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Start Here:  V2021 Essentials 

Getting the Most from This User Guide 

License and Upgrade Options 

Frontline Solvers V2021 feature a revised, simpler product line, based on 

Analytic Solver, that gives you access to all features, all the time for small 

models.  It features a new licensing system, tied to you and usable on more than 

one computer.  Read about this in the chapter “Help, Support, Licenses and 

Product Versions.” 

Desktop and Cloud Versions 

Analytic Solver V2021 comes in two versions: Analytic Solver Desktop – a 

traditional “COM add-in” that works only in Microsoft Excel for Windows PCs 

(desktops and laptops), and Analytic Solver Cloud – a modern “Office add-in” 

that works in Excel for Windows and Excel for Macintosh (desktops and 

laptops), and also in Excel for the Web using browsers such as Chrome, FireFox 

and Safari.  Your license gives you access to both versions, and your Excel 

workbooks and optimization, simulation and data mining models work in both 

versions, no matter where you save them (though OneDrive is most convenient).  

To get the most value from both versions, we highly recommend an Office 365 

subscription to make your work easier and faster. 

Installing the Software 

Read the chapter “Installation and Add-Ins” for complete information on 

installing Analytic Solver Cloud and (if you wish) Analytic Solver Desktop.  

This chapter also explains how the Cloud and Desktop versions interact when 

both are installed, and how to install and uninstall both versions. 

In brief, to add Analytic Solver Cloud version to your copy of Excel, you use 

the Excel Ribbon option Insert – Get Add-ins – no Setup program download or 

installation is required.  To install Analytic Solver Desktop on Windows PCs, 

visit Solver.com, login using the email and password you used to register, then 

click Download on the top menu bar, and follow the instructions to download 

and run the SolverSetup program. 

Getting Help Quickly 

Choose Help on the Ribbon.  You’ll see several options, starting with Help – 

Help Center.  Support Live Chat, Example Models, and User Guides are also 

available here.  In Analytic Solver Desktop (only) you can also get quick online 

Help by clicking any underlined caption or message in the Task Pane. 
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Finding the Examples 

Use Help – Examples on the Analytic Solver or Data Mining Ribbon to open a 

list of example optimization and simulation models, and example data sets for 

data mining, that you can open by clicking hyperlinks.  See the chapter “Help, 

Support, Licenses and Product Subsets” for details.  Some of these examples are 

used and described in the Examples chapters.   

Using Existing Models 

Open your existing workbook, developed in any previous version of Frontline 

Solvers or the standard Excel Solver.  Your model should appear in the Task 

Pane; just click the Optimize or Simulate button.  Read Automatic Mode and 

Solution Time in “Analytic Solver Overview” to understand how this mode can 

impact solution time. 

Using Large-Scale Solver Engines 

Read the Platform Solver Engines Guide to learn more about Frontline’s eight 

large-scale Solver Engines for optimization, including their Solver Options and 

special Solver Result Messages.  All Large-Scale Engines are pre-installed with 

both Analytic Solver Desktop and Analytic Solver Cloud; even if you don’t yet 

have a paid license for one of them, you can use them in a “Test Run” as 

described in the chapter “Help, Support, Licenses and Product Versions.”   

Getting Started with Tutorials 

To quickly gain a good grasp of Analytic Solver’s optimization and simulation 

capabilities, work through the Examples chapters in this Guide.  For Analytic 

Solver’s data mining capabilities, see the Data Mining User Guide. 

Getting and Interpreting Results 

Learn how to interpret Analytic Solver’s result messages, error messages, 

reports and charts, and how to run multiple parameterized optimizations and 

simulations in the Getting Results chapters.  
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Mastering Optimization and Simulation 
Concepts 

This guide can give you a professional education in simulation/risk analysis, 

conventional optimization, and stochastic optimization (with uncertainty).  Go 

from beginner to expert and learn how to fully exploit the software by reading 

the Mastering Concepts chapters, and the Frontline Solvers Reference Guide. 

Using the Traditional Solver Parameters Dialog 

If you’ve used the Solver in desktop Excel (which Frontline Systems developed 

for Microsoft) and you’re familiar with its Solver Parameters dialog, you can 

still use it in Analytic Solver Desktop:  Click Premium Solver on the Add-Ins 

tab to display a slightly enhanced Solver Parameters dialog. 

You can go back and forth freely between the Solver Parameters dialog and 

the new, modeless Task Pane and Ribbon.  Within a few minutes, most users 

find the Task Pane and Ribbon faster and easier to use.  If you’ve used the basic 

Solver for Excel Online (free in the Office Store), you’re already familiar with 

use of the Task Pane, which is enhanced in Analytic Solver Desktop and Cloud. 

 

Automating Your Model with VBA 

VBA (Visual Basic for Applications) is available only in desktop Excel; it is not 

available in Excel for the Web.  If you have Excel workbooks that use macros 

from the Solver in desktop Excel (such as SolverOK and SolverSolve) you can 

use them in Analytic Solver Desktop (only), provided that you use Tools -- 

References in the VBA Editor to set or change the reference to Analytic Solver 

2021 Type Library.  You can use the code examples in the chapters 

“Automating Optimization in VBA” and “Automating Simulation in VBA” – 

but read about RASON in this Guide for a modern desktop + cloud approach.  
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Installation and Add-Ins 

What You Need 
You can use Analytic Solver Cloud in Excel for the Web through a browser 

(such as Edge, Chrome, Firefox or Safari), without installing anything else.  This 

is the simplest and most flexible option, but it requires a constant Internet 

connection. 

To use Analytic Solver Cloud in Excel Desktop on a PC or Mac, you must have 

a current version of Windows or iOS installed, and you will need the latest 

Excel version installed via your Office 365 subscription – older non-

subscription versions, even Excel 2019, do not have all the features and APIs 

needed for modern Office add-ins like Analytic Solver Cloud. 

To use Analytic Solver Desktop (Windows PCs only), you must have first 

installed Microsoft Excel 2013, 2016, 2019, or the latest Office 365 version on 

Windows 10, Windows 8, Windows 7, or Windows Server 2019, 2016 or 

2012.  (Windows Vista or Windows Server 2008 may work but are no longer 

supported.).  It’s not essential to have the standard Excel Solver installed. 

Installing the Software 

Installing Analytic Solver Cloud 

Analytic Solver V2021 includes our next-generation offering, Analytic Solver 

Cloud – usable in the latest versions of Excel for Windows and Macintosh, and 

in Excel for the Web.  Analytic Solver Cloud is divided into two add-ins that 

work closely together (since an Office add-in currently can have only one 

Ribbon tab): the Analytic Solver add-in builds optimization, simulation and 

decision table models, and the Data Mining add-in builds data mining or 

forecasting models. 

Both the Analytic Solver and Data Mining add-ins support existing models 

created in previous versions of Analytic Solver.  Your license for Analytic 

Solver allows you to use Analytic Solver Desktop in desktop Excel or Analytic 

Solver Cloud in either desktop Excel (latest version) or Excel for the Web.   

To use the Analytic Solver and Data Mining add-ins, you must first “insert” 

them for use in your copy of desktop Excel or Excel for the Web, while you are 

logged into your Office 365 account.  Once you do this, the Analytic Solver and 

Data Mining tabs will appear on the Ribbon in each new workbook you use. 

To insert the add-ins for the first time, open desktop Excel (latest version) or 

Excel for the Web, click the Insert tab on the Ribbon, then click the button 

Office Add-ins or (if you see it) the smaller button Get Add-ins. 
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In the dialog box that appears, click the Store tab and type “Analytic Solver” 

into the Search box.  Once you find the Analytic Solver add-in, click Add.  

After a moment, you should see the Analytic Solver tab appear on the Ribbon, 

with a note about how to “Get started with the Solver add-in!”, as shown below. 

 

Repeat these steps to search for, locate and Add the Analytic Solver Data 

Mining add-in. After a moment, you should see the Data Mining tab appear on 

the Ribbon, with a similar “Get started” note. 

After you perform these steps (one time) to insert the Analytic Solver and 

Analytic Solver Data Mining add-ins, they will appear under "My Add-ins".  If 

you ever need to remove the add-ins, click the “…” symbol to the right of the 

add-in name, then click the Remove choice on the dropdown menu that appears. 

 

Single Sign On Functionality 

Analytic Solver Cloud includes Single Sign On functionality which 

automatically logs in users to their Analytic Solver Cloud account using their 

Microsoft 365 credentials.  This means that if you've signed in to your Microsoft 

365 account using the same email address you used to register on 

www.solver.com, then you will not be asked to login to Analytic Solver Cloud.  

Once you insert Analytic Solver cloud, you will have immediate access to all the 

features and functionality of Analytic Solver.  As long as you remain signed in 

to your Microsoft 365 account, you'll never have to login to Analytic Solver 

Cloud again! 

If you log out of Analytic Solver or your Office 365 credentials do not match 

your Solver credentials, you'll see the following welcome screen in the Solver 

task pane.  Just click the Get Started button or click License – Login/Logout on 

the ribbon to login.  

http://www.solver.com/
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Installing Analytic Solver Desktop 

To install Analytic Solver Desktop to work with any of the supported versions 

of Microsoft Excel (see above), simply run the program SolverSetup.exe, which 

installs all of the Solver program, Help and example files.  SolverSetup.exe 

checks your system, detects what version of Office you are running (32-bit or 

64-bit) and then downloads and runs the appropriate Setup program version. 

Note that your copy of the Setup program will usually have a filename such as 

SolverSetup_12345.exe; the ‘12345’ is your user account number on 

Solver.com. 

When you run the Setup program, depending on your antivirus program or 

Windows security settings, you might be prompted with a message “[reason 

such as new/unknown program].  Are you sure you want to run this 

software?”  You may safely click Run in response to this message.   

You’ll briefly see the standard Windows Installer dialog.  Then a dialog box like 

the one shown below should appear: 
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Read this, so you know the difference between Analytic Solver Basic and the 

upgrades to handle larger models and datasets.  Then click Next to proceed – 

you’ll see a dialog like the one below. 

 

Read this to learn how you can use Analytic Solver Cloud (our new Office add-

in version) – “Excel Online” is another name for “Excel for the Web”. 

Next, the Setup program will ask if you accept Frontline’s software license 

agreement.  You must click “I accept” and Next in order to be able to proceed. 

 

The Setup program then displays a dialog box like the one shown below, where 

you can select or confirm the folder to which files will be copied (normally 

C:\Program Files\Frontline Systems\Analytic Solver Platform, or if you’re 

installing Analytic Solver for 32-bit Excel on 64-bit Windows, C:\Program Files 

(x86)\Frontline Systems\Analytic Solver Platform).  Click Next to proceed. 
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You’ll see a dialog confirming that the preliminary steps are complete, and the 

installation is ready to begin. 

 

After you click Install, the Analytic Solver files will be installed, and the 

program file RSPAddin.xll will be registered as a COM add-in (which may take 

some time).  A progress dialog may appear; be patient, since this process could 

take longer than it has in previous Solver Platform releases.  
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When the installation is complete, you’ll see a dialog box like the one below.  

Click Finish to exit the installation wizard. 

 

The full Analytic Solver product family is now installed.  With your trial and 

paid license, you can access every feature of the software, including forecasting 

and data mining, simulation and risk analysis, and conventional and stochastic 

optimization.  Simply click “Finish” and Microsoft Excel will launch with a 

Welcome workbook containing information to help you get started quickly.  
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Logging in the First Time 
In Analytic Solver V2021, your license is associated with you, and may be used 

on more than one PC.  For example, you can run SolverSetup to install the 

desktop software on your office PC, your company laptop, and your PC at home.  

But only you can use Analytic Solver, and only on one of these computers at a 

time.  It is unlawful to “share” your license with another human user. 

The first time you run Analytic Solver (Desktop or Cloud) after installing the 

software on a new computer, when you next start Excel and visit the Analytic 

Solver tab on the Ribbon, you will be prompted to login.  Enter the email 

address and password that you used to register on Solver.com.  Once you’ve 

done this in Analytic Solver Desktop, your identity will be “remembered,” so 

you won’t have to login every time you start Excel and go to one of the Analytic 

Solver tabs.  In Analytic Solver Cloud, you may be asked to login more 

frequently.    

You can login and logout at any time, by clicking License – Login/Logout in 

both Analytic Solver Desktop and Analytic Solver Cloud.  If you share use of a 

single physical computer with other Analytic Solver users, be careful to login 

with your own email and password, and log out when you’re done – if you 

don’t, other users could access private files in your cloud account, or use up 

your allotted CPU time or storage. 

When you move from one computer to another, you should log out on one and 

log in on the other.  As a convenience, if you log in to Analytic Solver on a new 

computer when you haven’t logged out on the old computer, Analytic Solver 

will let you know, and offer to automatically log you out on the other computer. 

Uninstalling the Software 
To uninstall Analytic Solver Desktop, just run the SolverSetup program as 

outlined above.  You’ll be asked to confirm that you want to remove the 

software. 

You can also uninstall by choosing Control Panel from the Start menu, and 

double-clicking the Programs and Features or Add/Remove Programs applet.  

In the list box below “Currently installed programs,” scroll down if necessary 

until you reach the line, “Frontline Excel Solvers 2021,” and click the 
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Uninstall/Change or Add/Remove… button.  Click OK in the confirming dialog 

box to uninstall the software. 

Activating and Deactivating the Software 
Analytic Solver Desktop’s main program file RSPAddin.xll is a COM add-in, an 

XLL add-in, and a COM server.  A reference to the add-in Solver.xla is needed 

if you wish to use the “traditional” VBA functions to control Analytic Solver, 

instead of its new VBA Object-Oriented API. 

In modern versions of Excel, you can manage all types of add-ins from one 

dialog, reached by clicking File – Options -- Addins.   

 

You can manage add-ins by selecting the type of add-in from the dropdown list 

at the bottom of this dialog. For example, if you select COM Add-ins from the 

dropdown list and clock the Go button, the dialog shown below appears. 

 

If you uncheck the box next to “Analytic Solver Addin” and click OK, you will 

deactivate the Analytic Solver COM add-in, which will remove the Analytic 

Solver tab from the Ribbon in desktop Excel, and also remove the PSI functions 

for optimization from the Excel Function Wizard. 
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If Something Goes Wrong 
Under certain circumstances, desktop Microsoft Excel can “crash” or shut down, 

so it must be restarted.  This can happen for a variety of reasons, including bugs 

in Excel itself, in the Analytic Solver software, or in other add-ins. 

When Excel restarts, you may see one of the following messages: 

 

 

If you see these messages, you should usually click the No button.  If you’ve 

experienced a problem while using Analytic Solver software, please contact 

Frontline Systems Technical Support as described below.  If you click the Yes 

button, Excel will disable the Analytic Solver add-in, and the Analytic Solver 

and Data Mining tabs will no longer appear on the Ribbon.  To re-enable 

Analytic Solver and restore these Ribbon tabs, see the preceding section 

“Activating and Deactivating the Software:” you should select File – Options, 

then Add-Ins, then Manage COM Add-ins, Go.  Then check the box next to 

“Analytic Solver Addin” and click OK. 

In rare circumstances, Analytic Solver users have reported the following error 

message appearing upon opening of Excel. 

 
 

This is a generic error from Microsoft Excel that can occur if you have been 

running Excel for a long period of time without ever deleting Microsoft Excel’s 

temp files. (Note: These temp files are not generated by Analytic Solver 

software; they are generated through Microsoft Excel.)  To resolve this error, 

click OK on the error message, then using Windows Explorer browse to 

C:\Users\<username>\AppData\Roaming\Microsoft\Excel and delete all files in 

this folder.  Restart Excel. The issue should be resolved.   
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Frontline Systems Technical Support team may be contacted via phone (888-

831-0333), email (support@solver.com) or Live Chat (Help – Support Live 

Chart on the Analytic Solver ribbon). 

Cloud Versions 
With your free trial or paid license, you can use Analytic Solver in desktop 

Excel, and its cloud-based counterpart, Analytic Solver Cloud.   

Analytic Solver Cloud is a “modern Office add-in” that works in Excel for the 

Web, Excel for Windows and Excel for Mac (latest versions).  

• All versions offer a Ribbon user interface featuring nearly-identical buttons 

and menus, and a Task Pane that summarizes models and provides access to 

Platform and Engine options. 

• All versions use the same modeling languages (Excel formulas and our 

RASON® modeling language, handled by our PSI Interpreter), and both use 

the same algorithmic "engines" for mathematical optimization, Monte Carlo 

simulation and risk analysis, forecasting, data mining and text mining. 

• All versions can create or open existing optimization, simulation and data 

mining models and datasets in Excel workbooks – and you can easily move 

such workbooks back and forth between desktop and cloud. 

Security and Privacy Considerations 

When you use Analytic Solver Desktop in Excel for Windows, your model is 

solved on the same computer, in the same memory and running process where 

Excel for Windows runs.  You can save your workbook on your own computer, 

on Microsoft OneDrive “in the cloud”, or elsewhere. 

When you use Analytic Solver Cloud, your workbook is stored, at least 

temporarily, “in the cloud”, and your model is solved “in the cloud”, using 

Frontline’s RASON servers on Microsoft Azure.  While many steps are taken to 

ensure your security and privacy, you should understand and be comfortable 

with how the technology works: 

When the browser running on your computer communicates with either Excel 

for the Web, all the information transmitted is encrypted using Transport 

Layer Security (TLS) 1.2, as is true for all “https” websites. 

When you run or solve a data mining, optimization or simulation model, a copy 

of your Excel workbook is transmitted to Frontline’s RASON servers, again 

using TLS 1.2.  A copy of your workbook is stored temporarily on these Azure-

based servers, but is always encrypted “at rest” and “in motion”.  After the 

model is run or solved, all copies of your workbook are deleted; only a log of 

filename, model size and time taken to solve remains on the RASON servers. 

Analytic Solver Cloud 

Analytic Solver Cloud can be used with Excel for the Web, Excel for Windows 

and Excel for Macintosh (latest versions).  Excel for the Web works the same 

way as desktop Excel so there's no learning curve – you can use it right away. 

It's easy to move files between Analytic Solver Desktop and Analytic Solver 

Cloud products by simply saving your existing files to your Microsoft OneDrive 

account.  Files saved on OneDrive may be opened in Microsoft Online or 

mailto:support@solver.com
https://analyticsolver.com/


Frontline Solvers 2021 User Guide Page 25 

desktop Office.  For Analytic Solver Cloud, you will need the latest version 

installed via your Office 365 subscription – older non-subscription versions, 

even Excel 2019, do not have all the features and APIs needed for modern 

Office add-ins like Analytic Solver Cloud.   

Solver Home Tab Removed 

The Solver Home tab was removed from Analytic Solver Desktop V2019 and 

V2021. You can use the License menu to Login and Logout, browse to 

www.solver.com, start a Live Chat, etc. See the section below for more 

information. 

Using Solver Server to Solve Models 
With Analytic Solver Desktop (only), you also have an option to solve your 

optimization model, or run your simulation model on a corporate server, that 

may be more powerful than your desktop or laptop computer.  Results appear in 

your spreadsheet, just as if you had solved the model on your own PC instead of 

the server.  To do this, you use a separate software tool called Solver Server. 

Solver Server is shipped as part of our Solver SDK Platform product; a client for 

Solver Server is built into each copy of Analytic Solver software, and each copy 

of Solver SDK Platform or Pro.  You can also create your own client programs, 

even on mobile devices, using JavaScript and/or PHP. 

If you would like more information on this service, please contact us at 

sales@solver.com.  Note that Solver Server is a separate offering from our 

cloud version Analytic Solver Cloud, and from the Analytic Solver “Create 

App” feature that translates your model into our RASON modeling language 

and may open it to be run at https://Rason.com. 

Note:  SolverServer is not used with, or applicable to Analytic Solver Cloud.   

Adding a Server 

To set up a connection to Solver Server from a client machine running Analytic 

Solver software, click the Options button on the Solver Ribbon, then click the 

General tab.   

http://www.solver.com/
mailto:sales@solver.com
https://rason.com/
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Next, click Add Server to display the following dialog.  Enter information into 

this dialog as follows:   

Name:  Enter a convenient name for your server here.  The name will appear as 

the name of this server in the Options dialog General tab display.   

Address:  Enter an IP address such as 10.1.1.3 or a public domain name such as 

SolverServer.cloud.net or a private domain or computer name such as Frontline-

PC\Machine1. 

Port:  The TCP/IP port entered here must match the port entered in the Solver 

Server application (SAdmin.exe).  Solver Server is “listening” on this port.  The 

default is 2050.    

A “pre-filled”field appears under the Register Certificate on the Server button.  

This field holds the Solver Server Certificate.  When connecting to Solver 

Server, the certificate will be inspected and if the same certificate is found on 

Solver Server, permission to solve the model will be granted.    
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Once you’ve filled in the Name, Address and Port fields, click Test Connection 

to confirm a connection to the Server.  If the connection is successful, click  

Register Certificate on the Server to display the following dialog.  (If the test 

was not successful, please confirm that the Server Address and Port number are 

correct and that both machines (the client and server) are online.)     

If registration was successful, you will see the dialog below.  Click OK to clear 

this dialog and OK again to clear the Add Solver Server dialog.    

 

You should now see the Server listed on the General tab with a check inside the 

checkbox, as shown on the next page.  To disable the server, simply uncheck the 

checkbox.  Click OK to close the Options dialog and return to your spreadsheet. 
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Note that if you are not the administrator, you should send the contents of your 

Certificate field to the server administrator, who can manually add the certificate 

on the server.  This must be done within 24 hours or the certificate will expire. 

Solver Server includes tools for a server administrator to manage certificates for 

clients.  But it’s also possible for the administrator to manage certificates by 

“logging in” to the server from your Excel-based client software, using the 

dialog shown below. 

 

Days Permitted:  An integer value, or 0 for a “permanent” certificate.   

Administrator Name: Used by your server administrator. 

Administrator Password:  Used by your server administrator.   
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Solving Your Model on a Server 

To solve a model on a server that you’ve set up previously as shown above, 

simply open your workbook, click the down arrow under the Optimize icon, and 

select Run on a SolverServer from the menu.   

