methods to greatly speed up the solution of integer linear
programming problems.

The Evolutionary Solver handles integer constraints, in the same form as the other
Solver engines (including alldifferent constraints), but it does not make use of the
Branch & Bound method; instead, it generates many trial points and uses “constraint
repair” methods to satisfy the integer constraints. (The constraint repair methods
include classical methods, genetic algorithm methods, and integer heuristics from the
local search literature.) The Evolutionary Solver can often find good solutions to
problems with integer constraints, but where the Branch & Bound algorithm can
guarantee that a solution is optimal or is within a given percentage of the optimal
solution, the Evolutionary Solver cannot offer such guarantees.

The Branch & Bound Method

The Branch & Bound method begins by finding the optimal solution to the “relax-
ation” of the integer problem, ignoring the integer constraints. If it happens that in
this solution, the decision variables with integer constraints already have integer
values, then no further work is required. If one or more integer variables have non-
integral solutions, the Branch & Bound method chooses one such variable and
“branches,” creating two new subproblems where the value of that variable is more
tightly constrained. For example, if integer variable A1l has the value 3.45 at the
solution, then one subproblem will have the additional constraint A1 <= 3 and the
other subproblem will add the constraint A1 >= 4. These subproblems are solved
and the process is repeated, “branching” as needed on each of the integer decision
variables, until a solution is found where all of the integer variables have integer
values (to within a small tolerance).

Hence, the Branch & Bound method may solve many subproblems, each one a
“regular” Solver problem. The number of subproblems may grow exponentially.
The “bounding” part of the Branch & Bound method is designed to eliminate sets of

50 e Solver Models and Optimization Solver User Guide

subproblems that do not need to be explored because the resulting solutions cannot
be better than the solutions already obtained.

Cut Generation

Premium Solver Platform for Mac’s LP/Quadratic Solver, the Large-Scale LP/QP
Solver, MOSEK Solver, and the Gurobi Solver Engine all make use of “cut
generation” methods to improve performance on integer linear programming
problems. Cut generation derives from so-called “cutting plane” methods that were
among the earliest methods applied to integer programming problems, but they
combine the advantages of these methods with the Branch & Bound method to yield
a highly effective approach, often referred to as a “Branch & Cut” algorithm.

A cut is an automatically generated linear constraint for the problem, in addition to
the constraints that you specify. This constraint is constructed so that it “cuts off”
some portion of the feasible region of an LP subproblem, without eliminating any
possible integer solutions. Many cuts may be added to a given LP subproblem, and
there are many different methods for generating cuts. For example, Gomory cuts are
generated by examining the reduced costs at an LP solution, while knapsack cuts,
also known as lifted cover inequalities, are generated from constraints involving
subsets of the 0-1 integer variables. Cuts add to the work that the LP solver must
perform on each subproblem (and hence they do not always improve solution time),
but on many problems, cut generation enables the overall Branch & Cut algorithm to
more quickly discover integer solutions, and eliminate branches that cannot lead to
better solutions than the best one already known.

The Alldifferent Constraint

In Premium Solver Platform for Mac, a constraint such as A1:A5 = alldifferent
specifies that the variables A1:AS must be integers in the range 1 to 5, with each
variable different from all the others at the solution. Hence, A1:A5 will contain a
permutation of the integers from 1 to 5, such as 1,2,3,4,5 or 1,3,5,2,4.

To solve problems involving alldifferent constraints, Premium Solver Platform For
Mac employ an extended Branch & Bound method that handles these constraints as a
native type. Whenever variables in an “alldifferent group” have non-integral solution
values, or integral values that are not all different, the Branch & Bound method
chooses one such variable and “branches,” creating two new subproblems where the
value of that variable is more tightly constrained.

The nonlinear GRG Solver bundled with Premium Solver Platform for Mac, and the
Large-Scale GRG Solver, KNITRO Solver, and MOSEK Solver engines use this
extended Branch & Bound method to solve problems with integer and alldifferent
constraints.

The Large-Scale LP/QP Solver, and Gurobi Solver use their own Branch & Cut
methods. They transform alldifferent constraints into equivalent sets of binary
integer variables and additional linear constraints, then apply their preprocessing,
probing and cut generation methods to these variables and constraints.

The Evolutionary Solver uses methods from the genetic algorithm literature to handle
alldifferent constraints as permutations, including several mutation operators that
preserve the “alldifferent property,” and several crossover operators that generate a
“child” permutation from “parents” that are also permutations.

Since Solver engines use quite different methods to handle the alldifferent constraint,
you’ll want to try a variety of Solver engines to see which one performs best on your

Solver User Guide

Solver Models and Optimization ¢ 51

model. This is especially true if your model uses smooth nonlinear or — even better —
linear functions aside from the alldifferent constraint.

52 e Solver Models and Optimization Solver User Guide

Building Solver Models

Introduction

This chapter takes you step by step through the process of setting up and solving a
simple linear programming model in Excel, using Premium Solver Platform for Mac.
It then describes in depth the features of the Solver Parameters dialog that you can
use to define the essential elements of your Solver model: decision variables,
constraints, and the objective function.

Our step-by-step example is a “quick and dirty” setup that can be used to solve the
example problem, but is not well documented or easy to maintain. Microsoft Excel
has many features that can help you organize and display the structure of your model,
through tools such as defined names, formatting and outlining. As models become
larger, the problems of managing data for constraints, coefficients, and so on become
more significant, and a properly organized spreadsheet model can help manage this
complexity. Hence, the last section in this chapter provides hints for designing a
model that is understandable, maintainable and scalable.

From Algebra to

Spreadsheets

Optimization problems are often described in algebraic terms. In this section, we’ll
show how you can translate from the algebraic statement of a problem to a spread-
sheet model that the Solver can optimize.

Setting Up a Model

To set up an optimization model as a Microsoft Excel spreadsheet, you will follow
these essential steps:

1. Reserve a cell to hold the value of each decision variable.

2. Pick a cell to represent the objective function, and enter a formula
that calculates the objective function value in this cell.

3. Pick other cells and use them to enter the formulas that calculate
the left hand sides of the constraints.

4. The constraint right hand sides can be entered as numbers in other
cells, or entered directly in the Solver’s Add Constraint dialog box.

Solver User Guide

Building Solver Models ¢ 53

Within this overall structure, you have a great deal of flexibility in how you lay out
and format the cells that represent variables and constraints, and which formulas and
built-in functions you use. For example, the formulas needed for a linear program-
ming problem can always be specified with the SUMPRODUCT function. If the
model is easily expressed in vector-matrix algebraic notation, you may want to use
defined names for the vectors and built-in functions such as MMULT to compute the
constraint left hand sides.

A Sample Linear Programming Model

Consider the following LP problem, a variation on the “Product Mix” worksheet in
the OptimizationExamples.xIsm workbook included with Microsoft Excel. Our
factory is building three products: TV sets, stereos and speakers. Each product is
assembled from parts in inventory, and there are five types of parts: chassis, picture
tubes, speaker cones, power supplies and electronics units. Our goal is to produce
the mix of products that will maximize profits, given the inventory of parts on hand.

The Algebraic Form

This problem can be described in algebraic form as follows. The decision variables
are the number of products of each type to build: x, for TV sets, x, for stereos and x;
for speakers. There is a fixed profit per unit for each product, so the objective
function (the quantity we want to maximize) is:

Maximize 75 x,+ 50 x, + 35 x, (Profit)

Building each product requires a certain number of parts of each type. For example,
TV sets and stereos each require one chassis, but speakers don’t use one. The
number of parts used depends on the mix of products built (the left hand side of each
constraint), and we have a limited number of parts of each type on hand (the corres-
ponding constraint right hand side):

Subjectto 1x,+1x,+0x,<=400 (Chassis)
1x,+0x,+0x,<=200 (Picture tubes)
2x+2x,+1x,<=800 (Speaker cones)
1x,+1x,+0x,<=400 (Power supplies)
2x,+1x,+1x,<=600 (Electronics)

Since the number of products built must be nonnegative, we also have the constraints
X1, X5, X >= 0.

The Spreadsheet Formulas

The fastest (though not necessarily the best) way to lay out this problem on the
spreadsheet is to pick (for example) cell Al for x,, cell A2 for x, and cell A3 for x..
Then the objective might be entered in cell A4 as the formula:

=75*A1+50*A2+35%A3

We’d go on to enter a formula in (say) cell B1 for the first constraint left hand side
(Chassis), such as =1*A1+1*A2+0*A3, or perhaps the equivalent =A1+A2.
Similarly, we’d use cell B2 for the formula =A1 (Picture tubes), B3 for the formula
=2*A1+2*A2+A3 (Speaker cones), B4 for the formula =A1+A2 (Power supplies),
and BS for the formula =2*A1+A2+A3 (Electronics).

We now have a simple spreadsheet model, with which we can practice “what if.” For
any values we enter for the decision variables in cells A1, A2 and A3, the objective
(Total Profit) and the corresponding values of the constraint left hand sides (the
numbers of parts used) will be calculated.

54 e Building Solver Models

Solver User Guide

The Solver Dialogs

To prepare the model for optimization, we will use the Solver Parameters dialog to
point out to the Solver (i) the cells that we’ve reserved for the decision variables, (ii)
the cell that calculates the value of the objective function, and (iii) the cells that
calculate the constraint left hand sides. We’ll also enter values for the constraint
right hand sides, and non-negativity constraints on the variables.

The simplest way to proceed is to choose Premium Solver... command from the
Tools menu. The Solver Parameters dialog will appear. Select Objective, and choose
Add, and type in A4. The default choice of Max is correct for this problem. Hit OK.
To select the decision variables, Select Variables, and choose Add A1:A3 and click
OK. At this point your spreadsheet and Solver Parameters dialog should look like
this:

Home Layout Tables Charts SmartArt Formulas Data Review
Edit g Famt g Alignment Number
. [®n - [calibi@esy [~f12 |- A A-| | = =[]|aber S wrapTextv |General [
e o [BIL|UJ] (B (S S5 EHEE | ves - B %] (%8 it
Ad H fx| 160
2 ST YR U OR[N R SO . P J— | T L e
1 1 2
| 2 | 1 1 OO Premium Solver Platform
3 1 5
| 2 | 160 2
% 4 vObjective Add
7 | SAS4(Max) A —
8 ¥Variables [Change]
9 # $AS1:5A53 —e—
10 A Delete
=
12 | Normal
= Bound Reset All
14 Conic
15 —ee
16 | Integer Load/Save
17
18 S
19 Model
20
21 EMake Unconstrained Variables Non-Negative
22 —
23 Select a Solving Method: Standard GRG Nonlinear j [Options
% Solving Method
26 Select the GRG Nonlinear engine for Solver problems that are smooth
| 27 | nenlinear. Select the LP/Quadratic engine for linear Solver problems, the
% Evolutionary engine far non-smooth problems, and the SOCP Barrier engine
i for conic problems.
31
| 32 | Solve Close
= ()) |
34 y
35 | ! | |

The next step is to enter the constraints, including the non-negativity constraint on the
decision variables. To enter the non-negativity constraint, select Constraints and
click on the Add button to bring up the Add Constraints dialog. The input focus is on
the Cell Reference edit box, so you can either type A1:A3 or use the mouse to select
cells Al to A3 on the spreadsheet. Next, click on the Constraint (right hand side)
edit box and enter 0 there. Finally, click on the down arrow next to Relation to
display a list of relation symbols, and select >= from the list. Your Add Constraint
dialog box should look like the one on the next page.

Solver User Guide

Building Solver Models ¢ 55

ML) Add Constraint

Cell Reference: Constraint:

[B)

Comment:

(ok | [cance | [A |

To accept the non-negativity constraint and continue with entry of another constraint,
click the Add button. The Add Constraint dialog box will reappear with the edit
fields blank. With the input focus on Cell Reference, type B1, the first constraint left
hand side. Then click on the Constraint edit box, and enter 400 there. The default
relation <= is correct for this constraint, so you are now ready to click the Add button
to accept this constraint.

Continue with entry of the remaining four constraints in a similar manner. When you
have entered the Cell Reference (B5) and Constraint value (600) for the last
constraint, click the OK button instead of the Add button. The Solver Parameters
dialog will reappear, and the constraints you have entered should appear in the
Constraints list box, as shown below:

MLMLO) Premium Solver Platform

¥ Objective T Add
SA54(Max) M
¥Variables | &J
M $AS1:5A53 M ———————
: | (_pelere |
¥Constraints
¥Normal :
™ $B51 <= 400 T Recet All
| Reset All
M $Bs2 <= 200 | —
™ $BS3 <= 80O e Load /Save
™ $B54 <= 400
T 3BSS <= 600 i

Bound v Model

E Make Unconstrained Variables Non-Negative

Select a Solving Method: | Standard GRC Nonlinear L] [Options]

Solving Method

Select the GRG Nonlinear engine for Solver problems that are smooth
nonlinear. Select the LP/Quadratic engine for linear Solver problems, the
Evolutionary engine for non-smooth problems, and the SOCP Barrier engine
for conic problems.

[Solve J [Close J

Selecting the Solver Engine

There is a dropdown list of Solver engines available in the main Solver Parameters
dialog. The default choice is the standard GRG Solver (which, while slower, is fully
capable of solving linear as well as well as nonlinear problems). To choose the
LP/Quadratic Solver, click on the down arrow symbol to display the list of Solver
engines, and click on the Solver engine of your choice.

56 ¢ Building Solver Models

Solver User Guide

Solving the Problem

To find the optimal solution for this LP model, click on the Solve button. After an
instant or two, the solution values (A1 =200, A2 =200, A3 = 0) should appear in the
cells for the decision variables, and the Solver Results dialog should appear, as
shown below.

e @ Solver Results

Solver found a solution. All constraints and optimality

conditions are satisfied.
Reporis
(*) Keep Solver Solution Answer
() Restore Original Values Sensitivity
Limits
[Return to Solver Parameters Dialog |1 Outline Reports
|
L 0].4 J [Cancel J

Here you have several choices: You can select one or more reports to be produced
from the Reports list box (and check the Outline Reports box, if you’d like the
reports outlined);; and you can either discard the solution values (restoring the
original cell values) or save the solution values in the decision variable cells. The
reports are described in more detail in the chapter “Solver Reports™ later in this
Guide. For now, click on OK to save the optimal solution in the decision variable
cells. You’ll then return to worksheet Ready mode, unless you checked the box
“Return to Solver Parameters Dialog,” in which case the Solver Parameters dialog
would reappear, ready to solve another problem.

Congratulations — You’ve set up and solved a simple but complete Solver problem!
The next sections will go into much greater depth on the choices available to you in
the Solver Parameters dialog.

Decision Variables and Constraints

You have a great deal of flexibility in how you specify the decision variables and the
constraints in the Solver dialogs. In the previous section, we used the simplest forms:
the decision variables were all adjacent cells in one column, and the constraint right
hand sides were constants. In this section, we’ll cover more general forms of
specifying both variables and constraints.

Variables and Multiple Selections

In the standard Excel Solver, the Solver Parameters dialog provides just one
Changing Cells edit box to specify all of the decision variables in a model. This edit
box accepts only cell selections, which may be typed in as cell coordinates (or as
defined names equivalent to cell coordinates), or entered by clicking with the mouse
on the desired cells in the spreadsheet. However, you can use this box to enter the
most general form of cell selection permitted by Microsoft Excel, called a multiple
selection. A multiple selection consists of one of more individual selections,

Solver User Guide

Building Solver Models ¢ 57

separated by commas (when English is chosen in the Regional Settings — you may be
using different settings). Each individual selection may be a single cell, a column or
row of cells, or a rectangular set of (contiguous or adjacent) cells. An example of a
multiple selection from the “Maximizing Income” sheet in the
OptimizationExamples.xIsm workbook included with Microsoft Excel is shown
below:

A B | c | b | E | F | 6 1 H [
Example 4: Working Capital Management. |

Determine how to invest excess cash in 1-month, 3-month and B-month CDs $0 a3 to
masimize interest income while meeting comparwy cash requirements [plus safety margin).

-230000

1
2
a
iy
5 Fiald Fam Fhachase E0 i soeaths
| B |t 80 1.0% 1 1.2.3.4.5and6 tnterest
7| P £ 4.0% 3 1and4 Famed
| S 0 9.0% E 1 Fertal
=)
10 | Mt Monih § | Menth & | Month 7 | Month 4 | MNonth 5| Month £ Lnd
l Fet Dashe 400000 $205.000 $216.000 $237.000 $153.400 $109.400 $125.400
2| Maver £05 100,000 100,000 110,000 100,000 100,000 120,000
N3 | dmberest 2,200
| S £22 0 0
15 | P £22
b | Fme LD
N | Lash izoss
18 | £ Lazghr
19
120 |
21

The decision variables in this problem are the amounts to invest in 1-month CDs, 3-
month CDs and 6-month CDs. We have opportunities to invest in 1-month CDs
every month, but 3-month CDs are available only in Month 1 and Month 4, and 6-
month CDs are available only in Month 1. To enter all of these cells as decision
variables, we need a multiple selection: It must consist of at least three individual
selections, separated by commas. Note that although all of the cells to be selected
“touch” each other, they cannot be selected as one rectangular area. We could select
these cells in several different ways: For example, as (B14:G14,B15:B16,E15) or as
(B14:B16,C14:G14,E15). If you display the Solver Parameters dialog for this
example, you will see that the Changing Cells edit box uses another selection,
(B14:G14,B15,E15,B16). All of these selections are equivalent as far as the Solver
is concerned. In general, the areas of a multiple selection must be rectangular, but
they need not “touch” each other as they did in the example above. You should
avoid entering overlapping areas in a multiple selection: For example, Excel will
allow you to enter the above selection as (B14:B16,C14:G14,E14:E15), but the
duplication of variable cells will slow down the Solver during problem setup and
reporting, and may yield results different from the ones you expected.

There are several ways to enter a multiple selection in a formula or a dialog box: (i)
You can simply type the cell coordinates, entering each rectangular area in the form
FromCell : ToCell, separating the areas by commas (or other language-specific
separators); (ii) you can select each area by clicking with the mouse, typing a comma
between each mouse selection; or (iii) you can make the entire multiple selection with
the mouse by pressing the CTRL key as you make the first selection, and holding it
down until you have selected all of the rectangular areas.

If you enter the individual selections by clicking with the mouse, you’ll notice that
the cell reference is entered in “absolute” coordinates, such as B14:G14.
Further, you’ll find that regardless of whether you include the dollar signs when you

58 e Building Solver Models

Solver User Guide

type in the cell coordinates, the cell reference is treated as absolute, and it appears
with the dollar signs the next time you display the dialog. “Relative” cell references
have significance when you copy a formula from one cell to another, but in the
Solver dialogs all cell references are absolute.

Using the Range Selector

Premium Solver Platform for Mac has a convenience feature for selecting cells with
the mouse, called the Range Selector. With the Range Selector, you can temporarily
“hide” the dialog box where the cell selection will be entered, so that you can more
easily see and move about on the worksheet itself. This is most useful for the Set
Cell and Changing Cells edit boxes in the Solver Parameters dialog, since that dialog
can cover large portions of the viewable worksheet area; but the Range Selector is
available in all of the cell selection edit boxes in the standard Solver and Premium
Solver Platform for Mac.

You activate the Range Selector by clicking the small rectangular button at the right
edge of the cell selection edit box, as shown, for example, in the Solver Parameters
dialog just before “Selecting the Solver Engine.” This causes the dialog to be hidden
and a cell cursor (“thick cross”) to appear. The text form of the currently selected
range is shown just below and to the right of the cell cursor, as illustrated below:

_ C D E F G H
1
T
3
; Premium Solver Platform
; Select the cells for the left hand side:
8
) TAS1:SAST
10
11 { Cancel) € 0K)
12
13 T T T T

You can now select whatever cell range you want by clicking and dragging with the
mouse. When you release the mouse button, the original dialog will reappear, with
the cell selection in the appropriate edit box.

Constraint Left and Right Hand Sides

In specifying the constraints for the sample LP model earlier in this chapter, we
entered the constraint left hand sides as single cell references, and the right hand
sides as constants in the Add Constraint dialog. But the Solver permits more general
forms for both the left and right hand sides of constraints.

The constraint /eft hand side, entered in the Cell Reference edit box, may be any
individual selection, such as a column, row, or rectangular area of cells. Multiple
selections are not permitted here. In the example shown earlier, we could have
placed the constants 400, 200, 800, 400, 600 in cells C1:C5, then entered all five
constraint left hand sides at once as B1:BS5, and the five right hand sides as C1:C5.

Solver User Guide

Building Solver Models ¢ 59

Overlapping and Conflicting Constraints

You should be careful about entering equivalent or overlapping cell references in the
left hand sides of different rows of constraints in the Constraints list box. The only
situation where this makes sense is when one constraint uses the >= relation to
specify a lower bound, and the other uses the <= relation to specify an upper bound.
(Of course, the lower bound must be less than the upper bound, or else there will be
no feasible solution to the problem.) If you place multiple lower or upper bounds on
the same cells, Premium Solver Platform for Mac will use the “tighter” bounds. For
example, if you enter constraints such as A1:A5 <= 10 and A3:C3 <=5, you’ve
specified both A3 <= 10 and A3 <=5, so the Solver will use A3 <=15.

A pair of constraints such as A1:A5 <= 10 and A1:A5 >= 10 has the same effect as
A1:A5 =10, but is considerably less efficient and may cause problems for some of
the Solver’s advanced solution strategies. Hence, you should always use the form
with the = relation in the constraint.

If you specify both a <= or >= constraint and a binary integer or alldifferent
constraint for the same group of variable cells, Premium Solver Platform for Mac
will display an error message when you try to solve the problem, unless the bounds
you specify agree with the binary integer or alldifferent constraint. For example,
A1:A5 >=3 and either A1:A5 = binary or A1:A5 = alldifferent will cause the Solver
to display an error message. (The values of variables in an “alldifferent group” must
vary from 1 to N, where N is the number of variables; of course, you can always use
formulas in other cells to shift this range of values to another range.) As a conven-
ience, you can specify a <= or >= constraint for a binary integer variable that further
restricts it to be either 0 or 1, without getting an error message. “Fixing” variables in
this way can be useful when experimenting with an integer programming model.

Constraint Right Hand Sides

The constraint right hand side may be any of the following:
1. A numeric constant such as 1.
2. A cell reference such as CI.
3. An (individual) selection such as C1:C5.
4. An arbitrary formula such as C1+1 or C2/D2.
5. “integer”, “binary” or “alldifferent”
6. “conic” (Premium Solver Platform only)

Option 5 is for integer constraints only and is discussed below under “Using Integer
Constraints.” Option 6 is discussed below under “Using Conic Constraints.” If you
use option 3 — a selection of more than one cell — the number of cells selected must
match the number of cells you selected for the constraint left hand side. (The two
selections need not have the same shape: For example, the left hand side could be a
column and the right hand side a row.) You may also use rectangular areas of cells.
In any case, when you use this form you are specifying several constraints at once,
and the constraint left hand sides correspond element-by-element to the right hand
sides. As we noted in the example shown earlier, you can enter the right hand side
values 400, 200, 800, 400 and 600 into cells C1 to C5, and enter a single constraint
such as B1:B5 <= C1:C5. You can see examples of this form in nearly all of the
sample worksheets included with the Solver, as well as throughout this Guide. It is
by far the most useful form.

60 ¢ Building Solver Models

Solver User Guide

If the constraint right hand side is a cell reference, cell selection or formula, the
Solver needs to know whether the contents of those cells, or the value of the formula
is constant in the problem, or variable (i.e. dependent on the values of the decision
variables). If the right hand side depends on any of the decision variables, the Solver
transforms a constraint such as “LHS >= RHS” into “LHS - RHS >= 0” internally.
All Solver engines work internally with constant bounds on the constraint functions.

Implicit Non-Negativity Constraints

Many Solver problems — and perhaps most LP problems — have “non-negativity”
constraints, or lower bounds of zero on the decision variables. To save you the
trouble of entering these constraints explicitly in the Constraints list box, both the
standard Solver and Premium Solver Platform for Mac provide a Make
Unconstrained Variables Non-Negative check box in the Solver Parameters dialog.
When this box is checked, all variables that do not have explicit lower bounds in the
Constraint list box are automatically given lower bounds of zero. You can enter
constraints such as A1 >=2 or Al >= -3 for certain variables, overriding the implicit
lower bound, and use the Make Unconstrained Variables Non-Negative box to give
all other variables zero lower bounds.

Efficiency of Constraint Forms

The Solver recognizes the case where the constraint left hand side is a decision
variable, or a set of decision variables. As long as the corresponding right hand sides
are constant (i.e. not dependent on any of the variables), these constraints are
specially treated as bounds on the variables. The most common instance of a bound
on a variable is a non-negativity constraint such as A1 >= 0, but any sort of constant
bounds are handled efficiently by all of the Solver engines.

There is no difference in terms of efficiency between a constraint entered (for
example) as A1 <= 100 or as A1 <= B1 where B1 contains 100; the Solver
recognizes that B1 is equivalent to a constant. The form A1 <= B1 is usually better
from the standpoint of maintainability of your Solver model.

On the other hand, a constraint right hand side that is a formula — even a simple one
like 2+2 — will incrementally increase the solution time for the model. The Solver
treats any such formula as a RHS potentially dependent on the variables, and it
internally creates a constraint “LHS - RHS >= 0" — even if the formula really was a
constant bound on a variable. It is better to place whatever formula you need into a
cell, and reference that cell as the constraint right hand side: Because the formula has
already been analyzed by Microsoft Excel when it was entered in the cell, the Solver
can determine whether it is dependent on the variables.

Using Integer and Alldifferent Constraints

Integer constraints can only be applied to cells that are decision variables; hence the
cells selected on the left hand side of the constraint must be a subset (or all) of the
cells in the Changing Cells edit box, or the Variable Cell list box. Integer constraints
specify that the selected variable cells must have solution values that are integers or
whole numbers, such as -1, 0 or 2, to within a small tolerance. Variable cells that
have binary integer constraints must be either 0 or 1 at the optimal solution. Variable
cells subject to an alldifferent constraint must have values from 1 to N, where N is
the number of cells specified on the constraint left hand side, and each cell must have
a value different from all the others.

You specify an integer, binary or alldifferent constraint by selecting the “int”, “bin”
or “dif” choice from the Relation dropdown list in the Add/Change Constraint dialog.

Solver User Guide

Building Solver Models ¢ 61

The Solver displays such constraints in the Constraint list box in the form “A1:AS =
integer,” “A1:AS = binary” or “A1:AS = alldifferent”.

Be sure that you select “int”, “bin” or “dif” from the Relation dropdown list. If you
select = from the dropdown list and #ype the word “integer,” “binary” or
“alldifferent” on the right hand side, the Solver will not recognize this as an integer
constraint, and clicking on Solve will probably result in the error message “Solver
encountered an error value in a target or constraint cell”.

Using Conic Constraints

Conic constraints are a new feature of Premium Solver Platform for Mac, discussed
in the previous chapter “Solver Models and Optimization.” They can only be applied
to cells that are decision variables; hence the cells selected on the left hand side of
the constraint must be a subset (or all) of the cells in the Changing Cells edit box, or
the Variable Cell list box. To add a conic constraint, you select either the “soc”
(second order cone) or “src” (rotated second order cone) choice from the relation
dropdown list, as shown below.

o"e e Add Constraint
Cell Reference: Constraint:
$AS1:5ASS| | soc ™ conic e
Comment: <=

=
(o) [im) [A
bin
I

I I I | dif

o

src

5em

This constraint specifies that the vector formed by n decision variables must belong
to the second order cone of dimension #. An “soc” constraint is equivalent to the
formula Al >= SQRT(SUMSQ(A2:A5)) — in linear algebra, a, > [|ay:as]|, — or if Al
is non-negative, A1"2 >= SUMSQ(A2:A5). An “src” constraint is equivalent to the
formula 2*A1*A2 >= SUMSQ(A3:A5) — in linear algebra 2a,a, > | as:as||2.

More Readable Models

This section focuses on features of the Solver and Microsoft Excel you can use to
build more readable, maintainable, scalable models. The approach outlined above in
“From Algebra to Spreadsheets” is the “quick and dirty” way to translate from a
model in algebraic form to an equivalent spreadsheet model, ready for optimization.
However, that approach will soon prove to be short-sighted when you wish to change
the data (for example unit profits or parts on hand), expand the model to include
more products or parts, or show the model to someone unfamiliar with the problem or
uncomfortable with algebraic notation.

62 ¢ Building Solver Models

Solver User Guide

For a better approach to laying out this model, consider the EXAMPLE1 worksheet
in the OptimizationExamples.xlsm workbook, shown below:

— - — - -
®@NOo OptimizationExamples.xlsm

E ﬁ @ E EJ :‘6 Iﬁ ﬁ &/ v ,_|- Z - (q' Search in Sheet)_))i

Home Layout Tables | Charts | SmartArt | Formulas Data | Review ~ -ﬁ-vl

Edit Fant Alignment Number Format Cells Themes |

e e
v e vy i [AaS, omE”
; = —

MS Sans Serif |14 |- , |General -
: = B 0, ; ; ; ot
Paste - B I U] A © Align B % > éFormatti:ZI Styles © Actions = Themes Aa- |

F10 = Sfx ~|
A B C D E F G H

1 |[Example 1: Product mix problem
2 |Your company manufactures TVs, sterecs and speakers, using a common parts
3 |inventory of power supplies, speaker cones, etc. Parts are in limited supply and you
4 |must determine the most profitable mix of products to build. See our Tutorial Online
5 |for step-by-step instructions on formulating this linear programming model.
z
8
9

_

TV set Stereo Speaker|
Number to Build->| 19 201 360
Zl Part Name Inventory No. Used
11 |Chassis 450 220
12 |Picture Tube 250 19
13 |Speaker Cone 800 800
14 |Power Supply 450 220
15 |Electronics 600 599
16 Profits:
17 By Product $75 $50 $35
18 Total | $24,085 |

—-o—-oo|7
-]

(RS REE C
—_— O =

20 |To find the optimal solution, select Tools Premium Solver..., then click the Solve
21 |button. When the Solver Results dialog appears, select Answer Report in the
22 |Reports list box, and check the box Outline Reports. Click sheet tab Answer
23 |Report 1 and click the + symbols to expand the outlined sections of the report.

¥
[1<« » »l 7] Limits Report 2 | Population Report 1] EXAMPLEL | FI & —— — -

Normal View A

You are encouraged to open this worksheet in Microsoft Excel and examine its
formulas, row, column and cell formatting, and use of labels. If you are not familiar
with Excel’s “Format Cells” tabbed dialog box, this is a good opportunity to see how
it works. Just select one or more cells in EXAMPLE], choose Format Cells and the
appropriate tab to see how the fonts, patterns and borders have been set.

Layout and Formatting

EXAMPLE]1 shows one way (not the only way!) to set up an LP model in a more
readable and maintainable fashion. To enhance readability, borders and labels have
been used to draw attention to the decision variables at D9 to F9, the constraint left
hand side formulas at C11 to C15, and the right hand sides at B11 to B15. Your
client or management won’t miss the objective function calculation at B17 to F18.

EXAMPLEI is also much easier to maintain and expand than a model constructed
with “hardwired” formulas as outlined in the previous chapter. The parts required for
each product and the unit profit per product built (i.e. the coefficients of this model)
are laid out in cells on the spreadsheet. To add products, you can simply insert new
columns in the range of columns D through F; the constraint formulas will “expand”
automatically. To add more parts, you can insert new rows between rows 11 and 15,
then copy any one of the existing formulas in column C into the new rows.

Solver User Guide

Building Solver Models ¢ 63

The SUMPRODUCT function is used in EXAMPLE]1 to calculate the value of the
objective function and the constraint left hand sides.

If you choose Premium Solver... from the Tools menu, the Solver Parameters dialog
for EXAMPLEL! will appear, as shown below:

Fe¥aYs) I Premium Solver Platform
Objective (Add
SDS18(Max) —_—
Variables %J
$D39:5F59 ()
Constraints
Normal
@SCS]]:SCS]S <= §B§11:3B515 (Reset All]
Bound
™ D9:F9 <= 500 [Load/save |
D9:5F$9 >= 0
Conic —_—
Integer [Moger |

[1 Make Unconstrained Variables Non-Negative

Select a Solving Method: Standard Evolutionary L] Options

Solving Method

Select the GRG Nonlinear engine for Solver problems that are smooth
nonlinear. Select the LP/Quadratic engine for linear Solver problems, the
Evolutionary engine for non-smooth problems, and the SOCP Barrier engine
for conic problems.

[Saolve J L Close J

This dialog illustrates a simple case of the definition of blocks of constraints at one
time. There are five constraints of the form C11 <=B11, C12 <= B12, etc., but they
can be entered all at once in the Constraints list box. If you haven’t previously tried
this, click the Delete button to remove the first line in the Constraints list box, then
re-enter it with the following steps:

1. Click on Add... to bring up the Add Constraints dialog.
2. With the Cell Reference field ready for input, type C11:C15.

3. Click on the Constraint field (the default <= relation is OK) and type
B11:B15.

4. Click on OK to add this block of information.

Using Defined Names

On the worksheet and in the Solver Parameters dialog in EXAMPLEI, the decision
variables and the constraint left-hand and right-hand sides were referred to by their
cell coordinates. For example, the number of TV sets is at D9, and the number of
products built as a whole is D9:F9. You can make your spreadsheets more readable
and more flexible by using defined names instead of such cell coordinates.

A defined name is created by selecting the Insert Name Define... menu command and
entering the name and the range of cells it should refer to. For example, you could
define the name Products to refer to D9:F9, and then type “Products” into the
Changing Cells field, or the Cell Reference field of the Add Constraint dialog.

64 ¢ Building Solver Models

Solver User Guide

The Insert Name Create... menu command in Excel provides a shortcut way to define
a group of names at once. For example, in EXAMPLE] you could select the range
All to B15, choose Insert Name Create... and click OK to create the names Chassis
for B11, Picture Tube for B12, Speaker Cone for B13, Power Supply for B14 and
Electronics for B15.

But you may find it more useful to define names for blocks of cells — for example,
“Inventory” for cells B11:B15, and “Parts Used” for cells C11:C15. As you add
defined names, the Solver recognizes them, and uses them in preference to cell
coordinates in the Set Cell, By Changing Cells, and Constraints boxes. After
defining “Total Profit” for cell D18 and “Products”, “Inventory” and “Parts Used”
in EXAMPLEI, you can select Tools Premium Solver... and display a much more
readable Product Mix optimization model.

If you take the time to organize and lay out your model in “block form,” use defined
names for both individual cells and groups of cells, and make effective use of cell
borders, colors and other formatting, you’ll find that it’s easier to maintain your
model, and to communicate your results to coworkers, clients and management.

Models Defined Across Multiple Worksheets

Premium Solver Platform for Mac allows you to define decision variables and
constraint left hand sides on any worksheet of a workbook. For example, we can
split the EXAMPLE1 model illustrated in the previous section into two parts:

| A B C D E F G I
Product mix problem.

=
TUT COMEANy MANLIACIUGE | W5, $38r60E AN SEoARETS, UBING B COMMGN DAl FIVanorny
0f powar SUDDIies, SPAAAr CONes, ©15, FArS AN I Iimiten SLBRY And you MUST dalerming
she mos: profiable mix of products o buikd

Numbie fo Bl |

=] Prafiis;
Y] T ProaUeT ala L 210U ki

Worksheet Examplel contains the decision variables, and the coefficients and
SUMPRODUCT formula for the objective. Worksheet Inventory contains the
constraint left hand sides (formulas), coefficients and right hand sides.

FaT Nama fmvaniory N, Usea

Chassis Ea:0 E1) 1 1 a
Aichine Tobe E0 200 1 a a
Hpamiar Lang ana ana 2 2 1
Fowar Supaly Fi] A00 1 1]
Elpennes ahd and 2 1 1

Note that the constraint formula refers to the variables as Example1!$D9:$F9.
Starting from worksheet Examplel, we can display the Solver Parameters dialog,
click Add or Change, then simply point and click to select the constraint left and right
hand sides on worksheet Inventory, as shown below.