 

 

The Task Pane Output tab will display the Solver results, and the final variable 

values will be placed in your variable cells.    

Sending document to the server. 

The document is in the server queue. 

Automatic engine selection: LP/Quadratic 

Parse time: 0.00 Seconds. 

Engine: LP/Quadratic 

Setup time: 0.00 Seconds. 

Engine Solve time: 0.00 Seconds. 

Server finished solving the document. 

Downloading the results. 

Finished! 

Solver found a solution.  All constraints and optimality conditions are satisfied. 


For more information on Solver Server or if you are experiencing any problems 

with this service, please contact us at support@solver.com.   

mailto:support@solver.com
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Analytic Solver Overview 

Analytic Solver Product Line 
This Guide shows you how to create and solve conventional optimization, 

Monte Carlo simulation, and stochastic optimization models using Analytic 

Solver – Frontline Systems’ “secret weapon” for business analysts.  The 

companion Data Mining User Guide shows you how to create and evaluate 

forecasting, data mining and machine learning models using Analytic Solver. 

In Frontline Solvers V2021, every license starts with Analytic Solver Basic, 

which allows you to use every feature described in this User Guide, the 

companion Reference Guide, and the Data Mining User Guide, for learning 

purposes with small models. Upgrade versions enable you to ‘scale up’ and 

solve commercial-size models for optimization, simulation or data mining, 

paying for only what you need – but you keep access to all the features of 

Analytic Solver Basic. 

Analytic Solver combines and integrates the features of Frontline’s products for 

conventional optimization (formerly called Premium Solver Pro and Premium 

Solver Platform), Monte Carlo simulation and stochastic optimization 

(formerly Risk Solver Pro and Risk Solver Platform), and forecasting and data 

mining (formerly XLMiner Pro and XLMiner Platform), in a common user 

interface that’s available both in Excel (Desktop) and in your browser (Cloud).   

Analytic Solver’s optimization features are fully compatible upgrades for the 

Solver bundled with Microsoft Excel, which was developed by Frontline 

Systems for Microsoft.  Your Excel Solver models and macros will work 

without changes.  In Analytic Solver Desktop, you can use either the classical 

Solver Parameters dialog, or a newer Task Pane user interface to define 

optimization models. 

 

 

 

 

 

Desktop and Cloud versions 

The release of Analytic Solver V2021 includes our latest offering, Analytic 

Solver Cloud – a “modern Office add-in” usable in both Excel for the Web and 

latest versions of desktop Excel, for Windows and Macintosh.  Analytic Solver 

Cloud handles optimization and simulation models, and forecasting and data 

mining models, and is fully compatible with models created in previous versions 

of Analytic Solver.  Your license for Analytic Solver will allow you to use 

Analytic Solver Desktop in desktop Excel or Analytic Solver Cloud in either 

Cloud Products 

Desktop 

Products 
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desktop Excel or Excel for the Web.  For example, a license for Analytic Solver 

Optimization in desktop Excel will also grant you a license for Analytic Solver 

Optimization in Analytic Solver Cloud.  The overwhelming majority of features 

in Analytic Solver Desktop are also included in Analytic Solver Cloud.  

However, there will be some small differences between the two versions.   

Analytic Solver for desktop or cloud may be purchased in several different ways 

starting with the most basic version, Analytic Solver Basic, up to our most 

complete version, Analytic Solver Comprehensive. Continue reading to see 

which product will best meet your needs.   

Analytic Solver Basic 

As described above, Analytic Solver Basic allows you to use every feature of 

Frontline Solvers V2021, for learning purposes with small models.  Its model 

size limits for optimization are identical to those of the Solver bundled with 

Microsoft Excel (200 decision variables and 100 constraints); it doesn’t support 

plug-in large-scale Solver Engines.  Its size limits for Monte Carlo simulation, 

data mining and text mining are sufficient to run all the examples that we install 

with the software. 

Analytic Solver Upgrade 

Analytic Solver Upgrade (formerly Premium Solver Pro) is Frontline’s basic 

upgrade for the Excel Solver – enabling you to solve linear models 10 times 

larger (up to 2,000 variables), and nonlinear models 2.5 times larger (up to 500 

variables).  It includes faster versions of the LP/Quadratic, GRG Nonlinear, and 

Evolutionary Solvers), but it doesn’t support plug-in large-scale Solver Engines.  

This product includes all the features of Analytic Solver Basic. 

Analytic Solver Optimization 

Analytic Solver Optimization (formerly Premium Solver Platform) is 

Frontline’s most powerful product for conventional optimization.  It includes the 

PSI Interpreter, five built-in Solvers (LP/Quadratic, SOCP Barrier, GRG 

Nonlinear, Interval Global, and Evolutionary), solves linear models up to 8,000 

variables and nonlinear models up to 1,000 variables, and it supports plug-in 

large-scale Solver Engines to handle much larger models.  When used with 

Analytic Solver Simulation, you can also solve models with uncertainty using 

simulation optimization, stochastic linear programming, and robust 

optimization.  In addition, this product includes all the features of Analytic 

Solver Basic. 

Analytic Solver Simulation 

Analytic Solver Simulation (expanded from Risk Solver Pro) is Frontline’s 

full-function product for Monte Carlo simulation and simulation optimization.  

It includes decision tree capabilities and the PSI Interpreter – which gives you 

the fastest Monte Carlo simulations available in any Excel-based products, 

unique interactive simulation capabilities, multiple parameterized simulations, 

and simulation optimization using the Evolutionary Solver.  When used with 

Analytic Solver Optimization, you can also solve models with uncertainty using 

stochastic linear programming and robust optimization.  In addition, this product 

includes all the features of Analytic Solver Basic. 
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Together, Analytic Solver Optimization and Analytic Solver Simulation provide 

all the capabilities of Frontline’s former product Risk Solver Platform. 

Analytic Solver Data Mining 

Analytic Solver Data Mining (formerly XLMiner Platform) is Frontline’s most 

powerful product for data mining, text mining, forecasting and predictive 

analytics.  It includes data access and sampling, data exploration and 

visualization, text mining, data transformation, and feature selection capabilities; 

time series forecasting with ARIMA and exponential smoothing; and a wide 

range of data mining methods for classification, prediction and affinity analysis, 

from multiple regression to neural networks.  This product includes all the 

features of Analytic Solver Basic. 

Analytic Solver Comprehensive 

Analytic Solver Comprehensive (formerly Analytic Solver Platform) combines 

the optimization capabilities of Analytic Solver Optimization, the simulation 

capabilities of Analytic Solver Simulation, and the data mining capabilities of 

Analytic Solver Data Mining.  It includes the PSI Interpreter, five built-in 

Solvers (LP/Quadratic, SOCP Barrier, GRG Nonlinear, Interval Global, and 

Evolutionary) and it accepts a full range of plug-in large- scale Solver Engines.  

It supports optimization, Monte Carlo simulation, simulation optimization, 

stochastic programming and robust optimization, and large-scale data mining 

and forecasting capabilities. 

Enhancements in Recent Years 
Frontline Solver products have been rapidly and continually enhanced for more 

than two decades. Below is a brief summary of enhancements up to 2017.  

• In our V10.x (2010) releases, we included faster algorithms, 64-bit versions, 

and new Windows HPC Server cluster computing capabilities. 

• In our V11.x (2011) releases, we introduced tabu and scatter search 

methods in the Evolutionary Solver, Guided Mode in Premium Solver Pro, 

and the Distribution Wizard and Constraint Wizard. 

• In our V12.0 (2012) release, we included Excel 2013 support, GPU support 

in the Evolutionary Solver, new stochastic decomposition, and solving on a 

corporate server with Solver Server. 

• In V12.5 (2013) release, we introduced Analytic Solver Platform with data 

mining capabilities, new data visualization features for both data mining 

and Monte Carlo results, improved Guided Mode, and Support Live Chat 

integrated into Excel. 

• In our V2014 release, we introduced a fundamental new way to build Excel-

based optimization and simulation models:  Dimensional Modeling, with 

concepts such as dimensions and cubes, and tools to build and solve larger 

scale, better structured, more maintainable models using these concepts. 

• In our V2014-R2 release, we introduced a completely re-engineered, far 

more powerful data mining and forecasting capability named XLMiner 

Platform.  New data mining algorithms were up to 100 times faster, 

constantly exploit multiple processor cores, and offer greater accuracy and 

numeric stability. 
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• Our V2015 release introduced a wide range of new features, including 

powerful text mining, ensemble methods for classification and prediction, 

feature selection, partitioning “on-the-fly,” ROC/RROC curves, and 

enhanced linear and logistic regression; extensive chart enhancements, 

distribution fitting, and new Six Sigma functions in Monte Carlo 

simulation; and support for “publishing” optimization and simulation 

models to Excel Online and Google Sheets. 

• Our V2015-R2 release made it easy to share analytic model results in 

popular Business Intelligence software, including Microsoft Power BI and 

Tableau, both popular interactive data visualization tools, and it linked your 

Excel workbook with Big Data in compute clusters running Apache Spark. 

• Our V2016 release introduced a new Create App feature that translates 

your Excel optimization or simulation model into Frontline’s new RASON 

modeling language – radically simplifying the path to create an application 

that can run in a web browser, or a mobile app for phones or tablets.  New 

SQP-GS and Feasibility Pump methods greatly improved the performance 

of the Evolutionary Solver on challenging non-smooth models. 

• Our V2016-R2 release added support for compound distributions and 

correlation using copulas (Gaussian, Student and Archimedean forms), in 

Monte Carlo simulation; new “GA methods’ for integer variables in the 

Evolutionary Solver, speed and memory improvements in Dimensional 

Modeling, and support for the Web Data Connector in Tableau 9.1. 

2017: Power BI, Analytic Solver Basic, and More 
In Frontline Solvers V2017, we introduced users to AnalyticSolver.com, a new 

(at the time) cloud-based platform for both predictive and prescriptive analytics 

models that you could use via a web browser – including all the optimization, 

simulation, and data mining power found in the desktop version.  The 

AnalyticSolver.com user interface worked just like our Excel user interface, 

with a Ribbon and Task Pane.  In 2020, AnalyticSolver.com was superseded by 

Excel for the Web and our Analytic Solver Cloud version. 

V2017 also uses a new licensing system that offers you more flexible ways to 

use the software, both desktop and cloud.  Your license is associated with you, 

and may be used on more than one PC.  For example, you can install the 

software on your office PC, your company laptop, and your PC at home.  But 

only you can use Analytic Solver, and only on one of these computers at a time.   

V2017 introduced Analytic Solver Basic, as described above, to give you 

access to all Analytic Solver features, all the time, for learning purposes using 

small models.  It also includes a new License/Subscription Manager and a 

Product Selection Wizard that makes it much easier to upgrade or change your 

license subscription on a self-service basis, and a new Test Run/Summary 

feature that lets you see exactly how your model will run with an Analytic 

Solver upgrade, even a plug-in large-scale Solver Engine, before you purchase 

the upgrade – and do this any time, not just during a 15-day free trial. 

Feature Enhancements in V2017 

V2017 introduced major enhancements to data mining: Automatic support for 

categorical variables in many classification and prediction algorithms that 

‘normally’ require continuous variables; ensembles that combine nearly any 

type of algorithm as a ‘weak learner’, not just (for example) classification and 
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regression trees; general-purpose Rescaling as a new Data Transformation 

method that can also be applied ‘on-the-fly’ when training a model; greatly 

enhanced multilayer neural networks; ability to export models in PMML; and 

many report and chart enhancements. 

The V2017 Evolutionary Solver includes another set of major enhancements in 

its handling of non-smooth models with integer variables – enough so that most 

such models will solve significantly faster. 

And there’s support for the Tableau Web Data Connector 2.0, and a new 

SolverSetup program that automatically installs the correct 32-bit or 64-bit 

version of the software. 

Feature Enhancements in V2017-R2 

V2017-R2 introduced major enhancements to Monte Carlo simulation/risk 

analysis and optimization.  It’s now possible to fit copula parameters to 

historical data – a complement to distribution fitting that is sometimes called 

“correlation fitting.” You can use a new family of probability distributions, 

called the Metalog distributions, even more general than the Pearson 

distributions – members of the family can be chosen based directly on historical 

data (even just a few observations), without a distribution fitting process. 

The V2017-R2 PSI Interpreter includes major speed enhancements for large 

linear and nonlinear optimization models – users with large models are likely to 

see a dramatic speedup in “Setting Up Problem…”  Also part of this release 

were new, higher performance versions of the Gurobi Solver Engine (based on 

Gurobi 7.5), the Xpress Solver Engine (based on Xpress 30.1), and the Knitro 

Solver Engine (based on Knitro 10.3). 

Creating Power BI Custom Visuals 

The most exciting new feature of V2017-R2 is the ability to turn your Excel-

based optimization or simulation model into a Microsoft Power BI Custom 

Visual, with just a few mouse clicks!  Where others must learn JavaScript (or 

TypeScript) programming and a whole set of Web development tools to even 

begin to create a Custom Visual, you’ll be able to create one right away. 

You simply select rows or columns of data to serve as changeable parameters, 

then choose Create App – Power BI, and save the file created by V2017-R2.  

You click the Load Custom Visual icon in Power BI, and select the file you just 

saved.  What you get isn’t just a chart – it’s your full optimization or simulation 

model, ready to accept Power BI data, run on demand on the web, and display 

visual results in Power BI!  You simply need to drag and drop appropriate 

Power BI datasets into the “well” of inputs to match your model parameters. 

How does that work?  The secret is that V2017-R2 translates your Excel model 

into RASON® (RESTful Analytic Solver Object Notation, embedded in JSON), 

then “wraps” a JavaScript-based Custom Visual around the RASON model.  See 

the chapter “Creating Your Own Application” for full details! 

2018: Tableau, Data Mining Workflows, and More 
Analytic Solver V2018 extended our forecasting and data mining features with a 

new capability called data mining workflows that can save a lot of time and 

eliminate repetitive steps.  You can combine nearly any of Analytic Solver’s 



Frontline Solvers 2021 User Guide Page 35 

data retrieval, data transformation, forecasting and data mining methods into a 

single, all-inclusive workflow, or pipeline. 

Using the new Workflow tab in the Task Pane, you can either “drag and drop” 

icons onto a “canvas” to create a workflow diagram, or you can simply turn on a 

workflow recorder, carry out the steps as you’ve always done by choosing 

menu options and dialog selections, and the workflow diagram will be created 

automatically.  Once the diagram or pipeline is created, you can “run” it in one 

step – each data mining method in the workflow will be executed in sequence. 

In previous releases, you could use the trained model from a single data mining 

method (such as a Classification Tree or Neural Network) to “score” new data, 

by mapping features (columns) between the training set and new data set.  In 

V2018, you can apply an entire workflow – including data transformations, 

partitioning, model training, and more – to a new dataset, by mapping features 

(columns) between the dataset used to create the workflow, and a new dataset. 

Creating Tableau Dashboard Extensions 

Another exciting new feature of V2018 is the ability to turn your Excel-based 

optimization or simulation model into a Tableau Dashboard Extension, with 

just a few mouse clicks!  This is quite similar to the ability to create Power BI 

Custom Visuals introduced in Analytic Solver V2017-R2.  It works (only) with 

Tableau version 2018.2 or later. 

You simply select rows or columns of data to serve as changeable parameters, 

then choose Create App – Tableau, and save the file created by V2018.  In 

Tableau, drag the Extensions object onto your dashboard, and choose the file 

you just saved.  You’ll be prompted to match the parameters your model needs 

with data in Tableau.  What you get isn’t just a chart – it’s your full optimization 

or simulation model, ready to accept Tableau data, run on demand (using our 

RASON server), and display visual results in Tableau! 

2019: Analytic Solver Cloud 
In Frontline Solvers V2019, we introduced Analytic Solver Cloud – a next-

generation product that’s the result of five years of development using new 

cloud technologies, that we can now bring to you – since Microsoft has released 

a complete set of JavaScript APIs for new Excel features, such as functions like 

PsiNormal() and PsiMean() used in simulation and risk analysis. 

In our first V2019 release, we focused on a consistent user experience between 

Analytic Solver Desktop and Analytic Solver Cloud.  In a few cases, this has 

involved modifications to Analytic Solver Desktop.  For example, older versions 

of Analytic Solver Desktop used “cascading submenus” to select probability 

distributions, and results in Monte Carlo simulations.  Since an Office add-in 

cannot define or use cascading submenus, we have modified Analytic Solver 

Desktop and Analytic Solver Cloud so that the Distributions button on the 

Ribbon displays a dialog, rather than a cascading submenu, where you can select 

an appropriate probability distribution.  Yet the order and layout of probability 

distributions remains the same as in previous Analytic Solver versions. 
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Business Rules and DMN Decision Tables 

In Frontline Solvers V2019-R2, we introduced another completely new 

capability to Analytic Solver:  Making it easy to capture rule-based decisions in 

the form of decision tables, with multiple columns for inputs, and multiple rows 

that express business rules.  See the new chapter “Using Decision Tables”. 

While Business Rule Management Systems (BRMS) have been around for 15 

years, with the increasing use of predictive and prescriptive analytics (like those 

found in Analytic Solver), these systems have begun to give way to Decision 

Management Systems that support a mix of rules and analytics.  Where older 

BRMS systems used proprietary rules languages, the new trend embraces an 

open standard called DMN (Decision Model and Notation), with a language 

called FEEL (Friendly Enough Expression Language) for business rules. 

Analytic Solver V2019-R2 and V2020 make it easy for you to create and test 

DMN 1.2-compatible decision tables with business rules expressed in FEEL.  

And it’s equally easy to use Analytic Solver’s forecasting, machine learning, 

simulation and optimization capabilities to create analytic inputs for decision 

tables, or use to decision table results in simulation and optimization models. 

2020: Simulation and Solver Engine Enhancements 
With each new release, Analytic Solver gives you more!  Our January 2020 

enhancements apply to both Analytic Solver Desktop and Cloud versions. 

Faster Solver Engines, Using Multiple Cores 

In V2020, the LP/Quadratic Solver – probably the most-used Solver Engine in 

Analytic Solver – features significantly improved performance on linear mixed-

integer models.  Prior versions of this Solver would use only one processor core 

at a time, but V2020 will use multiple processor cores to speed your solution. 

The plug-in large-scale Solver Engines in Analytic Solver V2020 also feature 

significantly improved performance (they continue to utilize multiple processor 
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cores).  These include the Gurobi Solver V9.0, with a new ability to solve non-

convex quadratic models; the Xpress Solver V35, with a new Solution Refiner, 

and the Artelys Knitro Solver V12.1, with SOCP and MIP speedups. 

Monte Carlo Simulation Enhancements 

Analytic Solver V2020 includes 12 new probability distribution functions, 

enhanced property functions for the PSI Distribution functions, new property 

functions for the PSI Statistics functions, and new “theoretical” functions that 

return analytic moments of distributions.  Full details are in the Frontline 

Solvers Reference Guide, but here’s a partial list of new/enhanced functions: 

PsiBurr PsiLevyAlt PsiTheoMin 

PsiDagum PsiHypSecantAlt PsiTheoMax 

PsiDblTriang PsiCumulD PsiTheoVariance 

PsiFatigue PsiLaplace PsiTheoStdDev 

PsiFdist PsiCauchy PsiTheoSkewness 

PsiFrechet PsiTruncate PsiTheoKurtosis 

PsiHypSecant PsiCensor PsiTheoRange 

PsiJohnsonSB PsiLock PsiTheoPercentile 

PsiJohnsonUB PsiOutput PsiTheoPercentileD 

PsiKumaraswamy PsiTheoMean PsiTheoTarget 

PsiReciprocal PsiTheoMedian PsiTheoTargetD 

PsiLevy PsiTheoMode PsiCategory 

These functions make it even easier to adapt risk analysis models developed 

with other popular Excel add-ins, such as Palisade’s @RISK, to work with 

Analytic Solver.  A simple Find and Replace of the function name prefix with 

‘Psi’ is often all you need.  And unlike those other Excel add-ins, with Analytic 

Solver you can easily run your model in the cloud with Excel for the Web, 

translate your model to RASON, and use it in Power BI, Tableau, or your own 

web or mobile application! 

What’s New in Analytic Solver V2020.5 
Analytic Solver V2020.5 includes significant enhancements to both Monte Carlo 

simulation and optimization – but the most exciting new feature is a greatly 

expanded Create App facility that makes it easy to deploy your Excel analytic 

model as a cloud service (thanks to RASON), usable from nearly any corporate, 

web or mobile application.  What’s more, you can manage, monitor and update 

your own cloud services, without ever leaving Excel! 

Easily Deploy Your Model as a Cloud Service 

We’ve realized for many years that developing and testing your analytic model 

in Excel is often just the first step:  To gain the real business value from the 

decisions that can be made with your model, it’s often necessary to get the 

model into the hands of other people in the business – in a form where they 

can easily ensure that it has up-to-date data, re-run the model’s optimization, 
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simulation, or data mining process, and either view the results, or plug them 

into another software application or process. 

In our 2017 and 2018 Analytic Solver releases, we took the steps that were 

possible at that time, enabling users to get their models into the hands of Power 

BI and Tableau users.  And we built a facility to translate simpler Excel models 

into the RASON modeling language, enabling them to be solved in our cloud 

platform (RASON is an acronym for RESTful Analytic Solver Object Notation).  

But up to this point, a typical Excel user would still need help from a web 

developer, or would need learn JavaScript and other web development skills, to 

make truly effective use of this facility. 

Now in our V2020.5 release of both Analytic Solver and RASON, we’ve gone 

much further to simplify the process of deploying an Excel model as a cloud 

service, and connecting it to databases and cloud data sources.  The RASON 

cloud service will now accept and run Excel workbook models “on a par” with 

models written in the RASON modeling language.  With the Create App menu 

option, you can turn your Excel model into a cloud service in seconds. 

 

As an Analytic Solver user, you can now create and test models, deploy them 

“to the cloud” – point and click – as full-fledged RESTful decision services, 

and even get reports of recent runs of your decision services, all without leaving 

Excel.  Using our web portal at https://rason.com, you can go further –even 

embed your Excel workbook in a multi-stage “decision flow” that can combine 

SQL, RASON, Excel, and DMN models, passing results from stage to stage. 

We start you out with a RASON “basic” license, so you can try out these new 

capabilities without purchasing anything else!  (Of course, you may need an 

upgraded RASON license to deploy your model to many users, and re-solve it 

hundreds or thousands of times on our cloud servers.) 

More About RASON Decision Services 

RASON is an Azure-hosted cloud service that enables your company to easily 

embed 'intelligent decisions' in a custom application, manual or automated 

business process, applying the full range of analytics methods – from simple 

calculations and business rules to data mining and machine learning, simulation 

and risk analysis, and conventional and risk-based optimization.   

RASON Decision Services can be used from nearly any application, via a 

series of simple REST API requests to https://rason.net.  To express the full 

https://rason.com/
https://rason.net/
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range of analytic models, RASON includes a high-level, declarative modeling 

language, syntactically embedded in JSON (JavaScript Object Notation), the 

popular structured format almost universally used in web and mobile apps.  

RASON results appear in JSON, or as more structured OData JSON endpoints. 

RASON Decision Services also includes comprehensive data access support for 

Excel, SQL Server on Azure, Power BI, Power Apps, Power Automate (aka 

Microsoft Flow) and Dynamics 365.  And it includes powerful model 

management tools, such as tracking model versions including “champions and 

challengers”, monitoring model results, and automated scheduling of runs for 

both models and multi-stage decision flows. 

 

How You Can Use RASON 

You can use RASON to quickly and easily create and solve optimization, 

simulation/risk analysis, data mining, decision table, and decision flow models – 

instantly deployed as cloud services.  You can learn RASON, create models, 

supply data and solve them, and even manage model versions and cloud data 

connections, “point and click” using https://rason.com, our “web portal” to the 

underlying REST API service. 

If you’ve used another modeling language to build an analytic model, you’ll 

find the RASON language to be simple but powerful and expressive – and 

integrating RASON models into a larger application, especially a web or mobile 

app, is much easier than with other modeling languages.  Excel users will find 

that RASON includes virtually the entire Excel formula language as a subset.  

If you’ve used tools based on the DMN (Decision Model and Notation) 

standard, you’ll find that RASON – and Analytic Solver, as shown in the 

chapter “Building Decision Tables” – fully support DMN and FEEL Level 2. 

Unlike existing “heavyweight” Business Rule Management Systems, with year-

long implementation schedules, six-figure budgets and limited analytics power, 

https://rason.com/
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RASON Decision Services enables you to get results in just weeks to months, 

from building and testing models, to deploying them across an organization.  

With RASON, you can build successful POCs (Proofs of Concept) without any 

IT or professional developer support – yet RASON is very “IT and developer 

friendly” when you’re ready to deploy your POC across your company. 

New Time Series Simulation Functions 

Analytic Solver V2020.5 includes another new set of PSI Distribution functions 

and related PSI property functions, focused around time series simulation.  

Earlier Analytic Solver versions supported time series simulation using 

functions such as PsiForecast() and PsiPredict(), and models fitted via Analytic 

Solver Data Mining – but V2020.5 goes further, to support time series functions 

found in other popular Excel add-ins, such as Palisade’s @RISK.  Full details 

are in the Frontline Solvers Reference Guide, but here’s a partial list of 

new/enhanced functions: 

PsiAR1 PsiBMMR PsiAPARCH11 

PsiAR2 PsiGBMJD PsiTSTransform 

PsiMA1 PsiARCH1 PsiTSIntegrate 

PsiMA2 PsiGARCH11 PsiTSSeasonality 

PsiARMA11 PsiEGARCH11 PsiTSSync 

With these functions, virtually any risk analysis model developed with other 

popular Excel add-ins, such as Palisade’s @RISK, can be easily made to work 

with Analytic Solver.  An appendix in the Frontline Solvers Reference Guide, 

“@Risk to Analytic Solver Psi Function Conversion Table”, explains the details.  

And with Analytic Solver, you can easily deploy your risk analysis model as a 

cloud service – usable from Tableau, Power BI, Power Apps, Power Automate, 

or virtually any corporate, web or mobile application! 

New Optimization Result Functions 

In every version of Analytic Solver (and its precedessors, such as Premium 

Solver and the Excel Solver), you could obtain all the properties of an optimal 

solution – such as initial and final values, dual values, and ranges for decision 

variables and constraints – via the Answer Report and Sensitivity Report, which 

are inserted into your Excel workbook as new worksheets.  But what if you want 

only select subsets of these values – and you’d like to have them on the same 

worksheet as your model?  That’s now possible in Analytic Solver V2020.5.  

Just type these new functions into cells, or use the Function Wizard in Excel.  

PsiInitialValue PsiDualValue PsiCalcValue 

PsiFinalValue PsiDualLower PsiOptStatus 

PsiSlackValue PsiDualUpper PsiModelDesc 

These new functions have another purpose in V2020.5, when you use Analytic 

Solver’s enhanced Create App facility to deploy your model as a cloud service: 

You can use them to determine a select subset of values from the solution that 

you want to return from your cloud service to a calling application.  
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What's New in Analytic Solver V2021 
Analytic Solver V2021, our latest release, features faster startup and better 

support for 4K monitors in Analytic Solver Desktop, improved support for 

decision trees "on the spreadsheet" in Analytic Solver Cloud, and a new, faster 

version of the Xpress Solver (V37.1.3) – but the most exciting new features in 

this release give you new ways to define your own custom functions, in a way 

that works in both Excel Desktop and Excel for the Web, as well as our cloud 

platform RASON. 

In years past, Excel-savvy analysts used VBA (Visual Basic for Applications) to 

define their own custom functions.  While this still works in Excel Desktop 

using COM (28-year-old Component Object Model), VBA functions 

are not supported in Excel for the Web – and according to Microsoft, VBA and 

COM will never move to the cloud.  If you want your custom functions to work 

in both desktop and cloud, your options have been limited – until now: 

• Microsoft has introduced new Excel functions LAMBDA and LET. These 

are very special because you can use them in Excel formulas to define your 

own custom functions.  The Excel community has expressed much 

excitement over these new functions, since they effectively make Excel a 

“complete programming language”.   (In Q1 2021, these functions are being 

rolled out across the different Office update channels.)  

• On another front, there’s the open standard known as DMN (Decision 

Model and Notation) – a business user-friendly “formula language” used to 

define business rules and decision tables, supported in “decision 

management” platforms from various vendors, and in Analytic Solver and 

RASON since 2019.  DMN – now in version 1.3 – offers a way to define 

your own custom functions, known as “Box functions”. 

Analytic Solver V2021 includes support for both Excel’s LAMBDA and LET 

functions, and for DMN-compatible Box functions.  You’ll find a new chapter in 

this User Guide, “Using Custom Functions”, that explains how to use both 

approaches.  Even better, LAMBDA and LET, and DMN Box functions enjoy 

full support from our PSI Interpreter – which means that our full range of Solver 

Engines, and our high-speed Monte Carlo simulation engine “understand” and 

take full advantage of custom functions that you define this way.  This can yield 

better results than you’ve ever had with VBA-based functions that are embedded 

in an optimization or simulation model. 

Optimization and Resource Allocation 
Analytic Solver includes five bundled Solver Engines to find solutions for the 

full spectrum of optimization problems, up to certain size limits: 

The nonlinear GRG Solver in Analytic Solver Comprehensive, Analytic Solver 

Optimization, Analytic Solver Upgrade, and Analytic Solver Basic handles 

large-scale smooth nonlinear (NLP) problems and includes Multistart or 

“clustering” methods for global optimization that can utilize multiple processor 

cores.  In Analytic Solver Basic, this engine can solve NLP problems with up to 

200 decision variables and 100 constraints, plus bounds on the variables.   

In Analytic Solver Upgrade, this engine is an upgraded version of the nonlinear 

GRG engine included in the Microsoft Excel Solver, and can solve NLP 

problems with up to 500 variables and 250 constraints, plus bounds on the 

variables.  In Analytic Solver Comprehensive and Analytic Solver Optimization, 
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this engine can handle NLP problems with up to 1,000 decision variables and 

1,000 constraints, plus bounds on the variables.   

The LP/Quadratic Solver in Analytic Solver Comprehensive, Analytic Solver 

Optimization, Analytic Solver Upgrade and Analytic Solver Basic handles both 

linear programming (LP) and quadratic programming (QP) problems.  In 

Analytic Solver Comprehensive and Analytic Solver Optimization, this engine 

can handle models with up to 8,000 decision variables and 8,000 constraints – 

four times the size of Analytic Solver Upgrade, and 40 times the size of Excel 

Solver.  In Analytic Solver Upgrade, this engine can solve LPs and QPs with up 

to 2,000 variables and 8,000 constraints and in Analytic Solver Basic LPs and 

QPs with up to 200 variables and 100 constraints.  Advanced methods for 

LP/MIP problems yield solutions as much as hundreds of times faster than the 

Excel Solver, and 5 to 20 times faster than Analytic Solver Upgrade. 

The Evolutionary Solver (in all products with optimization capabilities) uses a 

combination of genetic and evolutionary algorithms, tabu and scatter search 

methods, and classical optimization methods.  In Analytic Solver Basic, it 

handles non-smooth (NSP) problems of up to 200 variables and 100 constraints, 

plus bounds on the variables.  In Analytic Solver Upgrade, it handles non-

smooth problems of up to 500 decision variables and 250 constraints, plus 

bounds on the variables.  In Analytic Solver Comprehensive and Analytic Solver 

Optimization, an enhanced version of this Solver handles up to 1,000 variables 

and 1,000 constraints, exploits multiple processor cores in many of its 

algorithms, and exploits GPU processors in its local search. 

The Interval Global Solver in (in all products with optimization capabilities)  

uses state-of-the-art interval methods to find the globally optimal solution to a 

nonlinear optimization problem, all real solutions to a system of nonlinear 

equations, or an “inner solution” to a system of nonlinear inequalities.  In 

Analytic Solver Basic and Analytic Solver Upgrade, this engine handles smooth 

nonlinear (NLP) problems of up to 200 decision variables and 100 constraints, 

plus bounds on the variables.  In Analytic Solver Comprehensive and Analytic 

Solver Optimization, it handles smooth nonlinear problems of up to 500 decision 

variables and 250 constraints, plus bounds on the variables. 

The SOCP Barrier Solver in (in all products with optimization capabilities) 

uses an interior point method to solve linear (LP), quadratic (QP), quadratically 

constrained (QCP), and second order cone programming (SOCP) problems – the 

natural generalization of linear and quadratic programming – with up to 2,000 

variables and 8,000 constraints in Analytic Solver Comprehensive and Analytic 

Solver Optimization.  In Analytic Solver Upgrade and Analytic Solver Basic this 

engine has limits fo 200 variables and 100 constraints.  In Analytic Solver 

Comprehensive and Analytic Solver Optimization with Analytic Solver 

Simulation, the SOCP Barrier Solver can be used to solve linear programming 

models with uncertainty via robust optimization with the L2 norm. 

Simulation and Risk Analysis 
Analytic Solver includes a full-featured Monte Carlo simulation capability. 

Unlike other Excel-based simulation products, this feature enables you to play 

‘what if’ with uncertain values as easily as you do with ordinary numbers.  Each 

time you  run a simulation, thousands of trials are executed, and a full range of 

simulation results and statistics will be displayed on the spreadsheet.  It uses 

Frontline’s Polymorphic Spreadsheet Interpreter technology to achieve 

breakthrough simulation speeds – up to 100 times faster than normal Excel-

based Monte Carlo simulation.   
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Analytic Solver supports nearly 80 analytic and custom distributions 

(continuous and discrete), and nearly 80 statistics, risk measures, Six Sigma 

functions, rank order correlation, distribution fitting, multiple random number 

generators and sampling methods with variance reduction, and powerful 

capabilities for multiple parameterized simulations. 

In addition, Analytic Solver's graphics help you assess uncertainty, including 

charts of probability distributions, output frequency charts, sensitivity 

(“Tornado”) charts, scatter plots, and Overlay, Trend, and Box-Whisker charts, 

in two or three dimensions.  You can customize chart colors, titles, legends, grid 

lines, and markers, resize and rotate charts, and print charts or use them in 

PowerPoint presentations. 

Optimal Solutions for Models with Uncertainty 
Analytic Solver Comprehensive, Analytic Solver Upgrade, Analytic Solver 

Basic and Analytic Solver Optimization with Analytic Solver Simulation 

support several powerful methods for finding robust solutions to optimization 

problems with uncertainty: 

• High-speed simulation optimization methods for more general (non-

linear, non-smooth or non-convex) problems, where uncertainties may 

depend on the first-stage decisions.  Normal and chance constraints 

may be used, and a wide range of statistical aggregates can be used to 

summarize uncertainty in the objective and constraints.  A simulation is 

performed on each major iteration of the optimization.  This method is 

very general, but computationally very expensive, and usually not 

scalable to large size problems. 

• Robust optimization (RO) methods for linear programming problems 

with uncertainties affecting the objective and constraints.  Chance con-

straints specify a probability of satisfaction, which is converted to a 

‘budget of uncertainty.’  Monte Carlo simulation is used to obtain 

bound and shape information for the uncertainties.  This information is 

used to automatically create a robust counterpart problem, which is 

then solved.  This method is scalable to large size models. 

• Robust optimization methods and stochastic programming (SP) 

methods for two-stage stochastic linear programming problems with 

recourse (“wait and see”) decisions.  Scenarios are automatically 

created via built-in Monte Carlo simulation, or they may be drawn from 

user-defined cell ranges of sample values on the spreadsheet.  With the 

benefit of second stage or recourse decisions, solutions are typically 

‘well-hedged’ but not overly conservative.  The RO and SP methods 

are relatively scalable to large size.  A state-of-the-art implementation 

of stochastic decomposition, the most powerful and scalable method 

known for solving two-stage stochastic linear programming problems, 

is also included.  Note:  Stochastic decomposition is supported only in 

Analytic Solver Desktop.   

Automatic Model Transformation to RASON 
All Analytic Solver products include facilities for automatic transformation of 

an existing model into the RASON modeling language.   
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RASON (which stands for Restful Analytic Solver Object Notation) is Frontline 

Systems modeling language embedded in JSON and a REST API that makes it 

easy to create, test and  deploy analytic models using optimization, simulation, 

and data mining, in web and mobile applications.   

Users of Frontline's Excel Solvers will find that converting an existing Solver 

model in Excel to RASON is as easy as clicking a button.  But we didn't stop 

there, in V2016, we created the ability to create an entire custom web 

application in seconds!  Months of development work have been reduced to a 

single click of your mouse.     

Web Application Developers who are familiar with AJAX and the use of REST 

API's, can immediately see first-hand how exceptionally easy it is to embed 

RASON models as JSON by viewing the automatically generated code.    In just 

a few seconds, you can see how to solve the models using Frontline's RASON 

server, which exposes a simple REST API that's scalable to handle very large, 

compute-intensive analytic models.   

Sensitivity Analysis and Model Parameters 
All Analytic Solver products include facilities for sensitivity analysis of your 

Excel model, that can be used before even starting an optimization or simulation 

model.  It is especially easy to identify the model parameters with the most 

impact on your computed results – you can simply select any formula cell and 

choose Parameters – Identify from the Ribbon to quickly find the input cells 

with the greatest impact on this formula, ranked and shown in a Tornado chart. 

You can choose some of these input cells to serve as Sensitivity Parameters, and 

then produce reports and charts that show the impact on computed results of 

varying these parameters over a range you specify.  You can also turn these 

parameters into (or define other cells as) Simulation Parameters or Optimization 

Parameters and produce reports and charts of simulation and optimization results 

as your parameters are automatically varied.   

Multiple Optimizations and Simulations 
All Analytic Solver Products (except Analytic Solver Data Mining or Data 

Mining Cloud) have powerful capabilities to perform multiple optimizations or 

simulations, automatically varying the values of parameters you specify, and 

collecting both optimization and simulation results, which may be displayed on 

the spreadsheet, or summarized in a variety of built-in reports and charts. Many 

operations that would require a programming language in other systems, or 

VBA in the Excel Solver, can be easily performed without programming. 

The Dimensional Modeling capability available in the Analytic Solver Desktop 

products greatly enriches the scope of multiple parameterized optimizations and 

simulations.  You can define multiple dimensions and multiple parameters 

indexed over each dimension, run an optimization or simulation for various 

combinations of these parameter values, and create tabular reports, Pivot Tables, 

and charts of the results.  This functionality is not supported in Analytic Solver 

Cloud products.   
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Decision Trees on the Spreadsheet 
All Analytic Solver Products (except Analytic Solver Data Mining and the Data 

Mining Cloud app) also include a facility to create decision trees on your Excel 

spreadsheet.  Using the Ribbon, you can easily create decision nodes and 

branches, event nodes and branches, and terminal nodes.  The tree is drawn in 

graphic form on the spreadsheet; standard Excel worksheet formulas compute 

‘rollback’ values at each node, and the best-choice value at the root node, based 

on either expected value or utility function (certainty equivalent) criteria.  With 

a Ribbon choice, you can graphically highlight the optimal path through the tree. 

Since all computations for decision trees are performed via standard Excel 

worksheet formulas, you can use decision trees in your simulation and 

optimization models.  You must make discrete choices for decisions, and define 

discrete alternatives for events, but you can, for example, define distributions for 

event outcomes and/or costs incurred for decisions, and view the composite 

distribution of outcomes at the root node. 

Bringing Big Data into Excel using Apache Spark 
All Analytic Solver products include the ability to compute summary measures 

(sum, average, standard deviation, minimum or maximum) for variables in a 

dataset with up to billions of rows, stored across many hard disks in an external 

compute cluster running Apache Spark (https://spark.apache.org/), by clicking 

the Get Data icon. The results, which can be obtained immediately upon 

completion or at a later time, will include the number of variables included in 

the dataset and their names along with data counts for categorical variables. This 

kind of summary data is often what you need as input parameters to an 

optimization or simulation model. See the Analytic Solver Data Mining User 

Guide for more help on this new feature. 

Forecasting and Data Mining 
 

Analytic Solver Comprehensive, Analytic Solver Data Mining and the Data 

Mining Cloud app include powerful features for data visualization, forecasting 

and data mining.  You can explore these features using Analytic Solver Basic – 

just click the Data Mining tab on the Excel Ribbon, and consult the Analytic 

Solver Data Mining User Guide: 
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Desktop Analytic Solver Data Mining   

 
 

Data Mining Cloud  

 
 

• Click the Model button to display the Solver Task Pane.  This new feature 

(added in V2016) allows you to quickly navigate through datasets and 

worksheets containing Analytic Solver Data Mining results.   

• Click the Get Data button to draw a random sample of data, or summarize 

data from a (i) an Excel worksheet, (ii) the PowerPivot “spreadsheet data 

model” which can hold 10 to 100 million rows of data in Excel, (iii) an 

external SQL database such as Oracle, DB2 or SQL Server, or (iv) a dataset 

with up to billions of rows, stored across many hard disks in an external Big 

Data compute cluster running Apache Spark (https://spark.apache.org/).   

• You can use the Data Analysis group of buttons to explore your data, both 

visually and through methods like cluster analysis, transform your data with 

methods like Principal Components, Missing Value imputation, Binning 

continuous data, and Transforming categorical data, or use the Text Mining 

feature to extract information from text documents.   

• Use the Time Series group of buttons for time series forecasting, using both 

Exponential Smoothing (including Holt-Winters) and ARIMA (Auto-

Regressive Integrated Moving Average) models, the two most popular time 

series forecasting methods from classical statistics.  These methods forecast 

a single data series forward in time. 

• The Data Mining group of buttons give you access to a broad range of 

methods for prediction, classification and affinity analysis, from both 

classical statistics and data mining.  These methods use multiple input 

variables to predict an outcome variable or classify the outcome into one of 

several categories.  Introduced in V2015, Analytic Solver Data Mining and 

now the Data Mining Cloud app, offer Ensemble Methods for use with 

Classification Trees, Regression Trees, and Neural Networks.  

• Use the Predict button to build prediction models using Multiple Linear 

Regression (with variable subset selection and diagnostics), k-Nearest 

Neighbors, Regression Trees, and Neural Networks.  Use Ensemble 

Methods with Regression Trees and Neural Networks to create more 

accurate prediction models.   

• Use the Classify button to build classification models with Discriminant 

Analysis, Logistic Regression, k-Nearest Neighbors, Classification Trees, 

Naïve Bayes, and Neural Networks.  Use Ensemble Methods with 

Classification Trees and Neural Networks to create more accurate 

classification models.   

• Use the Associate button to perform affinity analysis (“what goes with 

what” or market basket analysis) using Association Rules. 

• Use the Score button to score new data using a fitted forecasting, 

classification or prediction model.   
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If forecasting and data mining are new for you, don’t worry – you can learn a lot 

about them by consulting our extensive in-product Help.  Click Help – Help 

Text on the Data Mining tab, or click Help – Help Text – Forecasting/Data 

Mining on the Analytic Solver tab (these open the same Help file). 

If you’d like to learn more and get started as a ‘data scientist,’ consult the 

excellent book Data Mining for Business Intelligence, which was written by the 

original Data Mining (formally known as XLMiner) designers and early 

academic users.  You’ll be able to run all the Data Mining examples and 

exercises in Analytic Solver. 

Analytic Solver Data Mining, along with the Data Mining Cloud app, can be 

purchased as a stand-alone product.  A stand-alone license for Analytic Solver 

Data Mining includes all of the data analysis, time series data capabilities, 

classification and prediction features available in Analytic Solver 

Comprehensive but does not support optimization or simulation. See the 

Analytic Solver Data Mining User Guide Data Specifications for each product.   

Large-Scale Solver Engines 
Frontline’s Analytic Solver Comprehensive and Analytic Solver Optimization 

(in both Desktop and Cloud apps) support multiple optional, plug-in Solver 

engines, in addition to their “bundled” Solver engines.  Such Solver engines are 

licensed as separate products; they provide additional power and capacity to 

solve problems much larger and/or more difficult than the problems handled by 

the bundled Solver engines.  Unlike most other optimization software, a license 

for one of Frontline’s Solver engines enables you to use that Solver in desktop 

Excel or Excel Online.  In addition, if using Solver SDK Platform, you may call 

the engine through C/C++, C#, Visual Basic, VB.NET, as MATLAB, Java, 

PHP, JavaScript and other languages. 