Solver User Guide Building Solver Models ¢ 65

Cell Reference:

Constraint:

Comment:

'Inventow'!DlU:$DEH |<= H I1nventury‘l$C$10:$C!]|1‘:|

(OK

[Cancel] [Add]

The resulting Solver Parameters dialog looks like this:

¥Objective Add
Total_profit{Max)
"Variables
g Number_to_build
¥Constraints =il
¥ Normal
U 'Inventory'!SD$10:5D514 <= 'Inventory'!$C$10:5C514 Reset All
Bound
Conic Load /Save
Integer
™ Make Unconstrained Variables Non-Negative
Select a Solving Method: |Standard LP/Quadratic B

Solving Method

Select the GRG Nonlinear engine for Solver problems that are smooth nonlinear.
Select the LP/Quadratic engine for linear Solver problems, the Evolutionary engine
for non-smooth problems, and the SOCP Barrier engine for conic problems.

[Solve] [Close]

66 e Building Solver Models

Solver User Guide

Analyzing and Solving Models

Introduction

This chapter explains how to use the Solver Model dialog to analyze and transform
your model, and control the solution process. The Solver Model dialog is the user
interface to features of the Polymorphic Spreadsheet Interpreter in Premium Solver
Platform for Mac, described briefly in the “Introduction.”

The first sections of this chapter explain how to use the Solver Model dialog to
diagnose your model’s type (LP, QP, NLP, etc.), sparsity, and convexity; identify
“problem formulas” that make your model non-linear, non-smooth or non-convex;
automatically transform your model to replace uses of certain non-smooth functions
with smooth and even linear counterparts; and set options for use of the Interpreter
when you solve your model. The last section describes in greater depth how the
Interpreter works, in comparison to the Microsoft Excel formula recalculator, and
how certain Solver engines take advantage of the Interpreter’s greater capabilities.

Using the Solver Model Dialog

You use the Solver Model dialog to analyze and optionally transform your model, but
not to solve it. Through this dialog, you can run the Polymorphic Spreadsheet
Interpreter on your model, without running any Solver engines. You can also set
options to determine whether and how the Interpreter will be used when you do solve
your model, by clicking the Solve button in the Solver Parameters dialog.

We can illustrate this process with the EXAMPLES worksheet, a simple Inventory
Planning model included in the OptimizationExamples.xIsm workbook, installed with
the Solver files, shown on the next page. You can easily open this workbook from
the Solver Parameters dialog by clicking Help, then clicking Examples.

EXAMPLES was originally designed to be a linear programming model with a few
integer variables — but to properly minimize holding costs, the objective at cell B19
had to depend on 114, J14 and K14, which are sums of IF functions at [11:K14 in the
“Help function box.” If you attempt to solve this model with the LP/Quadratic
Solver, you’ll receive the message “The selected engine can not solve a problem of
this type. Please select another engine.” What can we do to improve this situation?

Solver User Guide

Analyzing and Solving Models ¢ 67

enO [OptimizationExamples.xIsm
PEHOH® s Db & 9-6- -6 F BHH & v @
Home | lLayout | Tables | Charms | SmartArt | Formulas | Data | Review
Edit Font Alignment. : Number Format
= _ (8] A0 - [wssansseit |16 [+] A~ A- = aber | =) Wrap Text ~ | General = . Phbgarer
e (Foea- BT U||(_-| S A (E EE|EE| | Merge B v % 5 |[%8| %8 o] Y gea
Al kS Jfx| Example 5: Inventory Planning Model: Automatic Transformaticn of IF Functions
N 8 [c [o [E [F [c] W [v [J [x [t [M [N T o [P
Example 5: | Inventory Planning Model: Automatic Transformation of IF Functions
| 2 |This inventory planning model was originally designed for linear programming, but to properly minimize
| 3 |holding costs, the objective at cell B19 had to depend on 114, J14 and K14, which are sums of
| 2 |IF functions at 111:K14 in the "Help function box". Using the LP/Quadratic Solver yields the result
| 5 |"This engine cannot solve a problem of this type." The IF functions have turned an otherwise simple linear
& |mixed-integer model into difficult a non-smooth model. What can we do to find an optimal solution?
s
9 |X =product 1, ¥ = product 2, Z = product 3 Help function
10 |X1 0 Y1 0 1 0 X Y z
11 X2 0 Y2 0 22 0 Period 1 0 0 0
12 X3 0 Y3 0 Z3 0 Period2| 0 0 0
13 | Period3| O 0]
14 Sum 0 0 0
15 |/ = Inventory (product X, Y, Z)
16 [IX1 o [wm [50| 1z [o
17 [IX2 | -20 | w2 | -50 | 1zz [-100
18
| 19 |Objective: | -2200
| 20 | With the Premium Solver Platform, you have several choices! You can
21 | Constraints: use Tools Premium Solver..., select Evolutionary Solver, and click.
| 22 | Q >= "] Solve. Given enough time, the Solver will usually find a minimum cost of.
23 | o] >= 20 2400. But you can use the Model dialog to diagnose and transform the
| 24 | -20 >= 50 model automatically into one that is easier to solve. Use Tools Premium
| 25 | 0 >= 50 Solver. . . and click Model. Select Structure and click Check Model.
| 26 | -50 >= o] The Model is diagnosed as an NLP with 9 variables and 13 functions; 12 of
| 27 | -50 >= 20 the functions are linear, but one (the objective) is nonlinear. Now click on
| 28 | 0 >= 0 the Transformed tab, and click Check Model again. The Transformed
| 29 |] >= 100 problem is LP Convex with 27 variables and 67 functions - the extra
| 30 | -100 >= 100 variables and functions were created internally by the Solver. Check the
31 | 0 <= 150 box Transform Non-Smooth Model, and click Close. Select the
| 32 | 0 <= 150 LP/Quadratic Solver and click Solve. The transformed model is now
[0] <= 150 |sulved to optimalitz as an LP/MIP model, again zieldir:g the objective 2400.
[14 4 » » | EXAMPLEZ | EXAMPLE3 | Scaling Repert 1 | EXAMPLES | Structure Report 1] Transformation Report 1 | EXAMPLES | EXAMPLEE | EXA: & —

Pictured below is the Solver Parameters dialog for this model.

MLMO Premium Solver Platform

vObjective Add
$BS 19(Min)

vVariables [Change]
ESBSlO:SBS]E,SDSlO:SD$12,$F$10:$F$12 —_—
. Delete
¥ Constraints

¥MNormal
$B522:5B530 >= D22:5D530 ———

%ssszl:sasss <= D31:5D533 ﬂj
¥Bound Load/Save

M $8510:58512 <= 500

M D10:5D512 <= 500

M F10:5F$12 <= 500 Model

Conic

vinteger

M B10:$B812 = integer

D10:5D$12 = integer

™ F10:F12 = integer

E Make Unconstrained Variables Non-Negative

Select a Solving Method: Standard LP/Quadratic - Options

Solving Method

Select the GRG Nonlinear engine for Solver problems that are smooth
nonlinear. Select the LP/Quadratic engine for linear Solver problems, the
Evolutionary engine for non-smooth problems, and the SOCP Barrier engine
for conic problems.

[Solve _J [Close _]

A

68 e Analyzing and Solving Models Solver User Guide

Clicking the Model button in this dialog will display the Solver Model dialog as
shown on the next page. Clicking the Solve button will run the currently selected
Solver engine on the current model, using the current settings in the Solver engine’s
Options dialog, and the current settings for the Polymorphic Spreadsheet Interpreter
in the Solver Model dialog.

LWL Solver Model
Model | Options | —
Close
Unknown Variables Functions Dependencies S ——
Check Model
All
Check For
Smooth
@ Gradients
Linear () Structure
—_— (O Convexi
Bounds Sparsity % \'—j tY
() Automatic
Integers
[Transform Non-Smooth Model [Reports |

Analyzing Model Structure

We can get information by selecting the Check For Structure option, and clicking the
Check Model button — yielding the dialog shown below. (See “Using the Check
Model Button” below for a complete discussion of the analysis performed for the
Check For Gradients, Structure, and Convexity options.)

e w Solver Model
Model | Options | PN
- pions Close
NSP Variables Functions Dependencies —
Check Model
All 9 13 36
Check For
Smooth
U 12 27 () Gradients
Linear 0 12 27 () Structure
e — () Convexity
Bound Sparsity % -
ounds 18 parsity 30.77 () Automatic
Integers g
|| Transform Nen-Smooth Model ! Reports)

The upper left corner of the Solver Model dialog displays NSP, the Interpreter’s
diagnosis of the type of model on the EXAMPLES worksheet. Recall that this model
was originally intended to be an LP (linear programming) model. But the IF func-
tions at [11:K14 are not linear functions. In the section “Analyzing Model
Exceptions” below, we’ll use the Interpreter to pinpoint these IF functions — which
could be hard to find in a large Solver model. But first we’ll review the displayed
statistics, options and buttons in this dialog.

Using Model Statistics

The columns of the Solver Model dialog contain counts of the Variables, Functions,
and Dependencies in your model. The rows labeled All, Smooth, and Linear will

Solver User Guide

Analyzing and Solving Models ¢ 69

display — respectively — (i) the fofal number of variables, functions, and nonzeroes
(dependencies) in the model; (ii) the number of smooth variables, functions, and
dependencies, and (iii) the number of /inear variables, functions, and dependencies in
the model. The Bounds box displays the total number of bounds on variables, and
the Integers box shows the total number of integer, binary, and alldifferent variables
in your model. The Sparsity % box helps measure the total size and sparsity of your
model, as further discussed below.

Types of Functions and Variables

For an explanation of linear, and smooth functions, please consult the section
“Functions of the Variables” in the chapter “Solver Models and Optimization.” A/l
functions includes both non-smooth and smooth functions; smooth functions includes
all smooth nonlinear, and linear functions. However, linear functions include only
functions of that type. A decision variable is a “linear variable” if, everywhere that it
occurs in formulas of your model, the expression where it occurs (taken alone) would
be a linear function. A variable is counted as a “smooth variable” if, everywhere that
it occurs, the expression (taken alone) would be a smooth nonlinear, or linear
function. For example, if your model had only an objective defined by the formula,
=3*A1+ A2"2 + INT(A3), variable A1 would be counted as a linear variable, since
the expression 3*A1 taken alone is a linear function; both A1 and A2 would be
counted as smooth variables; and variable A3 would appear only in the count of all
variables.

Types of Dependencies and NonZeroes

A “nonzero” is counted each time that a given function is found to depend on a given
variable. For example, if cell B1 is the objective function, it contains =A1+A2-B2,
cell B2 contains =A2*A3, and cells A1:A3 are all variables, this function would
contribute 3 nonzeroes to the total count. (Note that a variable, such as A2 in this
example, is counted only once per function, even if it is referenced more than once in
the function’s cell formulas.) Since B1 depends on cells A1:A3, the corresponding
partial derivatives (elements of the Jacobian matrix, as discussed in the chapter
“Solver Models and Optimization) will be nonzero.

The Sparsity % box contains the results of calculating [All NonZeroes] / ([All
Variables] * [All Functions]), expressed as a percentage. Model sparsity was
mentioned briefly in the chapters “Introduction” and “Solver Models and
Optimization,” but here we can describe it more precisely: A dense model will have
a high Sparsity % and a sparse model will have a low Sparsity % figure. The
EXAMPLES model has a sparsity of 30.77% -- an intermediate figure.

As mentioned in the earlier chapters, large optimization models tend to be sparse in
nature. Often, a linear programming (LP) model of over 10,000 variables will have a
Sparsity % figure of as little as 2% or 3%. Frontline’s Large-Scale LP/QP, Large-
Scale GRG, Gurobi, and KNITRO Solvers are designed to exploit sparsity in a model
to save memory and solution time, and improve accuracy.

Using the Check Model Button

The three radio buttons in the “Check For” option group determine how much
analysis the Interpreter will carry out for your model when you click the Check
Model button, and when you click the Solve button in the main Solver Parameters
dialog. Clicking this button with the Transform Non-Smooth checkbox unchecked
analyzes the original model; when checked, the interpeter analyzes the transformed
model.

70 e Analyzing and Solving Models Solver User Guide

e Selecting Gradients causes the Interpreter to scan all of the formulas in your
model, to determine whether it can compute values and gradients for all of these
formulas. If you’ve used Excel features that the Interpreter does not support —
such as circular references, some references to other workbooks, and some user-
defined functions — an error message dialog will appear.

e Selecting Structure causes the Interpreter to perform the same analysis as
Gradients (which may yield an error message), then analyze the structure
(dependencies) in your model, fill in the model statistics described above, and
classify your model as an LP, QP, QCP, SOCP, NLP, or NSP. (See the chapter
“Solver Models and Optimization” for an explanation of these abbreviations.)

e Selecting Convexity causes the Interpreter to perform the same analysis as
Structure, then seek to determine whether each function in your model is convex
or non-convex over the feasible region, as described below. The overall result is
displayed in the upper left corner of the Solver Model dialog.

Analyzing Model Convexity

An innovation in Premium Solver Platform for Mac, not available in other modeling
systems, is automatic testing of problem functions for convexity. As mentioned
briefly in the Introduction, this test may yield conclusive results (that the problem is
either convex or non-convex) or inconclusive results (meaning that the test was not
able to prove convexity, nor was it able to prove non-convexity.) A convexity test
that always yielded conclusive results would take time that grew exponentially with
the number of variables, and hence would be impractical for even modest-size
models. The methods used in Premium Solver Platform for Mac are designed to
yield useful results in many, but not all cases, while taking a “reasonable” amount of
time. The methods used to analyze model convexity are further described later in this
chapter, in the section “More on the Polymorphic Spreadsheet Interpreter.”

As explained in the Introduction, an optimization model is convex only if all of its
functions are convex (if the objective is being maximized rather than minimized, then
this function must be concave rather than convex). The overall convexity result for
the model is displayed in the upper left corner of the Solver Model dialog following
the result of structure diagnosis (LP, QP, QCP, etc.) as “Convex,” “NonCvx,” or
blank if the convexity test is inconclusive. You can also obtain a report of the
convexity test results for each problem function, as explained below.

Diagnosis Tab: Analyzing Model Exceptions

In EXAMPLES, we intended to create a linear programming (LP) model, but when
we clicked the Check Model button, the Interpreter reported that the model is
nonlinear (NLP). In a model that we intended to be smooth nonlinear, which we
hoped to solve using (say) the Large-Scale GRG or KNITRO Solver, the Interpreter
might report that the model is non-smooth (NSP). How do we find and correct the
problem in a large Solver model? The Solver Model dialog can tell you which cell
formulas contributed to a diagnosis of a model type different from what you intended.

The Structure Report

To find out why EXAMPLES was diagnosed as NSP rather than LP, click the
Options tab in the Solver Model dialog, which will display the options shown on the
next page.

Solver User Guide

Analyzing and Solving Models o 71

OO Selver Model

! Model | Options ————————
Close
"] Sparse Mode JE——
"] Active Sheet Only Check Model
Check For
Desired Model
@ Gradients

@ Linear

0O .
() Quadratic
O Nonlinear

C, Structure
C, Convexity
—~ .
() Automatic

(Reports]

The Desired Model option group is used to help you find formulas that are
“exceptions” to the type of model that you intended to create. Simply click the
desired type of model — Linear, Quadratic, or Nonlinear and click the Check Model
button again. This will re-run the analysis. Now, choose the Reports button, and
select the Structure report, and hit OK. If you do this for EXAMPLES, a report like
the one shown on the next page will be inserted into your workbook.

A C D E F G H 1
Microsoft Excel 14 Structure Report

Worksheet: EXAMPLES

Report Created: November 16, 2010 4:53:22 PM PST

Madel Type: NSP Assumption: LP

Statistics

Variables Functions Dependents

All Bl 13 38
Smaoth a 12 g
Linear 1] 12 27
Exception 1 Exception 2
GCall Name Cell Valua Formula Variabla Formula Variabla
3B51% Objective: -2200 EXAMPLESB10 EXAMPLESIB18 EXAMPLES1E11 EX

o | Bl | =B e o8 ~i| o wi| s i =

This report shows that the objective function at cell B19 is an exception to your
assumption of a linear model — it is a nonlinear function. Further, it depends
nonlinearly on variables B10 and B11 (and possibly others). This dependence was
first found at cell B19 on worksheet EXAMPLES. If your objective formula had
referred to a chain of other cell formulas, the report would show you the specific cell
where a nonlinear operation or function was first found. EXAMPLES!B19 in the
report is a hyperlink — you can click on it to jump to the specific cell in question. In a
large model, these links will help you quickly identify the “problem” formulas.

To save space, a maximum of three exceptions of each type is shown in the report for
each problem function. After modifying any formulas that were shown as exceptions
in the report, you should create a new report to identify any further exceptions to
your assumed model type — until the model type changes to the type you expected.

If you’ve selected Check For Convexity instead of Structure when you click the
Check Model button (with “Show Exceptions to Desired Model” checked), the
Structure Report will additionally list all functions that are diagnosed as non-convex
or whose convexity could not be determined. For example, if you select Desired

72 e Analyzing and Solving Models Solver User Guide

Model Quadratic and Check For Convexity, the report will list any problem functions
that are (i) not quadratic or linear, and any that are (ii) quadratic but are not convex.

Transforming a Non-Smooth Model

As described in the chapter “Solver Models and Optimization,” the presence of the
non-smooth function IF in EXAMPLES makes the model much harder to solve.
With the Evolutionary Solver in Premium Solver Platform for Mac, you can still
solve such models. But where an LP can be solved very quickly and reliably up to
very large size, and the solution is basically guaranteed to be optimal, a non-smooth
model may take far more time to solve, and there are no guarantees as to whether the
solution is truly optimal.

In EXAMPLES, the IF functions are not essential to correctly model the real-world
problem: you could use binary integer variables and linear constraints to achieve the
same effect (a “fixed-charge constraint™). Techniques for doing this are described
under “Improving the Formulation of Your Model” in the chapter “Building Large-
Scale Models.” Modelers with training in operations research or management
science often use these techniques when first formulating their models.

However, if you don’t have time to learn these techniques, you may resort to the
familiar functions IF, MIN, MAX, ABS, AND, OR, and NOT to model your real-
world problem. To improve your results, Premium Solver Platform for Mac can
automatically apply techniques analogous to those described above, to transform the
model from your formulation to a different formulation that is easier to optimize.

To ensure that the transformed problem is well-scaled, it is important to enter
upper and lower bounds for all decision variables in the Constraints list box.
These bounds are used to compute well-scaled values for so-called “Big M”
constants that are used in the constraints added during the transformation.

Effects of Model Transformation

If your model includes non-smooth functions such as IF, MIN, MAX, ABS, AND,
OR, and NOT, but is otherwise linear, the result of the Platform’s automatic
transformation will be a linear mixed-integer (LP/MIP) model, with more variables
and constraints. This transformed model may be solved by a variety of Solver
engines, from the built-in LP/Quadratic and SOCP Barrier Solvers to the Large-Scale
LP/QP and Gurobi Solvers. The result may be a much faster solution that is
guaranteed to be optimal.

The automatic transformation process is not “magic:” You will still pay a price in
solution time for the use of non-smooth functions, because the transformed model
will be larger (more variables and constraints) and will include integer variables. As
described in the chapter “Solver Models and Optimization” of Premium Solver
Platform for Mac User Guide, the presence of integer variables in a model makes it
much harder to solve.

However, the automatic transformation from a problem with non-smooth functions to
a problem with integer variables means that the ‘arsenal’ of Solver engines available
to optimize the problem is much larger. Many years of effort by Solver developers to
improve the technology of solving LP/MIP models can now be applied to your model
if it includes IF, MIN, MAX, ABS, AND, OR, and NOT functions.

The automatic transformation process uses general-purpose methods to replace IF,
MIN, MAX, ABS, AND, OR, and NOT functions, and relational operators such as <,

Solver User Guide

Analyzing and Solving Models o 73

<=, >= and > with new binary integer and continuous variables, and new constraints.
There are still good uses for the techniques described under “Improving the Formula-
tion of Your Model,” because these techniques can yield a “tighter” formulation that
solves in less time than the automatically transformed version of your model.

If the arguments you supply to IF, MIN, MAX, ABS, AND, OR, and NOT functions
are linear functions of the variables, then the new constraints added to the problem
will be linear functions; if the arguments you supply are not linear, the transformation
process will still work, but the resulting model won’t be linear. If you also use other
non-smooth functions (for example, CHOOSE, LOOKUP, or the Excel database
functions, with arguments that depend on the variables) in your model, the result will
still be a non-smooth model, and you will still need the Evolutionary Solver to find a
solution.

Using Automatic Model Transformation

Just click the Transform Non-Smooth Model check box, and click the Check Model
button. If you do this for the EXAMPLES model, the Solver Model dialog below

will be displayed.
WO Solver Model
Model | Options | ——
Close
LP Convex Variables Functions Dependencies —_—
Check Model
All 27 67 150
Check For
Smooth -
27 67 150 () Gradients
Linear 27 67 150 () Structure
—_— . () Convexity
Bounds 36 Sparsity % 8.20 © Automatic
Integers 18
ETransForm Non-Smaooth Model [Reports)

The transformed model has 18 additional variables, 9 of which are new integer
variables, and 54 additional constraints — but it is now a linear integer (LP/MIP)
model. It’s also more sparse than before (8.29% versus 30.77%) — the LP/Quadratic
Solver and other sparsity-exploiting Solvers will be able to take advantage of this.

If you’re interested in the details of the additional variables and constraints, click the
Reports button, and choose the Transformation report. This will add a
Transformation Report like the one shown (in part) on the next page to your
workbook.

74 e Analyzing and Solving Models Solver User Guide

[}

Al B | WO N N HURURY N A -
Microsoft Excel 14 Transformation Report
Warksheet: EXAMPLES
Report Created: November 16, 2010 4:55:17 PM PST
Number of Artificial Variables: 18
Number of Original Variables: 9
Number of Artificial Constraints: 54
Number of Original Constraints: 12

Variables

Origin Type Created

10 | EXAMPLESIT! =»or>= Binary
11 EXAMPLES NN IF Continuous
12 EXAMPLESM2 = or»= Binary
13 EXAMPLESM2 IF Conlinuous
14 EXAMPLES N3 = or>= Binary

LD | S| =) | | LA | B | LA | B

15 EXAMPLESN13 IF Continuous
16 EXAMPLES1II11 = or»= Binary
17 EXAMPLES 111 IF Continuous

18 EXAMPLESIIZ =or>= Binary

19 EXAMPLES 112 IF Conlinuous
20 EXAMPLESIII =or>= Binary

21 EXAMPLES 113 IF Conlinuous
22 EXAMPLESIK11 = or»= Binary

23 EXAMPLES K11 IF Conlinuous
2] EXAMPLESIK12 »or>= Binary

25 EXAMPLES K12 IF Conlinuous
26 EXAMPLESI®13 = or »= Binary

27 EXAMPLES K13 IF Conlinuous
28 Constraints

29 Origin Type Created

30 EXAMPLESI11 >or»= <=0
31 EXAMPLES I =or== ==0
32 EXAMPLES1 IF <=
33 EXAMPLESNIN IF ==0
34 EXAMPLES1 IF <=
35 EXAMPLESNIN IF ==0
36 EXAMPLES112 =opr>= ==0
37 EXAMPLES 2 =or== ==0
_38 EXAMPLES12 |F <=0

To solve the transformed model, simply check the box “Transform Non-Smooth
Model”. Then click the Close button to return to the main Solver Parameters dialog,
and click the Solve button. The currently selected Solver engine will be used to solve
the transformed problem. (To solve the original problem, return to the Solver Model
dialog, and uncheck the “Transform Non-Smooth Model” box.) If you do this for the
EXAMPLES model, the Solver Results dialog will appear with the message “Solver
found a solution. All constraints and optimality conditions are satisfied.” Since this
is now an LP/MIP model and the Integer Tolerance is set to zero, the solution is
globally optimal.

Solver User Guide

Analyzing and Solving Models o 75

Model Analysis When Solving

The Polymorphic Spreadsheet Interpreter offers many advantages when solving a
problem: Besides computing values for your spreadsheet formulas, it can compute
accurate gradients — which are needed by most Solver engines — at high speed, and it
can tell the Solver engine which functions in your model are linear, quadratic, smooth
nonlinear, or non-smooth — several Solver engines use this information to realize
greater speed or solution accuracy.

Using the Check For Options

The Check For options group determines how much model analysis is done when you
click Check Model in the Solver Model dialog, or click Solve in the main Solver
Parameters dialog. The options Gradients, Structure, and Convexity take progres-
sively more time “up front” and yield progressively more information about the
model for you on Check Model, or for the Solver engine on Solve. The Automatic
setting — often your best choice — allows the Solver engine to choose the option
(Gradients, Structure, and Convexity) to be used when solving.

As noted above, the SOCP Barrier Solver, and MOSEK Solver Engine will operate
only if the Check For option is set to Structure, Convexity, or Automatic. All other
Solver engines can operate with any option setting, but they solve most efficiently
with specific settings.

Please see the last section of this chapter for background information on the
Polymorphic Spreadsheet Interpreter, and the meaning of “finite differencing,”
“automatic differentiation,” and “dependents analysis” in the following paragraphs.

Check For = Gradients

Choosing Gradients specifies that the PSI Interpreter should “parse” cell formulas on
each Solve step, prior to running the selected Solver engine. When this is done, and
the Solver engine requests function values and derivatives, they will be computed by
the Interpreter; fast, accurate derivatives will be obtained via automatic
differentiation. However, no structure or dependencies analysis will be available to
the Solver engine.

Check For = Structure

Choosing Structure specifies that the PSI Interpreter should “parse” cell formulas and
perform a structure analysis on each Solve step, prior to running the selected Solver
engine. When this is done, and the Solver engine requests function values and
derivatives, they will be computed by the Interpreter; fast, accurate derivatives will
be obtained via automatic differentiation. Further, structure or dependencies analysis
information will be available, if the Solver engine requests it.

Check For = Convexity

Choosing Convexity specifies that the PSI Interpreter should “parse” cell formulas,
perform a structure analysis, and perform a convexity analysis on each Solve step,
prior to running the selected Solver engine. No Solver engine currently requires this
option, but it is built into Premium Solver Platform for Mac for future use.

76 e Analyzing and Solving Models Solver User Guide

Check For = Automatic

Choosing Automatic — the default — specifies that either the Gradients or the
Structure option will be chosen automatically, based on the type of model and the
currently selected Solver engine’s ability to use the information.

As you may notice when using the Check Model button to diagnose your model,
these steps can take some time for larger models — and they can also require
significant amounts of memory. Structure analysis takes significantly more time and
memory than Gradients analysis. The resources spent on this analysis are often
repaid many times over when the Solver engine runs, but this depends on the Solver
engine, and also, to some degree, on the model.

For example, the LP/Quadratic Solver and the Large-Scale LP/QP Solver both use
Gradients when Solve With = Automatic, but they don’t use Structure, since the
model is expected to be an LP, and a Structure analysis would simply show that all
variables, functions and dependents were linear. But the KNITRO Solver uses
Structure when Solve With = Automatic, since they are designed to take advantage of
linear dependents in a model that is nonlinear overall.

Options Tab: Using Advanced Options

Sparse Mode

When the Sparse Mode box is checked, the PSI Interpreter operates internally in
“Sparse mode,” when it is unchecked (the default), the Interpreter operates in “Dense
mode.” This option affects only the PSI Interpreter, not the Solver engines — the
latter are typically designed either for dense problems, like the GRG Nonlinear
Solver, or for large, sparse problems. Sparse mode also enables a Solver engine to
request that non-smooth variable occurrences should be ignored when computing
derivatives via automatic differentiation.

The Polymorphic Spreadsheet Interpreter can use significant amounts of memory
(RAM), especially when diagnosing a model and computing derivatives via
automatic differentiation. Memory usage grows with model size, and is greatest
when the Solver is running (and using significant amounts of memory itself) and
requesting derivatives. If your model is large enough, the memory required may
exceed available RAM and cause Windows to beginning swapping to disk — with a
severe impact on solution time.

When it operates in “Sparse mode,” the PSI Interpreter uses sparse data structures,
including “packed” gradient vectors and Hessian matrices, and index lists for the
occurrences of variables in problem functions. Extra time is required to perform a
Structure analysis (which is required to take advantage of sparsity) and to create the
sparse data structures.

For a large, sparse model, Sparse mode can save a significant amount of memory —
and if this prevents swapping to disk, it will also save significant time. But if the
model is very dense, Sparse mode can actually take more time and memory than
Dense mode. Hence, you should check the Sparse box only for models where the
Sparsity % figure in the Solver Model dialog is quite low.

If you have a very large, sparse linear or quadratic model, you should experiment to
see whether the Sparse box yields the best performance. Bear in mind that checking
the Sparse box will cause a Structure analysis to be performed before running the
Solver engine. It’s possible that the Structure analysis will require more time up-
front than Sparse mode saves during the solution process.

Solver User Guide Analyzing and Solving Models o 77

For the KNITRO Solver, Sparse mode has a huge impact on performance. This
Solver operates most effectively when it can obtain second derivatives (Hessians)
from the Interpreter using automatic differentiation. But this process can consume
large amounts of time and memory when the Interpreter is in Dense mode. If a large
nonlinear model is sparse — as is usually the case — or if it includes many linear
occurrences of variables (which contribute nothing to the Hessian of the function in
which they occur), second derivative information can be computed far more
efficiently in Sparse mode.

A Solver engine can request that, if Check For = Automatic, the Interpreter will run
in Sparse mode regardless of the setting of the Sparse check box. The KNITRO
Solver makes this request, since the Sparse box is unchecked by default, and Sparse
mode is so critical to its performance. You can still force the Interpreter to run in its
own Dense mode by setting Check For = Structure (or another choice different from
Automatic) and leaving the Sparse box unchecked. But we recommend that you run
most Solver engines with the default settings (Check For = Automatic), which will
yield the best performance in the majority of cases.

For the Evolutionary Solver, Sparse mode can also have an important impact.
Typical models for the Evolutionary Solver — which is limited to 500 decision
variables — are not large enough to require this option for memory-saving purposes.
But when the PSI Interpreter operates in Sparse mode, the Evolutionary Solver can —
and will — ask the Interpreter to ignore non-smooth variables in automatic
differentiation. The effect of this is to “fix” the non-smooth variables, making their
partial derivatives zero, and to allow the Solver to proceed with automatic
differentiation of any non-smooth function.

So, if the Evolutionary Solver stops with the message “Solver encountered an
error computing derivatives,” you should check Sparse Mode box in the Solver
Model dialog, and click Solve again.

Active Sheet Only

When the Active Sheet Only box is checked, the PSI Interpreter will evaluate cells
only on the active (frontmost) worksheet in the active workbook. Cells on other
worksheets in the active workbook, or on sheets in other workbooks, that are
referenced in formulas making up the Solver model will be treated as constant in the
problem.

When the Active Only box is unchecked (the default), the Interpreter will evaluate all
cells, on all worksheets, referenced in formulas involved in the Solver model. If the
model references cells on sheets in other workbooks, these workbooks will be opened
if available; otherwise the external cell’s “last known value” (as stored in the active
workbook) is used and treated as constant in the model.

This box should be checked only if you have a large model that is spread across
multiple worksheets, and you want all cells on worksheets other than the active sheet
to be treated as constant in the problem. Note that, if these cells actually contain
formulas that depend on the decision variables, this fact will be ignored and you will
be solving a problem where these cells are effectively held constant at their last
known values. If you have a large number of such cells on other worksheets, and
especially if they contain formulas that do not depend on the decision variables,
checking this box will save time in the Interpreter.

78 e Analyzing and Solving Models Solver User Guide

More on the Polymorphic Spreadsheet Interpreter

The Polymorphic Spreadsheet Interpreter in Premium Solver Platform for Mac
fundamentally changes the way the Solver operates, and it affects — often
dramatically — the performance of both the built-in and field-installable Solver
engines. This optional section will give you more insight into how the Interpreter
works, in comparison to the Microsoft Excel formula recalculator, and how certain
Solver engines take advantage of the Interpreter’s considerably greater capabilities.
To appreciate this section, you may need to review “Functions of the Variables” in
the chapter “Solver Models and Optimization.”

The Microsoft Excel Recalculator

Microsoft Excel includes an “Interpreter” of its own for Excel formulas, that is
usually referred to as the formula recalculator. The recalculator is used to compute
up-to-date values for formulas in your model whenever you enter or edit information
in spreadsheet cells (when Excel is in “Automatic Calculation mode”) or when you
press the F9 (Calc Now) key. As the standard “Interpreter” from Microsoft, it
computes values for every kind of formula syntax or function that is legal in
Microsoft Excel. It is controlled by options on the Calculation tab in the Tools
Options dialog in Excel.

While it is invoked automatically when you work interactively with your spreadsheet,
the Microsoft Excel recalculator can also be invoked programmatically, by VBA
code or by an add-in such as the Solver. Indeed, the Solver traditionally worked by
writing new values into cells for decision variables, asking Excel to recalculate the
model, then reading the computed values of cells for the objective and constraints.

Although it is fast and accurate, the Microsoft Excel recalculator has a specific and
limited purpose: To calculate function values in formula cells, given new values for
other cells. It does not perform other tasks such as computing function derivatives,
or analyzing formulas for linear or nonlinear dependents.

Finite Differencing

Since the Microsoft Excel recalculator computes only function values, but most
Solver engines require both function values and function derivatives, the Excel
Solver has traditionally used the Excel recalculator to compute approximations of
partial derivatives, using the method of finite differencing. This method is based on
the definition of the partial derivative of a function f'with respect to a variable x;:

of/ ox;=lim f(x+eA)—f(x)
A—0 A

where x represents the vector of decision variables [x; x; ... x,] and e; is a unit
vector (with 1 in the jth position and 0 elsewhere). While the definition applies only
in the limit when A goes to zero, an approximation of the partial derivative can be
computed by choosing a very small value such as 10® for A. So the Solver uses the
following steps:

1. Set the cells for the decision variables to x = [x; x5 ... x,, |.

2. Ask Excel to recalculate the model, thereby computing f'(x).
3. Set the cell for the jth variable to the “perturbed” value x; + A.
4

Ask Excel to recalculate the model, thereby computing f'(x + ¢;A).

Solver User Guide

Analyzing and Solving Models o 79

5. Compute the difference of f(x + e;A) and f (x), divided by A.

These steps compute a partial derivative with respect to one variable. To compute
the function gradient — the partial derivatives with respect to al/l of the variables —
steps 3 through 5 above must be performed » times if there are n decision variables.

Most Solver algorithms require the gradient of the objective and the gradients of all
the constraints. That is, they require the Jacobian matrix of partial derivatives,
where each matrix row is the gradient of one function (see “Derivatives, Gradients,
Jacobians, and Hessians” in the chapter “Solver Models and Optimization”):

f/Ox, Of /Ox2, ..., Ofi/Ox,
0fo/0Ox, Of2/0x2, ..., Of2/Ox,

Ofu/OX 15 Ofu/Ox2, ..., Ofun/Oxy

This is not quite as expensive in computing time as it looks, because when the Solver
asks Excel to recalculate the model at steps 2 and 4 above, Excel will calculate
values for all of the problem functions at once. So the Solver can obtain approximate
values for all partial derivatives by performing steps 1 — 2 once, and steps 3 — 5 n
times (once for each variable). In other words, the Solver obtains values for all of the
partial derivatives in one column of the Jacobian matrix each time it asks Excel to
recalculate the model at step 4.

For more than a decade, the Excel Solver and Premium Solver have used the finite
differencing method to successfully solve optimization problems. But the method
does have several drawbacks:

e Itis relatively slow, since the model must be recalculated » + 1 times (and when
solving a nonlinear problem, this must be done at each Trial Solution).

e It isrelatively inaccurate, since the subtraction and division typically result in a
loss of significance — in the worst case half of the significant digits are lost.

e If the Solver algorithm needs the gradient of only one function at each Trial
Solution (perhaps because the constraints are all linear, with constant gradients),
this takes as much time as it would to compute gradients of a/l the functions.

e Each time it recalculates, Excel will compute values for all formula cells in the
spreadsheet that depend on the perturbed decision variable cells — even cells that
do not participate in the objective and constraints.

o Computing second order partial derivatives (the Hessian matrix, as described in
the chapter “Solver Models and Optimization”) is not practical — this would
require n° worksheet recalculations (a million for a 1,000-variable problem!) at
each Trial Solution, and would yield derivative values of very low accuracy.

The slowness of finite differencing directly impacts solution time — especially for
nonlinear problems, where finite differencing is performed many times. Since the
Solver uses derivative values to determine the direction in which to search, the loss of
accuracy in derivatives can lead to less-than-ideal search directions. While most
Solver algorithms can “correct course” as they proceed, by computing a new search
direction at each Trial Solution, less accurate derivatives will often mean that more
major iterations will be needed to make the “course corrections,” and they may lead
to less accurate final solutions.