These Solver engines are seamlessly integrated – to use one, you simply select 

the Solver engine by name in the dropdown list that appears in the Task Pane 

Engine tab.  They produce reports as Excel worksheets, like the bundled Solver 

engines; their options can be set in the Task Pane, or, if using Analytic Solver 

Desktop, in Solver Options dialogs; and they can be controlled by VBA code in 

your custom applications.  The Solver engines are also seamlessly integrated 

into the Solver Platform SDK.  Trial licenses for these Solver engines are 

available, allowing you to evaluate how well they perform on a challenging 

Solver model that you’ve developed. 

The large-scale Solver Engines are more valuable than ever in our Analytic 

Solver products, where you can create large, structured models more easily with 

Dimensional Modeling, and transform linear programming models with 

uncertainty into larger, conventional linear programming or second order cone 

programming models, using stochastic programming and robust optimization.  

Note:  Dimensional Modeling is not supported in Analytic Solver Cloud.   

Automatic Mode and Solution Time 
Analytic Solver has many performance enhancements, ranging from faster 

startup and faster switching among workbooks to faster Solver engines, and a 

deeply parallelized design that exploits multi-core processors.  But its Automatic 

mode can sometimes increase solution time. 
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If using Analytic Solver Desktop, Automatic mode refers to the Automatic 

choice available for several Platform options, which formerly required some 

thought and manual setting by the user.  (Since Analytic Solver Cloud always 

uses Automatic mode, this option is not applicable in Analytic Solver Cloud.)   

In the desktop products, Automatic is the default choice for these options in 

newly created models.  The options (found on the Task Pane Platform tab) 

include: 

Optimization Model Interpreter Simulation Model Interpreter 

Solve Uncertain Models Supply Engine With 

Nonsmooth Model Transformation Automatically Select Engine 

(on the Task Pane Engine tab) 
Stochastic Transformation 

Each Automatic choice means that Analytic Solver can analyze your model and 

automatically choose the best setting for these options.  This normally results in 

better solutions and faster times; however, the process of analyzing your model 

and trying certain alternatives can take extra time, especially for large models. 

To improve solution time when you re-run your model, you can inspect the 

solution log in the Task Pane Output tab to see what choices were made 

automatically, manually set the Platform options to these same choices, and 

save your workbook.  This will save time when you next run the model. 

The desktop version of Analytic Solver Upgrade includes Automatic Mode for 

analyzing the model and selecting the best available engine. However, this 

product does not include the ability to automatically transform models.  

Help, Guided Mode and Proactive Support 
Frontline’s Solvers include User Guides, Reference Guides and over a hundred 

example models – but we’ve gone much further to provide help.  If using a 

desktop product, the in-product help will open whenever you click any 

hyperlinked element in the Task Pane or Help icon in the Ribbon 

Our Wizards can help you with the hardest parts of defining a simulation model 

(probability distributions) or an optimization model (constraints).  Guided 

Mode helps you step-by-step with optimization solutions, when you’re first 

getting started.  Auto-Help Mode, the default setting, is something you can use 

all the time, since it displays explanatory dialogs only when you encounter a 

problem! 

Support Live Chat enables you to connect instantly to Frontline’s technical 

support personnel from inside Excel, send your last error message, model 

diagnosis and other information , and get help from a live person, and Proactive 

Support, which automatically creates a support ticket in our Help Desk when 

you’re struggling with repeated error messages or modeling problems.   
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Help, Support, Licenses and 
Product Versions 

Introduction 
This chapter summarizes the Frontline Solvers V2021 product line, explains the 

licensing system in V2021 and how it benefits you, and describes how to use the 

newly introduced Cloud apps and the new License and Help Centers.   

Working with Licenses in V2021 
A license is a grant of rights, from Frontline Systems to you, to use our software 

in specified ways. As we learned in the last chapter, when you run the 

SolverSetup program to install Analytic Solver Desktop, software for the full 

Analytic Solver product family is installed.   However, the product features you 

see in Analytic Solver Desktop, Analytic Solver Cloud and AnalyticSolver.com, 

and the size of models you can solve, depends on the license you have.  

Frontline Solvers V2021 uses a licensing system, developed in V2017-R2, that 

offers you more flexible ways to use the software, both desktop and cloud. 

Licenses Tied to You, Not Your Computer 

Information about a license, including the features and size limits it enables and 

its expiration date, is maintained on Frontline’s cloud servers, associated with 

your user account ID, email address and password on Solver.com and 

AnalyticSolver.com. When you’re using Analytic Solver on your desktop, 

license information is periodically downloaded or ‘refreshed’ from the cloud 

servers, but is stored on your PC for short periods, to enable you to run even 

when not connected to the Internet. 

In Analytic Solver V2021, your license is associated with you, and may be used 

on more than one PC.  For example, you can run SolverSetup to install the 

software on your office PC, your company laptop, and your PC at home.  But 

only you can use Analytic Solver, and only on one of these computers at a time. 

Using Your License: Login and Logout 

When you first use Analytic Solver either in the cloud or on a new computer, 

you will be prompted to login.  Enter the email address and password that 

you used to register on Solver.com or AnalyticSolver.com.  Once you’ve done 

this in Analytic Solver Desktop, your identity will be “remembered,” so you 

won’t have to login every time you start Excel,  and go to one of the Analytic 

Solver tabs.  If you are using Analytic Solver Cloud or AnalyticSolver.com, you 

will need to login at the beginning of each session. 

You can login and logout at any time, using Login/Logout on the License 

menu.  If you share use of a single physical computer with other Analytic Solver 

users, be careful to login with your own email and password, and log out when 
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you’re done – if you don’t, other users could access private files in your cloud 

account, or use up your allotted CPU time or storage.  

When you move from one computer to another, you should log out on one and 

log in on the other.  As a convenience, if you log in to Analytic Solver on a new 

computer when you haven’t logged out on the old computer, Analytic Solver 

will let you know, and offer to automatically log you out on the other computer. 

Upgrading from Earlier Desktop Versions 

A new license will not be required for V2021 if you’re upgrading from Frontline 

Solvers V2017/V2018. Old license codes for V2016 and earlier have no 

negative effect in 2018.  If they exist in the obsolete Solver.lic file (located at 

C:\ProgramData\Frontline Systems), they will be ignored.  A new license will be 

issued at the time of purchase. 

Analytic Solver Basic 

In previous Frontline Solvers releases, SolverSetup installed a family of 

integrated products, where Analytic Solver Platform was the ‘superset’ product 

that included all features of ‘subset’ products’ such as Premium Solver Platform 

or Premium Solver Pro.  After a free trial, most licenses would allow you to use 

only a subset of features, for example features related to optimization. 

In Frontline Solvers V2018, we changed this, to give you more:  A free trial 

gives you a license for a product called Analytic Solver Basic.  This product is 

closely related to Analytic Solver Platform for Education, the leading software 

used in MBA education – but it’s available to everyone, not just to students. 

With a trial or paid license for Analytic Solver Basic, you can access every 

feature of the software either on the Cloud or in desktop Excel, including 

forecasting and data mining, simulation and risk analysis, and conventional and 

stochastic optimization – but only for small models and datasets.  A license for 

Analytic Solver Upgrade, Analytic Solver Optimization, Analytic Solver 

Simulation, or Analytic Solver Data Mining (see below) enables you to solve 

much larger models, and also enables speed and memory use features to 

efficiently handle these larger models. 

Renamed Products Offering More 

In Frontline Solvers V2017-R2, we simplified the names of products that are 

subsets of full Analytic Solver Platform, which is now called Analytic Solver 

Comprehensive: 

• Analytic Solver Upgrade – Formerly Premium Solver Pro, our basic 

‘Excel Solver Upgrade’ 

• Analytic Solver Optimization – Formerly Premium Solver Platform, full-

size conventional optimization 

• Analytic Solver Simulation – Full size Monte Carlo simulation, risk 

analysis and decision trees, plus simulation optimization (only) 

• Analytic Solver Data Mining – Formerly XLMiner Platform, with major 

enhancements in this release 

• Analytic Solver Comprehensive – Formerly Analytic Solver Platform 

• Analytic Solver Large-Scale – A special bundle of Analytic Solver 

Comprehensive, Large-Scale LP/QP Solver, and Large-Scale GRG Solver 
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Every product above also includes all the features of Analytic Solver Basic.  

This means, for example, that when you upgrade to Analytic Solver Upgrade or 

Analytic Solver Optimization, you still have access to all of Analytic Solver’s 

simulation and data mining features, for small models and datasets. 

Getting Help  
Should you run into any problems downloading or installing any of our 

products, we’re happy to help. Call us at 775-831-0300 or email us at 

support@solver.com. 

Click Support Live Chat, in the bottom right hand corner, to open a Live Chat 

window.  If you run into any issues when using the software, the best way to get 

help is to start a Live Chat with our support specialists  This will start a Live 

Chat during our business hours (or send us a message at other hours), just as if 

you were to start a Live Chat on www.solver.com – but it saves you and our 

tech support rep a lot of time – because the software reports your latest error 

message, model diagnosis, license issue or other problem, without you having to 

type anything or explain verbally what’s happened.  You’ll see a dialog like this: 

 

Since the software automatically sends diagnostic information to Tech Support, 

we can usually identify and resolve the problem faster.  (Note: No contents from 

your actual spreadsheet model is sent, only information such as the number of 

variables and constraints, last error message, and Excel and Windows version.) 

Note:  If Support Live Chat is disabled, click the down arrow beneath Help and 

select Support Mode – Active Support. 

 

mailto:support@solver.com
http://www.solver.com/
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Accessing Resources 

To open Analytic Solver Help, simply click the Help icon on the Analytic Solver 

ribbon in either App to gain access to video demos, User Guides, online Help, 

example models, and Website support pages to learn how to use our software tools, and 

how to build an effective model.   

 

User Guides 
Click the User Guides menu choice to open PDF files of the Analytic Solver 

Optimization and Simulation User and Reference Guides, Analytic Solver Data 

Mining User or Reference Guides, or our Quick Start Guides.   

Example Models 

Clicking this menu item will open a browser pointing to the workbook, Frontline 

Example Models Overview.xlsx, located at C:\Program Files\Frontline Systems\ 

Analytic Solver Platform\Examples.  See the table below for a description of 

each example dataset.  

By going to Help – Welcome Screen you can easily access a range of support 

and training resources. 

Knowledge Base 

Click Knowledge Base to peruse a multitude of online articles related to support 

and installation issues or to locate articles that will help you to quickly build 

accurate, efficient optimization, simulation, and data mining models.     
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Operating Mode 

Click Operating Mode to switch between three different levels of help.    The 

Excel formulas and functions you use in your model have a huge impact on how 

fast it runs and how well it solves. If you learn more about this, you can get 

better results, but if you don't, your results will be limited. Guided Mode can 

help you learn. 

• Guided Mode prompts you step-by-step when solving, with dialogs. 

• Auto-Help Mode shows dialogs or Help only when there’s a problem or 

error condition. 

• Expert Mode provides only messages in the Task Pane Output tab. 

(This mode not supported when using a trial license.) 

Support Mode 

Click Support Mode to switch between three different levels of support.   No 

information (cell contents etc.) from your Excel model is ever reported 

automatically to Frontline Systems, in any of these Support Modes. Only events 

in Frontline's software, such as menu selections, Solver Result messages, or 

error messages are reported.   

• Active Support automatically reports events, errors and problems to 

Frontline Support, receives and displays messages to you from Support, 

and allows you to start a Live Chat with Support while working in 

Excel (Recommended).Auto-Help Mode shows dialogs or Help only 

when there’s a problem or error condition. 

• Standard Support automatically reports events, errors and problems 

anonymously (not associated with you) to Frontline Support, but does 

not provide a means to receive messages or start a Live Chat with 

Support. 

• Basic Support provides no automatic connection to Frontline Support. 

You will have to contact Frontline Support manually via email, website 

or phone if you need help. 

Submit a Support Ticket 

If you're having installation, technical, or modeling issues, submit a Support 

Ticket to open an online support request form.  Submit your email address and a 

short, concise description of the issue that you are experiencing.  You'll receive 

a reply from one of Frontline's highly trained Support Specialists within 24 

hours, and generally much sooner.   

Our technical support service is designed to supplement your own efforts: Getting you 

over stumbling blocks, pointing out relevant sections of our User Guides or example 

models, helping you fix a modeling error, or -- in rare cases -- working around an issue 

with our software (always at our expense). 
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Solver Academy 

Solver Academy is Frontline Systems' own learning platform.  It's the place 

where business analysts can gain expertise in advanced analytics:  forecasting, 

data mining, text mining, mathematical optimization, simulation and risk 

analysis, and stochastic optimization.   

Video Tutorials/Live Webinars 

Click Video Tutorials to be directed to Frontline's You Tube Channel.  Browse 

videos on how to create an optimization or simulation model or construct a data 

mining or prediction model using Analytic Solver.   

Click Live Webinars to be redirected to www.solver.com to join a live or pre-

recorded webinar.  Topics include Using Analytic Solver Data Mining to Gain 

Insights from your Excel Data, Overview of Monte Carlo Simulation 

Applications, Applications of Optimization in Excel, etc.   

Learn more! 

Click any of the three Learn More buttons to learn more about how you can 

solve large-scale optimization, simulation, and data mining models, reduce 

costs, quantify and mitigate risk, and create forecasting, data mining and text 

mining models using Analytic Solver.        

License Button  
Click the License button to open the License Manager where you can manage 

your current licenses and accounts, open our Product Selection Wizard, connect 

to Live Chat or peruse through a list of FAQs.   

http://solver.academy/
http://www.solver.com/
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Click License – Manage License/Manage Account to open the Licensing Center.   

The "MyLicenses" tab displays your current license and license type, along with 

the expiration date.     

 

Click About Analytic Solver to open the following dialog containing information 

on this release.   

 

Click the Account tab to view your account on www.solver.com.  Click Edit 

Profile to edit the information.  Click Live Chat to open a Live Chat window or 

Log Out to log out of the product.   

http://www.solver.com/
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Click the Product Guide tab to view a list of products and pricing information.  

Click Product Selection Wizard to open the Product Selection Wizard.  See the 

next section for information on this feature.   

 

Click the Questions tab to review a list of FAQs, submit a support ticket or start 

a live chat.   
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Product Selection Wizard 
Select Product Selection Wizard from the Product Guide tab in the Licensing 

Center to open a series of dialogs that will help you determine which product 

will best meet your needs based on your recent pattern of use.  

 
Select the Product that you'd like to purchase and then click Next.  Click the 

Optimization Choices link to learn more about Analytic Solver products that can 

solve optimization models and to find more information on speed, memory, and 

the use of plug-in Solver Engines.      
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On this screen, the Product Selection Wizard will recommend a product or 

products based on your answers on the previous screens.  Click Upgrade to 

purchase the recommended product.  Click the Optimization Choices link to 

learn more about Analytic Solver products that can solve optimization models.   

If at any time you'd like to chat with a member of our Technical Support staff, 

click Live Chat.  Or if you'd like to amend your answers on a previous dialog, 

click Back.   

When you run a simulation or optimization model that contains too many 

decision variables/uncertain variables or constraints/uncertain functions for the 

selected engine, the Product Wizard will automatically appear and recommend a 

product that can solve your model.   

 

When you click “Test Run”, the Product Wizard will immediately run the 

optimization or simulation model using the recommended product.   (Only 

summary information will be available.) At this point, you can purchase the 

recommended product(s), or close the dialog.   

This same behavior will also occur when solving smaller models, if you select a 

specific external engine, from the Engine drop down menu on the Engine tab of 
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the Solver Task Pane, for which you do not have a license.  The Product Wizard 

will recommend the selected engine, and allow you to solve your model using 

this engine.  Once Solver has finished solving, you will have the option to 

purchase the product.   

 

Using the Welcome Screen in Analytic Solver Desktop 
When using Analytic Solver Desktop, the first time you click the Analytic 

Solver tab on the Ribbon, you’ll see the Welcome Screen, pictured on the next 

page.  You can display the Welcome Screen manually by choosing Help – 

Welcome Screen from the Ribbon.  And if you don’t want to see it, you can 

control whether the screen appears automatically by selecting or clearing the 

check box in the lower left corner, “Show this dialog on startup.” 

 

The Welcome Screen was considerably enhanced in V2017-R2.  As in earlier 

releases, it reports the status of your license, and provides links to Tutorial 

Videos, User Guides, Example Models, and Live Chat with tech support (also 

available from the Help drop-down menu on the Ribbon).  The blue button 

below License Status takes you directly to the License / Subscription Manager 
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(also available from the Options drop-down menu).  The Local License button to 

the right opens Frontline Solvers License Manager.  And the green button 

displays an explanation of Analytic Solver Basic, your free trial, and upgrade 

options – much like this section. 

There’s more:  Click the News, Blog and Videos tabs at the top of the dialog to 

see the latest application news and case studies, Frontline Systems blog posts, 

and videos from Solver.com.  And from time to time, you’ll see a Messages tab 

at the top of this dialog, with individual messages for you from Frontline’s Tech 

Support and Customer Success teams. 

License/Subscription in Analytic Solver Desktop 
Since Frontline Solvers V2015, our products have been offered on an annual 

subscription basis, including the software license and Annual Support (technical 

support and software upgrades).  But in order to renew your subscription, or 

upgrade or change the product you were using, you had to talk to someone in 

Frontline Systems sales or customer service, who would make the change, and 

email you a new license code that you’d copy and paste into a dialog box. 

With Frontline Solvers V2018, all those steps have been automated: You can 

review your subscription status, renew, upgrade or downgrade your subscription, 

or add plug-in Solver Engines, all ‘self-service’ using the License / Subscription 

Manager – accessible via the blue button in the Welcome Screen, or Options - 

License / Subscription on the Analytic Solver Ribbon.  The next page shows a 

example of the License / Subscription Manager dialog. 

 

The Products tab in the License / Subscription Manager dialog shows you a list 

of the products that are ‘upgrade options’ for your current subscription. You can 

click the hyperlinks for more information about the products on Solver.com, or 

click the buttons to go step-by-step through the upgrade process. 
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Context-Sensitive Help in Analytic Solver Desktop 
Analytic Solver Desktop 2021 has a significant amount of context-sensitive 

Help.  You can quickly access Help on any Solver Result message that appears 

in the Task Pane Output tab, any option that appears on the Engine tab or 

Platform tab, or any element of your model that appears on the Model tab. 

Solver Result messages appear as underlined links – you can simply click them.  

For example, here’s the Help that appears when you click the Solver Results 

message for the Gas Company Chance example in StochasticExamples.xls: 

 

To access Help on any Platform option, Engine option, or Model element, click 

the underlined link in the brief explanation that appears at the bottom of the 

Task Pane.  For example, here’s the Help that appears when you click the Type 

field link for a chance constraint in your model: 
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To access help in Analytic Solver Cloud, click Help – Help Center or Help – Analytic 

Solver Help in AnalyticSolver.com.  
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Examples:  Conventional 
Optimization 

Introduction 
This chapter introduces conventional optimization (with no uncertainty) in both 

the Desktop and Cloud apps using Analytic Solver Comprehensive, Analytic 

Solver Optimization, Analytic Solver Upgrade, and Analytic Solver Basic with a 

series of examples.  Except as noted in specific sections, all of these examples 

can be used in any of the above product subsets.  

• “A First Optimization Model” takes you step-by-step through the process of 

creating an optimization model from scratch.  It illustrates use of the Ribbon 

and Task Pane, and its relationship to the Excel Solver Parameters dialog. 

• “Introducing the Standard Examples,” “Linear Programming Examples” 

and “Nonlinear Optimization Examples” takes you through the workbook 

StandardExamples.xls, with seven examples that illustrate a number of 

Analytic Solver features.  

A First Optimization Model 
This section is meant for you if you’re familiar with optimization, but you’ve 

never used Excel Solver or Analytic Solver Basic.  It shows how you can 

translate from the algebraic statement of an optimization problem to a spread-

sheet Solver model.  If optimization is new to you, consult the chapter 

“Mastering Conventional Optimization Concepts.” 

Note:  This first step-by-step example is a ‘quick and dirty’ approach that can be 

used to solve the example problem, but is not well documented or easy to 

maintain.  If using Analytic Solver Desktop or Cloud you'll have access to 

Microsoft Excel's many features that can help you organize and display the 

structure of your model, through tools such as defined names, formatting and 

outlining.  The models in the StandardExamples.xls workbook illustrate some 

of these features.  This workbook is normally installed into C:\Program 

Files\Frontline Systems\Analytic Solver Platform\Examples.  As models become 

larger, the problems of managing data for constraints, coefficients, and so on 

become more significant, and a properly organized spreadsheet model can help 

manage this complexity. 

Setting Up a Model 

To set up an optimization model in a spreadsheet either in Microsoft Excel, 

Excel Online or in AnalyticSolver.com, you will follow these essential steps: 

1. Reserve a cell to hold the value of each decision variable.  We’ll use A1:A3 

in the example below. 

2. Pick a cell to represent the objective function, and enter a formula that 

calculates the objective function value in this cell.  We’ll use A4 in the 

example below. 
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3. Pick other cells and use them to enter the formulas that calculate the left 

hand sides of the constraints.  We’ll use B1:B5 in the example below. 

4. The constraint right hand sides can be entered as numbers in other cells, or 

entered directly in the Solver’s Add Constraint dialog.  We’ll use C1:C5 for 

this purpose in the example below. 

Within this overall framework, you have a great deal of flexibility in choosing 

cells to use, and calculating the objective and constraints.  For example, the 

objective function will ultimately depend on the decision variable cells, but you 

don’t have to calculate the entire function in one formula cell.  You can use any 

number of formula cells to compute intermediate results, and use these to 

calculate the objective function or the constraints. 

In desktop Excel and Excel Online, you can write a linear expression easily with 

Excel’s SUMPRODUCT function, or you can use + and * operators, as shown 

below.  You can use Excel’s array formulas, and Excel functions that return 

vector and matrix results.  And you can use Excel’s rich facilities to access data 

in external text files, Web pages, and relational and multidimensional databases 

to ‘populate’ your model. 

The Model in Algebraic and Spreadsheet Form 

Consider the following problem.  Our factory is building three products:  TV 

sets, stereos and speakers.  Each product is assembled from parts in inventory, 

and there are five types of parts:  chassis, picture tubes, speaker cones, power 

supplies and electronics units.  Our goal is to produce the mix of products that 

will maximize profits, given the inventory of parts on hand.  This is a simple 

linear programming problem, also used to illustrate other ideas later in “Linear 

Programming Examples.” 

The Algebraic Form 

The problem can be described in algebraic form as follows.  The decision 

variables are the number of products of each type to build:  x1 for TV sets, x2 for 

stereos and x3 for speakers.  There is a fixed profit per unit for each product, so 

the objective function (the quantity we want to maximize) is: 

Maximize 75 x1 + 50 x2 + 35 x3  (Profit) 

Building each product requires a certain number of parts of each type.  For 

example, TV sets and stereos each require one chassis, but speakers don’t use 

one.  The number of parts used depends on the mix of products built (the left 

hand side of each constraint), and we have a limited number of parts of each 

type on hand (the corresponding constraint right hand side): 

Subject to 1 x1 + 1 x2 + 0 x3 <= 400   (Chassis) 

 1 x1 + 0 x2 + 0 x3 <= 200   (Picture tubes) 

 2 x1 + 2 x2 + 1 x3 <= 800   (Speaker cones) 

 1 x1 + 1 x2 + 0 x3 <= 400   (Power supplies) 

 2 x1 + 1 x2 + 1 x3 <= 600   (Electronics) 

Since the number of products built must be nonnegative, we also have the 

constraints x1, x2, x3 >= 0.  Note that terms like 0 x3 are included purely to show 

the structure of the model – they can be either omitted or included when entering 

formulas in Excel.  



Frontline Solvers 2021 User Guide Page 65 

The Spreadsheet Formulas 

The fastest (though not necessarily the best) way to lay out this problem on the 

spreadsheet is to pick (for example) cell A1 for x1, cell A2 for x2 and cell A3 for 

x3.  Then the objective can be entered in cell A4, much like the algebraic form 

above: 

A4:  =75*A1+50*A2+35*A3 

We can go on to enter a formula in (say) cell B1 for the first constraint left hand 

side (Chassis) as =1*A1+1*A2+0*A3, or the simpler form: 

B1:  =A1+A2 

Similarly, we can use cell B2 for the formula =A1 (Picture tubes), B3 for the 

formula =2*A1+2*A2+A3 (Speaker cones), B4 for the formula =A1+A2 (Power 

supplies), and B5 for the formula =2*A1+A2+A3 (Electronics): 

B2:  =A1 

B3:  =2*A1+2*A2+A3 

B4:  =A1+A2 

B5:  =2*A1+A2+A3 

Finally, we’ll enter the constraint right hand side values in cells C1:C5: 

C1:  400 

C2:  200 

C3:  800 

C4:  400 

C5:  600 

We now have a simple spreadsheet model that we can use to play ‘what if.’  For 

any values we enter for the decision variables in cells A1, A2 and A3, the 

objective (Total Profit) and the corresponding values of the constraint left hand 

sides (the numbers of parts used) will be calculated. 

We want to turn this ‘what if’ spreadsheet model into an optimization model, 

where the Solver will automatically find optimal values for the cells A1:A3, so 

that the objective function at A4 is maximized, and the constraints are satisfied. 

Defining and Solving the Optimization Model 

To begin, click the Analytic Solver tab on the Ribbon.  Your worksheet with an 

empty Task Pane (“Solver Options and Model Specifications”) Model tab 

should appear, as shown on the next page. 

To define the optimization problem, we’ll use the Ribbon to point out to the 

Solver (i) the cells that we’ve reserved for the decision variables, (ii) the cell 

that calculates the value of the objective function, and (iii) the cells that 

calculate the constraint left hand sides.  We’ll also enter values for the constraint 

right hand sides, and non-negativity constraints on the variables.  We can 

perform these steps in any order. 
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Defining Decision Variables 

To define the decision variables, use your mouse to select the range A1:A3 on 

the worksheet. Then click the Decisions button to open the dropdown gallery 

(shown below), and click Normal to define A1:A3 as normal decision variables 

or, if using Analytic Solver Desktop or AnalyticSolver.com, simply click the 

Decisions button to define A1:A3 as normal decision variables.   

 

Defining the Objective 

To define the objective, use your mouse to select cell A4 on the worksheet.  In 

Analytic Solver Desktop and AnalyticSolver.com, click the down arrow under 

Objective, then select Max and Normal from the menu to define A4 as a 

normal objective to be maximized – as shown on the next page.  Alternatively, 

you can click the Objective button to open the Add Objective dialog.  Click OK 

to accept the defaults and to define A4 as a normal objective to be maximized.  
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In Analytic Solver Cloud, click the down arrow under Objective and select 

Add/Change Objective.  Click OK to accept the defaults and to define A4 as a 

normal objective to be maximized. 

 

Defining Constraints 

To define the constraints, use your mouse to select the range B1:B5 on the 

worksheet.  Then, if using Analytic Solver Desktop or AnalyticSolver.com, click 

the Constraints button to open the Add Constraint dialog. 

Alternatively, you could also click the down arrow under Constraints, then click 

Normal Constraint and <= to define B1:B5 as the left hand sides of five <= 

constraints. 

 

If using Analytic Solver Cloud, click the down arrow under Constraints, then 

click Add Constraint to open the Add Constraint dialog.   

Within this dialog, you can enter the right hand side(s) as a constant number, a 

cell range, or a defined name.  Click in the Constraint edit box, or click the 

range selector icon to its right, and use your mouse to select the cell range 

C1:C5 for the right hand sides: 
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Then click OK.  This will define five constraints: B1 <= C1, B2 <= C2, B3 <= 

C3, B4 <= C4, and B5 <= C5. 

The Task Pane Model tab now shows all the elements of the optimization model 

you’ve just defined in outline form. 

   

You can solve the model immediately by clicking the Optimize button on the 

Ribbon, or by clicking the green arrow at the top right of the Task Pane. 
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The optimal values of the decision variables at A1:A3, the objective at A4, and 

the constraints at B1:B5 appear on the worksheet, and a Solver Result message 

(“Solver found a solution.  All constraints and optimality conditions are 

satisfied”) appears in green at the bottom of the Task Pane. 

You can view a log of solution messages on the Task Pane Output tab in 

Analytic Solver Desktop, and you can produce optimization reports by selecting 

Reports – Optimization from the Ribbon.  For more information about these 

features, keep reading! 

Using the Classical Solver Parameters Dialog 

When using Analytic Solver Desktop, you can also view – and create or edit – 

this model through the classical Solver Parameters dialog (as used in the 

standard Excel Solver).  To do so simply click Premium Solver on the Add-Ins 

tab on the Ribbon to display the Solver Parameters dialog.  Note:  This dialog is 

not supported in Analytic Solver Cloud or AnalyticSolver.com.  
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Comparing the Task Pane and Solver Parameters Dialog  

As you can see, the Task Pane Model tab and the Solver Parameters dialog 

contain the same information.  But where the Solver Parameters dialog is modal 

(moving the mouse outside the dialog displays a wait cursor – you must close 

the dialog to do anything else), the Task Pane is modeless:  You can move the 

mouse outside the pane, edit formulas on the worksheet, or use other commands. 

The Task Pane is initially docked to the right side of the Excel window, but you 

can select its title bar with your mouse, drag it to another position, and resize it, 

as shown on the next page.  To “re-dock” the Task Pane, select its title bar with 

the mouse, drag to a position just beyond the right edge of the Excel window, 

then release the mouse. 

Use the Model tab to view your model in outline form, and optionally edit 

model elements in-place.  Use the Platform tab to view or change Platform 

options, such as the number of optimizations or simulations to run, or default 

bounds on decision variables or uncertain variables.  Use the Engine tab to 

select a Solver Engine and view or change its options.  Use the Output tab to 

view a log of solution messages, or a chart of the objective values. 

Using Buttons on the Task Pane 

Use the buttons at the top of the Model tab to add or remove model elements 

(you can also use the Ribbon options to do this, as shown earlier), refresh the 

model outline when you’ve made unusual changes to the worksheet, analyze the 

structure of your model, or solve (run) the optimization or simulation model: 

     Analytic Solver Desktop and Cloud 

 

Remove 

element 

Add 

eleme

nt 

Refresh 

model 

Analyze model 

Solve 

model 
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 AnalyticSolver.com 

  

Use the buttons at the top of the Output tab to pause or stop the Solver, restore 

the original values of the decision variables, copy the solution message log to 

the Windows Clipboard (so you can paste the text into another application – 

Analytic Solver Desktop only), erase the solution log, analyze/solve the model 

and upload your results to Microsoft's Power BI or Tableau  (see step by step 

instructions below – Analytic Solver Desktop only).   

   Analytic Solver Desktop 

 

      Analytic Solver Cloud 

 
 

 d 

 

      AnalyticSolver.com 
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Exporting Data to Microsoft's Power BI 

Microsoft's POWER BI, for use with Office 365, is a cloud-based service that 

works with Excel to help you visualize your data using various charts and 

reports.  Analytic Solver Desktop includes the ability to export a fixed set of 

data from your optimization model, including final variable values, final 

constraint values, final objective function values, variable shadow prices or 

constraint reduced costs, etc.,  directly into a dataset in Power BI.  

Note:  Exporting your model to Power BI via the Output Pane on the Solver 

Task Pane is not supported in Analytic Solver Cloud or AnalyticSolver.com.  

However, it is possible to upload your model to Power BI using the Create App 

menu.  See the chapter, Creating Power BI Custom Visuals, that appears later on 

in this guide for more information.   

Once Solver has stopped with a final result message (even if a solution was not 

found), click the  icon on the Output tab to upload the model to the Power 

BI dashboard. If this is the first time that the icon has been clicked within the 

current Excel instance, you will be asked to log in  to Power BI.   

 

Once logged in, you will be asked to either update an existing dataset or create a 

new dataset.   
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In the screenshot above, we have created a new dataset, ProductMix, which will 

contain the objective, variable and constraint final values, shadow prices, dual 

values, etc from our optimization model.  Once the upload is complete, the 

following message will appear. 

 

Logon to Power BI (http://powerbi.microsoft.com/).  The newly created dataset 

will be listed under Datasets.    

 

Select ProductMix, then determine the components to be included in the graph.  

In the screenshot below we have created a pie chart displaying the final variable 

values by clicking the  icon to the right of the graph.    

http://powerbi.microsoft.com/
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Use the  icon to pin this graph to the Dashboard.   

 

Now, each time the model is solved, the results may be uploaded to your Power 

BI dashboard.  Click back to Excel and change the number of Speaker Cones in 

inventory from 800 to 825, then resolve either by clicking the green arrow on 

the Model tab in the Solver Task Pane or by clicking the Optimize icon on the 

Analytic Solver ribbon.  Once Solver stops with the final result message, 

"Solver found a solution.  All constraints and optimality conditions are 

satisfied.", click the  icon on the Output tab to upload the most recent 

results.  (Note:  We are not asked to log in to the Power BI site a second time 

since we are using the same instance of Excel.)  Click back to Power BI in your 

browser and refresh, the chart will update automatically with the new final 

variable values, as shown below.   



Frontline Solvers 2021 User Guide Page 75 

 

 

Exporting Data to Tableau 

Tableau is a popular interactive software package that allows you to visually 

explore and analyze your data.  Tableau can import data from a wide range of 

sources, including Excel workbooks, and it is often used in conjunction with 

Excel.  Because Tableau is designed to import data in table form, it hasn’t been 

easy to import the results of an optimization model (such as final values of the 

decision variables, constraints and objective) into Tableau, unless those model 

elements occur in table form by themselves in your spreadsheet (which usually 

isn’t the case). 

Analytic Solver simplifies this process considerably.  With a single click, you 

can convert the results of your optimization model into a set of Tableau Data 

Extract (.tde) files or HTML files using the Tableau Web Connector, open them 

directly in Tableau, and visualize them with a few clicks. 

Note:  Exporting your model to Tableau via the Output Pane on the Solver Task 

Pane is not supported in Analytic Solver Cloud or AnalyticSolver.com.  

However, it is possible to upload your model to Tableau using the Create App 

menu.  See the chapter, Creating Custom Extensions in Tableau, that appears 

later on in this guide for more information.   

Click the green arrow on the Output Tab to solve your optimization model.  

Once Solver has stopped with a final result message, click the  icon on the 

Task Pane Output tab to save the values for the objective function, constraints 

and variables to *.tde files or HTML files.  You will be prompted to select a 

folder where the Tableau files will be saved along with the type of Tableau 

export desired:  Tableau Data Extract or Tableau Web Connector.   

Note:  If exporting to an existing .tde file, data will be appended rather than 

overwritten.  As a result, when exporting to an existing .tde file, all data must be 

of the same structure as when the .tde file was first created.   
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Tablea Data Extract 

If Tableau Data Extract is selected, static data is exported to three files:  

Constraints.tde, Objective.tde and Variables.tde.  (Although .tde files are 

designed to hold multiple tables, currently Tableau’s software allows only one 

table per file.)  When you import this data into Tableau, Variables.tde will have 

one row for each decision variable, Constraints.tde will have one row for each 

constraint and Objective.tde will have just one row for the objective. 

• Each row of Variables.tde will contain the Excel cell address, the 

values of the variables at the time of extraction, the lower and upper 

bound of each variable, the optimization index and sensitivity 

information such as the reduced cost and allowable increase/decrease.  

• Each row of Constraints.tde will contain the Excel cell address where 

the constraint is located, the value of each constraint at time of 

extraction, the constraint lower and upper bounds, and information that 

would appear on a sensitivity report such as the shadow price, slack 

value, a 1 or 0 to indicate if the constraint was binding (1) or not (0), 

and the allowable increase/decrease. 

• Objective.tde will contain the Excel cell address where the objective is 

located, the value of the objective function at the time of extraction, 

and the optimization index. 

Note:  If exporting to an existing .tde file, data will be appended rather than 

overwritten.  As a result, when exporting to an existing .tde file, all data must be 

of the same structure as when the .tde file was first created.   

Once you select a folder, the *.tde  files will be created, and the following 

message will appear.   
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To open the files in Tableau, either double click each file (if using Desktop 

Tableau) or click Other Files under Connect and open the desired file(s).   

 

Tableau Web Connector 

The Tableau Web Connector offers much more flexibility over Tableau Data 

Extract by allowing you to refresh your data dynamically inside of Tableau.     

 

If Tableau Web Connector is selected, you will be prompted to select a folder in 

which to save OptimizationResults.html. This file will hold all contents 

described above for Constraints.tde, Objective.tde and Variables.tde. The 

following message will appear.   

Note:  If exporting to an existing .tde file, data will be appended rather than 

overwritten.  As a result, when exporting to an existing .tde file, all data must be 

of the same structure as when the .tde file was first created.   
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To open the files in Tableau, open a new workbook in Tableau and click 

Connect to Data. 

 

On the connect menu, select More Servers – Web Data Connector on the 

Connect menu.   

 

 

On the Web Data Connector dialog, enter the location displayed on the dialog 

shown above (i.e., http://localhost:8080/) and press Enter.   

http://localhost:8080/
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When the following dialog appears, click Constraints.html.   

Note:  The error highlighted in red is a simple warning that the URL is not 

pointing to a Tableau Web Data Connector file.  If we had entered a file name, 

such as http://localhost:8080/Constraints.html, the results would have 

immediately been uploaded to Tableau.   

 

To add more data, click Data – New Data Source on the Tableau ribbon, then 

repeat the actions described above.  

 

If your Solver results have changed, you'll need to refresh the results within the 

Tableau Web Connector HTML files.  To do so: 

1. In ASP, re-run your model 

2. Click the Tableau icon on the Output tab in the Solver Task Pane. 

3. Select Tableau Web Connector and the folder where the files should 

be saved. 

4. Click OK.   

5. In Tableau, click Data – Refresh All Extracts to update your data.   

For more information on using Tableau, please refer to the Tableau 

documentation found at http://www.tableau.com/.    

Introducing the Standard Example Models 
The approach outlined above in “From Algebra to Spreadsheets” is a ‘quick and 

dirty’ way to translate from a model in algebraic form to an equivalent 

http://localhost:8080/Constraints.html
http://www.tableau.com/


Frontline Solvers 2021 User Guide Page 80 

spreadsheet model, ready for optimization.  However, that approach will soon 

prove to be short-sighted when you wish to change the data (for example unit 

profits or parts on hand), expand the model to include more products or parts, or 

show the model to someone unfamiliar with the problem or uncomfortable with 

algebraic notation. 

Opening the Examples 

To see a better approach to defining this model, click Help – Examples on the 

Ribbon, which opens the workbook, Frontline Example Models Overview.xls.  

Click Optimization on the Overview tab. 

  

Then click the link StandardExamples.xls to open the workbook, showing the 

first worksheet EXAMPLE1. 

An optimization model – like the one we created ‘from scratch’ in the previous 

section – is already defined on this worksheet, and appears in the Task Pane 

Model tab, as shown below.  We could immediately solve this model by clicking 

the green arrow on the Model tab of the Solver Task pane.   
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How did this optimization model appear pre-defined in the workbook, you ask?  

We simply used the Ribbon (or the Solver Parameters dialog) to select the 

decision variables, objective and constraints, and the Solver engine (and any 

options or settings it requires).  Then we saved the workbook, in the usual way, 

with Excel’s Save command.  Models created in the standard Excel Solver, or an 

earlier version of Analytic Solver, Premium Solver, or Risk Solver can also be 

saved this way, and opened and immediately solved in Analytic Solver. 

More Readable and Expandable Models 

Worksheet EXAMPLE1 models the same problem we described in the previous 

section “From Algebra to Spreadsheets,” but the model is organized and laid out 

for easier readability and expandability. 

The decision variables (A1:A3 in the previous section) are in cells D9:F9, and 

nearby labels show their meaning.  The left hand sides of the constraints (B1:B5 

in the previous section) are in cells C11:C15, and the right hand sides are in cells 

B11:B15 – since these constant values can be in any position on the worksheet. 

Instead of using constants such as 75, 50 and 35 directly in the formula for the 

objective – as we did in the previous section – we’ve put these numbers in cells 

D17:F17.  The formula for the objective is =SUMPRODUCT(D17:F17,D9:F9) 

in cell D18.  This makes it easier to change product selling prices, or to obtain 

this data from an external data source, such as a database or accounting data file. 

Similarly, we’ve placed the coefficients of the constraints in cells D11:F15.  

These are exactly the constant values we saw in the algebraic statement of the 

problem in the previous section: 

Subject to 1 x1 + 1 x2 + 0 x3 <= 450   (Chassis) 

 1 x1 + 0 x2 + 0 x3 <= 250   (Picture tubes) 

 2 x1 + 2 x2 + 1 x3 <= 800   (Speaker cones) 

 1 x1 + 1 x2 + 0 x3 <= 450   (Power supplies) 

 2 x1 + 1 x2 + 1 x3 <= 600   (Electronics) 

In EXAMPLE1, the formula at cell C11 – the left hand side of the first 

constraint – is =SUMPRODUCT(D11:F11,$D$9:$F$9).  The formulas at 

C12:C15 were created by copying C11 downward. 

To enhance readability, borders and labels have been used to draw attention to 

the decision variables, the constraints, and the objective function.  If you haven’t 

used these Excel features before, select one or more cells, then choose the Home 

tab in Excel to see how to do this. 

EXAMPLE1 is also much easier to maintain and expand than a model 

constructed with ‘hardwired’ formulas, as in the previous section.  You can add 

products by inserting new columns, and add more parts by inserting rows, and 

copying any one of the existing left hand side formulas to the new rows; Excel 

will automatically adjust the formula cell references. 

In the next section, we’ll solve EXAMPLE1, and create and examine the 

Answer Report and Sensitivity Report for this model. 

Models, Worksheets and Workbooks 

There are several worksheets (EXAMPLE1, EXAMPLE2, etc.) in the 

StandardExamples.xls workbook.  As we proceed through this chapter, you’ll 

see that we can simply click a worksheet tab to display a new and different 
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model in the Task Pane on that worksheet.  Each of these models was created in 

the same way, and all of them are saved when you save the Excel workbook. 

In StandardExamples.xls, each model is entirely contained on one worksheet.  

But this is not required – one model can include cells from many different 

worksheets in the same workbook, and it can refer to constant information in 

other workbooks.  By default, models have the same names as the worksheets on 

which they are created, but you can give your own names to models, and create 

as many of them as you like.  This is described in the Frontline Solvers 

Reference Guide. 

Linear Programming Examples 
This section takes you on a quick tour of Analytic Solver features for linear 

programming (LP) problems.  We highly recommend that you ‘follow along’ by 

opening and actually solving the examples in this section. 

The first three examples are variants of the Product Mix model introduced 

earlier in this chapter.  Our factory is building three products:  TV sets, stereos 

and speakers.  Each product is assembled from parts in inventory, and there are 

five types of parts:  chassis, picture tubes, speaker cones, power supplies and 

electronics units.  Our goal is to produce the mix of products that will maximize 

profits, given the inventory of parts on hand.  Be sure to read “Introducing the 

Standard Example Models” above. 

Using the Output Tab and Creating Reports 

Click the tab to display the EXAMPLE1 worksheet.  To solve this linear 

programming problem; 

• In Analytic Solver Desktop, click the Optimize button on the Ribbon 

or click the green arrow at the top right of the Task Pane. 

• In Analytic Solver Cloud, click the Model button to open the task pane, 

then click the green arrow at the top right of the Task Pane or click the 

down arrow beneath Optimize on the Ribbon and select Solve 

Complete Problem. 

• In AnalyticSolver.com, click the Optimize button on the Ribbon or 

click the green arrow at the top right of the Task Pane. 

Almost immediately, the solution values appear in the decision variable cells: 

 

To maximize profit, we should make 200 TV sets, 200 stereos and 0 speakers. 