Because many Solver models in Excel are really just part of a larger spreadsheet
model that has many formulas calculating values of interest for other purposes, but
not participating in the optimization problem, often the greatest drawback of using

80 e Analyzing and Solving Models Solver User Guide

the Excel recalculator is the fact that it always computes values for every formula cell
that depends on the perturbed decision variable cells.

To achieve greater speed, accuracy, and control of the computation of derivative
values, and to make it possible to evaluate the Solver model in other ways — for
example, to determine linear and nonlinear dependents— Frontline Systems developed
its own Interpreter for Microsoft Excel.

The Polymorphic Spreadsheet Interpreter

The Polymorphic Spreadsheet Interpreter in Premium Solver Platform for Mac reads
cell formulas, in the form that you write them such as =A1*SUM(B1:B5)/EXP(-C1),
and translates them into a compact intermediate code that can be processed
efficiently each time that function values or derivatives are needed. It also builds a
symbol table of names and cell references, used to look up current cell values and
identify occurrences of decision variables.

The Interpreter acts in response to requests from Solver engines for function values
and derivatives — or in response to your requests for a Gradients, Structure, or Con-
vexity analysis, when you click the Check Model button. It scans the intermediate
code for one or more problem functions (objective and constraints), and computes
numeric values, using the current values of the decision variables (set by the Solver
engine) and constants, arithmetic operators, and the like in the intermediate code.

The Microsoft Excel recalculator and the PSI Interpreter are both designed to be very
efficient. But where Excel reads and translates every cell formula that you create in a
spreadsheet, the Interpreter translates only the cell formulas that are involved in
calculating your objective and constraints (as you’ve defined them in the Solver
Parameters dialog). And where Excel always computes values for every formula cell
in the spreadsheet that depends on the changed decision variable cells, the Interpreter
computes values for only the functions that the Solver engine actually needs.

Because of this, on a spreadsheet where there are many cell formulas that aren’t
directly involved in the optimization model, the Interpreter is usually faster than the
Excel recalculator when computing function values. But the Interpreter’s greatest
benefit by far lies in computing function derivatives.

Automatic Differentiation

When the PSI Interpreter computes partial derivatives for your objective and
constraints, it uses a very different approach than the finite differencing method
outlined earlier, called automatic differentiation in the technical literature. In
essence, the PSI Interpreter computes derivatives at the same time that it computes
values for functions, using algebraic relationships such as:

o Sums: J[f{x) + g(x)]/0x = Of(x)/Ox + Og(x)/Ox
e Products: O[f(x) * g(x)]/0x = 0f(x)/0Ox * g(x) + Og(x)/Ox * f(x)

e Exponents: ox"/dx =n *x"!
e Trig functions: Osin(x)/0x = cos(x), Ocos(x)/0x = -sin(x), etc.

The PSI Interpreter implements both “forward mode” and “reverse mode” automatic
differentiation (further described in the technical literature), for both first partial
derivatives (the Jacobian matrix) and second partial derivatives (the Hessian matrix).
These partial derivatives are computed to the same accuracy as the function values
themselves — hence, Solver engines can sometimes find the optimal solution with
fewer Trial Solutions than required when finite differencing is used. And because of

Solver User Guide

Analyzing and Solving Models o 81

the way derivatives are computed, the time required is dramatically less than the time
required for finite differencing — especially for “reverse mode” automatic differentia-
tion (which is used for all expressions except array formulas).

Thanks primarily to automatic differentiation, on a sample of small and medium-size
actual user models, total solution times (which include much more than the time spent
computing derivatives) for Premium Solver Platform for Mac were on average twice
as fast for linear problems and seven times faster for nonlinear problems. Since the
speed advantage of automatic differentiation grows with the number of variables in
the problem, larger models may experience even greater speed gains (provided that
they are run on PCs with sufficient RAM for the Interpreter).

Model Diagnosis and Structure Analysis

The PSI Interpreter is also responsible for diagnosing your model as linear (LP),
quadratic (QP), quadratically constrained (QCP), second order cone (SOCP), smooth
nonlinear (NLP) or non-smooth (NSP) and providing statistics on linear, quadratic
and smooth variables, functions and nonzeroes that you see when you click the Check
Model button in the Solver Model dialog. And it provides model type, sparsity and
“Structure analysis” information to Solver engines during the solution process, when
you select the Check For = Structure option.

The way the PSI Interpreter does this is very similar to the way it computes
derivatives via automatic differentiation. The Interpreter computes symbolic
“values” for the dependence of functions on decision variables for every cell formula
in your model, using algebraic relationships such as:

o Sums: The sum of two linear functions is a linear function

e Products: The product of a constant (independent) function and a linear function
is a linear function; the product of two linear functions is a quadratic function

The PSI Interpreter is also responsible for the Scaling Report, described later in this
Guide in the chapter “Solver Reports.” It computes symbolic “values” for every cell
formula in your model, based on the magnitudes of the values of decision variables,
and algebraic relationships that capture the effect of addition, multiplication, and
similar operations on the magnitudes of function results. This is another unique
capability of Premium Solver Platform for Mac.

Convexity Analysis

Finally, the PSI Interpreter is responsible for the new, automatic test for convex
models and functions in Premium Solver Platform for Mac. As mentioned earlier,
this test may yield conclusive or inconclusive results; a convexity test that always
yielded conclusive results would take time that grew exponentially with the number
of variables, and hence would be impractical for even modest-size models. The
methods used in Premium Solver Platform for Mac are designed to yield useful
results in many, but not all cases, while taking a “reasonable” amount of time. In the
worst case, the test involves computing the interval Hessians of all of the problem
functions and performing interval vector-matrix operations on each of these Hessians.

A linear function is always convex (and concave), and its Hessian matrix is always
zero. Hence the convexity test takes no extra time for linear functions beyond the
analysis done for the Check For Structure option.

A quadratic function has a constant Hessian matrix, which means that the interval
Hessian is the same as the real Hessian, and the convexity test will yield a conclusive
result, based on the positive (or negative) definiteness of the Hessian matrix. (A

82 e Analyzing and Solving Models Solver User Guide

positive definite or semidefinite Hessian means that the quadratic function is convex;
a negative definite or semidefinite Hessian means that the function is concave.)

For general smooth nonlinear functions, the convexity test first computes an “outer
approximation” of the feasible region, which can be pictured as a box (bounds on the
decision variables) that encloses the actual feasible region determined by the
intersections of the constraints. (The Interpreter starts with the variable bounds that
you specify, then uses constraint propagation methods to “shrink” this box.)

The convexity test then quickly computes a result based on the sign of the interval
Hessian over this box. For some — but not all — functions, this is sufficient to
determine the convexity of the function. If this test is not sufficient, the full interval
Hessian is computed, and several numerical methods are applied to test whether this
interval matrix is positive (or negative) definite.

The convexity test is yet another capability of Premium Solver Platform for Mac that
is not available in other, far more expensive modeling systems and Solvers.

Excel Built-in Functions

Microsoft Excel has over 320 built-in functions, including the financial, statistical,
and engineering functions that are part of the Excel Analysis ToolPak. The Inter-
preter supports almost all of these functions. Functions that are recognized but not
supported include:

CALL HYPERLINK

CELL OFFSET

GETPIVOTDATA REGISTER.ID

INDIRECT SQLREQUEST

INFO CUBExxx (Excel for Mac 2011)

The most commonly used of these functions — OFFSET and perhaps INDIRECT —
are not supported because they can reference arbitrary cell “addresses,” and the
Interpreter is designed to process only the formula cells that participate in calculation
of your objective and constraints, not the full spreadsheet “grid.”

Since the Interpreter computes values for your problem functions without using the
Microsoft Excel recalculator, how confident can you be that the values computed this
way will match the values that would have been computed by Excel? While
discrepancies are always possible, one reason for confidence is that Frontline
Systems actually developed, under contract to Microsoft, implementations of most of
the Excel built-in functions for use in the Internet Explorer “spreadsheet component™
that is included with Microsoft Office 2000, XP, 2003 and 2007 (file msowcf.dll in
the Microsoft Office program directory). Frontline’s implementation of these
functions was tested against the same functions in Microsoft Excel, in an extensive
quality assurance process during the development of Office 2000. Because of this,
Frontline Systems was uniquely qualified to develop a full-scale Interpreter for
Microsoft Excel and its extensive library of built-in functions.

When a Solver engine displays a final solution with the Solver Results dialog box, or
an intermediate solution with the Show Trial Solution dialog box, the current values
of the decision variables are placed in cells on the spreadsheet, and at this point the
Microsoft Excel recalculator is used to compute values for the objective and
constraints — even when the Interpreter has been used internally during the solution
process. So you can be 100% confident that the values you see won’t change when
you save and later reopen your workbook!

Solver User Guide

Analyzing and Solving Models ¢ 83

Building Large-Scale Models

Introduction

It’s a maxim that a successful Solver model will grow in size over time. When the
initial results from an optimization model demonstrate ways to achieve significant
cost savings, improved schedules, higher quality or increased profits, management is
naturally interested in applying these methods to bigger problems. This might
involve extending the model to include more plants, warehouses, assembly lines, or
personnel; to bring in other divisions or geographic regions; or to cover more time
periods, more detailed process steps, or more specific parts or products. The result is
an increase in the number of decision variables, constraints, and cells in your model.

When your model grows in size, it becomes more challenging to design and maintain,
and also more challenging to solve. Good modeling practices — touched upon in the
chapter “Building Solver Models” — become far more important, so your model
remains comprehensible to other Excel users, auditable for errors, and easy to
modify. Issues such as your model type (LP, QP, QCP, SOCP, NLP or NSP),
sparsity, and scaling also become far more important, since they strongly influence
the time it takes to solve your model, and the reliability of the solutions you obtain.

This chapter can only briefly survey good modeling practices — entire books have
been devoted to this subject (we will recommend some). It focuses on steps you can
take to obtain faster and more reliable solutions for large models Premium Solver
Platform for Mac, including:

e Steps towards better performance that are easy to apply in most situations

e Steps you can take — with more design and modeling effort — to improve the
formulation of your model, by replacing non-smooth or nonlinear constraints
with linear (or integer linear) constraints

e Steps you can take to enable Premium Solver Platform for Mac to analyze your
model more efficiently

Designing Large Solver Models

A large Solver model in Microsoft Excel is both a large spreadsheet workbook and a
large optimization model. If you plan to build such a model, you’ll be well advised
to learn about good spreadsheet modeling practices, and about good optimization
modeling techniques.

84 o Building Large-Scale Models Solver User Guide

We highly recommend the textbook The Art of Modeling with Spreadsheets:
Management Science, Spreadsheet Engineering, and Modeling Craft by Stephen G.
Powell and Kenneth R. Baker, published by John Wiley & Sons, listed at the end of
the chapter “Introduction.” Unlike other management science textbooks, this book
teaches you “best practices” in modeling and spreadsheet engineering, as well as
techniques of linear and nonlinear optimization using Excel.

Other books on good spreadsheet design are hard to find, but through resources like
the Amazon.com Marketplace, you may be able to locate a copy of John Nevison’s
book Microsoft Excel Spreadsheet Design (Prentice-Hall, 1990), or his earlier works
1-2-3 Spreadsheet Design (1989) or The Elements of Spreadsheet Style (1987), both
of which are still useful in designing modern spreadsheets. A relatively new (2003)
book, Excel Best Practices for Business by Loren Abdulezer, includes chapters on
spreadsheet construction techniques, “makeovers” of spreadsheets developed by
others, and spreadsheet auditing.

Training courses in Microsoft Excel often cover at least some elements of good
spreadsheet design. They are offered in many venues, from universities and
community colleges to public seminars, in-house corporate training, and classes
sponsored by computer dealers. Check the course outline or syllabus to see if it
features spreadsheet design and good modeling practices, and other topics most
relevant to you.

A readily available book on optimization modeling techniques is H. Paul William’s
Model Building in Mathematical Programming, 4th Edition (John Wiley, 1999),
listed at the end of the chapter “Introduction.” Focusing on modeling for linear and
integer programming problems, it includes a treatment of large-scale model structure
and decomposition methods that is hard to find elsewhere.

Spreadsheet Modeling Hints

Below is a brief set of suggestions for planning, designing and constructing large
Solver models:

Start with a Plan. Plunging in and entering numbers and formulas immediately will
quickly lead to problems when constructing a large spreadsheet. Write down your
objectives and sketch out a design before you begin working on the real spreadsheet.

Build a Prototype. Plan in advance to build a prototype, throw it away, and then
build the real spreadsheet model. What you learn from building and solving the
prototype will probably save you time in the long run.

Create a Table of Contents. In the upper left corner of your first worksheet,
include comments that point readers to the major areas or sections of the spreadsheet.

Separate Data and Formulas. Avoid using constants in formulas, unless they are
intrinsic to the mathematical definition of the function you are using. Instead, place
constants in cells, and refer to those cells in formulas. Create separate areas on the
spreadsheet for input data and for calculations, and identify these with distinct colors,
borders or shading.

Document Assumptions, Parameters and Methods. As John Nevison suggested,
seek to “surface and label every assumption” in your model. Use labels or cell
comments to document key formulas and complex calculations.

Use defined names. Use Excel’s Insert Name Define and Insert Name Create
commands to assign meaningful names to individual cells and cell ranges. This will
help make your formulas clearer and more flexible.

Solver User Guide

Building Large-Scale Models ¢ 85

Use and Separate Two-Dimensional Tables. Many elements of your model will
lend themselves to a row-column table representation. Create separate table areas,
with distinct colors, borders and shading. Collect non-table data (such as individual
parameters) into a separate area.

Use Excel Tools to View and Audit Your Spreadsheet. Use the View Zoom
command to get a high-level view of your spreadsheet’s structure. Use the View tab
in the Tools Options dialog to display formulas instead of values, and scan them for
consistency. Learn to use the Auditing Toolbar (Tools Auditing...) to trace
precedents and dependents of your formulas.

Use a Spreadsheet Auditing Tool. Several auditing tools are available, including
SpACE from the UK Customs and Excise Audit unit, OAK from Operis Ltd. in the
UK, and the Spreadsheet Detective from Southern Cross Software in Australia.

Optimization Modeling Hints

Identify Your Model’s Index Sets. Your decision variables, constraints, and many
intermediate calculations will fall into groups that are indexed by elements such as
products (A, B, ...), regions (North, South, ...), time periods (January, February, ...)
and similar factors. Identify and write down these index sets and their members.
Then organize the columns and rows of your table areas using these index sets. Use
the top row and left column of each table area for index set member names as labels.

Identify Your Decision Variables. Once you’ve identified the quantities that will
be decision variables, and how they are indexed (for example, units made by product
A, B,... or shipments by region North, South,...), it’s usually easier to determine the
constraints and their indexing.

Determine the Data You’ll Need. In building large optimization models, you will
frequently spend a good part of your time figuring out what data you need, how you
will get it (and keep it up to date), and how you’ll have to summarize or transform it
for the purposes of the model. This may involve getting help from your IT depart-
ment or from other groups that create or maintain the data.

Define Balance Constraints. It is easy to overlook “balance” or “continuity”
constraints that arise from the physical or logical structure of your model. For
example, in a multi-period inventory model, the ending inventory at time ¢ must equal
the beginning inventory at time #+/. At each node of a network model (such as a
warehouse), the beginning item quantity plus incoming deliveries minus outgoing
shipments must equal the ending item quantity (“what goes in must come out”).

Learn to Use Binary Integer Variables. Many relationships that you might find
difficult to model at all, and many where you might otherwise use IF, CHOOSE or
other non-smooth or discontinuous functions, can be effectively modeled with binary
integer variables. The section below “Improving the Formulation of Your Model”
describes many situations where you can use such variables to organize your model.

Using Multiple Worksheets and Data Sources

Large Solver models and their data are often organized into multiple worksheets of a
single workbook. Some large models reference data found in other workbooks.
Given the large number of data elements, the sources from which you are getting the
data, and the procedures you use to keep the data up to date, multiple worksheets are
often necessary or at least useful for organizing your data.

86 e Building Large-Scale Models Solver User Guide

Premium Solver Platform for Mac allows you to define decision variables and
constraint left hand sides on any worksheet of a workbook. For this and many other
reasons, you are well advised to upgrade to Premium Solver Platform for Mac if
your model grows in size. With either product, the formulas in your objective and
constraint cells can refer to cells on other worksheets, and those cells on other
worksheets can contain formulas that depend, directly or indirectly, on decision
variable cells. For more information, see “Models Defined Across Multiple
Worksheets” in the chapter “Building Solver Models.”

Several commentators on good spreadsheet modeling practice feel that models
defined on a single worksheet are easier to understand and maintain. In Excel for
Mac 2011, a single worksheet can have up to 16,384 columns and 1,048,576 rows.
So you may want to keep the core of your Solver model — the formulas (i) that are
used to compute your objective and constraints and (ii) that depend on the decision
variables — on a single worksheet. 1f you find that you can better structure your
model by placing decision variables and constraints on different worksheets, it’s
highly recommended that you adopt a consistent scheme for choosing blocks of
variable and constraint (and other formula) cells, and referencing these cells across
worksheets.

Some of the data you need may be available in relational databases, OLAP databases
or data warehouses. Microsoft Excel provides rich facilities, such as external data
ranges and PivotTables, to bring such data into an Excel worksheet. The raw data,
even if partially summarized from database records or transactional data, often needs
to be further transformed and summarized on your worksheet(s). This is usually easy
to do with Excel formulas. But for clarity in your model, we recommend that you use
separate worksheet areas, with distinct colors, borders or shading, for formulas that
simply massage the data and do not participate in the solution process (i.e. do not
depend on the variables). The Solver can determine which formulas depend on the
variables, but you or your colleagues may find it difficult to do so if the formulas are
intermixed.

Quick Steps Towards Better Performance

The rest of this chapter focuses on steps you can take to obtain faster and more
reliable solutions for large models from Premium Solver Platform. This section
describes steps that are easy to apply in most situations.

For users of Premium Solver Platform for Mac, we highly recommend that you #ry
solving your model with our field-installable Solver Engines — especially the
KNITRO Solver, MOSEK Solver Engine, and Gurobi Solver Engine. While the
difference in cost may be greater, the same rationale applies: If you can solve your
model more quickly or more reliably by upgrading the software, this is almost always
cheaper (and yields results sooner) than spending many hours or days of valuable
professional time.

Ensure that You Have Enough Memory

If the Solver seems unusually slow, check whether the hard disk activity LED
(present on most PCs) is flickering during the solution process. If it is, memory
demands may be causing Windows to swap data between main memory and disk,
which greatly slows down the Solver. If you’re investing money and, especially,
hours of your time to develop an optimization model, consider that RAM is very
cheap, and relatively easy to install. We recommend at least 512MB RAM if you are
working with large Solver models — 1 GB or more is certainly desirable.

Solver User Guide

Building Large-Scale Models ¢ 87

Analyze Your Model for Scaling Problems

Poorly scaled calculations are a frequent cause of long solution times and unreliable
solution results, for both linear and nonlinear problems. For a further discussion, see
“Problems with Poorly Scaled Models” in the chapter “Diagnosing Solver Results.”
In Premium Solver Platform for Mac, use the Scaling Report to automatically
diagnose scaling problems, as described in the chapter “Solver Reports.”

Add Constraints to Your Model

Frequently, you can improve solution time by adding constraints to your model which
may not be essential in defining the problem, but which do further constrain the
search space that the Solver must explore. It’s true that the Solver must do more
work to handle the additional constraints, but this extra work usually has an excellent
payoff if the constraints are “binding” (i.e. satisfied with equality) at some point
during the solution process.

The greatest payoff often comes from additional constraints that are simple bounds
on the decision variables. This is because (i) it’s usually easier for you to determine
realistic lower and upper bounds on the variables than to formulate new general
constraints, (ii) it’s easy to enter bounds on the variables in the Constraints list box,
and (iii) each of the Solver engines is able to handle bounds on the variables more
efficiently than general constraints.

Users often omit upper bounds on their decision variables, and sometimes omit lower
bounds as well. A first step towards improving performance is to enter the tightest
bounds on the variables that you can, without eliminating possible good solutions.

Since bounds on the variables are especially important for the performance of the
Evolutionary Solver and for multistart methods for global optimization used with the
nonlinear Solver engines, the Options dialogs for these Solver engines include a
check box “Require Bounds on Variables,” which is checked by default. When this
box is checked, the Solver will stop with an error message if some variables do not
have lower or upper bounds at the time you click Solve.

Improving the Formulation of Your Model

The type of problem you are trying to solve, and the solution method or Solver
engine that must be used, has a major impact on solution time:

e Linear programming problems can be solved most quickly.

e Quadratic programming problems take somewhat more time.

e Nonlinear optimization problems take considerably more time.
e Non-smooth problems take by far the greatest amount of time.

This section discusses techniques you can use to replace nonlinear functions, and
even non-smooth functions, with equivalent (or nearly equivalent) linear or quadratic
functions, or with linear functions and binary integer variables. As explained in the
chapter “Solver Models and Optimization,” a problem with integer variables can take
much longer to solve than a problem without such variables. However, an integer
linear problem formulated using the techniques described in this section may still
take significantly /ess time to solve than the equivalent nonlinear or non-smooth
problem. Moreover, if your problem is integer linear, you can find a guaranteed
optimal solution, or a solution that is guaranteed to be within at least x% of optimal,
whereas with a nonlinear or non-smooth problem you will have no such guarantees.

88 o Building Large-Scale Models Solver User Guide

As a rough guide, non-smooth models with more than 1,000 variables may be
difficult or impossible to solve in a reasonable amount of time — but equivalent
models formulated with linear functions and binary integer variables can often be
solved efficiently with the LP/Quadratic Solver. And with the Large-Scale LP/QP
Solver Engine or the Gurobi Solver Engine, you can often solve linear integer
problems of 10,000, 100,000 or more variables in a reasonable amount of time.

A caveat: If you currently have a model with many nonlinear or non-smooth func-
tions, and you decide to implement some of these techniques to speed up solution of
your model, bear in mind that you can use the LP/Quadratic Solver, Large-Scale
LP/QP Solver, or Gurobi solver engine only for models where all of the problem
functions are linear (except for the objective function, which may be quadratic). If
you create a model with a mix of nonlinear or non-smooth functions and linear
functions using binary integer variables, it may still take a long time to solve.

Techniques Using Linear and Quadratic Functions

Below are three common situations where you might at first expect that a nonlinear
function is required to express the desired relationship — but with a simple transform-
ation or approximation, you can use a linear or quadratic function instead.

Ratio Constraints

You may want to express a relationship that seems to require dividing one or more
variables by other variables. Suppose that you have a portfolio of 1-month, 3-month
and 6-month CDs, with the amounts of each CD in cells C1, D1 and E1, and you
wish to limit the average maturity to 3 months. You might write a constraint such as:

(1*C1 + 3*D1 + 6*E1) / (C1 + D1 + E1) <= 3

This constraint left hand side is a nonlinear function of the variables, so you would
have to use the GRG Solver to find a solution. However, the same constraint can be
rewritten (multiplying both sides by the denominator, then collecting terms) as:

(1*C1 + 3*D1 + 6*E1) <= 3*(C1 + D1 + E1), i.e. -2*C1 +3*El <=0

This constraint is a linear function of the variables, so you would be able to use the
much faster Simplex or LP/Quadratic Solver to find a solution. (This transformation
above relies on the fact that C1 + D1 + E1 >=0.)

Mini-Max and Maxi-Min

You may want to minimize the maximum of a group of cells such as C1:C5 (or
maximize the minimum of a group of cells). It is tempting to use an objective
function such as MAX(C1:C5)- but as explained in the chapter “Solver Models and
Optimization,” MAX (and MIN) are non-smooth functions, so you’d need to use at
least the GRG Solver, and perhaps the Evolutionary Solver to find a solution.
Instead, you can introduce another variable D1, make D1 the objective to be
minimized, and add the constraint:

Cl:C5 <=Dl1

The effect of this constraint is to make D1 equal to the maximum of C1:C5 at the
optimal solution. And if the rest of your model is linear, you can use the much faster
Simplex or LP/Quadratic Solver to find a solution.

Solver User Guide

Building Large-Scale Models ¢ 89

Quadratic Approximations

If you cannot represent the entire problem using linear functions of the variables, try
to formulate it as a quadratic (QP) or quadratically constrained (QCP) problem, with
a quadratic objective and/or constraints. You may be able to use a local, quadratic
approximation to a smooth nonlinear function fnear a point a:

) = f@+f(@)x-a)+ %[(@)x-a)

where f'(a) denotes the first derivative, and f"'(a) denotes the second derivative of
the function fat the point a. Several Solver engines offer excellent performance on
QP problems, and the SOCP Barrier Solver and the MOSEK Solver Engine offer
good to excellent performance on QCP problems.

Even if you cannot eliminate nonlinear functions from your problem altogether, you
can improve solution time by making an effort to ensure that as many variables as
possible occur linearly in the objective and all of the constraints. You can select the
“Recognize Linear Variables” check box in the GRG Solver Options dialog to save
time during the solution process. And the Large-Scale GRG engine also recognizes
both linearly occurring variables and linear constraints automatically, for still faster
solutions.

You can use the Solver Model dialog in Premium Solver Platform for Mac to easily
determine the number of linear variables, functions, and occurrences of variables in
functions, as described in the chapter “Analyzing and Solving Models.”

Techniques Using Linear Functions and Binary
Integer Variables

Below are three common situations where you might at first expect that a non-smooth
function such as IF is required to express the desired relationship — but you can
instead use a binary integer variable and one or two linear functions to define an
equivalent relationship. The techniques described here are similar to those used
when Premium Solver Platform for Mac automatically transforms your model (see
the chapter “Analyzing and Solving Models”), but you can apply these techniques
yourself to handle situations where the automatic transformation is not available.

Fixed-Charge Constraints

You may have a quantity x in your model that must “jump” from zero to some (fixed
or variable) non-zero value, under certain conditions. For example, a machine on a
production line may have a fixed setup time or cost if it is used at all, plus a time or
cost per unit produced. You can avoid creating a non-smooth function for x by
introducing a binary integer variable y (which is 1 if x is used and 0 if it isn’t), and
adding a constraint x <= My, where M is a constant that is larger than any possible
value for x.

For example, suppose you have a machine that has a setup time of 10 minutes, but
once set up will process a widget every 30 seconds. Let cell C1 hold the number of
widgets you are producing on this machine, and use cell E1 for a binary integer
variable y that is 1 if you produce any widgets on this machine. Then the total
production time can be computed as =0.5*C1+10*E1. Assuming that C1 can be at
most 10,000, let M1 = 10000 and add a constraint:

Cl <=MI*El (or C1 - MI*E1 <=0)

If variable C1 is nonnegative (C1 >= 0) and variable El is binary integer (E1 =
binary), then Cl1 is forced to be 0 whenever El is 0, or equivalently E1 is forced to be

90 o Building Large-Scale Models Solver User Guide

1 whenever C1 is greater than 0. Since the production time calculation and the
constraint are both linear functions, you can solve the problem with the Simplex (or
LP/Quadratic) Solver and the Branch & Bound method. This is called a fixed-charge
constraint.

Either-Or Constraints

Constraints in an optimization problem are implicitly connected by the logical
operator AND — all of them must be satisfied. Sometimes, however, your model may
call for either one constraint (say f{x) <= F) or another constraint (say g(x) <= G) to
be satisfied. You might consider using the OR function in Excel, but as noted in the
chapter “Solver Models and Optimization,” this function is non-smooth. Instead, you
can introduce a binary integer variable y and a constant M, where M is greater than
any possible value for f(x) or g(x), and add the constraints f{x) — F <= My and g(x) —
G <= M(1-y). Now, when y=0, g(x) is unrestricted and f{x) <= F’; but when y=1, f(x)
is unrestricted and g(x) <= G.

For example, imagine you want to allocate your purchases among several suppliers in
different geographic regions, each of whom has imposed certain conditions on their
price bids. Suppose that one supplier’s bid requires that you either purchase at least
400 units from their Chicago warehouse or else purchase at least 600 units from their
Phoenix warehouse, in order to obtain their most favorable pricing. Let cell C1 hold
the number of units you would purchase from Chicago, and cell D1 hold the number
of units you would purchase from Phoenix. Assume that cell M1 contains 10,000
which is more than the maximum number of units you intend to purchase. You can
model the supplier’s either-or requirement with a binary integer variable in cell E1
and the following constraints:

400 — C1 <= MI*E1
600 — D1 <= M1#*(1-E1)

Notice that we have reversed the sense of the constraint left hand sides to reflect the
“at least” (>=) requirement. If E1=0, then C1 (units purchased from Chicago) must
be at least 400, and the second constraint has no effect. If E1=1, then D1 (units

purchased from Phoenix) must be at least 600, and the first constraint has no effect.

IF Functions

In the chapter “Solver Models and Optimization,” we used =IF(C1>10,D1,2*D1),
where C1 depends on the decision variables, as an example of a non-smooth
function: Its value “jumps” from D1 to 2*D1 at C1=10. If you use this IF function
directly in your model, you’ll either have to try the Transformation tab in the Solver
Model dialog, or else solve the model with the Evolutionary Solver. Instead, you can
avoid the IF function and solve the problem with the nonlinear GRG Solver — or even
the linear Simplex Solver — by introducing a binary integer variable (say E1) that is 1
if the conditional argument of the IF is TRUE, and 0 otherwise. Add the constraints:

Cl-10 <= MI*El
10 - C1 <= MI*(1-El)

When El1 is 0, the first constraint forces C1 <= 10, and the second constraint has no
effect. When E1 is 1, the first constraint has no effect, and the second constraint
forces C1 >=10. (If C1=10 exactly, this formulation allows either E1=0 or E1=1,
whichever one yields the better objective.) The value of the IF function can then be
calculated as D1*E1 + 2*D1*(1-E1), which simplifies to D1*(2-E1) in this example.
If D1 is constant in the problem, this is a linear function; if D1 depends linearly on
the variables, it is a quadratic; otherwise, it is a smooth nonlinear function. In all
cases, the non-smooth behavior has been eliminated.

Solver User Guide

Building Large-Scale Models ¢ 91

Depending on how you use the result of the IF function in the rest of your model, you
may be able to take this strategy further. Suppose, for example, that if f{x) >= F then
you want to impose the constraint g(x) <= G; if f{x) < F' then you don’t need this
constraint. You can then use a binary variable y (cell E1 in the example above), and
impose constraints like the pair above plus an additional constraint on g(x):

Sfx) —F <=My
F—fx) <= M(1-y)
g(x) -G <=M(l-y)

Ifyis 0, f(x) <= F is enforced, and the second and third constraints have no effect. If
yis 1, f(x) >= F and g(x) <= G are enforced, and the first constraint has no effect. If
f(x) and g(x) are linear functions of the variables, the constraints involving y remain
linear, and the problem can be solved with Branch & Bound and the Simplex Solver.

Using Piecewise-Linear Functions

Many problems involve “stepped” price schedules or quantity discounts, where you
might at first expect that a non-smooth function such as CHOOSE or LOOKUP is
required to express the relationship. You might be surprised to learn that you can
instead use linear functions and binary integer variables to express the relationship.

For example, you might be purchasing parts from a vendor who offers discounts at
various quantity levels. The graph below represents such a discount schedule, with
three prices and three “breakpoints.” You have a decision variable x representing the
quantity to order.

I I |
51 Bg Ba

The three prices (slopes of the line segments) are ¢, ¢, and c¢,. V, represents a fixed
initial cost; ¥, and V¥, are also constant in the problem and can be computed from:

V.=V, + ¢*B, -c*B,
V.=V, + ¢.*B.-c*B,

In the model, the variable x is replaced by three variables x,, x, and x,, representing
the quantity ordered or shipped at each possible price. Also included are three 0-1 or
binary integer variables y,, y, and y,. Since you want to minimize costs, the objective
and constraints are:

Minimize V*y, + V*y, + Vi*y, + ¢*x, + c*x + c*x,
Subjectto x, < B*y, x, < B*y,, x, £ B*y,

If the cost curve is concave as shown above, this is sufficient; but if the function is
non-concave (it may vary up and down), additional “fill constraints” are needed:

92 o Building Large-Scale Models Solver User Guide

Yty +y <1
x, < B,*y,
x, < B.*y,

This approach is called a “piecewise-linear” function. It can be used in place of a
CHOOSE or LOOKUP function, and it results in a linear integer model instead of a
difficult-to-solve non-smooth model. Piecewise-linear functions can also be used to
approximate a smooth nonlinear function, by using line segments with slopes
matching the gradient of the nonlinear function at various intermediate points.

Solver User Guide Building Large-Scale Models ¢ 93

Diagnosing Solver Results

If You Aren’t Getting the Solution You Expect

This chapter will help you understand the results reported by the Solver and diagnose
problems with your Solver models. The most important step you can take to deal
with potential Solver problems is to start out with a clear idea of the type of
optimization model you are creating, how it relates to well-known problem types, and
whether yours is a linear, quadratic, smooth nonlinear or non-smooth optimization
problem — as discussed in previous chapters. If you then build your model in a well-
structured, readable and efficient form — as outlined at the beginning of the chapter
“Building Large-Scale Models” — diagnosing problems should be relatively easy.

But at times you may be “surprised” by the results you get from the Solver.

If the Solver stops with a solution (set of values for the decision variables or
Changing Cells) that is different from what you expect, or what you believe is
correct, follow the suggestions below. You can usually narrow down the problem to
one of a few possibilities.

e Check the Solver Result Message shown in the Solver Results dialog. Users
sometimes contact Frontline Systems about “wrong solutions”, but they
don’t know which Solver Result Message they received — this is crucial to
diagnosing the problem. Read carefully the discussion of your Solver
Result Message in the following sections.

e Consider carefully the possibility that the solution found by the Solver is
correct, and that your expectation is wrong. This may mean that what your
model actually says is different from what you intended.

e In Premium Solver Platform for Mac, many Solver Result Messages from
the Polymorphic Spreadsheet Interpreter refer to a specific problem at a
specific cell address in your worksheet. You may have to modify the
formula in this cell to use the Interpreter.

e Check the “Show Iteration Results” box in the Solver Options dialog and
re-solve. The Solver will pause with the message “Solver paused, current
solution values displayed on worksheet.” Click Continue to see the path
towards the solution taken by the Solver.

e Ifyou receive the message “Solver could not find a feasible solution,” select
and examine the Feasibility Report to determine which subset of the
constraints is making the problem infeasible.

94 o Diagnosing Solver Results

Solver User Guide

e Ifyou receive the message “The selected Solver engine can not solve a
problem of this type” follow the steps in “Diagnosis Tab: Analyzing Model
Exceptions” in the chapter “Analyzing and Solving Models” to pinpoint the
exact cell formulas that aren’t linear.

e Read the section in this chapter on “Problems with Poorly Scaled Models.”
In Premium Solver Platform for Mac, if you see the Scaling Report listed in
the Reports list box of the Solver Results dialog, select this report and
examine its contents for strong clues about poor scaling in your model.

e Later sections of this chapter discuss characteristics and limitations of the
GRG Solver for smooth nonlinear problems and the Evolutionary Solver
for non-smooth problems. Read the section(s) most relevant for the type of
problem you are solving.

During the Solution Process

When you click the Solve button in the Solver Parameters dialog, the solution
process is started. When it completes, the Solver Results dialog appears, displaying a
Solver Result Message, and giving you the option to save or discard the results and
generate reports.

You can interrupt the solution process at any time by pressing the ESC key. This will
display the Solver paused... dialog, pictured below. The Solver paused... dialog
also appears if you have checked the box Show Iteration Results in the Solver
Options dialog.

Choosing to Continue, Stop or Restart

At the time the Solver paused... dialog appears, your worksheet will contain the
current values of the decision variables, objection function and constraints. In this
dialog you can choose to continue, or stop the solution process.

Solver paused...

Hit Continue te keep solving, or Stop to abort the
Solver.

{ Continue) (Stop :3

If you choose to continue the solution process, the Solver continues to run. If you
choose to stop the solution process, the Solver “cleans up” and then displays the
Solver Results dialog.

When the Solver Finishes

When the solution process completes, the Solver Results dialog appears, displaying a
Solver Result Message, as shown below. At this point, your worksheet contains the

Solver User Guide Diagnosing Solver Results o 95

best solution found — values for the decision variable cells, and calculated values for
the objection function and constraints.

e w Solver Results

Solver found a solution. All constraints and optimality
conditions are satisfied.

Reports
@ Keep Solver Solution Answer
() Restore Original Values Sensitivity
Limits
[Return to Solver Parameters Dialog ("] Outline Reports
[0K J L Cancel J

In this dialog (or by calling the SolverFinish function), you can select one or more
reports, and choose one of the options “Keep Solver Solution” or “Restore Original
Values,”. When you click OK, the reports will be produced. Clicking Cancel instead
will discard the solution and cancel generation of the reports. The reports are further
described in the chapter “Solver Reports.”

After the reports (if any) are produced, the Solver will return to worksheet Ready
mode unless you’ve checked the box “Return to Solver Parameters Dialog.” When
you check the “Return to Solver Parameters Dialog” box, it remains checked (until
you change it) for the duration of your Excel session. To return to worksheet Ready
mode, you can click the Close button in the Solver Parameters dialog, uncheck this
box, or click Cancel in the Solver Results dialog.

Standard Solver Result Messages

The LP/Quadratic Solver, SOCP Barrier Solver, nonlinear GRG Solver, and
Evolutionary Solver, and the Branch & Bound and multistart methods bundled with
Premium Solver Platform for Mac return the integer result codes and display the
Solver Result Messages described in this section. Some of these messages have a
slightly different interpretation depending on which Solver engine you are using; see
the explanations of each message, particularly for return code 0, “Solver found a
solution.” Please note that the Branch & Bound and multistart methods usually
return result codes 14 through 17, documented later in this section.

Field-installable Solver engines are designed to return the same codes and display the
same messages as the built-in Solver engines whenever possible, but they can also
return custom result codes (starting with 1000) and display custom messages, as
described in their individual documentation.

-1. Alicensing problem was detected, or your trial license has expired.

This message appears if a Premium Solver product cannot find its licensing
information, if the licensing information is invalid, or if you have a time-limited
evaluation license that has expired. Click the Help button for further information
about the licensing problem. Please call Frontline Systems at (775) 831-0300, or
send email to us at info@solver.com for further assistance.

96 e Diagnosing Solver Results

Solver User Guide

0. Solver found a solution. All constraints and optimality conditions are satisfied.

This means that the Solver has found the optimal or “best” solution under the
circumstances. The exact meaning depends on whether you are solving a linear or
quadratic, smooth nonlinear, global optimization, or integer programming problem,
as outlined below. Solvers for non-smooth problems rarely if ever display this
message, because they have no way of testing the solution for true optimality.

If you are solving a linear programming problem or a convex quadratic programming
problem with the LP/Quadratic Solver, the Solver has found the globally optimal
solution: There is no other solution satisfying the constraints that has a better value
for the objective (Set Cell). It is possible that there are other solutions with the same
objective value, but all such solutions are linear combinations of the current decision
variable values.

If you are solving a linear (LP), convex quadratic (QP) or quadratically constrained
(QCP), or second order cone programming (SOCP) problem with the SOCP Barrier
Solver, the Solver has found the globally optimal solution: There is no other solution
satisfying the constraints that has a better value for the objective (Set Cell). It’s
possible that there are other solutions with the same objective value, but all such
solutions are linear combinations of the current decision variable values.

If you are solving a smooth nonlinear optimization problem with no integer
constraints, the GRG Solver has found a locally optimal solution: There is no other
set of values for the decision variables close to the current values and satisfying the
constraints that yields a better value for the objective (Set Cell). In general, there
may be other sets of values for the variables, far away from the current values, which
yield better values for the objective and still satisfy the constraints.

If you are solving a mixed-integer programming problem (any problem with integer
constraints) using a Premium Solver product, this message means that the Branch &
Bound method has found a solution satisfying the constraints (including the integer
constraints) with the “best possible” objective value (but see the next paragraph). If
the problem is linear or quadratic, the true integer optimal solution has been found.
If the problem is smooth nonlinear, the Branch & Bound process has found the best
of the locally optimal solutions found for sub-problems by the nonlinear Solver.

In the standard Microsoft Excel Solver, this message also appears for mixed-integer
problems where the Solver stopped because the solution was within the range of the
true integer optimal solution allowed by the Tolerance value in the Solver Options
dialog (5% by default). In Premium Solver Platform for Mac, when the Branch &
Bound process stops due to a nonzero Tolerance without “proving optimality,” the
message “Solver found an integer solution within tolerance. All constraints are
satisfied” (result code 14) is displayed to distinguish this condition (see below).

1. Solver has converged to the current solution. All constraints are satisfied.

This means that the Solver has found a series of “best” solutions that satisfy the
constraints, and that have very similar objective function values; however, no single
solution strictly satisfies the Solver’s test for optimality. The exact meaning depends
on whether you are solving a smooth nonlinear problem with the GRG Solver or a
non-smooth problem with the Evolutionary Solver.

When the GRG Solver is being used, this message means that the objective function
value is changing very slowly as the Solver progresses from point to point. More
precisely, the Solver stops if the absolute value of the relative (i.e. percentage)
change in the objective function, in the last few iterations, is less than the Conver-

Solver User Guide

Diagnosing Solver Results ¢ 97

gence tolerance in the Solver Options dialog. A poorly scaled model is more likely
to trigger this stopping condition, even if the Use Automatic Scaling box in the
Solver Options dialog is checked. If you are sure that your model is well scaled, you
should consider why it is that the objective function is changing so slowly. For more
information, see the discussion of “GRG Solver Stopping Conditions” below.

When the Evolutionary Solver is being used, this message means that the “fitness” of
members of the current population of candidate solutions is changing very slowly.
More precisely, the Evolutionary Solver stops if 99% or more of the members of the
population have “fitness” values whose relative (i.e. percentage) difference is less
than the Convergence tolerance in the Solver Options dialog. The “fitness” values
incorporate both the objective function and a penalty for infeasibility, but since the
Solver has found some feasible solutions, this test is heavily weighted towards the
objective function values. If you believe that the Solver is stopping prematurely
when this test is satisfied, you can make the Convergence tolerance smaller, but you
may also want to increase the Mutation Rate and/or the Population Size, in order to
increase the diversity of the population of trial solutions. For more information, see
the discussion of “Evolutionary Solver Stopping Conditions” below.

2. Solver cannot improve the current solution. All constraints are satisfied.

This means that the Solver has found solutions that satisfy the constraints, but it has
been unable to further improve the objective, even though the tests for optimality
(“Solver found a solution”) and convergence (“Solver converged to the current
solution) have not yet been satisfied. The exact meaning depends on whether you
are solving a smooth nonlinear problem with the GRG Solver or a non-smooth
problem with the Evolutionary Solver.

When the GRG Solver is being used, this message occurs very rarely. It means that
the model is degenerate and the Solver is probably cycling. One possibility worth
checking is that some of your constraints are redundant, and should be removed. For
more information, see the discussion of “GRG Solver Stopping Conditions” below.

When the Evolutionary Solver is being used, this message is much more common. It
means that the Solver has been unable to find a new, better member of the population
whose “fitness” represents a relative (percentage) improvement over the current best
member’s fitness of more than the Tolerance value on the Limit Options dialog tab,
in the amount of time specified by the Max Time without Improvement option in the
same dialog. Since the Evolutionary Solver has no way of testing for optimality, it
will normally stop with either “Solver converged to the current solution” or “Solver
cannot improve the current solution” if you let it run for long enough. If you believe
that this message is appearing prematurely, you can either make the Tolerance value
smaller (or even zero), or increase the amount of time allowed by the Max Time
without Improvement option. For more information, see the discussion of “Evolu-
tionary Solver Stopping Conditions” below.

3. Stop chosen when the maximum iteration limit was reached.

This message appears when (i) the Solver has completed the maximum number of
iterations, or trial solutions, allowed in the Iterations box in the Solver Options dialog
. You may increase the value in the Iterations box. But you should also consider
whether re-scaling your model or adding constraints might reduce the total number of
iterations required.

98 e Diagnosing Solver Results

Solver User Guide

If you are solving a mixed-integer programming problem (any problem with integer
constraints), this message is relatively unlikely to appear. The Evolutionary Solver
uses the Max Subproblems and Max Feasible Solutions options on the Limit Options
dialog tab, and the Branch & Bound method (employed by the other Solver engines
on problems with integer constraints) uses the Max Subproblems and Max Integer
Solutions options on the Integer Options dialog tab, to control the overall solution
process. The count of iterations against which the Iteration limit is compared is reset
on each new subproblem, so this limit usually is not reached.

4. The Set Cell values do not converge.

This message appears when the Solver is able to increase (if you are trying to
Maximize) or decrease (for Minimize) without limit the value calculated by the
objective or Set Cell, while still satisfying the constraints. Remember that, if you’ve
selected Minimize, the Set Cell may take on negative values without limit unless this
is prevented by the constraints or bounds on the variables. Check the Assume Non-
Negative box in the Solver Options dialog to impose >= 0 bounds on all variables.

If the objective is a linear function of the decision variables, it can a/ways be
increased or decreased without limit (picture it as a straight line), so the Solver will
seek the extreme value that still satisfies the constraints. If the objective is a nonlinear
function of the variables, it may have a “natural” maximum or minimum (for
example, =A1*A1 has a minimum at zero), or no such limit (for example, =LOG(A1)
increases without limit).

If you receive this message, you may have forgotten a constraint, or failed to
anticipate values for the variables that allow the objective to increase or decrease
without limit. The final values for the variable cells, the constraint left hand sides and
the objective should provide a strong clue about what happened.

The Evolutionary Solver never displays this message, because it has no way of
systematically increasing (or decreasing) the objective function, which may be non-
smooth. If you have forgotten a constraint, the Evolutionary Solver may find
solutions with very large (or small) values for the objective — thereby making you
aware of the omission — but this is not guaranteed.

5. Solver could not find a feasible solution.

This message appears when the Solver could not find any combination of values for
the decision variables that allows all of the constraints to be satisfied simultaneously.
If you are using the LP/Quadratic Solver or the SOCP Barrier Solver, and the model
is well scaled, the Solver has determined for certain that there is no feasible solution.

If you are using the nonlinear GRG Solver, the GRG method (which always starts
from the initial values of the variables) was unable to find a feasible solution; but
there could be a feasible solution far away from these initial values, which the Solver
might find if you run it with different initial values for the variables.

If you are using the Evolutionary Solver, the evolutionary algorithm was unable to
find a feasible solution; it might succeed in finding one if you run it with different
initial values for the variables and/or increase the Precision value in the Solver
Options dialog (which reduces the infeasibility penalty, thereby allowing the
evolutionary algorithm to explore more “nearly feasible” points).

In any case, you should first look for conflicting constraints, i.e. conditions that
cannot be satisfied simultaneously. Most often this is due to choosing the wrong

Solver User Guide

Diagnosing Solver Results ¢ 99

relation (e.g. <= instead of >=) on an otherwise appropriate constraint. The easiest
way to do this is to select the Feasibility Report, shown in the Reports list box when
this message appears, and click OK. (This report can take time for the LP/Quadratic
Solver or SOCP Barrier Solver and more time for the GRG Solver; it is not available
for the Evolutionary Solver.) For an example of using the Feasibility Report to
diagnose an infeasible solution, see “The Feasibility Report” in the chapter “Solver
Reports.”

6. Solver stopped at user’s request.

7. The selected engine can

8. The problem is too large

This message appears only if you press ESC to display the Show Trial Solution
dialog, and then click on the Stop button.

not solve a problem of this type.

In the standard Excel Solver, this message is worded “The conditions for Assume
Linear Model are not satisfied,” and it can appear only when the Assume Linear
Model box in the Solver Options dialog is checked.

In Premium Solver Platform for Mac, this message appears, for example, if you’ve
selected the LP/Quadratic Solver and the Solver’s tests determine that the constraints
are not linear functions of the variables or the objective is not a linear or convex
quadratic function of the variables. To understand exactly what is meant by a linear
or quadratic function, read the section “Functions of the Variables” in the chapter
“Solver Models and Optimization.”

Field-installable Solver engines can also display this message. If you’ve selected the
Large-Scale LP/QP Solver, this message appears if the constraints are not linear
functions of the variables or the objective is not a linear or convex quadratic function
of the variables. If you’ve selected the MOSEK Solver Engine (Standard Edition),
this message appears if the constraints or the objective are not linear or convex
quadratic functions of the variables.

If you receive this message, examine the formulas for the objective and constraints
for nonlinear or non-smooth functions or operators applied to the decision variables.
Simply follow the steps in “Analyzing Model Exceptions” in the chapter “Analyzing
and Solving Models” to pinpoint the exact cell formulas that aren’t linear.

for Solver to handle.

This message — or the more specific message Too many adjustable cells, Too many
constraints, or Too many integer adjustable cells — appears when the Solver
determines that your model is too large for the Solver engine that is selected (in the
Solver engine dropdown list) at the time you click Solve. You’ll have to select — or
possibly install — another Solver engine appropriate for your problem, or else reduce
the number of variables, constraints, or integer variables in order to proceed.

You can check the size (the number of variables, constraints, bounds, and integers) of
the problem you have defined, and compare it to the size limits of the Solver engine
you are using, by displaying the Problem tab in the Solver Options dialog for that
Solver engine. The problem size is also displayed in the Solver Model dialog.

100 Diagnosing Solver Results

Solver User Guide

9. Solver encountered an error value in a target or constraint cell.

This message appears when the Solver recalculates your worksheet using a new set of
values for the decision variables (Changing Cells), and discovers an error value such
as #VALUE!, #NUM!, #DIV/0! or #NAME? in the cell calculating the objective (Set
Cell) or one of the constraints. Inspecting the worksheet for error values like these
will usually indicate the source of the problem. If you’ve entered formulas for the
right hand sides of certain constraints, the error might have occurred in one of these
formulas rather than in a cell on the worksheet. For this and other reasons, it’s better
to use only constants and cell references on the right hand sides of constraints.

If you see #VALUE!, #N/A or #NAME?, look for names or cell references to rows or
columns that you have deleted. If you see #NUM! or #DIV/0!, look for unanticipated
values of the decision variables which lead to arguments outside the domains of your

functions — such as a negative value supplied to SQRT. You can often add constraints
to avoid such domain errors; if you have trouble with a constraint such as A1 >= 0,
try a constraint such as A1 >=0.0001 instead.

In Premium Solver Platform for Mac, when the Polymorphic Spreadsheet Interpreter
is used (Solve With = PSI Interpreter), a more specific message usually appears
instead of “Solver encountered an error value in a (nonspecific) target or constraint
cell.” At a minimum, the message will say “Excel error value returned at cell
address,” where address (e.g. Sheet1!AS1) tells you exactly where the error was
encountered. Other messages may tell you more about the error. The general form of
the message is:

Error condition at cell address. Edit your formulas, or use Excel Interpreter in
the Solver Model dialog. Error condition is one of the following:

Floating point overflow Invalid token

Runtime stack overflow Decision variable with formula

Runtime stack empty Decision variable defined more than once
String overflow Missing Diagnostic/Memory evaluation
Division by zero Unknown function

Unfeasible argument Unsupported Excel function

Type mismatch Excel error value returned

Invalid operation Non-smooth special function

See also result code 21, “Solver encountered an error computing derivatives,” and
result code 12, with messages that can appear when the Interpreter first analyzes the
formulas in your model (when you click the Check Model or Solve button).

“Floating point overflow” indicates that the computed value is too large to represent
with computer arithmetic; “String overflow” indicates that a string is too long to be
stored in a cell. “Division by zero” would yield #DIV/0! on the worksheet, and
“Unfeasible argument” means that an argument is outside the domain of a function,
such as =SQRT(A1) where Al is negative.

“Unknown function” appears for functions whose names are not recognized by the
Interpreter, such as user-written functions in VBA. “Unsupported Excel function”
appears for the few functions that the Interpreter recognizes but does not support (see
the list in the section “More on the Polymorphic Spreadsheet Interpreter” in the
chapter “Analyzing and Solving Models”). “Non-smooth special function” appears if
your model uses functions ABS, IF, MAX, MIN or SIGN, and the Require Smooth
box is checked in the Solver Model dialog (see “Analyzing and Solving Models™).

Solver User Guide Diagnosing Solver Results o 101

The Evolutionary Solver and the field-installable OptQuest Solver rarely, if ever,
display this message — since they maintain a population of candidate solutions and
can generate more candidates without relying on derivatives, they can simply discard
trial solutions that result in error values in the objective or the constraints. If you
have a model that frequently yields error values for trial solutions generated by the
Solver, and you are unable to correct or avoid these error values by altering your
formulas or by imposing additional constraints, you can still use the Evolutionary
Solver to find (or make progress towards) a “good” solution.

10. Stop chosen when the maximum time limit was reached.

This message appears when (i) the Solver has run for the maximum time (number of
seconds) allowed in the Max Time box in the Solver Options. You may increase the
value in the Max Time. But you should also consider whether re-scaling your model
or adding constraints might reduce the total solution time required.

11. There is not enough memory available to solve the problem.

This message appears when the Solver could not allocate the memory it needs to
solve the problem. However, since Microsoft Windows supports a “virtual memory”
much larger than your available RAM by swapping data to your hard disk, before you
see this message you are likely to notice that solution times have greatly slowed
down, and the hard disk activity light in your PC is flickering during the solution
process, or even when “Analyzing Solver Model,” “Diagnosing Problem Function”
or “Setting Up Problem” appears on the Excel status bar.

The Polymorphic Spreadsheet Interpreter in Premium Solver Platform for Mac can
use a considerable amount of memory, when you solve a problem by clicking the
Solve button, and when you click the Check Model button in the Solver Model
dialog. You can progressively reduce the memory used by the Interpreter by taking
the following actions in order, using the Solver Model dialog:

1. Check the Sparse box in the Advanced options group.
2. Set the Check For option to Gradients.
3. Set the Solve With option to Excel Interpreter.

When Solve With = Excel Interpreter, the PSI Interpreter is not used and does not
use any memory; any further problems are due to memory demands of the Solver
engines, Microsoft Excel and Windows. You can save some memory by closing any
Windows applications other than Excel, closing programs that run in the System
Tray, and closing any Excel workbooks not needed to solve the problem.

12. Error condition at cell address. Edit your formulas, or use Excel Interpreter in the

Solver Model dialog.

This message appears when the Polymorphic Spreadsheet Interpreter first analyzes
the formulas in your model after you click the Solve button or the Check Model
button in the Solver Model dialog. Address is the worksheet address of the cell (in
Sheet1!A1 form) where the error was encountered, and Error condition is one of
the following:

OLE error Missing (
Invalid token Missing)

102 e Diagnosing Solver Results

Solver User Guide

Unexpected end of formula

Wrong number of parameters

Invalid array

Type mismatch

Invalid number

Code segment overflow

Invalid fraction

Expression too long

Invalid exponent

Symbol table full

Too many digits

Circular reference

Real constant out of range

External name

Integer constant out of range

Multi-area not supported

Invalid expression

Non-smooth function

Undefined identifier

Unknown function

Range failure

Loss of significance

Many of these messages will never appear as long as you entered your formulas in
the normal way through Microsoft Excel, because Excel “validates” your formulas
and displays its own error messages as soon as you complete formula entry. Some of
the messages you may encounter are described in the following paragraphs.

Undefined identifier appears if you’ve used a name or identifier (instead of a cell
reference such as Al) in a formula, and that name was not defined using the Insert
Name Define... or Insert Name Create... menu commands in Excel. If you’ve used
“labels in formulas™ and checked the box “Accept labels in formulas™ on the Calcula-
tion tab of the Tools Options... dialog in Excel, this message will appear. The
Interpreter does not support this use of labels in formulas — you’ll have to define
these labels with the Insert Name Define... or Insert Name Create... commands, or
else set Solve With = Excel Interpreter to avoid using the PSI Interpreter.

Circular reference appears if Excel has already warned you about a circular
reference in your formulas, and it can also appear if you’ve used array formulas in a
“potentially circular” way. (For example, if cells A1:A2 contain {=1+B1:B4} and
cells B3:B4 contain {=1+A1:A4}, Excel doesn’t consider this a circular reference,
but the PSI Interpreter does.) If you must use circular references in your model,
you’ll have to set Solve With = Excel Interpreter to avoid using the PSI Interpreter.

External name appears if your formulas use references to cells in other workbooks
(not just other worksheets), and the Interpreter is unable to open those workbooks.
You should ensure that the external workbooks are in the same folder as the Solver
workbook, or for better performance, move or copy the worksheets you need into the
workbook containing the Solver model.

Multi-area not supported or Missing) appears if your formulas or defined names
use multiple selections such as (A1:A5,C1:H1). While the Interpreter does accept
argument lists consisting of single selections, such as =SUM(A1:A5,C1:H1), it does
not accept multiple selections for defined names, or for single arguments such as
=SUMSQ((A1:A5,C1:H1), (B1:B5,C2:H2)). If you must use such multiple
selections, you’ll have to set Solve With = Excel Interpreter.

Note: Result code 12 was formerly associated with the message “Another Excel
instance is using SOLVER32.DLL. Try again later,” which does not occur in the
modern versions of Excel and Windows supported by Premium Solver Platform.

13. Error in model. Please verify that all cells and constraints are valid.

This message means that the internal “model” (information about the variable cells,
Set Cell, constraints, Solver options, etc.) is not in a valid form. An “empty” or
incomplete Solver model, perhaps one with no objective in the Set Cell edit box and

Solver User Guide Diagnosing Solver Results ¢ 103

no constraints other than bounds on the variables in the Constraints list box, can
cause this message to appear. You might also receive this message if you are using
the wrong version of either Solver.xla or Solver32.dll, or if you’ve modified the
values of certain hidden defined names used by the Solver, either interactively or in a
VBA program. To guard against this possibility, you should avoid using any
defined names beginning with “solver” in your own application.

14. Solver found an integer solution within tolerance. All constraints are satisfied.

If you are solving a mixed-integer programming problem (any problem with integer
constraints) using one of Premium Solver Platform for Mac, with a non-zero value
for the integer Tolerance setting on the Integer tab of the Solver Options dialog, the
Branch & Bound method has found a solution satisfying the constraints (including
the integer constraints) where the relative difference of this solution’s objective value
from the #rue optimal objective value does not exceed the integer Tolerance setting.
(For more information, see “Options for Mixed-Integer Problems” in the chapter
“Solver Options.”) This may actually be the true integer optimal solution; however,
the Branch & Bound method did not take the extra time to search all possible
remaining sub-problems to “prove optimality” for this solution. If all sub-problems
were explored (which can happen even with a non-zero Tolerance in some cases),
Premium Solver Platform for Mac will produce the message “Solver found a
solution. All constraints are satisfied” (result code 0, shown earlier in this section).

15. Stop chosen when the maximum number of feasible [integer] solutions was reached.

If you are using the Evolutionary Solver, this message appears when (i) the Solver
has found the maximum number of feasible solutions (values for the variables that
satisfy all constraints) allowed by the Max Feasible Sols box on the Limits tab of the
Solver Options. You may increase the value in the Max Feasible Sols box.

If you are using one of the other Solver engines on a problem with integer con-
straints, this message appears when (i) the Solver has found the maximum number of
integer solutions (values for the variables that satisfy all constraints, including the
integer constraints) allowed by the Max Integer Sols box on the Integer tab of the
Solver Options dialog. You may increase the value in the Max Integer Sols box. But
you should also consider whether the problem is formulated correctly, and whether
you can add constraints to “tighten” the formulation. If you are using the
LP/Quadratic Solver in Premium Solver Platform for Mac, try activating more Cuts
and Heuristics on the Integer tab of the Solver Options dialog.

16. Stop chosen when the max number of feasible [integer] sub-problems was reached.

If you are using the Evolutionary Solver, this message appears when (i) the Solver
has explored the maximum number of sub-problems allowed in the Max Sub-
problems box on the Limits tab of the Solver Options dialog. You may increase the
value in the Max Sub-problems box.

If you are using one of the other Solver engines on a problem with integer con-
straints, this message appears when (i) the Solver has explored the maximum number
of integer sub-problems (each one is a “regular” Solver problem with additional
bounds on the variables) allowed in the Max Sub-problems box on the Integer tab of
the Solver Options dialog. You may increase the value in the Max Sub-problems
box. But you should also consider whether the problem is formulated correctly, and
whether you can add constraints to “tighten” the formulation. If you are using the

104 ¢ Diagnosing Solver Results Solver User Guide

LP/Quadratic Solver in Premium Solver Platform for Mac, try activating more Cuts
and Heuristics on the Integer tab of the Solver Options dialog.

17. Solver converged in probability to a global solution.

If you are using the multistart methods for global optimization, with either the
nonlinear GRG Solver or a field-installable nonlinear Solver engine (by checking the
Global Optimization options in the appropriate Solver Options dialog), this message
appears when the multistart method’s Bayesian test has determined that all of the
locally optimal solutions have probably been found; the solution displayed on the
worksheet is the best of these locally optimal solutions, and is probably the globally
optimal solution to the problem.

The Bayesian test initially assumes that the number of locally optimal solutions to be
found is equally likely to be 1, 2, 3, ... etc. up to infinity, and that the relative sizes of
the regions containing each locally optimal solution follow a uniform distribution.
After each run of the nonlinear GRG Solver or field-installable Solver engine, an
updated estimate of the most probable total number of locally optimal solutions is
computed, based on the number of subproblems solved and the number of locally
optimal solutions found so far. When the number of locally optimal solutions
actually found so far is within one unit of the most probable total number of locally
optimal solutions, the multistart method stops and displays this message.

18. All variables must have both upper and lower bounds.

If you are using the Evolutionary Solver or the multistart methods for global
optimization, and you have checked the box “Require Bounds on Variables” in the
Solver Options dialog (it is checked by default), this message will also appear. You
should add the missing bounds and try again. Upper bounds must be entered in the
Constraints list box. Lower bounds of zero can be applied to all variables by
checking the “Assume Non-Negative” box in the Solver Options dialog; non-zero
lower bounds must be entered in the Constraints list box. For the Evolutionary
Solver or the multistart methods, such bounds are not absolutely required (you can
uncheck the box “Require Bounds on Variables”), but they are a practical necessity if
you want the Solver to find good solutions in a reasonable amount of time.

19. Variable bounds conflict in binary or alldifferent constraint.

This message appears if you have both a binary or alldifferent constraint on a
decision variable and a <= or >= constraint on the same variable (that is inconsistent
with the binary or alldifferent specification), or if the same decision variable appears
in more than one alldifferent constraint. Binary integer variables always have a lower
bound of 0 and an upper bound of 1; variables in an alldifferent group always have a
lower bound of 1 and an upper bound of N, where N is the number of variables in the
group. You should check that the binary or alldifferent constraint is correct, and
ensure that alldifferent constraints apply to non-overlapping groups of variables. Ifa
<= or >= constraint causes the conflict, remove it and try to solve again.

20. Lower and upper bounds on variables allow no feasible solution.

This message appears if you’ve defined lower and upper bounds on a decision
variable, where the lower bound is greater than the upper bound. This (obviously)
means there can be no feasible solution, but most Solver engines will detect this

Solver User Guide Diagnosing Solver Results ¢ 105

condition before even starting the solution process, and display this message instead
of “Solver could not find a feasible solution” to help you more quickly identify the
source of the problem. If you have defined your bounds and other constraints in
uniform blocks, the lower and upper bounds on a given range of cells will appear
consecutively in the Constraints list box (where they are sorted), making it easy to
spot the inconsistent bounds.

21. Solver encountered an error computing derivatives

This message appears when the Polymorphic Spreadsheet Interpreter in Premium
Solver Platform for Mac is being used (Solve With = PSI Interpreter), and the
Interpreter encounters an error when computing derivatives via automatic
differentiation. (For more information, see “More on the Polymorphic Spreadsheet
Interpreter” in the chapter “Analyzing and Solving Models.”) The most common
cause of this message is a non-smooth function in your objective or constraints, for
which the derivative is undefined. But in general, automatic differentiation is
somewhat more strict than finite differencing: As a simple example, =SQRT(A1)
evaluated at A1=0 will yield this error message when the Solver is using automatic
differentiation (since the derivative of the SQRT function is algebraically undefined
at zero), but it won’t yield an error when Solve With = Excel Interpreter and the
Solver is using finite differencing.

If you receive this message, follow the steps in “Analyzing Model Exceptions” in the
chapter “Analyzing and Solving Models” to pinpoint the exact cell formulas that are
non-smooth. If you cannot modify your formulas to eliminate the non-smooth
functions, you can use a Solver engine, such as the Evolutionary Solver, that doesn’t
require derivatives.

Problems with Poorly Scaled Models

A poorly scaled model is one that computes values of the objective, constraints, or
intermediate results that differ by several orders of magnitude. A classic example is a
financial model that computes a dollar amount in millions or billions and a return or
risk measure in fractions of a percent. Because of the finite precision of computer
arithmetic, when these values of very different magnitudes (or others derived from
them) are added, subtracted, or compared — in the user’s model or in the Solver’s
own calculations — the result will be accurate to only a few significant digits. After
many such steps, the Solver may detect or suffer from “numerical instability.”

The effects of poor scaling in a large, complex optimization model can be among the
most difficult problems to identify and resolve. It can cause Solver engines to return
messages such as “Solver could not find a feasible solution,” “Solver could not
improve the current solution,” or even “The linearity conditions required by this
Solver engine are not satisfied,” with results that are suboptimal or otherwise very
different from your expectations. The effects may not be apparent to you, given the
initial values of the variables, but when the Solver explores Trial Solutions with very
large or small values for the variables, the effects will be greatly magnified.

Dealing with Poor Scaling

Most Solver engines include a Use Automatic Scaling box in their Solver Options
dialogs. When this box is checked, the Solver rescales the values of the objective

106 ¢ Diagnosing Solver Results Solver User Guide

and constraint functions internally in order to minimize the effects of poor scaling.
But this can only help with the Solver’s own calculations — it cannot help with poorly
scaled results that arise in the middle of your Excel formulas.

The best way to avoid scaling problems is to carefully choose the “units” implicitly

used in your model so that all computed results are within a few orders of magnitude
of each other. For example, if you express dollar amounts in units of (say) millions,
the actual numbers computed on your worksheet may range from perhaps 1 to 1,000.

In Premium Solver Platform for Mac, if you’re experiencing results that may be due
to poor scaling, you can check your model for scaling problems that arise in the
middle of your Excel formulas by selecting the Scaling Report when it appears in the
Solver Results dialog, and examining the results of this report, as described in the
chapter “Solver Reports.”

Historical Note on Scaling and Linearity Tests

Poor scaling is an ever-present issue for the Solver, and for almost any kind of
mathematical software. Successive versions of the Solver have used increasingly
sophisticated methods to deal with poor scaling, culminating in Premium Solver
Platform for Mac’s tools for analyzing your model for scaling problems.

The Use Automatic Scaling option has been available in the standard Microsoft
Excel Solver since Excel 5.0, but in Excel 5.0 and 7.0, this option was effective only
for nonlinear problems solved with the GRG Solver. Because of this, the Solver’s
linearity test (used when the “Assume Linear Model” box was checked) could be
“fooled” by an all-linear, but poorly scaled model — yielding the error message “The
conditions for Assume Linear Model are not satisfied.”

In Excel 97, 2000, XP, 2003, and Excel for Mac 2011 and Premium Solver Platform
for Mac, the Use Automatic Scaling option is effective for all types of models, and
the Solver also uses a more robust test for linearity. Since no automatic scaling
method will work in a// situations, it is still good practice to ensure that the model
on your worksheet is well scaled — even if you do take advantage of the Use
Automatic Scaling option.

The Tolerance Option and Integer Constraints

Users who solve problems with integer constraints using the standard Excel Solver
occasionally report that “Solver claims it found an optimal solution, but I manually
found an even better solution.” What happens in such cases is that the Solver stops
with the message “Solver found a solution” because it found a solution within the
range of the true integer optimal solution allowed by the Tolerance option in the
Solver Options dialog. In similar cases, Premium Solver Platform for Mac display a
message “Solver found an integer solution within tolerance,” to avoid confusion.

When you solve a mixed-integer programming problem (any problem with integer
constraints) using the Simplex, LP/Quadratic, SOCP Barrier, or GRG Solver, all of
which employ the Branch & Bound method, the solution process is governed by the
integer Tolerance option on the Solver Options or Integer Options dialog tab. Since
the default setting of the Tolerance option is 0.05, the Solver stops when it has found
a solution satisfying the integer constraints whose objective is within 5% of the true
integer optimal solution. Therefore, you may know of or be able to discover an
integer solution that is better than the one found by the Solver.

Solver User Guide

Diagnosing Solver Results ¢ 107

The reason that the default setting of the integer Tolerance option is 0.05 is that the
solution process for integer problems — which can take a great deal of time in any
case — often finds a near-optimal solution (sometimes the optimal solution) relatively
quickly, and then spends far more time exhaustively checking other possibilities to
find (or verify that it has found) the very best integer solution. The integer Tolerance
default setting is a compromise value that often saves a great deal of time, and still
ensures that a solution found by the Solver is within 5% of the true optimal solution.

To ensure that the Solver finds the true integer optimal solution — possibly at the
expense of far more solution time — set the integer Tolerance option to zero. In
Premium Solver Platform for Mac, look for the Tolerance edit box on the Integer tab
of the Solver Options dialog.

Limitations on Smooth Nonlinear Optimization

As discussed in the chapter “Solver Models and Optimization,” nonlinear problems
are intrinsically more difficult to solve than linear problems, and there are fewer
guarantees about what the Solver can do. If your smooth nonlinear problem is
convex, the Solver will normally find the globally optimal solution (subject to issues
of poor scaling and the finite precision of computer arithmetic). But if your problem
is non-convex, the Solver will normally find only a locally optimal solution, close to
the starting values of the decision variables, when you click Solve.

As discussed in the chapter “Analyzing and Solving Models,” in Premium Solver
Platform for Mac you can easily check whether your model is convex or non-
convex, by clicking the Model button, selecting Check For Convexity, and clicking
the Check Model button. The result of the convexity test may be conclusive (the
Solver has proven that the model is convex or non-convex) or inconclusive (the
Solver was unable to prove either condition). If the test is inconclusive, you are best
advised to assume that your model is non-convex, unless you can prove through your
own mathematical analysis that it is convex.

When dealing with a non-convex problem, it is a good idea to run the Solver starting
from several different sets of initial values for the decision variables. Since the Solver
follows a path from the starting values (guided by the direction and curvature of the
objective function and constraints) to the final solution values, it will normally stop at
a peak or valley closest to the starting values you supply. By starting from more than
one point — ideally chosen based on your own knowledge of the problem — you can
increase the chances that you have found the best possible “optimal solution.” In
Premium Solver Platform for Mac, you can check the Global Optimization options in
the Solver Options dialog for the nonlinear GRG Solver, and use the multistart
method to automatically run the Solver from multiple starting points.

Note that, when the GRG Nonlinear Solver is selected in the dropdown list in the
Solver Parameters dialog, the Generalized Reduced Gradient algorithm is used to
solve the problem — even if it is actually a linear model that could be solved by the
(faster and more reliable) Simplex or Barrier method. The GRG method will usually
find the optimal solution to a linear problem, but occasionally you will receive a
Solver Result Message indicating some uncertainty about the status of the solution —
especially if the model is poorly scaled, as discussed above. So you should always
ensure that you have selected the right Solver engine for your problem.

108 ¢ Diagnosing Solver Results Solver User Guide

GRG Solver Stopping Conditions

It is helpful to understand what the nonlinear GRG Solver can and cannot do, and
what each of the possible Solver Result Messages means for this Solver engine. At
best, the GRG Solver alone — like virtually all “classical” nonlinear optimization
algorithms — can find a locally optimal solution to a reasonably well-scaled, non-
convex model. At times, the Solver will stop before finding a locally optimal
solution, when it is making very slow progress (the objective function is changing
very little from one trial solution to another) or for other reasons.

Locally Versus Globally Optimal Solutions

When the first message (“Solver found a solution”) appears, it means that the GRG
Solver has found a locally optimal solution — there is no other set of values for the
decision variables close to the current values that yields a better value for the
objective function. Figuratively, this means that the Solver has found a “peak” (if
maximizing) or “valley” (if minimizing) — but if the model is non-convex, there may
be other taller peaks or deeper valleys far away from the current solution. Mathe-
matically, this message means that the Karush - Kuhn - Tucker (KKT) conditions for
local optimality have been satisfied (to within a certain tolerance, related to the
Precision setting in the Solver Options dialog).