The Solver Results message “Solver found a solution.  All constraints and 

optimality conditions are satisfied” appears in green at the bottom of the Task 

Pane.  Don’t ignore this message, because it provides critical information about 
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what happened during the solution process, and what you can and cannot 

assume about the solution on the worksheet! 

If using Analytic Solver Desktop, click the Output tab at the top of the Task 

Pane to learn more about the solution process.  The solution log in the upper part 

of this pane reports what happened during the solution process.  If you are 

puzzled by the Solver Result message, simply click the underlined message in 

the log to open online Help to a full explanation of that message. 

 

If solving takes more than a few seconds, the Output tab automatically appears, 

and current best objective and other information, plus a running chart of the 

objective value, appears in the bottom part of the Task Pane.  

If using Analytic Solver Cloud or AnalyticSolver.com, the output pane will 

display the status of the model on the Solver Server as shown below. 

 

After solving, you can produce reports (such as the Answer Report and 

Sensitivity Report) by selecting Reports – Optimization from the Ribbon.  
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Unlike the standard Solver, you don’t have to choose reports immediately in the 

Solver Results dialog – you can select them later (until you perform another 

operation that creates new reports). 

 

The Answer and Sensitivity Reports appear as new worksheets, inserted into the 

workbook just to the left of the EXAMPLE worksheet, as shown on the next 

page.  The Sensitivity Report, which provides dual values (shadow prices and 

reduced costs) and associated ranges, is described in the Frontline Solvers 

Reference Guide. 

The Answer Report shows the message from the Task Pane Output tab, the 

Solver engine used, and statistics about the solution process.  It shows the 

beginning and ending values of the objective function and the decision variables.  

For the constraints, it shows the final cell value and formula, a status (whether 

the constraint was “binding” – satisfied with equality – at the solution, and a 

“slack value” for non-binding constraints. 

If using Analytic Solver Desktop, you can ask for outlined reports by clicking 

the “Reports are not outlined” choice on the Ribbon to change it to “Reports are 

outlined,” as shown above.  In this case, each block of decision variables and 

constraints appears in its own outline group.  Click the + symbol at the left edge 

of the report worksheet to show or hide each group in the outline.  Any 

comments that you enter when defining decision variables or constraints appear 

for each group in the report.  These features help you quickly find the 

information you want in a report created for a large model. 
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               Analytic Solver Desktop 

 

               Analytic Solver Cloud  

 

A Model with No Feasible Solution 

What does it mean when the Solver can find no feasible solution – no 

combination of values for the decision variables that satisfies all the constraints?  

It may be that the underlying business problem has no feasible solution – if so, 
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you’d like to focus on the ‘hardest-to-satisfy’ constraints, to see if you can do 

anything about them.  Or you might have just made a mistake setting up the 

model – for example choosing <= when you meant to choose >=. 

But in a large model, with thousands of constraints, how do you find your 

mistake, or focus on the ‘hardest-to-satisfy’ constraints?  Analytic Solver can 

help, by producing a Feasibility Report. 

Click the tab to display the EXAMPLE2 worksheet.  This is the same Product 

Mix model as in EXAMPLE1, but the supply of Chassis parts at B11 has been 

changed from 450 to -1.  Click the Optimize button in Analytic Solver Desktop 

or Optimize then Solve Complete Problem in Analytic Solver Cloud.  The 

message “Solver could not find a feasible solution” appears in red at the bottom 

of the Task Pane. 

Still TBD  Click Reports – Optimization – Feasibility on the Ribbon.  A 

Feasibility Report worksheet is inserted into the workbook, immediately to the 

left of EXAMPLE2 – with the contents shown on the next page. 

 

Notice that the report highlights the constraint on Chassis parts used, and the 

non-negativity constraints on products that are built from Chassis parts.   To 

satisfy the constraint C11 <= B11 where B11 is -1, we’d have to build a negative 

number of stereos (or TV sets).  In a large model with thousands of constraints 

with no feasible solution, this report can focus your attention on the “trouble 

spots” – the constraints that make the problem infeasible.  The set of constraints 

shown is called an IIS or Irreducibly Infeasible Subset of all the constraints.  For 

more information, please see the Frontline Solvers Reference Guide. 

An ‘Accidentally’ Nonlinear Model 

What if you intended to build a linear programming model, but you made a 

mistake and introduced a nonlinear function into the model?  Even if you 

understand the requirements of linear functions (explained in the chapter 

“Mastering Conventional Optimization Concepts”), in a large model with 

thousands of variables and constraints, where each constraint is computed by a 

chain of formulas, an accidentally introduced nonlinearity may be difficult to 

find.  Sometimes, a first-generation LP model is modified to make a previously 

fixed parameter into a decision variable – and this leads to an accidental 

multiplication of two variables.  

Click the tab to display the EXAMPLE3 worksheet.  This is the same Product 

Mix model as in EXAMPLE1, but the constraint left hand side formula for 

Chassis parts at C11 has been changed to read 

=SUMPRODUCT(D11:F11,D9:F9)^0.9.  (The power function clearly makes the 

constraint nonlinear.)  Click the Optimize button, or the down arrow beneath 

Optimize then Solve Complete Problem.  The message “The linearity 

conditions required by this Solver Engine are not satisfied” appears in red at the 
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bottom of the Task Pane.  (Note that we’re solving this model with the 

LP/Quadratic Solver.) 

If you are using Analytic Solver Desktop, click Reports – Optimization – 

Linearity on the Ribbon.  A Linearity Report worksheet is inserted into the 

workbook, immediately to the left of EXAMPLE3 – with the contents shown on 

the next page.  Note:  The Linearity Report is not supported in Analytic Solver 

Cloud or AnalyticSolver.com.   

The report highlights the constraint at C11 as a nonlinear function, and variables 

D9 and E9 that participate in calculation of this function.  (F9 does not appear, 

because its coefficient at F11 is zero.)  In a large model, this report can help you 

quickly find the source of an unintended nonlinearity. 

 

The Linearity Report, which is available in all of the Analytic Solver Desktop 

subsets that perform optimization, is very useful, but it does have two 

drawbacks: (i) It highlights only a constraint that behaves nonlinearly – but if 

this constraint is calculated through a chain of formulas, it may not highlight the 

exact cell formula where the nonlinearity first occurs.  (ii) It is based on a 

numerical test for linear or nonlinear behavior – a test that can be ‘fooled’ by a 

poorly scaled model.  (A ‘poorly scaled model’ is one that computes values of 

the objective, constraints, or intermediate results that differ by many orders of 

magnitude, which can lead to inaccuracy in computer arithmetic.) 

Using the PSI Interpreter to Check for Linearity 

If you have Analytic Solver Comprehensive, Analytic Solver Optimization, 

Analytic Solver Upgrade or Analytic Solver Basic in Analytic Solver Desktop or 

Cloud, you can use the Polymorphic Spreadsheet Interpreter to perform a 

symbolic test for linearity that cannot be ‘fooled’ by scaling problems.  (This 

functionality is not supported in AnalyticSolver.com.)  Click the tab to display 

the EXAMPLE3 worksheet.  On the Task Pane Platform tab, in the Diagnosis 

group of options, and ensure that the Intended Model Type is set to Linear: 
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Now click the Analyze button in the Task Pane, or select the dropdown choice 

Analyze Original Problem below the Optimize button on the Ribbon.  The 

Model Diagnosis portion of the Task Pane will pop up, showing the Model Type 

and related statistics, as shown on the next page. 

Notice that the Model Type is “NLP NonCvx”.  If you’re not sure about the 

meaning of any of the elements shown here, and you are using Analytic Solver 

Desktop, click the underlined link at the bottom of the Task Pane to display 

Help on that model element. 

 

Now click Reports – Optimization – Structure on the Ribbon.  A Structure 

Report is inserted into the workbook, just to the left of EXAMPLE3.  This report 

highlights the formula cells in your worksheet that violate the requirements of 

your Intended Model Type (in this case Linear).  In other words, this report 

shows the formulas that make your model nonlinear. 

 

For EXAMPLE3, this report again highlights the constraint at C11 and the two 

variables D9 and E9 (E9 in columns I and J, not shown to save space).  But 
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when a constraint or objective is calculated through a chain of formulas, this 

report normally finds the formula cell that first introduces a nonlinear 

relationship (such as a power operator, a function such as LOG, or 

multiplication of two cells that both depend on decision variables).  

EXAMPLE3!$C$11 in this report can be clicked to jump directly to that cell, so 

you can quickly inspect its formula. 

Note:  The Structure Report in Analytic Solver does not include the Name or 

Cell Value columns. 

Nonlinear Optimization Examples 
This section takes you on a quick tour of Analytic Solver features for nonlinear 

programming (NLP) and non-smooth optimization (NSP) problems, using the 

SOCP Barrier Solver, GRG Nonlinear Solver, and Evolutionary Solver.  We 

highly recommend that you ‘follow along’ by opening and actually solving the 

examples in this section. 

Portfolio Optimization: Quadratic Programming 

The simplest kind of nonlinear optimization model is a quadratic programming 

(QP) model, with a quadratic objective and all linear constraints.  Such a 

problem can be solved with a quadratic extension to the linear programming 

Simplex method – as in the LP/Quadratic Solver in Analytic Solver 

Comprehensive or Analytic Solver Optimization – or with the GRG Nonlinear 

Solver included in Analytic Solver Upgrade and Analytic Solver Basic. 

A classic example of this kind of model, shown in EXAMPLE4 in 

StandardExamples.xls, is a Markowitz-style portfolio optimization problem.  

In this model, we want to choose the mix of stocks to form an ‘efficient 

portfolio’ with the lowest possible risk (measured by portfolio variance) for a 

specified target rate of return.  Click the EXAMPLE4 tab to display the model. 

 

This model uses Excel defined names for certain cell ranges:  The objective cell 

I17 has the name Portfolio_Variance, which appears to the left of the formula 

bar when I17 is selected.  Cell I19 has the name Portfolio_Return.  The decision 

variables – the percentage of funds to invest in each of five stocks – are cells 

B9:F9, and this cell range has the name Allocations.  Cell H9 has the name 

Total_Portfolio.  These defined names appear in the Task Pane Model tab, as 

shown on the next page. 
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We can see immediately that this model will find values for the stock allocations 

that minimize portfolio variance, subject to constraints that (i) all funds are used 

(the sum of the stock allocations is 100% or 1.0) and (ii) the portfolio return is at 

least 9.5%. 

Cell I17 computes the portfolio variance using a special function 

QUADPRODUCT, which is defined by Analytic Solver.  This function can be 

used to compute any ‘quadratic form’ such as xTQx + cx.  In EXAMPLE4, the 

elements of the matrix Q are the covariances of returns of pairs of stocks, and 

the elements of the vector c (at B11:F11) are all zero.  You could instead 

compute portfolio variance using a series of Excel formulas using multiplication 

and addition, but it’s more convenient to use QUADPRODUCT. 

Charts of the Objective and Constraints 

Analytic Solver can help you visualize the shape of your problem functions (the 

objective and constraints).  If you haven’t been sure of the difference between a 

linear, quadratic, smooth nonlinear, and non-smooth function, you can use 

Analytic Solver to plot it. 

As an example, select cell I19 (the Portfolio Return) on the worksheet, and 

choose Decisions – Plot from the Ribbon.  This will plot I19 (whose formula is 

=SUMPRODUCT(Allocations,Stock_Returns)) as a function of the decision 

variables for Stock 1 through Stock 5, as shown on the next page. 
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The SUMPRODUCT function is a linear function, so unsurprisingly, Portfolio 

Return plots as a straight.  In contrast, select cell I17 (Portfolio Variance, the 

QUADPRODUCT function), and choose Decisions – Plot from the Ribbon.  

This function plots as a parabola – as expected for a quadratic function – 

showing only the positive values, since the decision variables are non-negative. 

 

Both of these plots are actually projections of a function in five dimensions 

(Stock 1 through Stock 5) onto two dimensions, along a vector from Point A to 

Point B, shown in the side panel.  You have many choices for Points A and B. 
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To find an optimal allocation of funds to stocks, just click the Optimize button.  

In an instant, the message “Solver found a solution.  All constraints and 

optimality conditions are satisfied” appears in green at the bottom of the Task 

Pane, the Portfolio Variance is 0.85% and the Portfolio return is 9.5%, and the 

decision variables contain: 

 

Solving with the GRG Nonlinear Solver yields the same values (to two decimal 

places) for the decision variables.  If you have Analytic Solver Comprehensive, 

Analytic Solver Optimization, Analytic Solver Upgrade or Analytic Solver 

Basic, you can also use the Standard SOCP Barrier Solver – just select it from 

the dropdown list at the top of the Task Pane Engine tab and click the Optimize 

button again.  This yields nearly the same values for the decision variables, 

Portfolio Return at I19, and Portfolio Variance at I17. 

 

We can also “turn this problem around” and seek to maximize Portfolio Return, 

subject to a constraint that Portfolio Variance is (say) no more than 1%.  To do 

this in Analytic Solver Desktop, we can edit the optimization model directly in 

the Task Pane: 

1. Select “Portfolio_Variance (Min)” under Objective in the outline. 

2. In the Objective Properties area below the outline, click the Address 

property and type or select cell I19 (or type “Portfolio_Return”).  

Change the Sense dropdown choice from Minimize to Maximize. 

 

 

3. Select “Portfolio_Return >= 0.095” under Constraints in the outline. 

4. In the Normal Constraint Properties area below the outline, click the 

Address property and type or select cell I17 (or type 

“Portfolio_Variance”), change the Relation dropdown choice to <=, 

and type 0.01 as the Right Hand Side) value. 

 

 

Since the Task Pane is not editable in neither Analytic Solver Cloud nor 

AnalyticSolver.com, we must perform a few different steps to edit the model 

when using either of these products. 
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1. Double click Portfolio_Variance (Min) under Objective, change 

Set Cell to I19 and set the "sense" of the objective to Max, then 

click OK. 

 

2. Double click Portfolio_Return >= 0.095 under Constraints, change 

Cell Reference to I17, change the constraint sense to <= and type 

0.01 as the Right Hand Side Constraint value.  Then click OK.   

 

The Task Pane Model tab should now appear similar to the one shown below.   

 

 

This problem now has a linear objective and a quadratic constraint; it is called a 

quadratically constrained or QCP problem.  It can no longer be solved by the 

methods used in the LP/Quadratic Solver (a quadratic extension of the Simplex 

method), but it can be solved by the GRG Nonlinear Solver, or (more 

efficiently) by the SOCP Barrier Solver. 

Solving with the SOCP Barrier Solver yields a Portfolio Return of 10.2%, a 

Portfolio Variance of 1% as expected, and the following values for the decision 

variables: 
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In “Multiple Parameterized Optimizations” in the chapter “Getting Results: 

Optimization,” we return to EXAMPLE4 and show how to automatically vary 

the Portfolio Return threshold, solve multiple instances of this portfolio 

optimization model, and create a chart of the efficient frontier. 

The original EXAMPLE4 QP model can be ‘scaled up’ to portfolios of many 

thousands of stocks, and solved quickly to optimality by the Large-Scale LP/QP 

Solver, the XPRESS Solver and the MOSEK Solver.  The modified QCP model 

can also be scaled up to portfolios of thousands of stocks, and solved quickly to 

optimality by the MOSEK Solver. 

A Model with IF Functions 

EXAMPLE5 in the StandardExamples.xls workbook was adapted from an 

actual user model, and illustrates a common situation seen by Frontline Systems 

in technical support.  This model was meant to be a linear mixed-integer 

(LP/MIP) model, but the user calculated the objective function based on several 

IF functions.  IF functions are certainly not linear functions – in fact they aren’t 

even smooth nonlinear functions! 

One of the remarkable things about Analytic Solver is that, in Automatic mode, 

it will transform this model to a linear mixed-integer model, and solve it to 

optimality in seconds, without any user intervention.  But in this Guide, we’ll 

first see how Analytic Solver behaves without Automatic mode.  Click the 

EXAMPLE5 tab to display the model. 
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The model has 9 decision variables, all constrained to be integer.  The general 

constraints are linear functions of the decision variables.  But the objective 

depends on I14, J14 and K14, each of which is a sum of three IF functions. 

To turn off Automatic mode, in the Task Pane Platform tab Transformation 

group of options, set the Nonsmooth Model Transformation option to Never. 

 

If we now click the Optimize button with the LP/Quadratic Solver selected, the 

message “The linearity conditions required by this Solver engine are not 

satisfied” appears in red at the bottom of the Task Pane. 

If we click the Analyze button in the Task Pane, or select the dropdown choice 

Analyze Original Problem below the Optimize button on the Ribbon, Analytic 

Solver reports that the model is nonsmooth with integers (NSP/MIP), as shown 

on the next page.   

 

 

This type of model commonly arises, but is difficult to solve with the standard 

Excel Solver, or with Analytic Solver Upgrade.  But Analytic Solver 

Comprehensive, Analytic Solver Optimization, Analytic Solver Upgrade and 

Analytic Solver Basic in Analytic Solver Desktop or Cloud can transform the 

model to eliminate the IF functions, replacing them with additional binary and 

continuous variables and linear constraints that have the same effect on the 

model as the IF functions.  The additional variables and constraints don’t appear 

on the worksheet, but they are handled internally by the PSI Interpreter and the 

selected Solver engine.  To do this, we simply set the Nonsmooth Model 

Transformation option to Automatic: 
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If we again analyze the model by clicking the Analyze button in the Task Pane, 

or by selecting the dropdown choice Analyze Transformed Problem below the 

Optimize button on the Ribbon, Analytic Solver reports that the the transformed 

model has 27 variables (18 of them integer) and 67 constraints, as shown on the 

next page.  But it’s now a linear programming (LP) model – so it can be solved 

by the LP/Quadratic Solver.  By solving this transformed model, we can find a 

solution to the original model on the EXAMPLE5 worksheet. 

 

When we now click the Optimize button, the message “Solver found a solution.  

All constraints and optimality conditions are satisfied” appears in green at the 

bottom of the Task Pane, and the objective function value at cell B19 is 2400.  

The message indicates that the Solver has found a proven optimal solution for 

the original problem with IF functions. 

The PSI Interpreter can automatically transform models containing IF, AND, 

OR, NOT, ABS, MIN and MAX, and relations <, <=, >= and > into equivalent 

models where these non-smooth functions are eliminated.  When this 

transformation is sufficient to make the overall model linear – as it was in this 

case – you can use the LP/Quadratic Solver or a large-scale LP/MIP Solver 

engine to solve the problem. 

A Model with Cone Constraints 

In the EXAMPLE6 and EXAMPLE7 worksheets, we wish to solve a model to 

optimize the location of an airline hub.  The hub will serve six cities, each of 

which is located at some latitude and longitude (in these models, we use simple 

X, Y coordinates).  We want to choose a location (X, Y coordinate) for the 

airline hub that will minimize the maximum distance from the hub to any of the 

six cities.  The distance from the hub (X, Y) to a city (Xc, Yc) is SQRT( (Xc - 

X)2 + (Yc - Y)2 ).  The model is pictured below.  In EXAMPLE6, we model and 

solve the problem using the GRG Nonlinear Solver.  In EXAMPLE7, which 

requires Analytic Solver Comprehensive, Analytic Solver Optimization, 

Analytic Solver Upgrade or Analytic Solver Basic, we model the problem using 

cone constraints, and solve it using the SOCP Barrier Solver. 
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Modeling the Problem with Nonlinear Functions 

 

In EXAMPLE6, our decision variables are the (X, Y) coordinates of the airline 

hub, at cells D12:E12, and a third decision variable at F19.  Cell F19 also serves 

as the objective function, to be minimized.  We calculate the distance from the 

hub to each of the six cities in cells F13:F18.  We define a block of constraints 

F13:F18 <= F19 – this means that the distance from the hub to each city must be 

less than or equal to the decision variable F19, which the Solver will minimize.  

The effect of these constraints is to cause the Solver to find values for D12:E12 

– the (X, Y) coordinates of the hub – that minimize the maximum distance to 

any of the cities. 

Click the EXAMPLE6 tab to display the model, and click Analyze – Analytic 

Original Problem.  We see that the model is diagnosed as smooth nonlinear 

(NLP), with 3 variables and 7 functions.  Notice that the Standard GRG 

Nonlinear Solver is selected. 

Click the Optimize button.  The message “Solver found a solution” appears in 

green at the bottom of the Task Pane.  The optimal location for the airline hub is 

at X = 1.25, Y = 4.0, and the maximum distance from this location to any of the 

six cities is 2.1360 units. 

Modeling the Problem with Cone Constraints 

In EXAMPLE4, we solved the simplest kind of nonlinear optimization problem, 

a portfolio optimization QP model with a quadratic objective and all linear 

constraints, and a variation that was a QCP model, with a quadratic constraint .  

We saw that we could solve the problem with the GRG Nonlinear Solver, but 

we could also solve both variations of the problem with the SOCP Barrier 

Solver – and we learned that we could more easily ‘scale up’ the SOCP problem 

to large size, with thousands of stocks or more. 

We can do the same thing with the airline hub problem.  The model is a little 

more complex, with more variables and constraints – but this allows the Solver 
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to exploit the structure of the model, and solve it more quickly and reliably.  To 

do this, we will explicitly use cone constraints. 

We have actually used a simple kind of cone constraint before – in EXAMPLE1, 

our first linear programming problem, at the beginning of this chapter.  In that 

model, we used an objective and constraints that were linear functions of the 

decision variables, and non-negativity constraints on the variables.  These 

constraints specified that the variables must lie within a simple kind of cone, 

called the non-negative orthant. This first order cone places a bound on the L1-

norm of the vector of decision variables: 

 

In our reformulation of the airline hub problem in EXAMPLE7, we’ll specify 

that groups of variables must lie within a second order cone (also called a 

Lorentz cone, or “ice cream cone”) – a convex set that looks like this:  

 

This cone places a bound on the L2-norm of the vector of decision variables.  If 

A1:A3 are variables that lie within this cone, then  

A1 >= SQRT(SUMSQ(A2:A3)) must hold.  A problem with a linear objective 

and linear or second order cone (SOC) constraints is called a second order cone 

programming (SOCP) problem; it is always a convex optimization problem. 

Second order cone programming is the natural generalization of linear program-

ming.  It offers the same advantages of convexity and scalability to large 

problems offered by linear programming – but for a broader class of models.  

For history buffs, Premium Solver Platform V6.0 was the first commercial 

software product to offer broad support for second order cone programming. 

The EXAMPLE7 worksheet is shown below.  In this model, we compute the 

simple differences Xc – X and Yc – Y between the airline hub coordinates and 

the coordinates of each city.  We define new variables F21:F26, G21:G26, and 

H21:H26.  We use constraints to make G21:G26 equal to the Xc – X 

differences, and H21:H26 equal to the Yc – Y differences. 

Then we specify that each set of three variables (for example F21, G21, H21) 

must belong to a second order cone – hence F21 >= SQRT(SUMSQ(G21:H21)) 

– and likewise for F22, G22, H22, etc.  Finally, we use one more variable F27 as 

the objective to be minimized, and we add a block of constraints F21:F26 <= 

F27 – much as we did in EXAMPLE6.  The effect of these constraints is to 

cause the Solver to find values for the (X, Y) coordinates of the hub – now at 

D14:D15 – that minimize the maximum distance to any of the cities. 
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Click the EXAMPLE7 tab to display the model, and click Analyze – Analyze 

Original Model.  We see that this formulation of the model is diagnosed as 

second order cone programming problem (SOCP), with 21 variables and 19 

functions.  Notice that the SOCP Barrier Solver is selected to solve the problem. 

Click the Optimize button.  After a moment, the same optimal solution as in 

EXAMPLE6 is found.  In this simple example, both the Standard GRG 

Nonlinear Solver and the SOCP Barrier Solver solve the problem in sub-second 

time.  But if we were to scale up this model to large size – say with 1,000 cities 

– the SOCP Barrier Solver would likely show a speed advantage. 

Solving an Optimization Model using Excel Online or 
Google Sheets 

In late 2014, Frontline Systems released Solver App for use with Excel 2013 and 

Solver Add-on for use with Google Sheets. With the Solver App you can define 

and solve optimization problems in your Excel workbook, using Excel Online in 

Office 365, the Excel Web App in SharePoint 2016 or 2013, or desktop Excel 

2016 or 2013.  With the Solver Add-on, you can define and solve optimization 

problems in Google Sheets.  You can create and solve models on tablets, 

phones, or anywhere a Web browser can be used.  Solver models that you may 

already have created in old or new versions of Microsoft Excel, are 

automatically recognized by the Solver App and , after the existing worksheet is 

published, with the Solver Add-on. 
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In Analytic Solver Desktop and AnalyticSolver.com, the Freeze and Thaw 

buttons were combined into a single Publish button, as shown in the screenshot 

below. (In Premium Solver Pro/Platform where there was no Freeze/Thaw 

function, the Ribbon now includes a Publish icon.)  Note:  This functionality is 

not supported in Analytic Solver Cloud.   

 

Like the “Freeze” button, the Publish button can be used to prepare a workbook 

for distribution to other users who don’t have Analytic Solver or its subsets 

installed: All formulas containing Psi function calls (which would yield 

#NAME? for other users) are replaced by their values, and the formulas are 

saved, so they can be restored later by choosing “Unpublish” (equivalent to the 

old “Thaw”). 

But the major use of the Publish button in ASP and later, is to prepare a 

workbook for use with our Solver/Risk Solver Apps for Excel Online and our 

Solver/Risk Solver Add-on for Google Sheets (the online spreadsheets have 

limited or no support for user-defined functions).   

In ASP,  when a model is published, the limits for Solver App (for Excel Online) 

and Solver Add-on (for Google Sheets) will be automatically adjusted to match 

the problem limits of your license.  For example, if you purchased a license for 

Analytic Solver, then you will be able to solve linear models using the Solver 

App or Solver Add-on with up to 8,000 variables and constraints and nonlinear 

or nonsmooth models with up to 1,000 variables and constraints, if you publish 

your model first by clicking the Publish button on the Analytic Solver ribbon.   

 

Let’s go back to the model on the Example1 tab used in the section above, click 

the Publish icon on the Ribbon to display the following dialog. 

 

Select Google Sheets then Publish.  (If you are a user of Excel Online, please 

see the example below.)  Make sure to save the workbook before uploading to 

Google Drive. 

Note:  Only the Active Worksheet is published.   To solve a model on a different 

worksheet within the same Workbook (say Example2), you’ll need to publish 

that worksheet separately.  This is important when solving an optimization 
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model.  If solving a simulation model, this does not apply.  (For an example on 

how to solve a simulation model with Excel Online or Google Sheets, please see 

the next chapter.)   

Log on to your Google Drive account and upload Standard Example.xls, then 

open this file in Google Sheets.     

Uploading and Opening Files in Google Sheets 

Click the orange New button then select File Upload to upload the 

StandardExamples.xls spreadsheet to Google Drive.   

 

Browse to the location of the file, typically C:\Program Files (x86)\Frontline 

Systems\Analytic Solver Platform\Examples (if using 32 bit Excel with 64 bit 

Windows) or C:\Program Files\Analytic Solver Platform\Examples (if using 64 

bit Excel or 32 bit Excel with 32 bit Windows).  StandardExamples.xls will 

appear under My Drive.   

Double click the file to open in Google Drive Preview Viewer (shown below).  

Click Open – Google Sheets.   

 

 

To add the Solver Add-on, choose the menu option Add-ons - Get Add-ons... 
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In the Add-ons dialog, scroll until you see Solver.  Click to select and install. 
 

 

 

Once these steps are finished, Solver should now appear on the Add-ons 

menu.    
 

 

Choose Add-ons - Solver - Start. The Solver Task Pane (Google calls this a 

Sidebar) will appear containing the Solver model:  objective, variables, and 

constraints.   
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Since this is a linear model, click the down arrow to the right of GRG Nonlinear 

under Solving Method to select the LP/Quadratic engine.   

 

Click Solve to run the Simplex LP engine to solve the linear model.  The Solver 

Add-on solves the model, inserting the final variable values of 200/200/0 in cells 

D9:F9 and finding an objective equal to $25,000.  Note:  Reports, such as 

Answer Report, Sensitivity Report, and/or Limits reports, are not supported in 

the Solver Add-on.   

The Solver Sidebar behaves much like the Excel Solver dialog.  To change a 

constraint, simply highlight the desired constraint and click Change.  To delete a 

constraint, highlight the desired constraint and click Delete.  Click Reset All to 

clear the objective, all variables and constraints, and all options settings.  Select 

Options to change an engine option such as Constraint Precision, Automatic 
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Scaling, Convergence, etc.  For more information on each of these options, 

please see the Engine Option chapter in Frontline Solvers Reference Guide.   

 

 

Now let’s Publish this same model to Excel Online.  Let’s go back to Excel and 

StandardExamples.xls.  Click Publish – Unpublish.  

Reopen the Publish dialog by clicking Publish.  Confirm that Excel Online is 

selected.  Click Publish to publish the worksheet to Excel Online.   

Note:  Only the Active Worksheet is published.   To solve a model on a different 

worksheet within the same workbook (say Example2), you’ll need to publish 

that worksheet separately.  This is important when solving an optimization 

model.  If solving a simulation model, this does not apply.  (For an example on 

how to solve a simulation model with Excel Online or Google Sheets, please see 

the next chapter.)   
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Now Save the file as StandardExamples.xlsx on your SharePoint or Office 365 

site.   

Note:  In order to use the Solver App, your file must be saved on SharePoint or 

Office 365 site.  This app cannot solve models saved on your local hard drive.   

Open the workbook using Excel Online, then click Edit Workbook – Edit in 

Excel Online.   

 

Click Insert – Office Add-ins. 

 

Select the Store tab and search for Solver, then select (2nd app in the list) and 

Install.  Note:  A Premium Solver app which solves linear models with more 

than 200 variables and nonlinear models with more than 200 variables and 200 

constraints is available for purchase.  Please contact Frontline Systems for more 

information at sales@solver.com.   

Please see the next chapter for an example on the use of the Risk Solver App. 

mailto:sales@solver.com
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The Solver App task pane opens to the right on your screen.   

 

Simplex LP has already been selected for Solving Method.  Click Solve to run 

this engine to solve this simple linear model.  If running for the first time, you 

will be asked to Trust the App.   
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Solver inserts the final variable values 200/200/0 into cells D9:F9 and adds the 

final result message “Solver found a solution. All Constraints and optimality 

conditions are satisfied.” to the bottom of the Solver pane.    

 

 

 

Note:  The Answer Report and Sensitivity Report are only supported when using 

the Solver App within Excel 2016.  You can create the reports after Solver has 

found a solution by clicking the Create Report icon located in the title bar of the 

Solver App.  If using Excel 2013, Excel for iPad & iPhone or Excel Online, you 

will not have the option to create reports.   

 

 

This task pane behaves much like the Excel Solver.  To Add a constraint, click 

Constraints, then Add.  To Change or Delete a constriant, select the desired 

constraint and click Change or Delete. To change an engine option, click Engine 

then Options.  For more information on each of these options, please see the 

Engine Option chapter in Frontline Solvers Reference Guide.     
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Examples:  Simulation and Risk 
Analysis 

Introduction 
This chapter introduces simulation and risk analysis in Analytic Solver, with a 

series of examples.  Each of these examples with the exception of the last one 

can be used in Analytic Solver Simulation. 

• “A First Simulation Example” takes you step-by-step through the process of 

building and analyzing a risk analysis model using Monte Carlo simulation. 

• “Airline Revenue Management Example” takes you through three versions 

of an airline yield management problem, to illustrate a single simulation, 

multiple parameterized simulations, and simulation optimization. 

A First Simulation Example 
Building a simulation model in Analytic Solver is straightforward:  You simply 

build a conventional spreadsheet model, designed for ‘what-if’ analysis.  Next, 

you identify the inputs to your model that are uncertain, and use PSI 

Distribution functions to describe the uncertainty.  Then, you identify the 

outputs of special interest (such as Net Profit), and use PSI Statistics functions 

to examine or summarize how they behave in light of the uncertainty. 

To open this example in Analytic Solver Desktop or Analytic Solver Cloud, 

click Help – Examples on the Ribbon, which opens a workbook Frontline 

Example Models Overview.xls.  Click the Simulation link. 
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We’ll build the simulation model step-by-step in this section using the model in 

the worksheet, BusinessForecast.  To view the completed model, see the 2nd tab 

in the workbook, BusinessForecastPsi. 

Uncertain Variables 

In any problem, there are factors or inputs that you can control – for example, 

the price you set for a product, and factors or inputs that you cannot control – 

for example, customer demand, interest rates, etc.  Analytic Solver uses 

uncertain variables (random variables in mathematics) to represent inputs that 

are uncertain and beyond your control.  (It uses decision variables to represent 

factors or inputs that you can control.) 

Uncertain Functions 

You will also have outputs or results of interest – such as Net Profit – that you 

can compute, using formulas that depend on the factors influencing the problem 

– possibly both decision variables and uncertain variables.  We’ll use the term 

uncertain functions for quantities whose calculation depends on uncertain 

variables (in mathematics these are called functions of random variables). 

A Business Planning Example 

We’ll illustrate the process of building a simulation model step by step, using a 

simple business planning example.  Imagine you are the marketing manager for 

a firm that is planning to introduce a new product.  You need to estimate the first 

year profit from this product, which will depend on: 

• Sales in units 

• Price per unit sold 

• Unit manufacturing cost 

• Fixed costs and overhead 

Profit will be calculated as Profit = Sales * (Price - Unit cost) - Fixed costs. 

Fixed costs are known to be $120,000.  But the other factors all involve some 

uncertainty.  Sales in units can cover quite a range, and the selling price per unit 

will depend on competitor actions.  Unit manufacturing costs will also vary 

depending on vendor prices and production experience. 

Uncertain Variables:  Sales and Price 

Based on your market research, you believe that there are equal chances that the 

market demand will be Slow, OK, or Hot for this product: 

• In the Slow market demand scenario, you expect to sell 50,000 units at an 

average price of $11.00 per unit. 

• In the OK market scenario, you expect to sell 75,000 units, but you'll likely 

realize a lower average selling price of $10.00 per unit. 

• In the Hot market scenario, you expect to sell 100,000 units, but this will 

bring in competitors who will drive down the average selling price to $8.00 

per unit. 

Since the scenarios are equally likely, your average volume is 75,000 units, and 

your average price per unit is $9.67.  But think: How likely is this average case?  

(Will it ever actually occur?) 
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Uncertain Variables:  Unit Cost 

Your firm’s production manager advises you that unit costs may be anywhere 

from $5.50 to $7.50, with a most likely cost of $6.50.  The most likely cost is 

also the average cost. 

Uncertain Function:  Net Profit 

Net Profit is calculated as Profit = Sales * (Price - Unit cost) -Fixed costs.  

Sales, Price and Unit costs are all uncertain variables, so Net Profit is an 

uncertain function. 

A What-If Spreadsheet Model 

At this point, you can summarize the problem in the Excel model pictured 

below, which calculates Net Profit based on average sales, price, and unit cost.   

 

The Net Profit figure of $117,750 (=B4*(B5-B6)-B7) calculated by this model, 

based on average values for the uncertain factors, is quite misleading, as we’ll 

see in a moment.  The true average Net Profit is closer to $93,000!  In the spirit 

of Prof. Sam Savage’s book The Flaw of Averages, we’ll refer to the model 

above as the Flawed Average model. 

Defining a Simulation Model 

To “stress test” this model, we need to replace the fixed Sales, Price and Unit 

cost amounts with variable amounts that reflect their uncertainty. 

Since there are equal chances that the market will be Slow, OK, or Hot, we want 

to create an uncertain variable that selects among these three possibilities, by 

drawing a random number – say 1, 2 or 3 – with equal probability.  We can do 

this easily in Analytic Solver using an integer uniform probability distribution.  

We’ll then base our Sales Volume and Selling Price on this uncertain variable. 

If using Analytic Solver Desktop or AnalyticSolver.com, we’ll choose a 

currently empty cell, B9, to hold this distribution by clicking on it and selecting 

Distributions - Discrete on the Ribbon.  This displays a cascading menu, as 

shown on the next page.   

                                                Analytic Solver Desktop  
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A sample drawn from a discrete distribution is always one of a set of discrete 

values, such as integer numbers.  We click to choose IntUniform from the 

gallery or menu.  Analytic Solver displays the Uncertain Variable dialog for a 

integer uniform distribution, initially with parameters lower 0 and upper 10: 

 

We click in the Value column and change the parameters to read lower 1 and 

upper 3.  This means that on each trial, we’ll draw a number 1, 2 or 3 from this 

distribution.  As we do, the chart of probability mass (density) is updated: 
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When we click the Save icon  in the dialog toolbar in Analytic Solver 

Desktop or the Save button at the bottom of the dialog in Analytic Solver Cloud 

or AnalyticSolver.com, a formula =PsiIntUniform(1,3) is written to B9.  B9 is 

now an uncertain variable.  For each trial of the Monte Carlo simulation, a 

different value – either 1, 2 or 3 – will appear in cell B9.  When we run a Monte 

Carlo simulation of (say) 1,000 trials, 1,000 different values of 1, 2 or 3 will be 

sampled for this cell’s value. 

Now, we need to select one of the three sales scenarios in formulas for Sales 

Volume and Selling Price.  With cell B4 selected, we enter the formula: 

=CHOOSE(B9,E5,E6,E7)  for Sales Volume 

This will cause B4 to return 100,000, 75,000, or 50,000, depending on the value 

in B9.  Next, with cell B5 selected, we enter the formula: 

=CHOOSE(B9,F5,F6,F7)  for Selling Price 

This will cause B5 to return $8, $10 or $11, depending on the value in B9. 

Notice that the values returned by B4 and B5 are related, or correlated:  Higher 

sales volume is accompanied by lower selling prices, and vice versa.  If we had 

scenarios with 100,000 units sold at $11 each, our model would be unrealistic.  

Analytic Solver has more versatile ways to specify correlation between 

uncertain variables, but this approach is easy to understand in this example. 

Next, we’ll deal with Unit Cost.  We have not just three, but many possible 

values for this variable: It can be anywhere from $5.50 to $7.50, with a most 

likely cost of $6.50.  A crude but effective way to model this is to use a 

triangular distribution.  Analytic Solver provides a function called 

PsiTriangular() for this distribution. 

With cell B6 selected, we select Distributions – Common – Triangular from 

the Ribbon. 
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(Unlike a discrete distribution, a sample drawn from a continuous distribution 

can be any numeric value, such as 5.8 or 6.01, in a range.)  Analytic Solver 

displays the Uncertain Variable dialog with a chart of the triangular distribution, 

initially from 0 to 3, peaking at 1. 

 

To see more of the features of this dialog, try clicking on the Parameters drop 

down at the top of the right panel.  See Frontline Solvers Reference Guide for 

more information.   

The minimum, most likely, and maximum values for Unit Cost are in cells E11, 

E12 and E13.  If we enter these cell references – not just the numbers 5.50, 6.50 

and 7.50 – into our PsiTriangular() function call, we’ll have a more flexible 

model.  To start, we simply click in the Value field for the min  parameter. 
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Now we can either type in a number or cell reference, or we can click the  

button at the right edge of the field: When we do this, a small dialog appears.  

Type “E11”, then click OK.    

 

If using Analytic Solver Cloud or AnalyticSolver.com, simply type the cell 

address into the min field.   

Now E11 appears as the min (a) parameter.  Since at this moment, the min (a) 

value of 5.50 is greater than the max (b) value of 3, the error “The distribution is 

invalid with the current values of the parameters” is displayed instead of the 

chart.  This is a hint that the parameters are inconsistent.  (If using Analytic 

Solver Cloud, click OK to clear the error and continue editing the Parameter 

fields.)  The chart reappears once we enter references to cell E12 for likely (c) 

and E13 for max (b).  When we click the Save icon, 

=PsiTriangular(E11,E12,E13) is inserted into cell B6. 

 

We’ve now defined the uncertain variables in our model.  Anything calculated 

from these uncertain variables is an uncertain function, but usually we’re 

interested only in specific results such as Net Profit at cell B11.  When we run a 

simulation, B11 will effectively hold an array of values, each one calculated 

from different values sampled for B4, B5, B6 and B7. 
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What would we like to know about the array of values for Net Profit at cell B11?  

The simplest summary result is the average (or mean) Net Profit.  Note that this 

will be the true average of Net Profit across 1,000 or more scenarios or trials – 

not a single calculation from average values of the inputs. 

Click Results to open the Simulation Results dialog then select Statistics from 

the left and Mean from the right.  Enter the output cell and the cell where the 

statistic is to be placed, then click Insert.   

 

Selecting Uncertain Functions 

When we define a summary statistic, such as =PsiMean(B11), we’ve implicitly 

designated cell B11 as an uncertain function.  Analytic Solver will keep track 

of the full range of trial values for B11 during a simulation, and will display 

frequency and sensitivity charts, statistics and percentiles for it on demand.  As 

noted above, in principle anything calculated from the uncertain variables is an 

“uncertain function” – but to save time and memory, Analytic Solver keeps 

track of trial values only for the formula cells that we designate as uncertain 

functions. 

What if we want to designate cell B11 as an uncertain function without calculat-

ing any summary statistic for it on the worksheet?   

With cell B11 selected, select Results to open the Result Dialog, then click OK 

to accept Output for Category and In Cell for Function.   

 

This will modify cell B11’s formula =B4*(B5-B6)-B7 to read =B4*(B5-B6)-B7 

+ PsiOutput().  If we don’t want to modify this formula, we can instead choose 

Results – Output – Referred Cell.   
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If we click in cell B12, this cell will contain =PsiOutput(B11).  Any one of 

these three actions – defining a summary statistic such as PsiMean() on B11, add 

PsiOutput() to the formula in cell B11, or placing =PsiOutput(B11) in another 

cell – is sufficient to designate cell B11 as an uncertain function. 

Our model now looks like the one pictured below.  Notice that the Task Pane 

Model tab shows our simulation model in outline form, and cell B12, where we 

placed the PsiMean() function, displays as #N/A – because a simulation has not 

yet been executed.   

 

Running a Simulation 

Click the green arrow on the Model tab to start a simulation.  With an old-

fashioned simulation software package, you’d press a button to start a 

simulation, then perhaps get a cup of coffee.  Because simulations ran slowly, 

software packages were designed for “batch” operation:  You’d spend time 

getting everything set up just right, run a simulation and wait (sometimes quite a 

while), then spend time analyzing the results.  But with Analytic Solver, you'll 

find that in the blink of an eye, your first Monte Carlo simulation is complete!   

Since there is one uncertain function, and this is the first time a simulation has 

been performed, the following dialog opens.  Subsequent simulations will not 

produce this report.  However, it is possible to reopen this frequency chart 

simply by double clicking cell B11.  (See below for more information on this 

chart.)     
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If your simulation model contains more than one output function, then a chart 

containing frequency graphs of up to 9 output functions and uncertain variables 

will appear.  For example, if the uncertain variable in cell B6 was also selected 

to be an output cell (B6 = PsiTriangular(0, 1, 3) + PsiOutput()) and a simulation 

was performed, the following graph would appear at the end of the simulation. 

Analytic Solver Desktop  

 

Analytic Solver Cloud displays only output functions; B6 and B11 in this 

example.   
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Analytic Solver Cloud  

 

Double clicking the "$B$6(func)" chart in Analytic Solver Desktop will open 

the B6 uncertain variable dialog, as shown below.   To open the uncertain 

function dialog, click the Show Output icon on the top left of the title bar.    

 

Double clicking "BusinessForecastPsi!B6" in Analytic Solver Cloud will open 

the uncertain function dialog, as shown below.   
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If you select Percentiles from the drop down menu on the top right, you’ll notice 

that the the vertical red lines displayed on the chart denote the 5% and the 95% 

percentiles values of 5.82 and 7.18, respectively. 