When Solver has Converged to the Current Solution

When the GRG Solver’s second stopping condition is satisfied (before the KKT
conditions are satisfied), the second message (“Solver has converged to the current
solution”) appears. This means that the objective function value is changing very
slowly for the last few iterations or trial solutions. More precisely, the GRG Solver
stops if the absolute value of the relative change in the objective function is less than
the value in the Convergence box in the Solver Options dialog for the last 5
iterations. While the default value of 1E-4 (0.0001) is suitable for most problems, it
may be too large for some models, causing the GRG Solver to stop prematurely when
this test is satisfied, instead of continuing for more iterations until the KKT
conditions are satisfied.

A poorly scaled model is more likely to trigger this stopping condition, even if the
Use Automatic Scaling box in the Solver Options dialog is checked. So it pays to
design your model to be reasonably well scaled in the first place: The typical values
of the objective and constraints should not differ from each other, or from the
decision variable values, by more than three or four orders of magnitude.

If you are getting this message when you are seeking a locally optimal solution, you
can change the setting in the Convergence edit box to a smaller value such as 1E-5 or
1E-6; but you should also consider why it is that the objective function is changing so
slowly. Perhaps you can add constraints or use different starting values for the
variables, so that the Solver does not get “trapped” in a region of slow improvement.

When Solver Cannot Improve the Current Solution

The third stopping condition, which yields the message “Solver cannot improve the
current solution,” occurs only rarely. It means that the model is degenerate and the
Solver is probably cycling. The issues involved are beyond the level of this User
Guide, as well as most of the books recommended in the Introduction. One
possibility worth checking is that some of your constraints are redundant, and should
be removed. If this suggestion doesn’t help and you cannot reformulate the problem,
try using the Evolutionary Solver. To go further with the GRG Solver, you may need
specialized consulting assistance.

Solver User Guide

Diagnosing Solver Results ¢ 109

GRG Solver with Multistart Methods

The multistart methods for global optimization included in Premium Solver Platform
for Mac can overcome some of the limitations of the GRG Solver alone, but they are
not a panacea. The multistart methods will automatically run the GRG Solver (or a
field-installable nonlinear Solver engine) from a number of starting points and will
display the best of several locally optimal solutions found, as the probable globally
optimal solution. Because the starting points are selected at random and then
“clustered” together, they will provide a reasonable degree of “coverage” of the
space enclosed by the bounds on the variables. The tighter the variable bounds you
specify and the longer the Solver runs, the better the coverage.

However, the performance of the multistart methods is generally limited by the
performance of the GRG Solver on the subproblems. If the GRG Solver stops
prematurely due to slow convergence, or fails to find a feasible point on a given run,
the multistart method can improve upon this only by finding another starting point
from which the GRG Solver can find a feasible solution, or a better locally optimal
solution, by following a different path into the same region.

If the GRG Solver reaches the same locally optimal solution on many different runs
initiated by the multistart method, this will tend to decrease the Bayesian estimate of
the number of locally optimal solutions in the problem, causing the multistart method
to stop relatively quickly. In many cases this indicates that the globally optimal
solution has been found — but you should always inspect and think about the solution,
and consider whether you should run the GRG Solver manually from starting points
selected based on your knowledge of the problem.

GRG Solver and Integer Constraints

Like the multistart methods, the performance of the Branch & Bound method on
nonlinear problems with integer constraints is limited by the performance of the GRG
Solver on the subproblems. If the GRG Solver stops prematurely due to slow
convergence, or fails to find a feasible point on a given run, this may prevent the
Branch & Bound method from finding the true integer optimal solution. In most
cases, the combination of the Branch & Bound method and the GRG Solver will at
least yield a relatively good integer solution. However, if you are unable to find a
sufficiently good solution with this combination of methods, consider using one of
the field-installable nonlinear Solver engines for Premium Solver Platform for Mac.

Limitations on Global Optimization

With Premium Solver Platform for Mac, you have several choices available for
solving global optimization problems: You can use the nonlinear GRG Solver (or a
field-installable nonlinear Solver engine) with multistart methods; you can use the
Evolutionary Solver to seek global solutions to smooth nonlinear problems, though
they are designed primarily for non-smooth problems. Overall, Premium Solver
Platform for Mac is very likely the world’s best platform for global optimization.

Limitations on Non-Smooth Optimization

As discussed in the chapter “Solver Models and Optimization,” non-smooth problems
— where the objective and/or constraints are computed with discontinuous or non-
smooth Excel functions — are the most difficult types of optimization problems to

110 ¢ Diagnosing Solver Results Solver User Guide

solve. There are few, if any, guarantees about what the Solver (or any optimization
method) can do with these problems.

The most common discontinuous function in Excel is the IF function where the
conditional test is dependent on the decision variables. Other common discontinuous
functions are CHOOSE, the LOOKUP functions, and COUNT. Common non-smooth
functions in Excel are ABS, MIN and MAX, INT and ROUND, and CEILING and
FLOOR. Functions such as SUMIF and the database functions are discontinuous if
the criterion or conditional argument depends on the decision variables.

If your optimization problem contains discontinuous or non-smooth functions, your
simplest course of action is to use the Evolutionary Solver to find a “good” solution.
You should read the section “Evolutionary Solver Stopping Conditions” below and
the discussion earlier in this chapter of specific Solver Result Messages, to ensure
that you understand what the various messages say about your model. You can try
using the nonlinear GRG Solver, or even the linear Simplex Solver, on problems of
this type, but you should be aware of the effects of non-smooth functions on these
Solver engines, which are summarized below.

You can use discontinuous functions such as IF and CHOOSE in calculations on the
worksheet that are not dependent on the decision variables, and are therefore
constant in the optimization problem. But any discontinuous functions that do depend
on the variables make the overall Solver model non-smooth. Users sometimes fail to
realize that certain functions, such as ABS and ROUND, are non-smooth. For more
information on this subject, read the section “Non-Smooth Functions” in the chapter
“Solver Models and Optimization.”

Effect on the GRG and Simplex Solvers

A smooth nonlinear solver, such as the GRG Solver, relies on derivative or gradient
information to guide it towards a feasible and optimal solution. Since it is unable to
compute the gradient of a function at points where the function is discontinuous, or to
compute curvature information at points where the function is non-smooth, it cannot
guarantee that any solution it finds to such a problem is truly optimal. In practice, the
GRG Solver can sometimes deal with discontinuous or non-smooth functions that are
“incidental” to the problem, but as a general statement, this Solver engine requires
smooth nonlinear functions for the objective and constraints.

If you are using Premium Solver Platform for Mac with default settings, the
Interpreter will compute derivatives of the problem functions using automatic
differentiation. (For further information, see “More on the Polymorphic Spreadsheet
Interpreter” in the chapter “Analyzing and Solving Models.”) If you try to solve a
problem with non-smooth or discontinuous functions (other than the ‘special
functions’ ABS, IF, MAX, MIN or SIGN) using the GRG Solver, you’ll likely
receive the message “Solver encountered an error computing derivatives.” If you
check the Require Smooth box in the Solver Model dialog, you’ll also receive this
message for models that use the ‘special functions.” You can set the Solve With
option to Excel Interpreter and solve your model — but only with the caveats noted
above.

If you try to solve a problem with non-smooth or discontinuous functions with the
linear Simplex Solver (using Solve With = Excel Interpreter in Premium Solver
Platform), it is possible — though very unlikely — that the linearity test performed by
the Solver will not detect the discontinuities and will proceed to try to solve the
problem. (This probably means that the functions are linear over the range consid-
ered by the linearity test — but there are no guarantees at all that the solution found is
optimal!)

Solver User Guide

Diagnosing Solver Results o 111

Evolutionary Solver Stopping Conditions

It is helpful to understand what the Evolutionary Solver can and cannot do, and what
each of the possible Solver Result Messages means for this Solver engine. At best,
the Evolutionary Solver — like other genetic or evolutionary algorithms — will be able
to find a good solution to a reasonably well-scaled model. Because the Evolutionary
Solver does not rely on derivative or gradient information, it cannot determine
whether a given solution is optimal — so it never really knows when to stop. Instead,
the Evolutionary Solver stops and returns a solution either when certain heuristic
rules (discussed below) indicate that further progress is unlikely, or else when it
exceeds a limit on computing time or effort that you’ve set.

“Good” Versus Optimal Solutions

The Evolutionary Solver makes almost no assumptions about the mathematical
properties (such as continuity, smoothness or convexity) of the objective and the
constraints. Because of this, it actually has no concept of an “optimal solution,” or
any way to test whether a solution is optimal. The Evolutionary Solver knows only
that a solution is “better” in comparison to other solutions found earlier. It may
sometimes find the true optimal solution, on models with a limited number of
variables and constraints; on such models, the heuristic stopping rules discussed
below may cause the Solver to stop at an appropriate time and report this solution.
But the Evolutionary Solver will not be able to tell you that this solution is optimal.

When you use the Evolutionary Solver, you may find — like other users of genetic and
evolutionary algorithms — that you spend a lot of time running and re-running the
Solver, trying to find better solutions. This is an inescapable consequence of using a
Solver engine that makes few or no assumptions about the nature of the problem
functions. You can never be sure whether you’ve found the best solution, or what the
payoff might be of running the evolutionary algorithm for a longer time. When the
Evolutionary Solver stops, you may very well find that, if you keep the resulting
solution and restart the Evolutionary Solver, it will find an even better solution. You
may also find that starting the GRG Solver from the point where the Evolutionary
Solver stops will yield a better (sometimes much better) solution.

When Solver has Converged to the Current Solution

This message means that the “fitness” of members of the current population of trial
solutions is changing very slowly. More precisely, the Evolutionary Solver stops if
99% or more of the members of the population have “fitness” values whose relative
(i.e. percentage) difference is less than the Convergence tolerance in the Solver
Options dialog. This condition may mean that the Solver has found a globally
optimal solution — if so, new members of the population (that replace other, less fit
members) will tend to “crowd around” this solution. However, it may also mean that
the population has lost diversity — a common problem in genetic and evolutionary
algorithms — and hence the evolutionary algorithm is unable to generate new and
better solutions through mutation or crossover of current population members. In
this latter case, it may help to interrupt the Solver with the ESC key and click the
Restart button (which replaces the worst half of the population with newly sampled
points), or to run the Evolutionary Solver again with a larger Population Size and/or
an increased Mutation Rate, which increases the chances of a diverse population.

When Solver Cannot Improve the Current Solution

This message means that the Solver has been unable to find a new, better member of
the population whose “fitness” represents a relative (percentage) improvement over

112 ¢ Diagnosing Solver Results Solver User Guide

the current best member’s fitness of more than the Tolerance value on the Limits tab
of the Solver Options dialog, in the amount of time specified by the Max Time
without Improvement option in the same dialog. Under this heuristic stopping rule,
the Evolutionary Solver will continue searching for better solutions as long as it is
making the degree of progress that you have indicated via the Tolerance value; if it is
unable to make that much progress in the time you’ve specified, the Solver will stop
and report the best solution found.

Evaluating a Solution Found by the Evolutionary Solver

Once you have a solution from the Evolutionary Solver, what can you do with it?
Here are some ideas:

1. Keep the resulting solution, restart the Evolutionary Solver from that solution,
and see if it is able to find an even better solution in a reasonable length of time.

2. Tighten the Convergence and Tolerance values, increase the Max Subproblems
and Max Feasible Sols values, and restart the Evolutionary Solver. This will
take more time, but will allow the Solver to explore more possibilities.

3. Increase the Population Size and/or the Mutation Rate, and restart the
Evolutionary Solver. This will also take more time, but will tend to increase the
diversity of the population and the portion of the search space that is explored.

4. Keep the resulting solution, switch to the GRG Solver and start it from that
solution, and see if it finds the same or a better solution. If the GRG Solver
displays the message “Solver found a solution,” you may have found at least a
locally optimal point (but remember that this test depends on smoothness of the
problem functions).

5. Select and examine the Population Report. If the Best Values are similar from
run to run of the Evolutionary Solver, and if the Standard Deviations are small,
this may be reason for confidence that your solution is close to the global
optimum. Since optimization tends to drive the variable values to extremes, if
the solution is feasible and the Best Values are close to the Maximum or
Minimum Values listed in the Population Report, this may indicate that you have
found an optimal solution.

As you work with the Evolutionary Solver, you will appreciate its ability to find
“good” solutions to previously intractable optimization problems, but you will also
come to appreciate its limitations. The Evolutionary Solver allows you to spend less
time analyzing the mathematical properties of your model, and still obtain “good”
solutions — but as we suggested in the Introduction, it is not a panacea.

If your problem is large, or if the payoff from a true optimal solution is significant,
you may want to invest more effort to formulate a model that satisfies the require-
ments of a smooth nonlinear optimization problem, or even an integer linear problem.
The chapter “Building Large-Scale Models” describes many techniques you can use
to replace non-smooth functions with smooth nonlinear or integer linear expressions.
With enough work, you may be able to obtain a significantly better solution with the
other Solver engines, and to know with some certainty whether or not you have found
the optimal solution.

Solver User Guide Diagnosing Solver Results ¢ 113

Solver Options

This chapter describes the options available in the Solver Options dialog for the
standard Microsoft Excel Solver, and in the Solver Options dialogs for each of the
bundled Solver engines in Premium Solver Platform for Mac. It also briefly
describes how these options may be examined or set programmatically.

In Premium Solver Platform for Mac, options may be examined or set interactively
via the Solver Options dialogs shown in this chapter, or programmatically using the
VBA functions described in the later chapter “Using VBA Functions.”

Bear in mind that the options that control numerical tolerances and solution strategies
are pre-set to the choices that are most appropriate for the majority of problems; you
should change these settings only when necessary, after carefully reading this
chapter. The options you will use most often are common to all the Solver products,
and control features like the display of iteration results, or the upper limits on
solution time or Solver iterations.

A special option in the Premium Solver Platform for Mac, is the option “Ask
permission to Save Workbook before Solving”. Before the Premium Solver Platform
can solve the model on the worksheet, or check the model, it needs to save the
workbook in xlsm format. When this checkbox is not checked, the Solver will silently
do this, which means your workbook will be save and you can not undo any
previous changes to this workbook.

When this option is checked, the Solver will always ask permission to save the
workbook, before doing so.

The Standard Microsoft Excel Solver

There is just one Solver Options dialog displayed by the standard Microsoft Excel
Solver, containing options for the linear Simplex Solver, the nonlinear GRG Solver,
and the Evolutionary Solver engines. All of the options in this are also present in the
options dialogs for Premium Solver Platform for Mac.

114 e Solver Options Solver User Guide

am Options

[Al Methods '{ GRG Nonlinear | Evolutionary |

Constraint Precision: 0.000001

Izl Use Automatic Scaling

:, Show Iteration Results

Solving with Integer Constraints

| llignere Integer Constraints |

Integer Optimality (3%): 5

Solving Limits

Max Time (Seconds): BO0
[terations:

Evolutionary and Integer Constraints:
Max Subproblems:

Max Feasible Solutions:

Cancel OK

We will first discuss the options common to all Solver engines. Next, we’ll describe
the additional options specific to the LP/Quadratic Solver, the SOCP Barrier Solver,
the nonlinear GRG Solver (including the multistart methods), and the Evolutionary
Solver in the Premium Solver Platform. Finally, we’ll discuss loading, saving, and
merging Solver models.

Common Solver Options

Precision
VBA / SDK: Parameter Name "Precision", 0 < value < 1

The number entered here determines how closely the calculated values of the
constraint left hand sides must match the right hand sides in order for the constraint
to be satisfied. Recall from “Elements of Solver Models” in the chapter “Solver
Models and Optimization” that a constraint is satisfied if the relation it represents is
true within a small tolerance; the Precision value is that tolerance. With the default
setting of 1.0E-6 (0.000001), a calculated left hand side of -1.0E-7 would satisfy a
constraint such as Al >=0.

Solver User Guide

Solver Options ¢ 115

Precision and Regular Constraints

Use caution in making this number much smaller, since the finite precision of
computer arithmetic virtually ensures that the values calculated by Microsoft Excel
and the Solver will differ from the expected or “true” values by a small amount. On
the other hand, setting the Precision to a much larger value would cause constraints to
be satisfied too easily. If your constraints are not being satisfied because the values
you are calculating are very large (say in millions or billions of dollars), consider
adjusting your formulas and input data to work in units of millions, or checking the
Use Automatic Scaling box instead of altering the Precision setting. Generally, this
setting should be kept in the range from 1.0E-6 (0.000001) to 1.0E-4 (0.0001).

Precision and Integer Constraints

Another use of Precision is determining whether an integer constraint, such as A1:AS
= integer, A1:AS5 = binary or A1:AS5 = alldifferent, is satisfied. If the difference
between the decision variable’s value and the closest integer value is less than the
Precision setting, the variable value is treated as an integer.

Use Automatic Scaling
VBA /SDK: Parameter Name "Scaling", value 1/True or 0/False

When this box is checked, the Solver will attempt to scale the values of the objective
and constraint functions internally in order to minimize the effects of a poorly scaled
model. A poorly scaled model is one that computes values of the objective,
constraints, or intermediate results that differ by several orders of magnitude. Poorly
scaled models may cause difficulty for both linear and nonlinear solution algorithms,
due to the effects of finite precision computer arithmetic. For more information, see
“Problems with Poorly Scaled Models” in the chapter “Diagnosing Solver Results,”
and “The Scaling Report” in the chapter “Solver Reports.”

Note: In older versions of Microsoft Excel (prior to Excel 97), this option is effective
only for nonlinear optimization problems solved with the GRG Solver.

If your model is nonlinear and you check the Use Automatic Scaling box, make sure
that the initial values for the decision variables are “reasonable,” i.e. of roughly the
same magnitudes that you expect for those variables at the optimal solution. The
effectiveness of the Automatic Scaling option depends on how well these starting
values reflect the values encountered during the solution process.

Show lIteration Results

VBA: Parameter Name "StepThru", value 1/True or 0/False
SDK: Define an Evaluator for Eval Type Iteration

When this box is checked, a dialog like the one below will appear on every iteration
during the solution process:

Solver paused...
Hit Continue to keep solving, or Stop to abort the
Solver.

(" Continue) (Stop)

116 e Solver Options

Solver User Guide

This is the same dialog that appears when you press ESC at any time during the
solution process, but when the Show Iteration Results box is checked it appears
automatically on every iteration. When this dialog appears, the best values so far for
the decision variables appear on the worksheet, which is recalculated to show the
values of the objective function and the constraints. You may click the Continue
button to go on with the solution process, the Stop button to stop immediately. For
more information on this dialog, see the section “During the Solution Process” in the
chapter “Diagnosing Solver Results.”

Ignore Integer Constraints
VBA / SDK: Parameter Name "SolveWithout", value 1/True or 0/False

When you click the Solve button (in the Solver Parameters dialog) while this box is
checked, the Solver ignores integer constraints (including alldifferent constraints)
and solves the “relaxation” of the problem. It is often useful to solve the relaxation,
and it’s much more convenient to check this box than to delete the integer constraints
and add them back again later.

This option remains in effect until you uncheck the Solve Without Integer Constraints
box. When you solve an integer programming problem (without this option) and the
Solver finds no feasible integer solution, you are offered the option of solving the
relaxation on a “one-time-only” basis in the Solver Results dialog, as shown below.

*"e"® Solver Results

Solver could not find a feasible solution.

X Reports
E} Keep Solver Solution
() Restore Original Values
() Salve Without Integer Constraints
[| Return to Solver Parameters Dialog [Qutline Reports
[oK J L Cancel _J

When chosen this way, the option is effective for only one solution attempt, when
you click OK. It is possible that the relaxation of the problem — ignoring the integer
constraints — is still infeasible; in this case, you will next see the Solver Results
dialog shown on the following page, which will allow you to produce a Feasibility
Report for the relaxation of the problem. Using the Feasibility Report, you can more
easily locate and correct the conflicting constraints that make the problem infeasible.

Solver User Guide Solver Options e 117

Ve @ Solver Results

Solver could not find a feasible solution.

Reports
{*) Keep Solver Solution Feasibility
() Restore Original Values
[Return to Solver Parameters Dialog ["] Qutline Reports
[OK J L Cancel J

Integer Tolerance
VBA / SDK: Parameter Name "IntTolerance", 0 <= value <=1

When you solve an integer programming problem, it often happens that the Branch &
Bound method will find a good solution fairly quickly, but will require a great deal of
computing time to find (or verify that it has found) the optimal integer solution. The
Integer Tolerance setting may be used to tell the Solver to stop if the best solution it
has found so far is “close enough.”

The Branch & Bound process starts by finding the optimal solution without consider-
ing the integer constraints (this is called the relaxation of the integer programming
problem). The objective value of the relaxation forms the initial “best bound” on the
objective of the optimal infeger solution, which can be no better than this. During the
optimization process, the Branch & Bound method finds “candidate” integer
solutions, and it keeps the best solution so far as the “incumbent.” By eliminating
alternatives as its proceeds, the B&B method also tightens the “best bound” on how
good the integer solution can be.

Each time the Solver finds a new incumbent — an improved all-integer solution — it
computes the maximum percentage difference between the objective of this solution
and the current best bound on the objective:

Objective of incumbent - Objective of best bound

Objective of best bound

If the absolute value of this maximum percentage difference is equal to or less than
the Integer Tolerance, the Solver will stop and report the current integer solution as
the optimal result. In Solver Platform, the Solver Result Message will be “Solver
found an integer solution within tolerance.” If you set the Integer Tolerance to zero,
the Solver will continue searching until all alternatives have been explored and the
optimal integer solution has been found. This may take a great deal of computing
time.

Make Unconstrained Variables Non-Negative

VBA: Parameter Name "AssumeNonneg", value 1/True or 0/False
SDK: Use Variable object NonNegative method or SolverVarNonNegative function

When this box is checked, any decision variables that are not given explicit lower
bounds via >=, binary, or alldifferent constraints in the Constraints list box of the
Solver Parameters dialog will be given a lower bound of zero when the problem is

118 o Solver Options

Solver User Guide

solved. This option has no effect for decision variables that do have explicit >=
constraints, even if those constraints allow the variables to assume negative values.

Max Time and Iterations

VBA /SDK: Parameter Names "MaxTime", "Iterations", integer value >= 0

The value in the Max Time edit box determines the maximum time in seconds that
the Solver will run before it stops, including problem setup time and time to find the
optimal solution. For problems with integer constraints, this is the total time taken to
solve all subproblems explored by the Branch & Bound method. The default value is
0 seconds, which means no limit is set.

The value in the Iterations edit box determines the maximum number of iterations
(“pivots” for the Simplex Solver, or major iterations for the GRG Solver) that the
Solver may perform on one problem. A new “Trial Solution” is generated on each
iteration; the most recent Trial Solution is reported on the Excel status bar. For
problems with integer constraints, the Iterations setting determines the maximum
number of iterations for any one subproblem. The default value is 0 iterations, which
means no limit is set.

Max Subproblems
VBA / SDK: Parameter Name "MaxSubProblems", integer value >= 0

The value in the Max Subproblems edit box places a limit on the number of
subproblems that may be explored by the Branch & Bound algorithm before the
Solver pauses and asks you whether to continue or stop the solution process. Each
subproblem is a “regular” Solver problem with additional bounds on the variables.

In a problem with integer constraints, this limit should be used in preference to the
Iterations limit in the Solver Options dialog; the Iterations limit should be set high
enough for each of the individual subproblems solved during the Branch & Bound
process.

Max Feasible (Integer) Solutions
VBA /SDK: Parameter Name "MaxIntegerSols", integer value >= 0

The value in the Max Feasible Sols edit box places a limit on the number of feasible
integer solutions found by the Branch & Bound algorithm before the Solver pauses
and asks you whether to continue or stop the solution process. Each feasible integer
solution satisfies all of the constraints, including the integer constraints; the Solver
retains the integer solution with the best objective value so far, called the
“incumbent.”

It is entirely possible that, in the process of exploring various subproblems with
different bounds on the variables, the Branch & Bound algorithm may find the same
feasible integer solution (set of values for the decision variables) more than once; the
Max Feasible Solutions limit applies to the total number of integer solutions found,
not the number of “distinct” integer solutions.

Convergence

VBA /SDK: Parameter Name "Convergence", 0 <= value <= 1

Solver User Guide

Solver Options ¢ 119

As discussed in the chapter “Diagnosing Solver Results,” the GRG Solver will stop
and display the message “Solver has converged to the current solution” when the
objective function value is changing very slowly for the last few iterations or trial
solutions. More precisely, the GRG Solver stops if the absolute value of the relative
change in the objective function is less than the value in the Convergence edit box for
the last 5 iterations. While the default value of 1.0E-4 (0.0001) is suitable for most
problems, it may be too large for some models, causing the GRG Solver to stop
prematurely when this test is satisfied, instead of continuing for more Trial Solutions
until the optimality (KKT) conditions are satisfied.

If you are getting this message when you are seeking a locally optimal solution, you
can change the setting in the Convergence box to a smaller value such as 1.0E-5 or
1.0E-6; but you should also consider why it is that the objective function is changing
so slowly. Perhaps you can add constraints or use different starting values for the
variables, so that the Solver does not get “trapped” in a region of slow improvement.

Derivatives

VBA / SDK: Parameter Name "Derivatives", value 1-Forward or 2-Central

On each major iteration, the GRG Solver requires values for the gradients of the
objective and constraints (i.e. the Jacobian matrix). In Premium Solver Platform for
Mac, these derivatives may be computed via automatic differentiation or via finite
differencing. For more information, see the section “More on the Polymorphic
Spreadsheet Interpreter” in the chapter “Analyzing and Solving Models.”

In Premium Solver Platform for Mac, when you are using the Interpreter (Solve With
= PSI Interpreter), automatic differentiation is used, highly accurate derivative values
are computed, and the Derivatives setting is ignored. In Premium Solver Platform
for Mac when Solve With = Excel Interpreter, the method used for finite differencing
is determined by the Derivatives setting.

Forward differencing (the default choice) uses the point from the previous iteration —
where the problem function values are already known — in conjunction with the
current point. Central differencing relies only on the current point, and perturbs the
decision variables in opposite directions from that point. This requires up to twice as
much time on each iteration, but it may result in a better choice of search direction
when the derivatives are rapidly changing, and hence fewer total iterations. (Bear in
mind that automatic differentiation is much faster than either Forward or Central
differencing.)

Multistart Search
VBA /SDK: Parameter Name "MultiStart", value 1/True or 0/False

If this box is checked, the multistart methods are used to seek a globally optimal
solution. If this box is unchecked, the other options described in this section are
ignored. The multistart methods will generate candidate starting points for the GRG
Solver (with randomly selected values between the bounds you specify for the
variables), group them into “clusters” using a method called multi-level single
linkage, and then run the GRG Solver from a representative point in each cluster.
This process continues with successively smaller clusters that are increasingly likely
to capture each possible locally optimal solution.

Population Size

VBA /SDK: Parameter Name "PopulationSize", integer value >=0

120 ¢ Solver Options

Solver User Guide

The multistart methods generate a number of candidate starting points for the GRG
Solver equal to the value that you enter in this box. This set of starting points is
referred to as a “population,” because it plays a role somewhat similar to the
population of candidate solutions maintained by the Evolutionary Solver. The
minimum population size is 10 points; if you supply a value less than 10 in this box,
or leave it blank, the multistart methods use a population size of 10 times the number
of decision variables in the problem, but no more than 200.

Random Seed
VBA / SDK: Parameter Name "RandomSeed", integer value >= 0

The multistart methods use a process of random sampling to generate candidate
starting points for the GRG Solver. This process uses a random number generator
that is normally “seeded” using the value of the system clock — so the random number
sequence (and hence the generated candidate starting points) will be different each
time you click Solve. At times, however, you may wish to ensure that the same
candidate starting points are generated on several successive runs — for example, in
order to test different GRG Solver options on each search for a locally optimal
solution. To do this, enter an integer value into this box; this value will then be used
to “seed” the random number generator each time you click Solve.

Mutation Rate
VBA /SDK: Parameter Name "MutationRate", 0 <= value <= 1

The Mutation Rate is the probability that some member of the population will be
mutated to create a new trial solution (which becomes a candidate for inclusion in the
population, depending on its fitness) during each “generation” or subproblem
considered by the evolutionary algorithm. In the Evolutionary Solver, a subproblem
consists of a possible mutation step, a crossover step, an optional local search in the
vicinity of a newly discovered “best” solution, and a selection step where a relatively
“unfit” member of the population is eliminated.

There are many possible ways to mutate a member of the population, and the
Evolutionary Solver actually employs five different mutation strategies, including
“permutation-preserving” mutation strategies for variables that are members of an
“alldifferent” group. The Mutation Rate is effectively subdivided between these
strategies, so increasing or decreasing the Mutation Rate affects the probability that
each of the strategies will be used during a given “generation” or subproblem.

Max Time without Improvement
VBA /SDK: Parameter Name "MaxTimeNolmp", integer value > 0

This option works in conjunction with the Tolerance option to limit the time the
evolutionary algorithm spends without making any significant progress. If the
relative (i.e. percentage) improvement in the best solution’s “fitness” is less than the
Tolerance value for the number of seconds in the Max Time without Improvement
edit box, the Evolutionary Solver stops and displays the Solver Results dialog. The
message is “Solver cannot improve the current solution,” unless the evolutionary
algorithm has discovered no feasible solutions at all, in which case the message is
“Solver could not find a feasible solution.” If you believe that this stopping
condition is being met prematurely, you can either make the Tolerance value smaller
(or even zero), or increase the number of seconds allowed by the Max Time without
Improvement option.

Solver User Guide

Solver Options ¢ 121

LP/Quadratic Solver Options

Primal Tolerance and Dual Tolerance
VBA / SDK: Parameter Names "PrimalTolerance", "DualTolerance", 0 < value <1

The Primal Tolerance is the maximum amount by which the primal constraints can be
violated and still be considered feasible. The Dual Tolerance is the maximum
amount by which the dual constraints can be violated and still be considered feasible.
The default values of 1.0E-7 for both tolerances are suitable for most problems.

Presolve
VBA /SDK: Parameter Name "Presolve", value 1/True or 0/False

When this box is checked (which is the default setting), the LP/Quadratic Solver
performs a Presolve step before applying the Primal or Dual Simplex method.
Presolving often reduces the size of an LP problem by detecting singleton rows and
columns, removing fixed variables and redundant constraints, and tightening bounds.

Derivatives for the Quadratic Solver

When a quadratic programming (QP) problem — one with a quadratic objective and
all linear constraints — is solved with the LP/Quadratic Solver, the quadratic Solver
extension requires first or second partial derivatives of the objective function at
various points. In Premium Solver Platform for Mac, these derivatives may be
computed via automatic differentiation or via finite differencing. For more
information, see the section “More on the Polymorphic Spreadsheet Interpreter” in
the chapter “Analyzing and Solving Models.”

When you are using the Interpreter (Solve With = PSI Interpreter in the Solver
Model dialog), automatic differentiation is used, exact derivative values are
computed, and the setting of the Derivatives choice is ignored. When Solve With =
Excel Interpreter, the method used for finite differencing is determined by the setting
of the Derivatives choice. Forward differencing uses the point from the previous
iteration — where the problem function values are already known — in conjunction
with the current point. Central differencing relies only on the current point, and
perturbs the decision variables in opposite directions from that point. For QP
problems, the Central differencing choice yields essentially exact (rather than approx-
imate) derivative values, which can improve solution accuracy and reduce the total
number of iterations; however the initial computation of derivatives may take up to
twice as long as with Forward differencing. (Bear in mind that automatic
differentiation is much faster than either Forward or Central differencing.)

Integer Cutoff
VBA / SDK: Parameter Name "IntCutoff", -1E30 < value < +1E30

This option provides another way to save time in the solution of mixed-integer
programming problems. If you know the objective value of a feasible integer solution
to your problem — possibly from a previous run of the same or a very similar problem
— you can enter this objective value in the Integer Cutoff edit box. This allows the

122 e Solver Options

Solver User Guide

Branch & Bound process to start with an “incumbent” objective value (as discussed
above under Integer Tolerance) and avoid the work of solving subproblems whose
objective can be no better than this value. If you enter a value here, you must be sure
that there is an integer solution with an objective value at least this good: A value
that is too large (for maximization problems) or too small (for minimization) may
cause the Solver to skip solving the subproblem that would yield the optimal integer
solution.

Preprocessing, Cuts, Heuristics

Preprocessing, Cuts, and Heuristics — to gain the benefit of these methods. For each
of these options, you can select None, Automatic, or Aggressive. Each choice
activates specific combinations of methods that Frontline has found effective on
many models. As usual with LP/MIP problems, performance is very model-
dependent — but overall, you can expect a significant speed improvement on your
LP/MIP problems.

SOCP Barrier Solver Options

Gap Tolerance
VBA / SDK: Parameter Name "GapTolerance", 0 < value < 1

The SOCP Barrier Solver uses a primal-dual method that computes new objective
values for the primal problem and the dual problem at each iteration. When the gap
or difference between these two objective values is less than the Gap Tolerance, the
SOCP Barrier Solver will stop and declare the current solution optimal.

Step Size Factor
VBA / SDK: Parameter Name "StepSizeFactor", 0 < value < .99

This parameter is the relative size (between 0 and 1) of the step that the SOCP
Barrier Solver may take towards the constraint boundary at each iteration.

Feasibility Tolerance
VBA / SDK: Parameter Name "FeasibilityTolerance", 0 < value < 1

The SOCP Barrier Solver considers a solution feasible if the constraints are satisfied
to within this tolerance.

Search Direction

VBA /SDK: Parameter Name "SearchDirection", value 1-Power Class, 2-Power
Class with Predictor-Corrector, 3-Dual Scaling, 4- Dual Scaling with Predictor-
Corrector

The SOCP Barrier Solver offers four options for computing the search direction on
each iteration.

Solver User Guide

Solver Options e 123

Power Class
This option uses the power class, which is a subclass of the commutative class of

search directions over symmetric cones with the property that the long-step barrier
algorithm using this class has polynomial complexity.

Power Class with Predictor-Corrector

This option uses the power class as described above, plus a predictor-corrector term.

Dual Scaling
This option uses HKM (Helmberg, Kojima and Monteiro) dual scaling, a Newton

direction found from the linearization of a symmetrized version of the optimality
conditions.

Dual Scaling with Predictor-Corrector

This option uses HKM dual scaling, plus a predictor-corrector term.

Power Index

VBA / SDK: Parameter Name "PowerIndex", integer value >= 0

This parameter is used to select a specific search direction when the Search Direction
is computed via the Power Class or Power Class with Predictor-Corrector methods.

GRG Nonlinear Solver Options

Search and Estimates

The default values for the Estimates, Derivatives and Search options can be used for
most problems. If you’d like to change these options to improve performance on
your model, this section will provide some general background on how they are used
by the GRG Solver. For more information, consult the academic papers on the GRG
method listed at the end of the Introduction.

On each major iteration, the GRG Solver requires values for the gradients of the
objective and constraints (i.e. the Jacobian matrix). The Derivatives option is
concerned with how these partial derivatives are computed.

The GRG (Generalized Reduced Gradient) solution algorithm proceeds by first
“reducing” the problem to an unconstrained optimization problem, by solving a set of
nonlinear equations for certain variables (the “basic” variables) in terms of others
(the “nonbasic” variables). Then a search direction (a vector in n-space, where 7 is
the number of nonbasic variables) is chosen along which an improvement in the
objective function will be sought. The Search option is concerned with how this
search direction is determined.

Once a search direction is chosen, a one-dimensional “line search” is carried out
along that direction, varying a step size in an effort to improve the reduced objective.
The initial estimates for values of the variables that are being varied have a signifi-

124 e Solver Options

Solver User Guide

cant impact on the effectiveness of the search. The Estimates option is concerned
with how these estimates are obtained.

Estimates
VBA /SDK: Parameter Name "Estimates", value 1-Tangent or 2-Quadratic

This option determines the approach used to obtain initial estimates of the basic
variable values at the outset of each one-dimensional search. The Tangent choice
uses linear extrapolation from the line tangent to the reduced objective function. The
Quadratic choice extrapolates the minimum (or maximum) of a quadratic fitted to the
function at its current point. If the current reduced objective is well modeled by a
quadratic, then the Quadratic option can save time by choosing a better initial point,
which requires fewer subsequent steps in each line search. If you have no special
information about the behavior of this function, the Tangent choice is “slower but
surer.” Note: the Quadratic choice here has no bearing on quadratic programming
problems.

Search
VBA /SDK: Parameter Name "SearchOption", value 1-Newton or 2-Conjugate

It would be expensive to determine a search direction using the pure form of
Newton’s method, by computing the Hessian matrix of second partial derivatives of
the problem functions. Instead, a direction is chosen through an estimation method.
The default choice Newton uses a quasi-Newton (or BFGS) method, which maintains
an approximation to the Hessian matrix; this requires more storage (an amount
proportional to the square of the number of currently binding constraints) but
performs very well in practice. The alternative choice Conjugate uses a conjugate
gradient method, which does not require storage for the Hessian matrix and still
performs well in most cases. The choice you make here is not crucial, since the GRG
solver is capable of switching automatically between the quasi-Newton and
conjugate gradient methods depending on the available storage.

Recognize Linear Variables
VBA /SDK: Parameter Name "RecognizeLinear", value 1/True or O/False

This check box activates an “aggressive” strategy to speed the solution of nonlinear
problems that may be useful in Premium Solver Platform for Mc when the
Polymorphic Spreadsheet Interpreter is not used (Solve With = Excel Interpreter).

As explained in the chapter “Solver Models and Optimization,” a Solver problem is
nonlinear (and must be solved with the GRG Solver engine) if the objective or any of
the constraints is a nonlinear function of even one decision variable. But in many
such problems, some of the variables occur linearly in the objective and all of the
constraints. Hence the partial derivatives of the problem functions with respect to
these variables are constant, and need not be re-computed on each iteration.

If you check the Recognize Linear Variables box, the GRG Solver will look for
variables whose partial derivatives are not changing over several iterations, and then
will assume that these variables occur linearly, hence that their partial derivatives
remain constant. At the solution, the partial derivatives are recomputed and
compared to the assumed constant values; if any of these values has changed, the
Solver will display the message “The linearity conditions required by this Solver
engine are not satisfied.” If you receive this message, you should uncheck the
Recognize Linear Variables box and re-solve the problem.

Solver User Guide

Solver Options ¢ 125

In Premium Solver Platform for Mac, when the Interpreter is used (which is the
default), checking this box will not save any time, because partial derivatives are
computed via automatic differentiation rather than finite differencing. The field-
installable Large-Scale GRG Solver, Large-Scale SQP Solver, and KNITRO Solver
engines are designed to take advantage of information provided by the Interpreter,
and will exploit partial linearity in the problem functions much more effectively than
the GRG Solver with the Recognize Linear Variables option.

Topographic Search
VBA /SDK: Parameter Name "TopoSearch", value 1/True or 0/False

If this box (and the Multistart Search box) are checked, the multistart methods will
make use of a “topographic” search method. This method uses the objective value
computed for the randomly sampled starting points to determine a “topography” of
overall “hills” and “valleys” in the search space, in an effort to find better clusters
and start the GRG Solver from an improved point (already in a “hill” or “valley”) in
each cluster. Determining the topography takes extra computing time, but on some
problems this is more than offset by reduced time taken by the GRG Solver on each
subproblem.

Evolutionary Solver Options

Convergence
VBA /SDK: Parameter Name "Convergence", 0 <= value <= 1

As discussed in the chapter “Diagnosing Solver Results,” the Evolutionary Solver
will stop and display the message “Solver has converged to the current solution” if
nearly all members of the current population of solutions have very similar “fitness”
values. Since the population may include members representing infeasible solutions,
each “fitness” value is a combination of an objective function value and a penalty for
infeasibility. Since the population is initialized with trial solutions that are largely
chosen at random, the comparison begins after the Solver has found a certain
minimum number of improved solutions that were generated by the evolutionary
process. The stopping condition is satisfied if 99% of the population members all
have fitness values that are within the Convergence tolerance of each other.

If you believe that the message “Solver has converged to the current solution” is
appearing prematurely, you can make the Convergence tolerance smaller, but you
may also want to increase the Mutation Rate and/or the Population Size, in order to
increase the diversity of the population of trial solutions.

Population Size

VBA /SDK: Parameter Name "PopulationSize", integer value > 0

As described in the chapter “Solver Models and Optimization,” the Evolutionary
Solver maintains a population of candidate solutions, rather than a “single best
solution” so far, throughout the solution process. This option sets the number of
candidate solutions in the population. The minimum population size is 10 members;
if you supply a value less than 10 for this option, or leave the edit box blank, the

126 e Solver Options

Solver User Guide

Evolutionary Solver uses a population size of 10 times the number of decision
variables in the problem, but no more than 200.

The initial population consists of candidate solutions chosen largely at random, but it
always includes at least one instance of the starting values of the variables (adjusted
if necessary to satisfy the bounds on the variables), and it may include more than one
instance of the starting values, especially if the population is large and the initial
values represent a feasible solution.

A larger population size may allow for a more complete exploration of the “search
space” of possible solutions, especially if the mutation rate is high enough to create
diversity in the population. However, experience with genetic and evolutionary
algorithms reported in the research literature suggests that a population need not be
very large to be effective — many successful applications have used a population of
70 to 100 members.

Random Seed
VBA / SDK: Parameter Name "RandomSeed", integer value > 0

The Evolutionary Solver makes extensive use of random sampling, to generate trial
points for the population of candidate solutions, to choose strategies for mutation and
crossover on each “generation,” and for many other purposes. This process uses a
random number generator that is normally “seeded” using the value of the system
clock — so the random number sequence (and hence trial points and choices made by
the Evolutionary Solver) will be different each time you click Solve. Because of
these random choices, the Evolutionary Solver will normally find at least slightly
different (and sometimes very different) solutions on each run, even if you haven’t
changed your model at all. At times, however, you may wish to ensure that exactly
the same trial points are generated, and the same choices are made on several
successive runs. To do this, enter a positive integer value into this box; this value
will then be used to “seed” the random number generator each time you click Solve.

Require Bounds on Variables
VBA /SDK: Parameter Name "RequireBounds", value 1/True or 0/False

If the check box “Require Bounds on Variables” is selected, and some of the decision
variables do not have upper or lower bounds specified in the Constraints list box (or
via the Assume Non-Negative option) at the time you click Solve, the Solver will
stop immediately with the message “All variables must have both upper and lower
bounds” — as illustrated in the section “Multistart Search Options” earlier in this
chapter. If this option is not selected, the Solver will not require upper and lower
bounds on the variables, but will attempt to solve the problem without them. Note
that this box is checked by default.

Bounds on the variables are especially important to the performance of the
Evolutionary Solver. For example, the initial population of candidate solutions is
created, in part, by selecting values at random from the ranges determined by each
variable’s lower and upper bounds. Bounds on the variables are also used in the
mutation process — where a change is made to a variable value in some member of
the existing population — and in several other ways in the Evolutionary Solver. If you
do not specify lower and upper bounds for all of the variables in your problem, the
Evolutionary Solver can still proceed, but the almost-infinite range for these variables
may significantly slow down the solution process, and make it much harder to find

Solver User Guide

Solver Options e 127

“good” solutions. Hence, it pays for you to determine realistic lower and upper
bounds for the variables, and enter them in the Constraints list box.

Local Search

VBA /SDK: Parameter Name "LocalSearch", value 1-Randomized Local Search, 2-
Deterministic Pattern Search, 3-Gradient Local Search, 4-Automatic Choice

This option determines the local search strategy employed by the Evolutionary
Solver. As noted under the Mutation rate option, a “generation” or subproblem in the
Evolutionary Solver consists of a possible mutation step, a crossover step, an
optional local search in the vicinity of a newly discovered “best” solution, and a
selection step where a relatively “unfit” member of the population is eliminated. You
have a choice of strategies for the local search step. In Premium Solver Platform for
Mac, you can use Automatic Choice (the default), which selects an appropriate local
search strategy automatically based on characteristics of the problem functions.

Randomized Local Search

This local search strategy generates a small number of new trial points in the vicinity
of the just-discovered “best” solution, using a probability distribution for each
variable whose parameters are a function of the best and worst members of the
current population. (If the generated points do not satisfy all of the constraints, a
variety of strategies may be employed to transform them into feasible solutions.)
Improved points are accepted into the population.

Deterministic Pattern Search

This local search strategy uses a “pattern search” method to seek improved points in
the vicinity of the just-discovered “best” solution. The pattern search method is
deterministic — it does not make use of random sampling or choices — but it also does
not rely on gradient information, so it is effective for non-smooth functions. It uses a
“slow progress” test to decide when to halt the local search. An improved point, if
found, is accepted into the population.

Gradient Local Search

This local search strategy makes the assumption that the objective function — even if
non-smooth — can be approximated locally by a quadratic model. It uses a classical
quasi-Newton method to seek improved points, starting from the just-discovered
“best” solution and moving in the direction of the gradient of the objective function.
It uses a classical optimality test and a “slow progress” test to decide when to halt the
local search. An improved point, if found, is accepted into the population.

Automatic Choice

This option allows the Solver to select the local search strategy automatically in
Premium Solver Platform for Mac. In Premium Solver Platform for Mac, the Solver
uses diagnostic information from the Polymorphic Spreadsheet Interpreter to select a
linear Gradient Local Search strategy if the problem has a mix of non-smooth and
linear variables, or a nonlinear Gradient Local Search strategy if the objective
function has a mix of non-smooth and smooth nonlinear variables. It also makes
limited use of the Randomized Local Search strategy to increase diversity of the
points found by the local search step.

128 o Solver Options

Solver User Guide

Fix Nonsmooth Variables
VBA /SDK: Parameter Name "FixNonSmooth", value 1/True or 0/False

In Premium Solver Platform for Mac, this option determines how non-smooth
variable occurrences in the problem will be handled during the local search step. If
this box is checked, the non-smooth variables are fixed to their current values
(determined by genetic algorithm methods) when a nonlinear Local Gradient or linear
Local Gradient search is performed; only the smooth and linear variables are allowed
to vary. If this box is unchecked, all of the variables are allowed to vary.

Since gradients are undefined for non-smooth variables at certain points, fixing these
variables ensures that gradient values used in the local search process will be valid.
On the other hand, gradients are defined for non-smooth variables at most points, and
the search methods are often able to proceed in spite of some invalid gradient values,
so it often makes sense to vary all of the variables during the search. Hence, this box
is unchecked by default; you can experiment with its setting on your problem.

The behavior of the Fix Nonsmooth Variables option on a small group of special
functions — currently ABS, IF, MAX, MIN and SIGN — is affected by the setting of
the Require Smooth check box in the Solver Model dialog, as described in “Using
Analyzer Advanced Options” in the chapter “Analyzing and Solving Models.” When
the Require Smooth box is unchecked (the default), checking the Fix Nonsmooth
Variables box will not fix variables occurring in these special functions.

Filtered Local Search

In Premium Solver Platform for Mac, the Solver applies two tests or “filters” to
determine whether to perform a local search each time a new point generated by the
genetic algorithm methods is accepted into the population. The “merit filter”
requires that the objective value of the new point be better than a certain threshold if
it is to be used as a starting point for a local search; the threshold is based on the best
objective value found so far, but is adjusted dynamically as the Solver proceeds. The
“distance filter” requires that the new point’s distance from any known locally
optimal point (found on a previous local search) be greater than the distance traveled
when that locally optimal point was found.

Thanks to its genetic algorithm methods, improved local search methods, and the
distance and merit filters, the Evolutionary Solver in Premium Solver Platform for
Mac performs exceedingly well on smooth global optimization problems, and on
many non-smooth problems as well.

The local search methods range from relatively “cheap” to “expensive” in terms of
the computing time expended in the local search step; they are listed roughly in order
of the computational effort they require. On some problems, the extra computational
effort will “pay off” in terms of improved solutions, but in other problems, you will
be better off using the “cheap” Randomized Local Search method, thereby spending
relatively more time on the “global search” carried out by the Evolutionary Solver’s
mutation and crossover operations.

In addition to the Local Search options, the Evolutionary Solver employs a set of
methods, corresponding to the four local search methods, to transform infeasible
solutions — generated through mutation and crossover — into feasible solutions in new
regions of the search space. These methods, which also vary from “cheap” to
“expensive,” are selected dynamically (and automatically) via a set of heuristics. For
problems in which a significant number of constraints are smooth nonlinear or even
linear, these methods can be highly effective. Dealing with constraints is
traditionally a weak point of genetic and evolutionary algorithms, but the hybrid

Solver User Guide

Solver Options ¢ 129

Evolutionary Solver in Premium Solver Platform for Mac is unusually strong in its
ability to deal with a combination of constraints and non-smooth functions.

For the reasons described in “Using Analyzer Advanced Options” in the chapter
“Analyzing and Solving Models,” if the Evolutionary Solver stops with the
message “Solver encountered an error computing derivatives,” you should
check the Analyzer Sparse box in the Model dialog, and click Solve again.

The Problem Tab

In Premium Solver Platform, each external Solver Options dialog includes a Problem
tab. Clicking on this tab displays statistics on the size of the current problem and the
corresponding Solver engine size limits, including the number of decision variables,
number of constraints, number of bounds on the variables, and number of integer
variables. These edit controls are “read-only” — the current problem sizes are
computed automatically, and the Solver engine size limits are obtained automatically
from both built-in and field-installable Solver engines.

When the Gurobi Solver is selected from the Solver engine dropdown list, the
Options button is clicked, and the Problem tab is clicked, the options shown on the
next page will be displayed.

M) Gurobi Solver Options

[General MIP Advanced MIP Barrier | Problem |

Current Problem

Variables Constraints Bounds Integers

3 6 3 0

Solver Engine Size Limits

Variables Constraints Bounds Integers

Unlimited Unlimited Unlimited Unlimited

[OK JL Cancel J

130 ¢ Solver Options

Solver User Guide

Loading, Saving and Merging Solver Models

The Solver Parameters dialog also includes a Load/Save button, which allows you to
save and restore the specifications (variable, constraint and objective cell selections
plus option settings) of a Solver model on the worksheet. The model specifications
are stored as formulas in cells, which include references to the variable, constraint
and objective cells and values for the Solver options.

The “current” Solver model defined for each worksheet is automatically saved
“behind the scenes” in that worksheet. So it is not necessary to use this feature to
keep track of a single Solver model — the last set of specifications you defined will be
saved automatically when the workbook is saved, and restored when it is re-opened.
But the Load/Save button can be used to save more than one Solver model on the
same worksheet, and to merge two models into one.

Using Multiple Solver Models

It is possible — and often useful — to define more than one Solver model based on the
same worksheet formulas. An example of this is provided in the “Portfolio of
Securities” worksheet in the SOLVSAMP.XLS workbook that is included with
Microsoft Excel. This worksheet defines a portfolio optimization model, where the
Solver must determine what percentage of available funds to invest in four different
stocks (A, B, C and D) and Treasury bills. The worksheet formulas calculate the
portfolio rate of return, and the portfolio risk as measured by the statistical variance
of returns. There are two possible approaches to solving this model: (1) Find the
maximum rate of return, subject to an upper limit on the portfolio’s risk, or (2) Find
the minimum risk (variance), subject to a lower limit on the portfolio’s return.

The “current” Solver problem on this worksheet is the one that maximizes return,
subject to a constraint on portfolio risk. But both Solver problems (“Maximize
Return” and “Minimize Risk”) have been set up and their specifications saved (in
Classic format) in the lower part of this worksheet, starting at row 21. If you click on
the Load Model... button in the Solver options dialog, select cells D21:D29, and click
OK, you’ll load the specifications for the problem that minimizes risk subject to a
constraint on return.

Transferring Models Between Spreadsheets

Another application of Load Model... and Save Model... is to transfer Solver model
specifications from one worksheet to another.

Merging Solver Models

You can merge the model specifications being loaded with the current model
specifications. Where the specifications necessarily overlap — as in the selection of
the objective (and the “maximize” or “minimize” setting) and in the settings of Solver
options — the newly loaded specifications take precedence. But the variable cell
selections and the constraint left hand sides, relations and right hand sides being
loaded are merged into the current model. You are prompted to choose between
replacing the current model specifications and merging in the new specifications:

Solver User Guide

Solver Options ¢ 131

Premium Solver Platform

Do you want to replace the current model, or merge the
: new model with the current model?
s Y 1
[Merge) (cancel) (Replace :1

Merging model specifications can be quite useful, for it allows you to build and test
smaller, simple Solver models and then combine them into a larger model. Suppose,
for example, that you wanted to create a planning model for a manufacturing firm
that would take into account both the mix of products being built and the routes along
which they were being shipped. You might create two models on one worksheet, one
based on the Product Mix example and the other based on the Shipping Routes
example in SOLVSAMP.XLS, and test them individually. Then you could combine
them with the Merge function, and test the production-distribution model as a whole.

132 ¢ Solver Options Solver User Guide

Solver Reports

Introduction

This chapter will help you use the information in the Solver Reports, which can be
produced when the Solver finds a solution — or when it fails to find a solution, and
instead reports that the linearity conditions are not satisfied, or that your model is
infeasible. We’ll explain how to interpret the values in the Answer, Sensitivity and
Limits Reports, available in the standard Excel Solver and Premium Solver Platform
for Mac, and how to use the diagnostic Scaling, Linearity and Feasibility Reports and
the specialized Solutions and Population Reports. To illustrate the reports, we’ll use
EXAMPLE! through EXAMPLE4 in the workbook OptimizationExamples.xIsm,
which you can examine by clicking Help, then the Examples button in the initial Help
dialog. For the Solutions Report, we’ll use other examples including a historically
interesting nonlinear equation.

Structure and Transformation Reports

In addition to the eight types of reports described in this chapter, Premium Solver
Platform for Mac offers two additional reports that are produced by the new
Polymorphic Spreadsheet Interpreter, and requested via the Solver Model dialog, as
explained in the chapter “Analyzing and Solving Models.”

The Structure Report, described and illustrated in “Analyzing Model Exceptions,”
analyzes in depth the linear, quadratic, smooth nonlinear, and non-smooth variables
and functions in your model, and helps you find and fix “exceptional” formulas if
you’re having difficulty build a linear or quadratic programming model.

The Transformation Report, shown in “Transforming Your Non-Smooth Model,”
documents how the Polymorphic Spreadsheet Interpreter can automatically transform
your model, replacing non-smooth functions such as IF, MIN, MAX, ABS, AND,
OR, and NOT with equivalent expressions using new variables and linear constraints.

Answer, Sensitivity and Limits Reports

The Answer, Sensitivity and Limits Reports are available when the Solver finds an
optimal solution for your model; they give you additional information about the
solution and its range of applicability. All three reports can be useful, but we
recommend that you focus on the Sensitivity Report. When properly interpreted, this
report will tell you a great deal about your model and its optimal solution, which you
could not easily determine by simply inspecting the final solution values on the
worksheet. Using the Sensitivity Report, you can determine what would happen if

Solver User Guide

Solver Reports ¢ 133

you changed your model in various ways and re-ran the Solver, without your having
to actually carry out these steps.

In Excel VBA, you can use the new object-oriented API to access the information in
the Answer and Sensitivity Reports via the properties InitialValue, FinalValue,
DualValue, DualUpper, and DualLower of the Variable and Function objects. These
objects and properties can also be used in the Solver Platform SDK, outside of Excel.
See the chapter “Using the Object-Oriented API” for further information.

Scaling Report

The Scaling Report — available only in Premium Solver Platform for Mac, since it
uses the Polymorphic Spreadsheet Interpreter — helps you find and fix poorly scaled
formulas in your model. It appears in the Reports list box of the Solver Results
dialog when you get a result — such as “Solver could not find a feasible solution,”
“Solver could not improve the current solution,” or “The linearity conditions required
by this Solver engine are not satisfied” — that generally indicate other conditions, but
may be due to a poorly scaled model. 1f you are puzzled by a result, and you see that
the Scaling Report is available, we highly recommend that you select it, click OK,
and then examine the report contents. This takes only a moment, and it may save you
hours of time if it reveals a scaling problem. See “The Scaling Report” below for a
realistic example, using the EXAMPLE4 Portfolio Optimization model.

Feasibility Report
The Feasibility Report helps you diagnose problems in your models.

With the Feasibility Report, you can pinpoint the constraints that interact to make
your model infeasible, and correct them as needed. Using the object-oriented API or
the Solver Platform SDK, you can access the information in the Feasibility Report
via the BoundIndex, BoundStatus, ConstraintIndex and ConstraintStatus properties
of the OptlIS object, which is a member of each Variable and Function object.

Solutions Report

Where the Answer Report gives you detailed information about the single “best
solution” that appears on the worksheet when the Solver Results dialog is displayed,
the Solutions Report gives you objective function and decision variable values for a
number of alternative solutions, found during the optimization process. For mixed-
integer problems, the report shows each ‘incumbent’ or feasible integer solution
found by the Branch & Bound method. Note that for the LP/Quadratic engine and
the Large Scale LP/QP engine, “preprocessing” must be turned of for this to work.
For global optimization problems solved with the GRG, LSGRG, and KNITRO
Solver engines, the report shows each locally optimal solution found by the Multistart
method. For the Evolutionary Solver, the report shows members of the final
population of solutions.

Population Report

The Population Report is supported by the Evolutionary Solver; it gives you
summary statistical information about the entire population of candidate solutions
maintained by the Evolutionary Solver at the time the solution process was
terminated. It can give you further insight into the quality of solutions found by the
Evolutionary Solver.

All of the reports are Microsoft Excel worksheets, with grid lines and row and
column headings turned off. You can turn the grid lines and headings back on, if you

134 e Solver Reports

Solver User Guide

wish, by choosing Tools Options... and selecting the View tab in the resulting dialog.
In Premium Solver Platform for Mac, you can request outlined reports, which are
worksheets where certain rows are grouped together in an outline structure that you
can expand or collapse as you wish. Because the reports are worksheets, you can
copy and edit the report information, perform calculations on the numbers in the
reports, or create graphs directly from the report data. This makes Premium Solver
Platform for Mac’s reports considerably more useful than those produced by
standalone optimization software packages.

Selecting the Reports

When the Solver finds the solution to an optimization problem, or when the solution
process is terminated prematurely due to some error condition (or your own inter-
vention), the Solver Results dialog is displayed, as shown below.

e @ Solver Results
Solver has converged to the current solution. All constraints are
satisfied.
| Reports
@ Keep Solver Solution Answer
() Restore Original Values Population
Solutions
[_| Return to Solver Parameters Dialog || Outline Reports
L oK J L Cancel J

If the solution process was terminated prematurely, the Reports list box in the dialog
above will be replaced by the legend “No reports available.” If you checked the
Bypass Solver Reports box in the Solver Options dialog, the Reports list box will
appear with the choices that would otherwise have been available, but they will be
grayed out and you will unable to select them.

When the LP/Quadratic Solver, SOCP Barrier Solver, or GRG Nonlinear Solver
finds the solution to a mixed-integer programming problem, the Reports list box
includes only the Answer Report — the Sensitivity and Limits Reports are not
meaningful in this situation. If (and only if) the Solver finds more than one integer
feasible solution or ‘incumbent’, the list box also includes the Solutions Report:

e @ Solver Results

Solver found a solution. All constraints and optimality
conditions are satisfied.

-Reports
(%) Keep Solver Solution Answer
() Restore Original Values Solutions
|| Return to Solver Parameters Dialog [] Outline Reports
L OK J [Cancel J

Solver User Guide

Solver Reports ¢ 135

Similarly, when the GRG Nonlinear Solver finds the solution to a global optimization
problem, the Reports list box includes only the Answer Report. If the GRG Solver,
run with the ‘Multistart Search’ box checked, finds more than one locally optimal
solution, the Reports list box includes the Solutions Report, as shown above.

If you are using the Evolutionary Solver, when the solution process is terminated —
for any reason — you’ll see a Solver Results dialog like the one below:

() Solver Results

Solver found a solution. All constraints and optimality
conditions are satisfied.

| Reports
@ Keep Solver Solution Answer
() Restore Original Values Sensitivity
Limits
[Return to Solver Parameters Dialog ["] Outline Reports
[0K J L Cancel J

Since the Evolutionary Solver always maintains a population of candidate solutions,
including a “best” solution found so far, it offers the Answer, Population and Solu-
tions Reports in all cases — even if it has not found a feasible solution. But since the
Evolutionary Solver has no strict test for optimality, linearity or even feasibility, the
Linearity, Feasibility, Limits and Sensitivity Reports are not available.

If you’ve selected the Simplex LP or LP/Quadratic Solver engine, but your model
contains nonlinear functions of the decision variables, the Solver will report the error
via the Solver Results dialog shown below:

M) Solver Results

The selected engine can not solve a problem of this type. Please
select another engine.

| Reports |

%) Keep Solver Solution |

() Restore Original Values |
|_| Return to Solver Parameters Dialog [Outline Reports
L 0K J L Cancel J

If the Solver finds that your model is infeasible, it displays a Solver Results dialog
like the one shown on the next page:

136 o Solver Reports

Solver User Guide

e e Solver Results

Solver could not find a feasible solution.

Reports
@ Keep Solver Solution Feasibility
() Restore Original Values
E Return to Selver Parameters Dialog "] Outline Reports
[OK J L Cancel J

In this case, you can select the “Feasibility”. “Feasibility” performs a complete
analysis of your model, including bounds on the variables, to find the smallest
possible subset of these constraints that is still infeasible.

Outlining and Comments in Reports

A useful way to control the information you see in reports is to check the box
“Outline Reports” in the Solver Results dialog, to produce the reports you’ve selected
in outlined format. Outlining groups the variables and constraints in the reports into
“blocks,” just as you entered them in the Solver Parameters dialog; you can expand
or collapse the groups to see only the information you want.

Reports in outlined format can display a descriptive comment on each “block™ of
variables and constraints. Comments for constraint blocks are entered in the Add
Constraint and Change Constraint dialogs, displayed when you click the Add and
Change buttons in the Solver Parameters dialog. To add comments to blocks of
variables, click the Variables button to display the Variables list box, then click the
Add or Change buttons to display the Add Variable or Change Variable dialog.

Using the Solver Results Dialog

When the Reports list box is available, you can select one or more of the reports
shown. Simply click on the report names to select the reports you want, or press Alt-
R and then down-arrow from the keyboard. To select more than one report, hold
down the APPLE key while you click on the report names with the mouse.

Once the reports are selected, you can choose one of the options “Keep Solver
Solution” or “Restore Original Values,” and optionally save the decision variable
values in a named scenario by clicking on the Save Scenario... button. When you
click on OK, the reports will be produced. Clicking on Cancel instead will cancel
generation of the reports, and will discard the solution (restoring the original values).
The reports are Microsoft Excel worksheets that are inserted in the current workbook,
just before the sheet containing the Solver model.

After the reports (if any) are produced, the Solver will return to worksheet Ready
mode unless you have checked the box “Return to Solver Parameters Dialog.” This
check box saves you the effort of selecting Tools Premium Solver... over and over, if
you are solving several variations of the same problem, or solving with different
option settings. When you check the “Return to Solver Parameters Dialog” box, it
remains checked (until you change it) for the duration of your Excel session. To
return to worksheet Ready mode, you can either click the Close button in the Solver
Parameters dialog, or uncheck this box in the Solver Results dialog.

Solver User Guide

Solver Reports ¢ 137

The Scaling Report

The effects of poor scaling in a large, complex optimization model can be among the
most difficult problems to identify and resolve. It can cause Solver engines to return
a variety of messages, with results that are suboptimal or otherwise very different
from your expectations. Most Solver engines include an Automatic Scaling option to
deal with scaling problems, but this can only help with the Solver’s internal
calculations — not with poor scaling that occurs in the middle of your Excel model.

For example, if one of your formulas adds or subtracts two quantities of very
different magnitudes, such as a dollar amount in millions or billions and a return or
risk measure in fractions of a percent, the result will be accurate to only a few
significant digits. The effect might not be apparent given the initial values of the
variables, but when the Solver explores Trial Solutions with very different values for
the variables, the effect will be magnified.

You can see an example of the effects of poor scaling if you open
OptimizationExamples.xlsm (in the Solver Parameters dialog, just click the Help
button, then the Examples button), and select worksheet EXAMPLE4. Suppose that
in this Portfolio Optimization model, you decide to make a simple change: Instead of
using percentages for the stock allocations, you’d rather see the actual dollars to be
invested, in your $1 billion institutional portfolio. So you change the constraint
TotalPortfolio = 1 (or 100%) to be TotalPortfolio = 1000000000. You change the
cell formatting to display large numbers instead of percentages, and you select the
GRG Nonlinear Solver (for the sake of this example, since it is more susceptible to
scaling problems than the LP/Quadratic Solver). When you click Solve, you’re
surprised to find that the Solver reports it cannot find a feasible solution, as shown on
the next page.

The Trial Solution on the worksheet doesn’t even allocate the entire $1 billion to
stocks. Since you’re familiar with the Solver options, you turn on the Use Automatic
Scaling box in the GRG Solver Options dialog and click Solve again, but you just get
a different infeasible result. What’s wrong with the Solver? (Past users of Premium
Solver Platform for Mac have on occasions wrestled with problems just like this.)

Select Reports to Create

Reports
Structure
Scaling

[OK JL Cancel J

Noticing that the Scaling Report is available in the Solver Model dialog, after
performing a Check Model, you select this report and click OK. The Scaling Report
is inserted into your workbook:

138 o Solver Reports

Solver User Guide

| & B L D E
Microsoft Excel 14 Scaling Report

Worksheet: EXAMPLES

Report Created: November 16, 2010 5:15:33 PM PST
Number of scaling problems found: 1

Cells with scaling problems
Address
EXAMPLESTHE

.-_..l.nmumm.n.mm:—-

The report indicates that there are scaling problems with the formula at the cell with
defined name ‘Portfolio Variance’ (EXAMPLE4!117). In a very large model, this
cell might be very hard to find by manual inspection. You can click on the under-
lined cell reference to jump to cell 117 on the EXAMPLE4 worksheet. You see that
the Variance is a very large number — 8.26E+14, or 826 trillion. The Scaling Report
has drawn your attention to a scaling issue in the formulas that calculate your model —
outside of the Solver’s own calculations.

In seeking the optimal solution, the Solver is likely to try extreme values — large and
small — for the variables. This doesn’t cause problems when the largest value is
100% or 1 and the smallest is 0, but it does cause problems when the largest value is
1 billion. At this point, calculation of the Portfolio Variance involves adding a very
small value and a very large one (the Stock 5 variance times 1 billion squared) which
leads to a loss of accuracy. This loss of accuracy leads directly to the Solver’s
problems finding a solution.

An Example Model

To illustrate the other reports provided by Premium Solver Platform for Mac, we’ll
start with the model on worksheet EXAMPLEI! in the workbook
OptimizationExamples.xIsm.

Solver User Guide

Solver Reports ¢ 139

®@NOo OptimizationExamples.xlsm
P G % ()) & - @ B+ B B B F] BB ol @
Home Layout Tables | Charts | SmartArt Formulas Data Review
Edit Font Alignment Number Format
= MS Sans Serif -8 ~| | = | = lsm| abc~ | = Wrap Text = : |General - E
Ulld|r A |« B = =|E = Merge 5 v O 3 || S0 0| Conditional
Paste B/ I U — - = | =] == 4 :% % 20|90 : Formatting §
K12 z fx
D E F G H 1

i A B L=
1 |[Example 1: Product mix problem

2 |Your company manufactures TVs, stereos and speakers, using a common parts
3 linventory of power supplies, speaker cones, etc. Parts are in limited supply and you
4 |must determine the most profitable mix of products to build. See our Tutorial Online
| s |for step-by-step instructions on formulating this linear programming model.
| ©
8 TV set Stereo Speaker
| 9 Number to Build->| 100 100 100
| 10 |Part Name Inventory No. Used
| 11 |Chassis 450 200 1 1 0
:l Picture Tube 250 100 1 0 0
| 13 | Speaker Cone 800 500 2 2 1
| 14 |Power Supply 450 200 1 1 0
| 15 |Efectronics 600 400 2 1 1
| 16 Profits:
| 17 By Product $75 $50 $35
|18 Total | $16,000 |

s
| 20
| 21

| 2

2

To find the optimal solution, select Tools Premium Solver..., then click the Solve
button. When the Solver Results dialog appears, select Answer Report in the
Reports list box, and check the box Outline Reports. Click sheet tab Answer

| 23 |Report 1 and click the + symbols to expand the outlined sections of the report.
|24
L £>
| 2B

You can easily load this model by clicking the Help button, then the Examples button
in the Solver Parameters dialog

First, we’ll solve this model in its original form, using the LP/Quadratic and GRG
Solvers, and produce Answer, Sensitivity and Limits Reports. In brief, the Answer
Report summarizes the original and final values of the decision variables and
constraints, with information about which constraints are “binding” at the solution.
The Sensitivity Report provides information about how the solution would change
for small changes in the constraints or the objective function. And the Limits Report
shows you the largest and smallest value each decision variable can assume and still
satisfy the constraints, while all other variables are held fixed at their solution values.

Next, we’ll change the available inventory of Chassis at cell B11 to -1. This is shown
in OptimizationExamples.xIsm on the EXAMPLE?2 worksheet. When we attempt to
solve, we receive the message “Solver could not find a feasible solution,” and we can
produce the report shown below in the section “The Feasibility Report.”

Next, we’ll deliberately introduce a nonlinear function into the model, by editing the
formula at cell C11 to read =SUMPRODUCT(D11:F11,D9:F9)*0.9. This is
shown in OptimizationExamples.xlsm on the EXAMPLE3 worksheet. When we
attempt to solve this model with the Simplex LP or LP/Quadratic Solver, we’ll
receive the message “The linearity conditions required by this Solver engine are not
satisfied,” and we can produce the report shown below in “The Linearity Report.”

Returning to the unmodified version of EXAMPLEI, we’ll solve the model using the
Evolutionary Solver, waiting until we receive the message “Solver cannot improve
the current solution.” This allows us to produce the report shown below in “The
Population Report.”

140 ¢ Solver Reports

Solver User Guide

In Premium Solver Platform V10.5, the Solutions Report has been generalized to
report multiple solutions for integer programming problems, global optimization
problems, and non-smooth optimization problems, solved by any of the built-in or
plug-in Solver engines. We’ll illustrate this useful report with additional examples.

The Answer Report

The Answer Report, which is available whenever a solution has been found, provides
basic information about the decision variables and constraints in the model. It also
gives you a quick way to determine which constraints are “binding” or satisfied with
equality at the solution, and which constraints have slack. In Version 10.5, the
Answer Report includes the message that appeared in the Solver Results dialog, the
name of the Solver engine used to solve the problem, and statistics such as the time,
iterations and subproblems required to solve the problem. An example Answer
Report for the worksheet model EXAMPLE1 (when there are no upper bounds on the
decision variables) is shown on the next page.

First shown are the objective function (Set Cell) and decision variables (adjustable
cells), with their original value and final values. Next are the constraints, with their
final cell values; a formula representing the constraint; a “status” column showing
whether the constraint was binding or non-binding at the solution; and the slack value
— the difference between the final value and the lower or upper bound imposed by
that constraint.

A binding constraint, which is satisfied with equality, will always have a slack of
zero. (In the standard Microsoft Excel Solver, an exception to this occurs when the
right hand side of a constraint is itself a function of the decision variables. In
Premium Solver Platform for Mac, this special case is handled differently, and the
slack value for a binding constraint will always be zero.)

This example shows the effect of automatic outlining of the Solver reports, which
you can select via the “Outline Reports” check box in the Solver Results dialog. The
outline groups correspond directly to the blocks of variables and constraints you
entered in the Solver Parameters dialog — one group per row in the Constraints or
Variables list box. Comments entered in the Add Constraint and Add Variable
dialogs for each block appear in the Answer Report; they are visible whether the
outline is expanded or collapsed.

Solver User Guide

Solver Reports ¢ 141

L

Al B

‘W|Oﬂ|‘\l‘;‘lﬂ|& WA -

et
(=]

et | et |
T | | | b

=
7]

Microsoft Excel 14 Answer Report

Worksheet: EXAMPLEL

Report Created: November 16, 2010 5:17:00 PM PST
Result: Solver found a solution. All ints and

Solver Engine
Engine: LF/Quadratic
Solution Time: 0 Seconds.
Iterations: 3 Subproblems: 0
Incumbent Solutions: 0

Objective Cell{ Max)

are satisfied.

Cell

Name

Original Value

Final Value

50518

Total Profits:

16000

23000

Variable Cells

Cell

Name

Original Value

Final Value

Lower Bound Upper Bound Integer

| 18 | ‘sDsg Number to Build-> TV sel 100 200 0 1E+30 Conlin
|19 | ‘sEse Number lo Build-> Steres 100 200 0 1E+30 Conlin
| 20 F$g Number to Build-> Speaker 100 a a 1E+30 Contin
|21 |

| 22

:T Constraints

ﬁ Cell Name Cell Value Formula Status Slack

125 | CE11 Chassis No. Used 400 C11 <= 450 Net Binding 50

| 26 CH12 Picture Tube No. Used 200 5C%12 == 250 Mot Binding 50

|27 | C513 Speaker Cone No. Used BOO C13 <= B00 Binding a

| 28 | CE14 Power Supply No. Used 400 5C314 <= 450 NotBinding 50

| 29 G315 Electranics No. Used 600 C15 <= 600 Binding]

30

|31

132

|33 |

134

When creating a report, the Solver constructs the entries in the Name column by
searching for the first text cell to the left and the first text cell above each variable
(changing) cell and each constraint cell. If you lay out your Solver model in tabular
form, with text labels in the leftmost column and topmost row, these entries will be
most useful — as in the example above. Also note that the formatting for the Original
Value, Final Value and Cell Value is “inherited” from the formatting of the
corresponding cell in the Solver model.

The Sensitivity Report

The Sensitivity Report provides classical sensitivity analysis information for both
linear and nonlinear programming problems, including dual values (in both cases)
and range information (for linear problems only). The dual values for (nonbasic)
variables are called Reduced Costs in the case of linear programming problems, and
Reduced Gradients for nonlinear problems. The dual values for binding constraints
are called Shadow Prices for linear programming problems, and Lagrange Multipliers
for nonlinear problems.

Constraints which are simple upper and lower bounds on the variables, that you enter
in the Constraints list box of the Solver Parameters dialog, are handled specially (for
efficiency reasons) by both the linear and nonlinear Solver algorithms, and will not
appear in the Constraints section of the Sensitivity report. When an upper or lower
bound on a variable is binding at the solution, a nonzero Reduced Cost or Reduced
Gradient for that variable will appear in the “Adjustable Cells” section of the report;
this is normally the same as a Lagrange Multiplier or Shadow Price for the upper or
lower bound.

Note: The formatting of cells in the Sensitivity can make a significant difference in
how the Reduced Gradient, Lagrange Multiplier, Reduced Cost and Shadow Prices
are displayed. Bear this in mind when designing your model and when reading the

142 e Solver Reports

Solver User Guide

report. Since the report is a worksheet, you can always change the cell formatting
with the Format menu.

An example of a Sensitivity Report generated for EXAMPLE1 when the Solver
engine is the nonlinear GRG solver (and there are no upper bounds on the variables)
is shown below. Note that it includes only the solution values and the dual values:
Reduced Gradients for variables and Lagrange Multipliers for constraints. If you
solve a quadratic programming problem with the LP/Quadratic Solver, the report
will also appear in this format.

_JA] B] C [D [E [F
Microsoft Excel 14 Sensitivity Report

Worksheet: EXAMPLEL

Report Created: November 16, 2010 5:18:39 PM PST

Cell Mame Final Value
£D%18 Tatal Profits: 25000

1
2
=
4
5 |Objective Cell{Max)
7]
7
8
9

Decision Variable Cells

| 10 | Final Reduced
11 Ceall Name Value Gradient
12 $0%9 MNumber to Build-> TV sol 200 0
13 $E59 Number to Build-> Sterec 200 1]
14 3F39 Number to Build-> Speaker 4] -25
15|
16 |Constraints
17 Final Lagrange
18 | cell Mame Value Multiplier
19 3C%511 Chassis No. Used 400 4]
20 $C3$12 Piclure Tube No. Used 200 0
21 $C%13 Speaker Cons No. Used HOO 1249999981
22 503514 Power Supply No. Usad 400 1]
23 3C3515 Electronics Mo. Usad 600 25
25 |
26

Interpreting Dual Values

Dual values are the most basic form of sensitivity analysis information. The dual
value for a variable is nonzero only when the variable’s value is equal to its upper or
lower bound at the optimal solution. This is called a nonbasic variable, and its value
was driven to the bound during the optimization process. Moving the variable’s
value away from the bound will worsen the objective function’s value; conversely,
“loosening” the bound will improve the objective. The dual value measures the
increase in the objective function’s value per unit increase in the variable’s value. In
the example Sensitivity Report above, the dual value for producing speakers is -2.5,
meaning that if we were to build one speaker (and therefore less of something else),
our total profit would decrease by $2.50.

The dual value for a constraint is nonzero only when the constraint is equal to its
bound. This is called a binding constraint, and its value was driven to the bound
during the optimization process. Moving the constraint left hand side’s value away
from the bound will worsen the objective function’s value; conversely, “loosening”
the bound will improve the objective. The dual value measures the increase in the
objective function’s value per unit increase in the constraint’s bound. In the example

Solver User Guide

Solver Reports ¢ 143

on the previous page, increasing the number of electronics units from 600 to 601 will
allow the Solver to increase total profit by $25.

If you are not accustomed to analyzing sensitivity information for nonlinear
problems, you should bear in mind that the dual values are valid only at the single
point of the optimal solution — if there is any curvature involved, the dual values
begin to change (along with the constraint gradients) as soon as you move away from
the optimal solution. In the case of linear problems, the dual values remain constant
over the range of Allowable Increases and Decreases in the variables’ objective
coefficients and the constraints’ right hand sides, respectively.

Interpreting Range Information

In linear programming problems, unlike nonlinear problems, the dual values are
constant over a range of possible changes in the objective function coefficients and
the constraint right hand sides. The Sensitivity Report for linear programming
problems includes this range information.

A Sensitivity Report for EXAMPLE!1 when the Solver engine is the standard Simplex
or LP/Quadratic Solver (and there are no upper bounds on the decision variables) is
shown below. In addition to the dual values (Reduced Costs for variables, Shadow
Prices for constraints), this report provides information about the range over which
these values will remain valid.

! Enter a name for a cell range, or select a | E | F | G | H | I
2.1' named range from the list

" 3 |Report Created: November 16, 2010 5:17:01 PM PST

EX
5 | Objective Cell{Max)

6 | Cell Name Final Value

' 7 | SD$18 Total Profits: 25000

'8 |

9 | Decision Variable Cells

10 | Final Reduced Objective Allowable Allowable
11 Cell Name Value Cost Coefficient Increase Decrease

12 | SD%% Number to Build-> TV set 200 [i 75 250000002 5.0000002

(13 | $ES8 Number to Build-> Sterec 200 [i 50 250000001 125000001
14 F8 Mumber lo Build-> Speaker 1] -2.5 35 25 1E+30

15 |

T Canstraints

17 | Final Shadow Constraint Allowable Allowable
18 Ceall Name Valua Prica R.H. Side Increase Dacraase

119 | C11 Chassis No. Used 400 0 450 1E+30 50

(20 | SC312 Piclure Tube No. Used 200 i 250 1E+30 50
21 FCH13 Speaker Cone No. Used 800 12.5 BOD 100 100

(22 | SCS14_Power Supply No. Used 400 [450 1E+30 50
23 | $C315 Electronics No. Used [25 [50 200

24 |

For each decision variable, the report shows its coefficient in the objective function,
and the amount by which this coefficient could be increased or decreased without
changing the dual value. In the example below, we’d still build 200 TV sets even if
the profitability of TV sets decreased up to $5 per unit. Beyond that point, or if the
unit profit of speakers increased by more than $2.50, we’d start building speakers.

For each constraint, the report shows the constraint right hand side, and the amount
by which the RHS could be increased or decreased without changing the dual value.
In this example, we could use up to 50 more electronics units, which we’d use to
build more TV sets instead of stereos, increasing our profits by $25 per unit. Beyond

144 e Solver Reports

Solver User Guide

650 units, we would switch to building speakers at an incremental profit of $20 per
unit (a new dual value). A value of 1E+30 in these reports represents “infinity:” In
the example below, we wouldn’t build any speakers regardless of how much the
profit per speaker were decreased.

The Limits Report

The Limits Report was designed by Microsoft to provide a specialized kind of
“sensitivity analysis” information. It is created by re-running the Solver model with
each decision variable (or Changing Cell) in turn as the objective (both maximizing
and minimizing), and all other variables held fixed. Hence, it shows a “lower limit”
for each variable, which is the smallest value that a variable can take while satisfying
the constraints and holding all of the other variables constant, and an “upper limit,”
which is the largest value the variable can take under these circumstances. An
example of the Limits Report for EXAMPLET1 is shown below.

A B = M) E F L H I J H
L | Microsoft Excel 14 Limits Report

! |Worksheet: EXAMPLEL

i |Report Created: November 16, 2010 5:19:52 PM PST

i

5

B Objective

i Call Namea Valua

] 50318 Total Profits: 25000

]

0

1 Decision Variable Lower Objective Upper Objective
2 Cell Nama Value Limit Result Limit Result
B 5058 Mumber to Build-> TV sat 200 a 10000 200 25000
4 $E59 MWumber to Build-> Sterec 200 a 15000 200 25000
5 §FE3 Number to Build-> Speaker] a 25000 a 25000
B

Fi

The Feasibility Report

The purpose of the Feasibility Report is to help you isolate the source of infeasi-
bilities in your model. Most often, an infeasible result simply means that you’ve
made a mistake in formulating your model, such as specifying a <= relation when you
meant to use >=. However, if your model contains hundreds or thousands of
constraints, it can be quite challenging to locate an error of this type. By isolating the
infeasibility to a small subset of the constraints, the Feasibility Report can show you
where to look, and hence save you a good deal of time.

To produce the Feasibility Report, the Solver may test many different variations of
your model, each one with different combinations of your original constraints. This
process ultimately leads to a so-called “Irreducibly Infeasible System” (IIS) of
constraints and variable bounds which, taken together, make the problem infeasible,
but with the property that if any one of the constraints or bounds is removed from the
IIS, the problem becomes feasible.

In a model with many constraints that “interact” with each other in complex ways,
there may be many possible subsets of the constraints and bounds that constitute an
IIS. Often, some of these subsets have many fewer constraints than others. The
Solver attempts to find an IIS containing as few constraints as possible, trying first to

Solver User Guide

Solver Reports ¢ 145

eliminate “formula” constraints and then to eliminate simple variable bounds — since
it is usually easier to understand the effects of variable bounds on the infeasibility of
the resulting IIS.

If we attempt to solve EXAMPLE2 in the OptimizationExamples.xlsm workbook —
which is identical to EXAMPLE! except that cell B11 (the right hand side of the
constraint C11 <= B11) is set to -1 — we receive the message “Solver could not find a
feasible solution.” At this point, we know only that the problem is somewhere in the
set of five constraints (C11:C15 <= B11:B15) and three bounds on the variables. To
pinpoint the problem, we select Feasibility from the Reports list box, producing a
report like the one shown below. The Feasibility Report narrows the full set of
constraints to the single constraint C11 <= B11 and bounds on variables D9 and E9.

_[A] B C D E F G H

1 |Microsoft Excel 14 Feasibility Report

2 |Worksheet: EXAMPLE2

3 |Report Created: November 16, 2010 5:21:04 PM PST

Fl
| 5
| 6 |Constraints that make the Problem Infeasible
| 7 Call Name Cell Value Formula Status Slack
| 8 3C311 Chassis No. Used -1 5C%11==-1 Binding 4]
| @ 3038 Mumber to Build-> TV set 0 5D%%9==0 Binding 4]
| 10 3ES2 Mumber to Build-> Stereo -1 3E59==0 Mol Binding 1
|11
| 12
P13

If your model is very large, computing the IIS may take a good deal of time. The
Solver displays an estimated “% Done” on the Excel status bar as it solves variations
of your model, and you can always interrupt the process by pressing ESC (in which
case no report appears). Instead of the full Feasibility Report, which analyzes both
the constraints and variable bounds in your model and attempts to eliminate as many
of them as possible, you can produce the “Feasibility-Bounds” version of the report,
which analyzes only the constraints while keeping the variable bounds in force. This
report may be sufficient to isolate the source of the infeasibility, but you must take
into account the bounds on all of the variables when reading it.

In some cases, of course, there may be no error in your model — it may correctly
describe the real-world situation, and the fact that it is infeasible will probably tell
you something important about the situation you are modeling. Even in such cases,
the Feasibility Report can help you focus on the aspects of the real-world situation
that contribute to the infeasibility, and what you can do about them.

The Population Report

The Population Report gives you summary information about the entire population of
candidate solutions maintained by the Evolutionary Solver at the end of the solution
process. The Population Report can give you insight into the performance of the
Evolutionary Solver as well as the characteristics of your model, and help you decide
whether additional runs of the Evolutionary Solver are likely to yield even better
solutions.

146 o Solver Reports

Solver User Guide

For each variable and constraint, the Population Report shows the best value found
by the Evolutionary Solver, and the mean (average) value, standard deviation,
maximum value, and minimum value of that variable or constraint across the entire
population of candidate solutions at the end of the solution process. These values
will give you an idea of the diversity of solutions represented by the population.

If we run the Evolutionary Solver on EXAMPLE]1 with a Max Subproblems limit of
5000, and upper bounds of 200 on the variables, we find a solution of D9 = E9 =200
and F9 = 0 (the same as the linear programming optimal solution). We can then
produce a Population Report like the one below.

‘1 | Microsoft Excel 14 Population Report

2_ Worksheet: EXAMPLEL

3 |Report Created: November 16, 2010 5:24:07 PM PST

4 |

5]

6 |Decision Variable Cells

Z Best Mean Standard Maximum Minimum

8 Cell Name Value Value Deviation Value Value

9 | 30%9 Number to Build-> TV set 157 1884281 147.580516 1357348738 157 1884281 137 882604
II $ES8 Number to Build-> Stereo 2018895267 2003382526 2349396245 20199952687 198 6TCHTEE
11 SF58 Mumber to Build-> Speaxer 7948077125 102.4092938 3242582753 1253378183 7948077125
12 |

L3 |constraints

14 | Best Mean Standard Maximum Minimum
L5 | Call Name Value Value Deviation Value Value
IE SC311 Chassis No. Usaed 3501879547 34T 0287687 1592288363 350.1879547 336.6695826
17 C12 Piclure Tube No. Used 157 1884281 147.580516 1357348738 157 1884281 137 882604
II C13 Speaker Cone No. Used T9T 8566807 TOB 2668311 0580040278 THBETE8E15 797 .B566BOT
19_ $C314 Power Supply No. Used 3501879547 34T.B28T68T7 1502280363 3501879547 336.6695B26
20 5C$15 Electronics No. Usad 595.857154 597.85285TES 2829436523 600.0000028 555.857154
g1

22 |

23 |

You can see that the Best Values of the variables are far from the Mean Values
across the whole population, but they are equal to the Maximum Values for cells D9
and E9, and to the Minimum Value of cell F9. Since the solution is feasible, and
since the optimization process tends to drive variable values to extremes, this may
indicate that we have found a globally optimal solution (which is true in this case).
The Standard Deviations are relatively large, but this is not too surprising since
points in the population have not yet converged to the point where we would receive
“Solver has converged to the current solution.”

How you interpret the Population Report depends in part on your knowledge of the
problem, and past experience solving it with the Evolutionary Solver or with other
Solver engines. For example, if the Best Values are similar from run to run, and if
the Standard Deviations are small, this may be reason for confidence that your
solution is close to the global optimum. However, if the Best Values vary from run
to run, small Standard Deviations might indicate a lack of diversity in the population,
suggesting that you should increase the Mutation Rate and run the Solver again.

The Solutions Report

Where the Answer Report gives you detailed information about the single “best
solution” that appears on the worksheet when the Solver Results dialog is displayed,
the Solutions Report gives you objective function and decision variable values for a
number of alternative solutions, found during the optimization process.

Solver User Guide

Solver Reports ¢ 147

Integer Programming Problems

For mixed-integer problems, the report shows each ‘incumbent’ or feasible integer
solution found by the Branch & Bound method during the solution process. Below is
an example of the Solutions Report:

Y L | C I o E T I o (2]
| 1 | Microsoft Excel 14 Solutions Report
| 2 | Worksheet: Sheetl
| 3 | Report Created: November 16, 2010 5:27:06 PM PST
| 4 | Result: Solver stopped at user's request.

5 |Engine: Gurobi LF/MIF Solver
| 6 | Mumber of Solutions: 5
7]

8 | Solutions:
|9 | " Cell_Sol1(Obj=3291.75) Sal2 (Obj = 6583.5) Sol 3 (Obj = 9875.25) Sol 4 (Obj = 13563) Sel 5 (Obj = 26334)
110 | siE7] a 0 [[
11| sas7 4 4 [0 8
12 | sKs7 3 3 [} 0 0
113 | 57 7 7 a 1 0
14 | smE7 a a a E] [1
115 | SN$7 a a a a [1
16 | 5087 1 1 3 0 0
|17 | sPs7 a a a a [1
|18 | sas7 a a a a 1
119 | SR$7 1 1 2 0 0
20 | 887 0 0 0 4 0
21 | 5787 0 0 3 8 0
|22 | SusT a a [] a [1
23 | sIs8 0 0 [} 1 0
LN sk i 0 0 0 [
|25 | SKsa 4 4 1 8 8
|26 | sL3E a a 1 2 1
27 | smse 6 8 7 5 8
28 | SNSB 3 3 1 0 0
129 | 5088 0 0 4 0 0
|30 | sPsa a a 2 a [1
31 | soss 1 1 a a [1
|32 | SR 0 0 [0 0
|33 | Ssse 2 2 a a [1
|34 | STS8 a a a a 1
35 | suse 0 0 [0 0

This problem was solved by the LP/Quadratic Solver with the Integer Tolerance set
to 0.0 and all Cuts & Heuristics disabled. (On this problem, with Cuts & Heuristics
enabled, the Solver quickly finds the true integer optimal solution as the first incum-
bent; the Solutions Report is available only when multiple incumbents are found.) As
shown above, three incumbents were found.

Global Optimization Problems

For global optimization problems, the report shows each locally optimal solution
found by the Multistart method. On the next page is an example of the Solutions
Report for a simple two-variable global optimization problem Branin.xls, solved by
the GRG Nonlinear Solver with the Multistart Search option selected:

148 e Solver Reports Solver User Guide

A B | C I (B

L | Microsoft Excel 14 Solutions Report

' |Worksheet: Branin

!: Report Created: November 16, 2010 5:34:45 PM P5T

} | Result: Solver converged in probability to a global solution.
» |Engine: GRG Nonlinear

3 | Number of Solutions: 2

'

i |solutions:

) | Cell Sol1{Obj=0.397887) Sol 2 (Obj = 0.397887)
!]_ 3B53 Q42477786 3141592881
1] B854 24749984987 2274988829
2 |

3 |

In this problem, the “Branin function” must be minimized for variables x and y,
subject to bounds -5 <=x, y <= 10. There are three distinct locally optimal solutions
with objective values 2.7911 (worst), 0.5989 (better) and 0.3979 (best and globally
optimal). The Solver was started at the point x = -2.5, y = 10, which is close to the
worst of the three locally optimal solutions. The Multistart Search process runs the
Solver from representative starting points in ‘clusters’ of randomly selected points;
on this run, it first found a solution close to the worst locally optimal point, then
found a solution at the best and globally optimal point.

Non-Smooth Optimization Problems

For arbitrary non-smooth optimization problems, the report shows members of the
Solver’s final population of solutions. Below is an example of the Solutions Report
for the global optimization problem Branin.xls, solved by the Evolutionary Solver.

A B] - I (%] [L

1 |Microsoft Excel 14 Solutions Report

2 |Worksheet: Branin

3 |Report Created: November 16, 2010 5:32:51 PM PST

4 |Result: Solver has converged to the current solution. All constraints are satisfied.

5 |Engine: Evolutionary

6 |Number of Solutions: 11

7|

8 |solutions:

9 | Cell Sol1{Obj=0.397887) Sol 2 (Obj = 0.397914) Sol 3 (Obj = 0.397928) Sol 4 (Obj = 0.357939) Sol 5 (Ot
lo | sBsa 9424777961 9.424753753 9426441177 9426054627
L1 | $B54 2475 2480139561 2481680742 2.482708341
12|

I3 | Gell _Sol89 (Obj=0.397986) Sol 10 (Obj = 0.398102) Sol 11 (Obj = 121.524)

l4 | 'sBsa 9425274658 9421620427 -4.69554 8885

L5 | B84 2 485271471 2485271471 5.735718283

16 |

17|

I8 |

9|

r0

Again the Solver was started at the point x =-2.5, y = 10, close to the worst of the
three locally optimal solutions, and it was given a limit of only 200 subproblems.
Unlike the Solutions Report for gradient-based nonlinear optimizers like the GRG
Nonlinear Solver, the final population of solutions is not likely to include many
distinct locally optimal points. The best solutions in the Evolutionary Solver’s final

Solver User Guide

Solver Reports ¢ 149

population are all in the neighborhood of the globally optimal solution, which is x =
3.14159, y =2.2750. But since the Evolutionary Solver doesn’t require gradient
information or tests for local optimality, it is unlikely to find the globally optimal
solution with very high accuracy for a smooth nonlinear problem like Branin.xls.

150 ¢ Solver Reports Solver User Guide

Using VBA Functions

Controlling the Solver’s Operation

This chapter explains how to control the Solver using VBA functions, which are
upward compatible from the VBA functions supported by the standard Excel
SolverUsing traditional VBA functions, you can display or completely hide the
Solver dialog boxes, create or modify the choices of objective (Set Cell), variables
(Changing Cells) and constraints, and produce reports. You do this by calling a set of
Solver-specific functions from a macro program you write in Visual Basic
Applications Edition (VBA). If you need to work with solution values or report
information in your VBA code, create and solve multiple optimization problems, or
‘port’ your code to run as a standalone application, you may find that the object-
oriented API is a better choice.

Running Predefined Solver Models

Controlling the Solver can be as simple as adding one line to your macro program
code! Each worksheet in a workbook may have a Solver problem defined, which is
saved automatically with the workbook. You can create this Solver model interactive-
ly if you wish. If you distribute such a workbook, with a worksheet containing a
Solver model and a VBA module, you can simply add a reference to the Solver add-
in, activate the worksheet, and add one line to call the function SolverSolve in VBA.

Limitations in VBA on the Mac

The Premium Solver for the Mac is a separate application, which gets started each
time you solve a model, or perform a “Check Model”. Because this is a separate
process, this means that when you run a macro that has a line such as SolverSolve in
it, the macro will not wait for the Solver to finish; it will keep executing your VBA
code. Please keep this in mind as you write your macros. For more information on
this, also see the SolverSolve function described below.

Referencing Functions in Visual Basic

To use the VBA functions, your Visual Basic module must include a reference to the
Solver add-in (Solver.xla). Press Alt-F11 to open the Visual Basic Editor, choose
Tools References... and make sure that the box next to PremiumSolver is checked.

Solver User Guide

Using VBA Functions ¢ 151

Checking Function Return Values

The Solver functions generally return integer values, which you should check in your
VBA code. The normal return value is 0, indicating that the function succeeded.
Other possible return values are given in the descriptions of the individual functions.
If the arguments you supply are invalid, an error condition can be raised, which you
would have to handle via an On Error VBA statement.

One group of functions can return a variety of numeric, logical, string or array values,
depending on the arguments you supply. These functions (SolverGet, SolverOkGet,
etc.) may be used to “read” the settings of the current Solver model, on the active
sheet or any other worksheet whose name you supply.

Standard, Model and Premium Macro Functions

The following sections describe each of the VBA function calls supported by
Premium Solver Platform for Mac. These functions are a compatible superset of the
function calls available in the standard Excel Solver.

The functions are listed alphabetically in three groups. The first group consists of
functions available in both the standard Excel Solver and Premium Solver Platform
for Mac. The second group (Premium VBA Functions) consists of functions that are
available only in Premium Solver Platform for Mac. The third group (Solver Model
VBA Functions) consists of functions that are available only in Premium Solver
Platform for Mac. If you want to write VBA code that will work with both the
standard Solver and Premium Solver Platform for Mac, you should limit yourself to
functions in the first group, and consult the notes on each function call to determine
which arguments are supported by the standard Solver.

Standard VBA Functions

The VBA functions in this section are available in both the standard Excel Solver and
Premium Solver Platform for Mac. Some of these functions have extra arguments
that are supported only in Premium Solver Platform for Mac, as noted in each
function description.

SolverAdd (Form 1)

Equivalent to choosing Solver... from the Tools menu and pressing the Add button in
the Solver Parameters dialog box. Adds a constraint to the current problem.

VBA Syntax
SolverAdd (CellRef:=, Relation:=, FormulaText:=, Comment:=)

CellRef is a reference to a cell or a range of cells on the active worksheet and forms
the left hand side of the constraint.

Relation specifies the arithmetic relationship between the left and right hand sides,
or whether CellRef must have an integer value at the solution.

Relation Relationship

1 <=
2 —
3 >=

152 e Using VBA Functions Solver User Guide

4 int (CellRef is an integer variable)

5 bin (CellRef is a binary integer variable)

6 dif (CellRef is an alldifferent group)

7 soc (CellRef belongs to a second order cone)

8 src (CellRef belongs to a rotated second order cone)

FormulaText is the right hand side of the constraint and will often be a single
number, but it may be a formula (as text) or a reference to a range of cells.

Comment is a string corresponding to the Comment field in the Add Constraint
dialog, only in Premium Solver Platform for Mac.

The standard Excel Solver supports only Relation values 1 to 5. If Relation is 4 to
8, FormulaText is ignored, and CellRef must be a subset of the Changing Cells.

If FormulaText is a reference to a range of cells, the number of cells in the range
must match the number of cells in CellRef, although the shape of the areas need not
be the same. For example, CellRef could be a row and FormulaText could refer to a
column, as long as the number of cells is the same.

Remarks

The SolverAdd, SolverChange and SolverDelete functions correspond to the Add,
Change, and Delete buttons in the Solver Parameters dialog box. You use these
functions to define constraints. For many macro applications, however, you may find
it more convenient to load the problem in a single step using the SolverLoad call.

Each constraint is uniquely identified by the combination of the cell reference on the
left and the relationship (<=, =, >=, int, bin, dif, soc or src) between its left and right
sides. This takes the place of selecting the constraint in the Solver Parameters dialog
box. You can manipulate constraints with SolverChange and SolverDelete.

SolverAdd (Form 2)

Equivalent to choosing Solver... from the Tools menu, pressing the Variables button,
and then pressing the Add button in the Solver Parameters dialog box. Adds a set of
decision variable cells to the current problem. This form is supported only by
Premium Solver Platform for Mac.

VBA Syntax
SolverAdd (CellRef:=, Comment:=)

CellRef is a reference to a cell or a range of cells on the active worksheet and forms
a set of decision variables.

Comment is a string corresponding to the Comment field in the Add Variable Cells
dialog, only in Premium Solver Platform for Mac.

Remarks

The SolverAdd, SolverChange and SolverDelete functions correspond to the Add,
Change, and Delete buttons in the Solver Parameters dialog box. In this form, you
can use these functions to add or change sets of decision variables. For many macro
applications, however, you may find it more convenient to load the problem in a
single step using the SolverLoad function.

Note that SolverOk defines the first entry in the By Changing Variable Cells list box.
Use SolverAdd to define additional entries in the Variables Cells list box. Do not call
SolverOk with a different ByChange:= argument affer you have defined more than
one set of variable cells.

Solver User Guide

Using VBA Functions ¢ 153

SolverChange (Form 1)

Equivalent to choosing Solver... from the Tools menu and pressing the Change button
in the Solver Parameters dialog box. Changes the right hand side of an existing
constraint.

VBA Syntax

SolverChange (CellRef:=, Relation:=, FormulaText:=, Comment:=)

For an explanation of the arguments and selection of constraints, see SolverAdd.
Remarks

If the combination of CellRef and Relation does not match any existing constraint,
the function returns the value 4 and no action is taken.

To change the CellRef or Relation of an existing constraint, use SolverDelete to
delete the old constraint, then use SolverAdd to add the constraint in the form you
want.

SolverChange (Form 2)

Equivalent to choosing Solver... from the Tools menu, pressing the Variables button,
and then pressing the Change button in the Solver Parameters dialog box. Changes a
set of decision variable cells. This form is supported only by Premium Solver
Platform for Mac.

VBA Syntax
SolverChange (CellRef:=, Relation:=, Comment:=)

CellRef is a reference to a cell or a range of cells on the active worksheet, currently
defined in the Variable Cells list box as a set of decision variable cells.

Relation is a reference to a different cell or range of cells on the active worksheet,
which will replace CellRef as a new set of variable cells.

Comment is a string corresponding to the Comment field in the Change Variable
Cells dialog, only in Premium Solver Platform for Mac.

Report is no longer used, but is included for compatibility with previous versions of
Premium Solver Platform for Mac.

Remarks

If CellRef does not match any existing set of variable cells, the function returns the
value 1 and no action is taken.

SolverDelete (Form 1)

Equivalent to choosing Solver... from the Tools menu and pressing the Delete button
in the Solver Parameters dialog box. Deletes an existing constraint.

VBA Syntax
SolverDelete (CellRef:=, Relation:=, FormulaText:=)

For an explanation of the arguments and selection of constraints, see SolverAdd.
The FormulaText argument is optional, but if present, it is used to confirm that the
correct constraint block is being deleted.

154 e Using VBA Functions

Solver User Guide

Remarks

If the combination of CellRef and Relation does not match any existing constraint,
the function returns the value 4 and no action is taken. If the constraint is found, it is
deleted, and the function returns the value 0.

SolverDelete (Form 2)

Equivalent to choosing Solver... from the Tools menu, pressing the Variables button,
and then pressing the Delete button in the Solver Parameters dialog box. Deletes an
existing set of variable cells. This form is supported only by Premium Solver
Platform for Mac.

VBA Syntax
SolverDelete (CellRef:=)

CellRef is a reference to a cell or a range of cells on the active worksheet, currently
defined in the Variable Cells list box as decision variable cells.

Remarks

If CellRef does not match any existing set of variable cells, the function returns the
value 1 and no action is taken. If the variable cells are found, they are deleted, and
the function returns the value 0.

SolverFinish

Equivalent to selecting options and clicking OK in the Solver Results dialog that
appears when the solution process is finished. The dialog box will not be displayed.

VBA Syntax
SolverFinish (KeepFinal:=, ReportArray:=, OutlineReports:=, ReportDesc:=)

The ReportDesc and OutlineReports arguments are available only in Premium
Solver Platform for Mac.

KeepFinal is the number 1, 2 or 3 and specifies whether to keep or discard the final
solution. If KeepFinal is 1 or omitted, the final solution values are kept in the
variable cells. If KeepFinal is 2, the final solution values are discarded and the
former values of the variable cells are restored.

ReportArray is an array argument specifying what reports should be produced. If
the Solver found a solution, it may have any of the following values:

If ReportArray is The Solver creates
Array(1) An Answer Report
Array(2) A Sensitivity Report
Array(3) A Limits Report
Array(4) A Solutions Report

Array(4) is used only for integer programming and global optimization problems. A
combination of these values produces multiple reports. For example, if ReportArray
= Array(1,2), the Solver will create an Answer Report and a Sensitivity Report.

If you are using the Evolutionary Solver engine, you can produce an Answer Report,
a Population Report or a Solutions Report unless SolverSolve returns 18, 19 or 20
(which means that the Solver returned an error before a population was formed):

If ReportArray is The Solver creates

Solver User Guide

Using VBA Functions e 155

Array(1) An Answer Report
Array(2) A Population Report
Array(3) A Solutions Report

If the Solver could not find a feasible solution (SolverSolve returns 5), you can
produce either version of the Feasibility Report, or a Scaling Report:

If ReportArray is The Solver creates
Array(1) A Feasibility Report
Array(2) A Feasibility-Bounds Report

If you are using Premium Solver Platform for Mac and a field-installable Solver
engine, it may produce some or all of the reports mentioned above and/or its own
custom reports. To determine what you should use for the ReportArray argument,
solve a problem interactively with this Solver engine, and examine the Reports list
box in the Solver Results dialog. Then use the ordinal position of the report you

want:
If ReportArray is The Solver creates
Array(1) The first report listed
Array(2) The second report listed (and so on)

ReportDesc is an array of character strings that allows you to select reports by their
names, rather than their ordinal positions in the Reports list. For example, you can
select an Answer Report with Array (“Answer”), or both the Answer Report and the
Sensitivity Report with Array (“Answer”, “Sensitivity””). The possible strings are:

“Answer” Answer Report

“Sensitivity” Sensitivity Report

“Limits” Limits Report

“Solutions” Solutions Report

“Population” Population Report “Feasibility”

Feasibility Report (full version)
“Feasibility-Bounds™ Feasibility Report (w/o bounds)

The report names you can include in the array depend on the currently selected
Solver engine and the integer value returned by SelverSolve, as described above.

OutlineReports is a logical value corresponding to the Outline Reports check box.
If TRUE, any reports you select will be produced in outlined format, and comments
(if any) associated with each block of variables and constraints will be included in the
report; if it is FALSE, the reports will be produced in “regular” format.

SolverFinishDialog

Equivalent to selecting options in the Solver Results dialog that appears when the
solution process is finished. The dialog box will be displayed, and the user will be
able to change the options that you initially specify.

VBA Syntax

SolverFinishDialog (KeepFinal:=, ReportArray:=, ReportDesc:=,
OutlineReports:=)

For an explanation of the arguments of this function, see SolverFinish.

156 e Using VBA Functions Solver User Guide

SolverGet

Returns information about the current Solver problem. The settings are specified in
the Solver Parameters and Solver Options dialog boxes, or with the other Solver
functions described in this chapter. Values of the TypeNum:= argument from 1 to 18
are supported by the standard Excel Solver.

SolverGet is provided for compatibility with the standard Excel Solver and earlier
versions of Premium Solver Platform for Mac. For programmatic control of new
features and options included in Version 5.0 or later of Premium Solver Platform for
Mac, see the dialog-specific “Get” functions in the sections “Solver Model VBA
Functions” and “Premium VBA Functions.”

VBA Syntax
SolverGet (TypeNum:=, SheetName:=

TypeNum is a number specifying the type of information you want. The following
settings are specified in the Solver Parameters dialog box.

TypeNum Returns

1 The reference in the Set Cell box, or the #N/A error value if
Solver has not been used on the active document

2 A number corresponding to the Equal To option
1 = Max
2 = Min
3 = Value Of
3 The value in the Value Of box
4 The reference in the Changing Cells box (in the Premium
Solvers, only the first entry in the Variables list box)
5 The number of entries in the Constraints list box
6 An array of the left hand sides of the constraints as text
7 An array of numbers corresponding to the relations
between the left and right hand sides of the constraints:
1 = <=
2 = =
3 = =
4 = int
5 = bin
6 = dif
7 = soc
8 = src
8 An array of the right hand sides of the constraints as text

The following settings are specified in the Solver Options dialog box:

TypeNum Returns

9 The Max Time value (as a number in seconds)

10 The Iterations value (max number of iterations)

11 The Precision value (as a decimal number)

12 The integer Tolerance value (as a decimal number)

13 In the standard Solver: TRUE if the Assume Linear Model

check box is selected; FALSE otherwise. In the Premium
Solvers: TRUE if the linear Simplex or LP/Quadratic
Solver is selected; FALSE if any other Solver is selected

Solver User Guide

Using VBA Functions ¢ 157

14 TRUE if the Show Iteration Result check box is selected;
FALSE otherwise

15 TRUE if the Use Automatic Scaling check box is selected;
FALSE otherwise

16 A number corresponding to the type of Estimates:
1 = Tangent
2 = Quadratic
17 A number corresponding to the type of Derivatives:
1 = Forward
2 = Central
18 A number corresponding to the type of Search:
1 = Newton
2 = Conjugate

The following settings are supported by Premium Solver Platform For Mac:

TypeNum Returns

19 The Convergence value (as a decimal number) in the nonlinear
GRG Solver
20 TRUE if the Make Unconstrained Variables Non-Negative check
box is selected; FALSE
otherwise
21 The Integer Cutoff value (as a decimal number)
22 TRUE if the Bypass Solver Reports check box is selected;

FALSE otherwise

23 An array of the entries in the Variables list box as text
24 A number corresponding to the Solver engine dropdown list
for the currently selected Solver engine:
1 = Nonlinear GRG Solver
2 = Simplex or LP/Quadratic Solver

3 = Evolutionary Solver
4 = SOCP Barrier Solver
In Premium Solver Platform for Mac, other values may be
returned
for field-installable Solver engines
25 The Pivot Tolerance (as a decimal number) in the
Simplex, LP/Quadratic, and Large-Scale LP Solvers
26 The Reduced Cost Tolerance (as a decimal number) in the
Simplex, LP/Quadratic, and Large-Scale LP Solvers
27 The Coefficient Tolerance (as a decimal number) in the

Large-Scale LP Solver

28 The Solution Tolerance (as a decimal number) in the
Large-Scale LP Solver

29 TRUE if the Estimates option in the GRG Solver is set to
Tangent; FALSE if the Estimates option is set to Quadratic

30 A number corresponding to the type of Scaling in the
Large-Scale LP Solver:
1 = None
2 = Row Only
3 = Row & Col

158 e Using VBA Functions Solver User Guide

SheetName is the name of a worksheet that contains the Solver problem for which
you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverLoad

Equivalent to choosing Solver... from the Tools menu, choosing the Options button
from the Solver Parameters dialog box, and choosing the Load Model... button in the
Solver Options dialog box. Loads Solver model specifications that you have previ-
ously saved on the worksheet.

VBA Syntax
SolverLoad (LoadArea:=, Merge:=)

LoadArea is a reference to a range of cells from which you want to load a complete
model specification. It can be used on any worksheet.

Merge is a logical value corresponding to either the Merge button or the Replace
button in the dialog that appears after you select the LoadArea reference and click
OK. Ifitis TRUE, the variable cell selections and constraints from the LoadArea
are merged with the currently defined variables and constraints. If FALSE, the
current model specifications and options are erased (equivalent to a call to the
SolverReset function) before the new specifications are loaded.

The first cell in LoadArea contains a formula for the Set Cell edit box; the second
cell contains a formula for the changing cells; subsequent cells contain additional
variable selections and constraints in the form of logical formulas. The final cells
optionally contain an array of Solver option values.

SolverOk

Equivalent to choosing Solver... from the Tools menu and specifying options in the
Solver Parameters dialog. Specifies basic Solver options. The dialog box will not be
displayed.

VBA Syntax
SolverOk (SetCell:=, MaxMinVal:=, Valueof:=, ByChange:=,
Engine:=, EngineDesc:=)

SetCell corresponds to the Set Cell box in the Solver Parameters dialog box (the
objective function in the optimization problem). SetCell must be a reference to a cell
on the active worksheet. If you enter a cell, you must enter a value for MaxMinVal.

MaxMinVal corresponds to the options Max, Min and Value Of in the Solver
Parameters dialog box. Use this option only if you entered a reference for SetCell.

MaxMinVal Option specified
1 Maximize
2 Minimize
3 Value Of

ValueOf is the number that becomes the target for the cell in the Set Cell box if
MaxMinVal is 3. ValueOf is ignored if the cell is being maximized or minimized.

ByChange indicates the changing cells (decision variables), as entered in the By
Changing Variable Cells edit box. ByChange must be a cell reference (usually a cell
range or multiple reference) on the active worksheet. In Premium Solver Platform
For Mac, you can add more changing cell references using Form 2 of the SolverAdd
function.

Solver User Guide

Using VBA Functions ¢ 159

Engine corresponds to the engine dropdown list in the Solver Parameters dialog. See
the EngineDesc argument for an alternative way of selecting the Solver “engine.”

Engine Solver engine specified
1 Nonlinear GRG Solver
2 Simplex or LP/Quadratic Solver
3 Evolutionary Solver
4 SOCP Barrier Solver

In Premium Solver Platform for Mac, other values for Engine may be specified to
select field-installable Solver engines. However, these values depend on the ordinal
position of the Solver engine in the dropdown list, which may change when
additional Solver engines are installed.

EngineDesc, which is supported only by Solver Platform for Mac, provides an
alternative way to select the Solver engine from the dropdown list in the Solver
Parameters dialog. EngineDesc allows you to select a Solver engine by name rather

than by ordinal position in the list:

EngineDesc
“Standard GRG Nonlinear”
“Standard Simplex LP”
“Standard LP/Quadratic”
“Standard Evolutionary”
“Standard SOCP Barrier”
“KNITRO Solver”
“Large-Scale GRG Solver”
“Large-Scale LP Solver”
“MOSEK Solver”

“Gurobi LP/MIP Solver”

Solver engine specified
Nonlinear GRG Solver
Simplex LP Solver
LP/Quadratic Solver
Evolutionary Solver
SOCP Barrier Solver
KNITRO Solver
Large-Scale GRG Solver
Large-Scale LP Solver
MOSEK Solver Engine
Gurobi Solver Engine

SolverOkDialog

Equivalent to choosing Solver... from the Tools menu and specifying options in the
Solver Parameters dialog. The Solver Parameters dialog box will be displayed, and
the user will be able to change the options you initially specify.

VBA Syntax

SolverOkDialog (SetCell:=, MaxMinVal:=, Valueof:=, ByChange:=,
Engine:=, EngineDesc:=)

For an explanation of the arguments of this function, see SolverOk.

SolverOptions

Equivalent to choosing Solver... from the Tools menu, then choosing the Options
button in the Solver Parameters dialog box. Specifies Solver algorithmic options.
Arguments supported by the standard Excel Solver include MaxTime, Iterations,
Precision, AssumeLinear, StepThru, Estimates, Derivatives, SearchOption,
IntTolerance, Scaling, Convergence and AssumeNonNeg.

SolverOptions is provided for compatibility with the standard Excel Solver and early
versions of Premium Solver Platform for Mac. For programmatic control of new
features and options included in Premium Solver Platform for Mac, see the functions
in the sections “Solver Model VBA Functions” and “Premium VBA Functions.”

160 ¢ Using VBA Functions

Solver User Guide

VBA Syntax

SolverOptions (MaxTime:=, Iterations:=, Precision:=, AssumeLinear:=,
StepThru:=, Estimates:=, Derivatives:=, SearchOption:=, IntTolerance:=,
Scaling:=, Convergence:=, AssumeNonNeg:=, IntCutoff:=, BypassReports:=,
PivotTol:=, ReducedTol:=, CoeffTol:=, SolutionTol:=, Crash:=, ScalingOption:=)

The arguments correspond to the options in the Solver Options dialog box. If an
argument is omitted, the Solver maintains the current setting for that option. If any of
the arguments are of the wrong type, the function returns the #N/A error value. If all
arguments are of the correct type, but an argument has an invalid value, the function
returns a positive integer corresponding to its position. A zero return value indicates
that all options were accepted.

MaxTime must be an integer greater than zero. It corresponds to the Max Time edit
box.

Iterations must be an integer greater than zero. It corresponds to the Iterations edit
box.

Precision must be a number between zero and one, but not equal to zero or one. It
corresponds to the Precision edit box.

AssumeLinear is a logical value corresponding to the Assume Linear Model check

box. This argument is included for compatibility with the standard Microsoft Excel

Solver. It is ignored by Premium Solver Platform for Mac, which use the Engine or
EngineDesc argument of SolverOk or SolverOkDialog instead.

StepThru is a logical value corresponding to the Show Iteration Results check box.
If TRUE, Solver pauses at each trial solution; if FALSE it does not. If you have
supplied SolverSolve with a valid VBA function argument, your function will be
called each time Solver pauses; otherwise the standard Show Trial Solution dialog
box will appear.

Estimates is the number 1 or 2 and corresponds to the Estimates option: 1 for
Tangent and 2 for Quadratic.

Derivatives is the number 1 or 2 and corresponds to the Derivatives option: 1 for
Forward and 2 for Central.

SearchOption is the number 1 or 2 and corresponds to the Search option: 1 for
Newton and 2 for Conjugate.

IntTolerance is a number between zero and one, corresponding to the Tolerance edit
box. This argument applies only if integer constraints have been defined.

Scaling is a logical value corresponding to the Use Automatic Scaling check box. If
TRUE, then Solver rescales the objective and constraints internally to similar orders
of magnitude. If FALSE, Solver uses values directly from the worksheet. In early
Excel versions for Windows, this option affects the nonlinear GRG Solver only; in
Excel 97, 2000, XP, 2003 and 2007 and Premium Solver Platform for Mac, this
option affects all Solver engines.

Convergence is a number between zero and one, but not equal to zero or one. It
corresponds to the Convergence box.

AssumeNonNeg is a logical value corresponding to the Make Unconstrained
Variables Non-Negative check box. If TRUE, Solver supplies a lower bound of zero
for all variables without explicit lower bounds in the Constraint list box. If FALSE,
no action is taken.

Solver User Guide

Using VBA Functions ¢ 161

IntCutoff is a number corresponding to the Integer Cutoff edit box. This argument
applies only if integer constraints have been defined.

BypassReports is currently not used.
PivotTol is currently not used.
ReducedTol is currently not used.
CoeffTol is currently not used.
SolutionTol is currently not used.
Crash is currently not used.

ScalingOption is currently not used.

SolverReset

Equivalent to choosing Solver... from the Tools menu and choosing the Reset All
button in the Solver Parameters dialog box. Erases all cell selections and constraints
from the Solver Parameters dialog box, and restores all the settings on the Solver
Options, Limit Options and Integer Options dialog tabs to their defaults. The
SolverReset function may be automatically performed when you call SolverLoad.

VBA Syntax

SolverReset

SolverSave

Equivalent to choosing Solver... from the Tools menu, choosing the Options button
from the Solver Parameters dialog box, and choosing the Save Model... button in the
Solver Options dialog box. Saves the model specifications on the worksheet.

VBA Syntax
SolverSave (SaveArea:=)

SaveArea is a reference to a range of cells or to the topmost cell in a column of cells
where you want to save the current model’s specifications.

The first cell in SaveArea contains a formula for the Set Cell edit box; the second
cell contains a formula for the changing cells; subsequent cells contain additional
variable selections and constraints in the form of logical formulas. The final cells
optionally contain an array of Solver option values.

Remarks

If you specify only one cell for SaveArea, the area is extended downwards for as
many cells as are required to hold the model specifications.

If you specify more than one cell and the area is too small for the problem, the model
specifications will not be saved, and the function will return the value 2.

SolverSolve

Equivalent to choosing Solver... from the Tools menu and choosing the Solve button
in the Solver Parameters dialog box. If successful, returns an integer value indicating
the condition that caused the Solver to stop, as described below.

162 ¢ Using VBA Functions

Solver User Guide

VBA Syntax
SolverSolve (UserFinish:=, ShowRef:=)

UserFinish is a logical value specifying whether to show the standard Solver Results
dialog box.

If UserFinish is TRUE, SolverSolve returns its integer value without displaying
anything. Your VBA code should decide what action to take (for example, by
examining the return value or presenting its own dialog box); If UserFinish is
FALSE or omitted, Solver displays the standard Solver Results dialog box, allowing
the user to keep or discard the final solution values, and optionally produce reports.

ShowRef is currently not used.
Remarks

If a Solver problem has not been completely defined, SolverSolve returns the #N/A
error value. Otherwise the Solver engine is started, and the problem specifications
are passed to it. Note that your macro will immediately proceed to the next line of
code, without waiting for the Solver to finish. Please keep this in mind as you write
your macro.

Solver Model VBA Functions

The VBA functions in this section are available only in Premium Solver Platform for
Mac. You can use these functions to programmatically use the Polymorphic
Spreadsheet Interpreter to check your model for Gradients, Structure and Convexity,
obtain model statistics, produce the Structure Report and Transformation Report,
determine whether and how the Interpreter will be used when you call SolverSolve,
and control the Interpreter’s advanced options.

SolverModel

Equivalent to choosing Solver... from the Tools menu, choosing the Model button in
the Solver Parameters dialog, setting options in the Solver Model dialog, and clicking
Close. Specifies options for the Polymorphic Spreadsheet Interpreter.

VBA Syntax

SolverModel (CheckFor:=, SolveTransformed:=, DesiredModel:=,
Interactive:=, , Engines:=, Sparse:=, ActiveOnly:=)

The arguments correspond to the options in the Solver Model dialog box. If an
argument is omitted, the Solver maintains the current setting for that option. If any of
the arguments are of the wrong type, the function returns the #N/A error value. If all
arguments are of the correct type, but an argument has an invalid value, the function
returns a positive integer corresponding to its position. A zero return value indicates
that all options were accepted.

CheckFor is a number corresponding to the option selected in the Check For option
group:

CheckFor Option Selected
1 Gradients
2 Structure
3 Convexity
4 Automatic

Solver User Guide

Using VBA Functions ¢ 163

SolveTransformed is a logical value corresponding to the Transform Non-Smooth
Model check box in the Model dialog. If TRUE, the Solver solves the Transformed
problem when the SolverSolve function is called. If FALSE, the Solver solves the
Original problem when the SolverSolve function is called.

DesiredModel is a number corresponding to the option selected in the Desired
Model option group:

DesiredModel Desired Model Type
1 Linear
2 Quadratic
3 Nonlinear

Interactive is currently not used.
Engines is currently not used.

Sparse is a logical value corresponding to the Sparse check box in the Advanced
options group on the Options tab. If TRUE, the Polymorphic Spreadsheet Interpreter
will operate internally in its own Sparse mode. If FALSE, the Interpreter operates in
Dense mode.

ActiveOnly is a logical value corresponding to the Active Only check box in the
Advanced options group on the Options tab. If TRUE, the Polymorphic Spreadsheet
Interpreter will analyze objective and constraint function formulas only on the active
sheet. If FALSE, the Interpreter analyze all objective and constraint function
formulas in the workbook.

SolverModelCheck

Equivalent to choosing Solver... from the Tools menu, choosing the Model button in
the Solver Parameters dialog box, and clicking the Check Model button in the Solver
Model dialog. The type of analysis performed is determined by the current setting of
the SolverModel CheckFor argument.

VBA Syntax
SolverModelCheck (Transformed:=)

Transformed is a logical value that corresponds to the Transform Non-Smooth
Model check box. If TRUE, the Polymorphic Spreadsheet Interpreter checks the
Transformed model. If FALSE, the Interpreter checks the Original model.

SolverModelGet

Returns Solver Model option settings for the current Solver problem on the specified
sheet. These settings are entered in the Solver Model dialog.

VBA Syntax
SolverModelGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want. The following
settings are specified in the Solver Model dialog box.

TypeNum Returns

1 A number corresponding to the Check For option: 1 for
Gradients, 2 for Structure, or 3 for Convexity

2 TRUE if the Solve Transformed Problem check box is selected;
FALSE otherwise

164 ¢ Using VBA Functions

Solver User Guide

3 A number corresponding to the Desired Model option:
1 for Linear, 2 for Quadratic, 3 for Conic, 4 for Nonlinear,
or 4 for Nonsmooth

4 TRUE if the Interactive Optimization check box is selected;
FALSE otherwise

5 Currently not used.

6 TRUE if the Sparse check box is selected; FALSE otherwise

7 TRUE if the Active Only check box is selected; FALSE
otherwise

Premium VBA Functions

To control most of the new features and options in Premium Solver Platform for
Mac, you’ll need to use these functions — notably, the SolverEVOptions,
SolverLimOptions and SolverIntOptions functions If you want to write VBA code
that can be used with both the standard Solver and Premium Solver Platform For
Mac, you should use only functions in the section “Standard VBA Functions.”

SolverEVGet

Returns Evolutionary Solver option settings for the current Solver problem on the
specified sheet. These settings are entered in the Solver Options dialog when the
Evolutionary Solver is selected in the Solver Engine dropdown list.

VBA Syntax
SolverEVGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want. The following
settings are specified in the Evolutionary Solver Options dialog box.

TypeNum Returns

1 The Max Time value (as a number in seconds)

2 The Iterations value (max number of iterations)

3 The Precision value (as a decimal number)

4 The Convergence value (as a decimal number)

5 The Population Size value (as a decimal number)

6 The Mutation Rate value (as a decimal number)

7 TRUE if the Require Bounds on Variables check box is

selected; FALSE otherwise

8 TRUE if the Show Iteration Result check box is selected;
FALSE otherwise

9 TRUE if the Use Automatic Scaling check box is selected;
FALSE otherwise

10 TRUE if the Assume Non-Negative check box is selected;
FALSE otherwise

11 TRUE if the Bypass Solver Reports check box is selected;
FALSE otherwise

Solver User Guide

Using VBA Functions ¢ 165

12 The Random Seed value (as a decimal number)

13 A number corresponding to the Local Search option: 1 for
Randomized Local Search, 2 for Deterministic Pattern Search,
3 for Gradient Local Search, or 4 for Automatic Choice

14 TRUE if the Fix Nonsmooth Variables check box is selected;
FALSE otherwise

SheetName is the name of a worksheet that contains the Solver problem for which
you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverEVOptions

Equivalent to choosing Solver... from the Tools menu and then choosing the Options
button in the Solver Parameters dialog box when the Evolutionary Solver is selected
in the Solver Engine dropdown list. Specifies options for the Evolutionary Solver.

VBA Syntax

SolverEVOptions (MaxTime:=, Iterations:=, Precision:=, Convergence:=,
PopulationSize:=, MutationRate:=, RandomSeed:=, RequireBounds:=,
StepThru:=, Scaling:=, AssumeNonNeg:=, BypassReports:=, LocalSearch:=
FixNonSmooth:=)

The arguments correspond to the options in the Solver Options dialog box. If an
argument is omitted, the Solver maintains the current setting for that option. If any of
the arguments are of the wrong type, the function returns the #N/A error value. If all
arguments are of the correct type, but an argument has an invalid value, the function
returns a positive integer corresponding to its position. A zero return value indicates
that all options were accepted.

MaxTime must be an integer greater than zero. It corresponds to the Max Time edit
box.

Iterations must be an integer greater than zero. It corresponds to the Iterations edit
box.

Precision must be a number between zero and one, but not equal to zero or one. It
corresponds to the Precision edit box.

Convergence is a number between zero and one, but not equal to zero or one. It
corresponds to the Convergence box.

PopulationSize must be an integer greater than or equal to zero. It corresponds to
the Population Size edit box.

MutationRate must be a number between zero and one, but not equal to zero or one.
It corresponds to the Mutation Rate edit box.

RandomSeed must be an integer greater than zero. It corresponds to the Random
Seed edit box.

RequireBounds is a logical value corresponding to the Require Bounds on Variables
check box. If TRUE, the Evolutionary Solver will return immediately from a call to
the SolverSolve function with a value of 18 if any of the variables do not have both
lower and upper bounds defined. If FALSE, the Evolutionary Solver will attempt to
solve the problem without bounds on all of the variables.

StepThru is a logical value corresponding to the Show Iteration Results check box.
If TRUE, Solver pauses at each trial solution; if FALSE it does not. If you have
supplied SolverSolve with a valid VBA function, your function will be called each

166 ¢ Using VBA Functions

Solver User Guide

time Solver pauses; otherwise the standard Show Trial Solution dialog box will
appear.

Scaling is a logical value corresponding to the Use Automatic Scaling check box. If
TRUE, then Solver rescales the objective and constraints internally to similar orders
of magnitude. If FALSE, Solver uses values directly from the worksheet.

AssumeNonNeg is a logical value corresponding to the Assume Non-Negative check
box. If TRUE, Solver supplies a lower bound of zero for all variables without
explicit lower bounds in the Constraint list box. If FALSE, no action is taken.

BypassReports is a logical value corresponding to the Bypass Solver Reports check
box. If TRUE, the Solver will skip preparing the information needed to create Solver
Reports. If FALSE, the Solver will prepare for the reports. For large models,
bypassing the Solver Reports can speed up the solution considerably.

LocalSearch is a number corresponding to the option button selected in the Local
Search option group:

LocalSearch Local Search Strategy
1 Randomized Local Search
2 Deterministic Pattern Search
3 Gradient Local Search
4 Automatic Choice

FixNonSmooth is a logical value corresponding to the Fix Nonsmooth Variables
check box. If TRUE, the Solver will fix the non-smooth variables to their current
values during each local search, and allow only smooth and linear variables to be
varied. If FALSE, the Solver will allow all of the variables to be varied.

SolverGRGGet

Returns GRG Solver option settings for the current Solver problem on the specified
sheet. These settings are entered in the Solver Options dialog when the GRG Solver
is selected in the Solver Engine dropdown list.

VBA Syntax
SolverGRGGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want. The following
settings are specified in the GRG Solver Options dialog box.

TypeNum Returns

1 The Max Time value (as a number in seconds)

2 The Iterations value (max number of iterations)

3 The Precision value (as a decimal number)

4 The Convergence value (as a decimal number)

5 TRUE if the Show Iteration Result check box is selected;

FALSE otherwise

6 TRUE if the Use Automatic Scaling check box is selected;
FALSE otherwise

7 TRUE if the Assume Non-Negative check box is selected;
FALSE otherwise

8 TRUE if the Bypass Solver Reports check box is selected;
FALSE otherwise

Solver User Guide

Using VBA Functions ¢ 167

9 TRUE if the Recognize Linear Variables check box is selected;
FALSE otherwise

10 A number corresponding to the type of Estimates:
1 = Tangent
2 = Quadratic
11 A number corresponding to the type of Derivatives:
1 = Forward
2 = Central
12 A number corresponding to the type of Search:
1 = Newton
2 = Conjugate
13 The Population Size value (as a decimal number)
14 The Random Seed value (as a decimal number)
15 TRUE if the Multistart Search check box is selected; FALSE
otherwise
16 TRUE if the Topographic Search check box is selected; FALSE
otherwise
17 TRUE if Require Bounds on Variables check box is selected;

FALSE otherwise

SheetName is the name of a worksheet that contains the Solver problem for which
you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverGRGOptions

Equivalent to choosing Solver... from the Tools menu and then choosing the Options
button in the Solver Parameters dialog box when the GRG Nonlinear Solver is
selected in the Solver Engines dropdown list. Specifies options for the GRG Solver.

VBA Syntax

SolverGRGOptions (MaxTime:=, Iterations:=, Precision:=, Convergence:=,
PopulationSize:=, RandomSeed:=, StepThru:=, Scaling:=, ,AssumeNonNeg:=,
BypassReports:=, RecognizeLinear:=, MultiStart:=, TopoSearch:=,
RequireBounds:=, Estimates:=, Derivatives:=, SearchOption:=)

The arguments correspond to the options in the Solver Options dialog box. If an
argument is omitted, the Solver maintains the current setting for that option. If any of
the arguments are of the wrong type, the function returns the #N/A error value. If all
arguments are of the correct type, but an argument has an invalid value, the function
returns a positive integer corresponding to its position. A zero return value indicates
that all options were accepted.

MaxTime must be an integer greater than zero. It corresponds to the Max Time edit
box.

Iterations must be an integer greater than zero. It corresponds to the Iterations edit
box.

Precision must be a number between zero and one, but not equal to zero or one. It
corresponds to the Precision edit box.

Convergence is a number between zero and one, but not equal to zero or one. It
corresponds to the Convergence box.

PopulationSize must be an integer greater than or equal to zero. It corresponds to
the Population Size edit box.

168 e Using VBA Functions

Solver User Guide

RandomSeed must be an integer greater than zero. It corresponds to the Random
Seed edit box.

StepThru is a logical value corresponding to the Show Iteration Results check box.
If TRUE, Solver pauses at each trial solution; if FALSE it does not. If you have
supplied SolverSolve with a valid VBA function, your function will be called each
time Solver pauses; otherwise the standard Show Trial Solution dialog box will
appear.

Scaling is a logical value corresponding to the Use Automatic Scaling check box. If
TRUE, then Solver rescales the objective and constraints internally to similar orders
of magnitude. If FALSE, Solver uses values directly from the worksheet.

AssumeNonNeg is a logical value corresponding to the Assume Non-Negative check
box. If TRUE, Solver supplies a lower bound of zero for all variables without
explicit lower bounds in the Constraint list box. If FALSE, no action is taken.

BypassReports is a logical value corresponding to the Bypass Solver Reports check
box. If TRUE, the Solver will skip preparing the information needed to create Solver
Reports. If FALSE, the Solver will prepare for the reports. For large models,
bypassing the Solver Reports can speed up the solution considerably.

RecognizeLinear is a logical value corresponding to the Recognize Linear Variables
check box. If TRUE, the Solver will recognize variables whose partial derivatives
are not changing during the solution process, and assume that they occur linearly in
the problem. If FALSE, the Solver will not make any assumptions about such
variables. See the chapter “Solver Options” for a further discussion of this option.

MultiStart is a logical value corresponding to the Multistart Search check box. If
TRUE, the Solver will use Multistart Search, in conjunction with the GRG Solver, to
seek a globally optimal solution. If FALSE, the GRG Solver alone will be used to
search for a locally optimal solution.

TopoSearch is a logical value corresponding to the Topographic Search check box.
If TRUE, and if Multistart Search is selected, the Solver will construct a topography
from the randomly sampled initial points, and use it to guide the search process.

RequireBounds is a logical value corresponding to the Require Bounds on Variables
check box. If TRUE, the Solver will return immediately from a call to the
SolverSolve function with a value of 18 if any of the variables do not have both
lower and upper bounds defined. If FALSE, then Multistart Search (if selected) will
attempt to find a globally optimal solution without bounds on all of the variables.

Estimates is the number 1 or 2 and corresponds to the Estimates option: 1 for
Tangent and 2 for Quadratic.

Derivatives is the number 1 or 2 and corresponds to the Derivatives option: 1 for
Forward and 2 for Central.

SearchOption is the number 1 or 2 and corresponds to the Search option: 1 for
Newton and 2 for Conjugate.

SolverintGet

Returns integer (Branch & Bound) option settings for the current Solver problem on
the specified sheet. These settings are entered on the Integer Options dialog tab for
any of the Solver engines.

VBA Syntax
SolverIntGet (TypeNum:=, SheetName:=)

Solver User Guide

Using VBA Functions ¢ 169

TypeNum is a number specifying the type of information you want. The following
settings are specified on the Integer Options dialog tab box.

TypeNum Returns

1 The Max Subproblems value (as a decimal number)

2 The Max Integer Sols value (as a decimal number)

3 The Integer Tolerance value (as a decimal number)

4 The Integer Cutoff value (as a decimal number)

5 TRUE if the Solve Without Integer Constraints check box is

selected; FALSE otherwise

6 1 if Preprocessing is set to Automatic, 2 if it is set to
None, and 3 if it is set to Aggressive.

7 1l if Cuts is set to Automatic, 2 if it is set to None, and
3 if it is set to Aggressive.

8 1 if Heuristics is set to Automatic, 2 if it is set to
None, and 3 if it is set to Aggressive.

SheetName is the name of a worksheet that contains the Solver problem for which
you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverintOptions

Equivalent to choosing Solver... from the Tools menu, choosing the Options button in
the Solver Parameters dialog box, then choosing the Integer Options button in the
Solver Options dialog. Specifies options for the integer (Branch & Bound) Solver.

VBA Syntax

SolverIntOptions (MaxSubproblems:=, MaxIntegerSols:=, IntTolerance:=,
IntCutoff:=, SolveWithout:=,PreProcessing:=. Cuts:=, Heuristics:=)

The arguments correspond to the options on the Integer Options dialog tab. The first
five options are common to both the Simplex LP and LP/Quadratic Solvers; the next
ten options are specific to the Simplex LP Solver; and the remaining options are
specific to the LP/Quadratic Solver. If an argument is omitted, the Solver maintains
the current setting for that option. If any of the arguments are of the wrong type, the
function returns the #N/A error value. If all arguments are of the correct type, but an
argument has an invalid value, the function returns a positive integer corresponding
to its position. A zero return value indicates that all options were accepted.

MaxSubproblems must be an integer greater than zero. It corresponds to the Max
Subproblems edit box.

MaxIntegerSols must be an integer greater than zero. It corresponds to the Max
Integer Sols (Solutions) edit box.

IntTolerance is a number between zero and one, corresponding to the Tolerance edit
box.

IntCutoff is a number (any value is possible) corresponding to the Integer Cutoff
edit box.

SolveWithout is a logical value corresponding to the Solve Without Integer
Constraints check box. If TRUE, the Solver ignores any integer constraints and
solves the “relaxation” of the mixed-integer programming problem. If FALSE, the
Solver uses the integer constraints in solving the problem.

170 e Using VBA Functions

Solver User Guide

PreProcessing is a value of 1,2 or 3, corresponding to the choices “Automatic”,
“None” or “Aggressive”.

Cuts is a value of 1,2 or 3, corresponding to the choices “Automatic”, “None” or
“Aggressive”.

Heuristics is a value of 1,2 or 3, corresponding to the choices “Automatic”, “None”
or “Aggressive”.

SolverLimGet

Returns Limit Option settings for the Evolutionary Solver problem (if any) defined
on the specified sheet. These settings are entered on the Limit Options dialog tab for
the Evolutionary Solver.

VBA Syntax
SolverLimGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want. The following
settings are specified on the Limit Options dialog tab.

TypeNum Returns

1 The Max Subproblems value (as a decimal number)

2 The Max Feasible Sols value (as a decimal number)

3 The Tolerance value (as a decimal number)

4 The Max Time w/o Improvement value (as a decimal number)

5 TRUE if the Solve Without Integer Constraints check box is

selected; FALSE otherwise

SheetName is the name of a worksheet that contains the Solver problem for which
you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverLimOptions

Equivalent to choosing Solver... from the Tools menu, choosing the Options button in
the Solver Parameters dialog box when the Evolutionary Solver is selected in the
Solver Engine dropdown list, then choosing the Limit Options button in the Solver
Options dialog. Specifies Limit Options for the Evolutionary Solver.

VBA Syntax

SolverLimOptions (MaxSubproblems:=, MaxFeasibleSols:=, Tolerance:=,
MaxTimeNoImp:=, SolveWithout:=)

The arguments correspond to the options on the Limit Options dialog tab. If an
argument is omitted, the Solver maintains the current setting for that option. If any of
the arguments are of the wrong type, the function returns the #N/A error value. If all
arguments are of the correct type, but an argument has an invalid value, the function
returns a positive integer corresponding to its position. A zero return value indicates
that all options were accepted.

MaxSubproblems must be an integer greater than zero. It corresponds to the Max
Subproblems edit box.

Solver User Guide

Using VBA Functions ¢ 171

MaxFeasibleSols must be an integer greater than zero. It corresponds to the Max
Feasible Sols (Solutions) edit box.

Tolerance is a number between zero and one, corresponding to the Tolerance edit
box. This argument works in conjunction with the MaxTimeNoImp argument below.

MaxTimeNolImp is a number corresponding to the Max Time w/o Improvement edit
box. This argument works in conjunction with the Tolerance argument above to
determine when the Evolutionary Solver will stop with the message “Solver cannot
improve the current solution.”

SolveWithout is a logical value corresponding to the Solve Without Integer
Constraints check box. If TRUE, the Evolutionary Solver ignores any integer
constraints and solves the “relaxation” of the problem. If FALSE, the Solver uses the
integer constraints in solving the problem.

SolverLPGet

Returns Simplex LP or LP/Quadratic Solver option settings for the current Solver
problem on the specified sheet. These settings are entered in the Solver Options
dialog when the Simplex LP or LP/Quadratic Solver is selected in the Solver Engine
dropdown list.

VBA Syntax
SolverLPGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want. The following
settings are specified in the Simplex LP or LP/Quadratic Solver Options dialog box.

TypeNum Returns

1 The Max Time value (as a number in seconds)

2 The Iterations value (max number of iterations)

3 The Precision value (as a decimal number)

4 Not used.

5 Not used.

6 TRUE if the Show Iteration Result check box is selected;

FALSE otherwise

7 TRUE if the Use Automatic Scaling check box is selected;
FALSE otherwise

8 TRUE if the Assume Non-Negative check box is selected;
FALSE otherwise

9 Not used.

10 A number corresponding to the Derivatives group selection:
1 = Forward
2 = Central

11 The LP/Quadratic Primal Tolerance (as a decimal number)

12 The LP/Quadratic Dual Tolerance (as a decimal number)

13 TRUE if the Do Presolve check box is selected; FALSE
otherwise.

172 ¢ Using VBA Functions

Solver User Guide

SheetName is the name of a worksheet that contains the Solver problem for which
you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverLPOptions

Equivalent to choosing Solver... from the Tools menu and then choosing the Options
button in the Solver Parameters dialog box when the Simplex LP or LP/Quadratic
Solver is selected in the Solver Engine dropdown list. Specifies options for the
Simplex LP and LP/Quadratic Solvers.

VBA Syntax

SolverLPOptions (MaxTime:=, Iterations:=, Precision:=, PivotTol:=,
ReducedTol:=, StepThru:=, Scaling:=, AssumeNonNeg:=, BypassReports:=,
Derivatives:=, PrimalTolerance:=, DualTolerance:=, Presolve:=)

The arguments correspond to the options in the Solver Options dialog box. The
PivotTol and ReducedTol options are available only for the Simplex LP Solver; the
Derivatives, PrimalTolerance, DualTolerance, and Presolve options are available
only for the LP/Quadratic Solver. If an argument is omitted, the Solver maintains the
current setting for that option. If any of the arguments are of the wrong type, the
function returns the #N/A error value. If all arguments are of the correct type, but an
argument has an invalid value, the function returns a positive integer corresponding
to its position. A zero return value indicates that all options were accepted.

MaxTime must be an integer greater than zero. It corresponds to the Max Time edit
box.

Iterations must be an integer greater than zero. It corresponds to the Iterations edit
box.

Precision must be a number between zero and one, but not equal to zero or one. It
corresponds to the Precision edit box.

PivotTol is currently not used..
ReducedTol is currently not used..

StepThru is a logical value corresponding to the Show Iteration Results check box.
If TRUE, Solver pauses at each trial solution; if FALSE it does not. If you have
supplied SolverSolve with a valid VBA function, your function will be called each
time Solver pauses; otherwise the standard Show Trial Solution dialog box will
appear.

Scaling is a logical value corresponding to the Use Automatic Scaling check box. If
TRUE, then Solver rescales the objective and constraints internally to similar orders
of magnitude. If FALSE, Solver uses values directly from the worksheet.

AssumeNonNeg is a logical value corresponding to the Assume Non-Negative check
box. If TRUE, Solver supplies a lower bound of zero for all variables without
explicit lower bounds in the Constraint list box. If FALSE, no action is taken.

BypassReports is currently not used.

Derivatives is the number 1 or 2 and corresponds to the Derivatives option group for
the LP/Quadratic Solver: 1 for Forward and 2 for Central.

PrimalTolerance is a number between zero and one, but not equal to zero or one. It
corresponds to the Primal Tolerance edit box for the LP/Quadratic Solver.

DualTolerance is a number between zero and one, but not equal to zero or one. It
corresponds to the Dual Tolerance edit box for the LP/Quadratic Solver.

Solver User Guide

Using VBA Functions ¢ 173

Presolve is a logical value corresponding to the Do Presolve check box. If TRUE,
the Solver performs a presolve step before starting the Simplex method that detects
singleton rows and columns, removes fixed variables and redundant constraints, and
tightens bounds. If FALSE, no action is taken.

SolverOkGet

Returns variable, constraint and objective selections and settings for the current
Solver problem on the specified sheet. These settings are entered in the Solver

Parameters dialog.

VBA Syntax

SolverOkGet (TypeNum:=, SheetName:=

TypeNum is a number specifying the type of information you want:

TypeNum Returns

1 The reference in the Set Cell box, or the #N/A error value if
Solver has not been used on the active document

2 A number corresponding to the Equal To option
1 = Max
2 = Min
3 = Value Of
3 The value in the Value Of box
4 The reference in the Changing Cells box (in the Premium
Solvers, only the first entry in the Variables list box)
5 The number of entries in the Constraints list box
6 An array of the left hand sides of the constraints as text
7 An array of numbers corresponding to the relations
between the left and right hand sides of the constraints:
1 = <=
2 = =
3 = =
4 = int
5 = bin
6 = dif
7 = soc
8 = src
8 An array of the right hand sides of the constraints as text
9 An array of the entries in the Variables list box as text
10 A number corresponding to the Solver engine dropdown list
for the currently selected Solver engine:
1 = Nonlinear GRG Solver
2 = Simplex or LP/Quadratic Solver
3 = Evolutionary Solver
4 = SOCP Barrier Solver
In Premium Solver Platform for Mac, other values may be
returned

for field-installable Solver engines

SheetName is the name of a worksheet that contains the Solver problem for which
you want information. If SheetName is omitted, it is assumed to be the active sheet.

174 ¢ Using VBA Functions

Solver User Guide