 

       

 

Each of the 5 values at the top of the chart can be edited in Analytic Solver 

Desktop.  For example, the red lines can be moved to the left or right until the 
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desired percentile is achieved, or you can directly edit the percentile or the 

percentile’s value by clicking the value to be changed.  Note:  This functionality 

is not supported in Analytic Solver Cloud or AnalyticSolver.com.  The red lines 

denoting the 5th and 95th percentiles are both stationary in these products.   

 

If you close the uncertain variable dialog for cell B6, (by clicking the X in the 

top right corner) you will see that cell B12 displays the true average for Net 

Profit across these trials – as shown below. 

 

The result of “shaking the ladder” is striking:  Our true average Net Profit for 

these 1,000 trials is $92,250 – quite a bit less than the “Flawed Average” Model 

figure of $117,750!  And we also see that we can lose money.  Notice that the 

first eight percentiles are negative in the screenshot below.  
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In Analytic Solver Desktop you can try pressing F9 (the Excel recalculate key) 

on this model:  Each time you do, another 1,000 Monte Carlo trials are run, and 

a slightly different true average Net Profit figure will be displayed – but 

normally much less than $117,750. 

Interactive Simulation in Desktop Solver 

We’ve just seen that the mean or ‘True Average’ Net Profit, over 1,000 different 

simulated outcomes, is less than we expected from our naïve “Flawed Average” 

model.  We’ve also seen that in some outcomes, our Net Profit is actually a loss.  

A quick look at the dropdown galleries for Results – Statistic, Measure and 

Range on the Ribbon suggests that we can easily compute and view many other 

statistics about Net Profit.  But we’d really like to see the full range of outcomes 

in this model.  This is very easy to do in Analytic Solver Desktop using 

Interactive Simulation.  Note:  Interactive Simulation is not supported in 

Analytic Solver Cloud or AnalyticSolver.com.   

With Interactive Simulation turned on, simply move the mouse pointer to B11 

and wait about 1 second.  A miniature, live frequency distribution chart of the 

simulation trial values for cell B11 appears automatically: 

 

To see and do more, just double-click on B11, the output cell calculating Net 

Profit, to display the same frequency chart that was automatically opened after 

our first simulation run.   
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Viewing the Full Range of Profit Outcomes 

We see immediately that in some outcomes, we can lose of lot of money – over 

$60,000!  We also see that we make a profit in most outcomes – but how many 

exactly?  Analytic Solver automatically sets a Lower-Cutoff of “0” in the 

Frequency chart by displaying a vertical red bar.  The probabilities are 

automatically shown above the chart. In this case there is an 8.4% chance of a 

loss and a 91.60% chance of a profit.  In Analytic Solver Desktop, the lower 

cutoff can be changed by clicking the $0 at the top of the chart.  The percentile 

values can be edited in the same way.  

 

 

Note:  If you change the lower cutoff from 0 to -10, you’ll notice the 

red vertical line denoting the lower cutoff of $0 has now moved to -$10 

and the percentile values have also changed accordingly.   Percentile 

values can be edited in the same way or by simply moving the red 

vertical line to the left or right.    
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Looking at the right panel you can see the Statistics view, which includes 

summary statistics for the full range of Net Profit outcomes.  We can see that the 

worst case outcome (Minimum) of this simulation was -$66,629, and the best 

case outcome (Maximum) was +$213,347.  Value at Risk 95% shows that we 

have a 5% chance of making $15,629 or less.  The Conditional Value at Risk 

95% value indicates that the average profit we will see (up to the 95% 

percentile) is $87,012.  

Another view of the full range of outcomes is shown on the Cumulative 

Frequency tab. 

 

Click on the Statistics drop down at the top of the right panel and choose 

Percentiles from the list. 
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The Percentiles tab shows the same information as the Cumulative Frequency 

tab, but in numeric form.  Below, we’ve shown the 75th through 99th percentiles: 

 

Note that you can close and open the right hand panel simply by clicking on the 

two arrows on the vertical bar between the chart and the right hand panel. 

Analyzing Factors Influencing Net Profit 

Other tabs on the Uncertain Function dialog can help us understand how the 

uncertain variables in our model influence our Net Profit. 

Sensitivity Tab 

The Sensitivity tab displays a “Tornado chart” that shows you how much Net 

Profit changes with a change in the uncertain variables – the Triangular 

distribution for Unit Cost at cell B6, and the integer uniform distribution at cell 

B9.  In this model there are only two uncertain variables, but in a large model 

with many such variables, it’s usually not obvious which ones have the greatest 

impact on outcomes such as Net Profit.  A Tornado chart highlights the key 

variables:  B6 has a negative correlation with Net Profit, whereas B9 has a 

positive correlation. 
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The fact that Net Profit goes down as our Unit Cost at B6 goes up is expected.  

But why does Net Profit go up as cell B9 goes up? Note that B9 = 1 corresponds 

to the Hot market scenario, 2 corresponds to the OK market, and 3 corresponds 

to the Slow market scenario.  The fact that B9 is positively correlated with Net 

Profit is telling us that we make higher profits when the market is slow, not 

when it’s hot.  Our typical Selling Price is lower when the market is hot, and the 

increased Sales Volume doesn’t make up for this. 

Scatter Plots Tab 

The Scatter Plots tab, shown on the next page, gives us a different view of the 

relationship of Net Profit to our uncertain variables: Unit Cost at cell B6, and the 

integer uniform distribution at cell B9. 

Notice that the scatter plot against Unit Cost has three downward-sloping lines: 

Each line corresponds to a different market scenario (Hot, OK or Slow), and 

shows that as Unit Cost rises, our Net Profit drops – dropping fastest in the Hot 

Market scenario, because our profit margin is so narrow. 

The scatter plot against the integer uniform distribution shows three high-low 

ranges for Net Profit, again corresponding to a different market scenario – Hot, 

OK, or Slow.  We see again that the range of Net Profit is lowest in the Hot 

Market scenario. 
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Interactive Simulation with Charts and Graphs 

With an old-fashioned simulation software package, you’d press a button to start 

a simulation, then perhaps get a cup of coffee.  Because simulations ran slowly, 

software packages were designed for “batch” operation:  You’d spend time 

getting everything set up just right, run a simulation and wait (sometimes quite a 

while), then spend time analyzing the results.  But with Analytic Solver, 

simulations run so fast that fully Interactive Simulation is practical. 

Now 1,000 Monte Carlo simulation trials (the default number) will be executed 

each time we change the spreadsheet.  Since there is one uncertain function, and 

this is the first time a simulation has been performed, the following dialog 

opens.  Subsequent simulations will not produce this report.  However, it is 

possible to reopen this frequency chart simply by double clicking cell B11.  (See 

below for more information on this chart.)     

To turn on Interactive Simulation, simply click the light bulb on the Ribbon.  

It will “light up,” as shown below.   

 

Interactive Simulation makes Analytic Solver Simulation fundamentally 

different from other Monte Carlo simulation tools for Excel.  The kinds of charts 

we’ve just seen can be produced by other tools, but only at the end of a 

“simulation run.” In contrast, Analytic Solver makes these charts live as you 

play what-if with your model. 

After seeing this model, your production manager might think of a way to 

reduce the maximum Unit Cost to $7.00 instead of $7.50.  What would be the 

impact of this change on Net Profit, over the full range outcomes?  With 

Analytic Solver Comprehensive or Analytic Solver Simulation, this is as easy as 

any other ‘what-if’ question in Excel: 

Click the Frequency tab to re-display the frequency chart of outcomes for cell 

B11.  Then simply change the number in cell E13 from 7.50 to 7.  Immediately, 

a thousand Monte Carlo trials are performed, and the chart is updated.  The 

effect is striking:  We have a 97.7% chance of making a profit, and – checking 

the Percentiles tab – we see that instead of a 1% chance of losing about $48,000, 

we have a 1% chance of losing just $5,285! 

But Analytic Solver Simulation is even faster than this:  Click the Options 

button on the Ribbon, and change the number of Monte Carlo trials from 1,000 
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to 100,000 (or more).  In a second or less on most modern PCs, one hundred 

thousand Monte Carlo trials are performed, and the chart is updated! 

 

The Flawed Average model presented a limited and misleading picture of this 

business situation.  In contrast, the Analytic Solver model has illuminated the 

situation considerably.  We can see what can go right, and what can go wrong.  

We can make an informed decision about whether the reward is worth the risk.  

And – most important – we can interactively explore ways to improve the 

reward and reduce the risk.  This is risk analysis at work. 

Charts and Graphs for Presentations 

Often, you may be called up to present your results to others.  One great way to 

do this is in Excel itself, live!  But at times you may need to print a chart, or 

copy it into a Word document or PowerPoint presentation.  This is very easy to 

do in Analytic Solver Desktop, with the toolbar buttons in the title bar of the 

Uncertain Variable or Uncertain Function dialog.  Note:  This functionality is 

not supported in Analytic Solver Cloud or AnalyticSolver.com.   

 

Click the Clipboard icon to copy the currently displayed chart to the Windows 

Clipboard.  You can then choose Edit Paste in Word, Excel, PowerPoint and 

many other applications to paste the chart image into your document. (Choosing 

Edit Paste in Excel inserts a static, non-updating chart image in the worksheet.) 

Click the Print icon to immediately print the currently displayed chart on your 

default printer, or click the down arrow next to this icon to display the menu 

choices shown above:  Print Preview, Printer Settings and Page Settings.  You 



Frontline Solvers 2021 User Guide Page 129 

can choose a printer and set printer options, set page margins, and preview your 

output using these menu choices. 

Analytic Solver also makes it easy to control the format of your charts. Below, 

we’ve re-opened the right hand panel and clicked on the drop down menu to 

choose Chart Type. 

 

You can control the chart type, color, dimensionality and transparency, bin 

density, titles and legends, axis labels and number formats, horizontal axis 

scaling, and more.  As you change chart options in the right pane, the chart is 

immediately updated so you can see the results (unlike some other simulation 

products for Excel).  When you’re satisfied with the chart format, you can save 

and apply it to just this chart, to all charts on this worksheet, or to all charts in 

the workbook when you click the Apply button at the bottom of the right pane. 

Exporting Data to Microsoft's Power BI 

Microsoft's POWER BI, for use with Office 365, is a cloud-based service that 

works with Excel to help you visualize your data using various charts and 

reports.  Analytic Solver Desktop includes the ability to export  a fixed set of 

data from your simulation model, including all trial values, output function 

statistics, percentiles, etc.,  directly into a dataset in Power BI.  This 

functionality is not present in Analytic Solver Cloud or AnalyticSolver.com.  

See the chapter, Creating Power BI Custom Visuals, that appears later on in this 

guide for more information on using Power BI with these two products.   

Once Solver has stopped with a final result message, click the  icon on the 

Output tab or on the Uncertain Function dialog to upload the model results to 

the Power BI dashboard. If this is the first time that the icon has been clicked 

within the current Excel instance, you will be asked to log in to Power BI.   

 

 

Power BI Icon as shown on the Output tab on the Solver Task Pane. 
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Once logged in, you will be asked to either update an existing dataset or create a 

new dataset.   

 

In the screenshot above, we have created a new dataset, BusinessForecast, which 

will contain the uncertain variable and uncertain function trial values, statistics 

and percentiles, etc from our optimization model.  Once the upload is complete, 

the following message will appear. 

Power BI Icon as shown on the Uncertain Function dialog 
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Logon to Power BI (http://powerbi.microsoft.com/).  The newly created dataset 

will be listed under Datasets.    

 

Select BusinessForecast, then determine the components to be included in the 

graph.  In this example, we have created a bar chart by clicking  (to the 

right of the graph) and selecting the Maximum, Mean, Minimum, and Mode 

Output Statistics.   

 

Use the  icon to pin this graph to the Dashboard.   

http://powerbi.microsoft.com/
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Now, each time the model is solved, the results may be uploaded to your Power 

BI dashboard.  Click back to Excel and change the Price of the Slow Market 

from $11 to $15, then run a 2nd simulation either by clicking the green arrow on 

the Model tab in the Solver Task Pane or by clicking the Simulate icon on the 

Analytic Solver ribbon.  Once Solver stops, click the  icon on either the 

Output tab or the Uncertain function dialog to upload the most recent results.  

Note:  We are not asked to log in to the Power BI site a second time since we are 

using the same instance of Excel.  However, we are asked if we would like to 

select an existing dataset to update.  Select BusinessForecast and then click OK.  

Click back to Power BI in your browser and refresh, the chart will update 

automatically with the new final statistic values, as shown below.   

 

Exporting Data to Tableau 

Tableau is a popular interactive software package that allows you to visually 

explore and analyze your data.  Tableau can import data from a wide range of 

sources, including Excel workbooks, and it is often used in conjunction with 

Excel.  Because Tableau is designed to import data in table form, it hasn’t been 

easy to import the results of a simulation model (such as final values of the 

uncertain functions, uncertain variables, percentiles and statistic values) into 
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Tableau, unless those model elements occur in table form by themselves in your 

spreadsheet (which usually isn’t the case). 

Analytic Solver Desktop simplifies this process considerably. With a single 

click, you can convert the results of your simulation model into a set of Tableau 

Data Extract files (*.tde), open them directly in Tableau, and visualize them 

with a few clicks. 

This functionality is not present in Analytic Solver Cloud or 

AnalyticSolver.com.  See the chapter, Creating Custom Extensions in Tableau, 

that appears later on in this guide for more information on using Tableau with 

these two products.    

Click the green arrow on the Output tab in the Solver Task Pane to run a 

simulation.  Once Solver has stopped with a final result message, click the 

 icon on the Task Pane Output tab or Uncertain Function dialog to save the 

values for the uncertain functions, uncertain variables, percentiles and statistics 

to *.tde files.  You will be prompted to select a folder where the Tableau files 

will be saved along with the type of Tableau export desired:  Tableau Data 

Extract or (introduced in V2016-R2) Tableau Web Connector.   

Note:  If exporting to an existing .tde file, data will be appended rather than 

overwritten.  As a result, when exporting to an existing .tde file, all data must be 

of the same structure as when the .tde file was first created.   

 

If Tableau Data Extract is selected, static data is exported to files saved on your 

hard drive.   

Once you select a folder, the .tde files will be created, and the following 

message will appear. 

 

Four files will be saved in the folder you selected:  InputTrials.tde, 

OutputStatistics.tde, OutputTrials.tde, and Percentiles.tde.  (Although .tde files 

are designed to hold multiple tables, currently Tableau’s software allows only 



Frontline Solvers 2021 User Guide Page 134 

one table per file.)  When you import this data into Tableau, InputTrials.tde and 

OutputTrials.tde will have one row for each trial, Percentiles.tde will have one 

row for percentile and OutputStatistics.tde will have one row for each output 

function. 

• Each row of InputTrials.tde will contain the trial value for each 

uncertain variable and the simulation index.   The number of rows will 

equal the number of trials.   

• Each row of OutputTrials.tde will contain the trial value for each 

uncertain function and the simulation index.   The number of rows will 

equal the number of trials.   

• Each row of Percentiles.tde will contain the percentile value for each 

uncertain function and the simulation index.  The number of rows will 

equal 99.   

• Each row of OutputStatistics.tde will contain the Excel cell address 

where the uncertain function is located along with 9 statistical functions 

(mean, standard deviation, variance, kurtosis, skewness, mode, 

minimum, maximum, and range) and the simulation index.   

Note:  If exporting to an existing .tde file, data will be appended rather than 

overwritten.  As a result, when exporting to an existing .tde file, all data must be 

of the same structure as when the .tde file was first created.   

To open the files in Tableau, either double click each file (if using Desktop 

Tableau) or click Other Files under Connect and open the desired file(s).   

 

Tableau Web Connector 

The Tableau Web Connector offers much more flexibility over Tableau Data 

Extract by allowing you to refresh your data dynamically inside of Tableau.     
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If Tableau Web Connector is selected, you will be prompted to select a folder in 

which to save SimulationResults.html.  This file will hold all contents described 

above for InputTrials.tde, OutputStatistics.tde, OutputTrials.tde, and 

Percentiles.tde. The following message will appear.   

Note:  If exporting to an existing .tde file, data will be appended rather than 

overwritten.  As a result, when exporting to an existing .tde file, all data must be 

of the same structure as when the .tde file was first created.   

 

 To open the files in Tableau, open a new workbook in Tableau and click 

Connect to Data. 

 

On the Connect menu, select More Servers – Web Data Connector.    
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On the Web Data Connector dialog, enter the location displayed on the dialog 

shown above, i.e. http://localhost:8080/, and press Enter.   

  

When the following dialog appears, click Constraints.html.   

Note:  The error highlighted in red is a simple warning that the URL is not 

pointing to a Tableau Web Data Connector file.  If we had entered a file name, 

such as http://localhost:8080/InputTrials.html, the results would have 

immediately been uploaded to Tableau.   

 

To add more data, click Data – New Data Source on the Tableau ribbon, then 

repeat the actions described above.  

http://localhost:8080/
http://localhost:8080/InputTrials.html
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If your Solver results have changed, you'll need to refresh the results within the 

Tableau Web Connector HTML files.  To do so: 

1. In ASP, re-run your model 

2. Click the Tableau icon on the Output tab in the Solver Task Pane. 

3. Select Tableau Web Connector and the folder where the files should 

be saved. 

4. Click OK.   

5. In Tableau, click Data – Refresh All Extracts to update your data.   

For more information on using Tableau, please refer to the Tableau 

documentation found at http://www.tableau.com/.    

An Airline Revenue Management Model 
In this section, we’ll explore a simple airline revenue management model, also 

known as a yield management model.  We’ll start with a simple simulation 

model, like the one in the previous section.  But in this section, we’ll see if we 

can answer further questions by running multiple parameterized simulations and 

by solving a simulation optimization model (not available in Analytic Solver 

Simulation). 

To open this example, click Help – Examples on the Ribbon, which opens the 

workbook, Frontline Example Models Overview.xls.  Click the Simulation tab, 

then the Yield Management Model 1 (a simple simulation model) and Yield 

Management Model 2 (a model with multiple parameterized simulations) links.  

Click the Simulation Optimization tab to open Yield Management Model 3, a 

simulation optimization model.   In AnalyticSolver.com, click Help – Examples 

– Simulation to open Yield Management Model 1 and Yield Management Model 

2 and Help – Examples – Simulation Optimization Examples to open Yield 

Management Model 3.   

A Single Simulation 

The model YieldManagement1.xls opened in Analytic Solver Desktop is shown 

on the next page. 

http://www.tableau.com/
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The model depicts a hypothetical airline flight from San Francisco to Seattle.  

The flight has 100 seats, and tickets are $200 per seat.  Some passengers who 

purchase tickets are “no-shows” whose seats will be empty; in this example we 

assume that such passengers receive a refund of 50% of their purchase price. 

To utilize their ‘perishable inventory’ of seats, the airline would like to sell more 

than 100 tickets for each flight.  But we assume that Federal regulations require 

that any ticketed passenger who is unable to board the flight due to overbooking 

is entitled to compensation of 125% of the ticket price. 

The airline would like to know how much revenue it will generate from each 

flight, less refunds for no-shows and compensation for ‘bumped’ passengers.  

As shown above, this total revenue amount is calculated at cell C31, for any 

specific number of tickets sold (110 above) and number of no-shows (6 above). 

The uncertain quantity in this model is the number of no-shows; hence we 

should model this with an uncertain variable.  We quickly realize that the 

number of no-shows will depend on the number of tickets sold.  After some 

research, we decide that we can use a LogNormal distribution for the number of 

no-shows:  Cell H27 contains the formula 

=PsiLogNormal(0.1*G32,0.06*G32).  Cell G27 contains =ROUND(H27,0) to 

ensure that the number of no-shows is an integer value – and this is used to 

compute Total Revenue at cell G36. 

Note that the bottom area of the Task Pane is showing the properties of cell 

H27: for example, the mean of the distribution is 10% of the number of tickets 

sold. 
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See the chapter “Mastering Simulation and Risk Analysis Concepts” for advice 

on choosing distributions for your uncertain variables. 

As shown in the Task Pane, cell G36 is an uncertain function; it is defined as 

such because cell G38 contains =PsiMean(G36) to compute the expected (or 

average) revenue across all Monte Carlo trials. 

Performing the Simulation 

To perform a single simulation (with 1,000 Monte Carlo trials), we click the 

green arrow on the Model tab of the Solver Task Pane.  At the end of the 

simulation the following dialog appears displaying the distribution of outcomes 

in the Uncertain Function dialog: 

 

The right hand panel shows the statistics from cell G36.  We see that the mean 

or expected net revenue is about $20,000.  From the Cumulative Frequency 

tab over the chart or by clicking on the drop down menu in the right hand panel 

(currently showing “Statistics”) and selecting Percentiles, we can see that the 

10% percentile is $19,950 – if we sell 110 tickets, we’ll earn approximately as 

much revenue as a full flight (100 seats * $200), 90% of the time.  You can see 

why airlines find that overbooking makes sense as a policy! 

 

The Scatter Plots tab (click the graph to enlarge) shows you a quick scatter plot 

of this uncertain function against one or more uncertain variables, or other 

uncertain functions.  In this example – shown on the next page – it shows a 

scatter plot of G36 (net revenue) against H27 (number of no-shows).   



Frontline Solvers 2021 User Guide Page 140 

 

Using Interactive Simulation 

If using Analytic Solver Desktiop, we can explore the question of how many 

tickets to sell with Interactive Simulation:  We simply click the Simulate button 

to “turn on the lights.”   

 

Now we can simply type a new number of Tickets Sold, such as 125, into cell 

G32.  Instantly, Analytic Solver (Desktop) performs a new simulation of 1,000 

Monte Carlo trials, and updates the Uncertain Function dialog and the worksheet 

with the results – as shown on the next page. 

The new distribution of outcomes is quite different – we have more high-

revenue data points – but the mean or expected revenue is not so different -- 

$20,503.  Selling 125 tickets does seem to be better than selling 110 tickets, but 

we’re not yet sure that this is the best number of tickets to sell.  (We’ll answer 

that question in the next two sections.) 

In the meantime, however, Interactive Simulation allows us to “play what-if” 

with this model, changing the parameter that we can control (the number of 

tickets sold), while properly modeling the behavior of the parameter we cannot 

control (the number of no-shows).  As Prof. Sam Savage says, “Interactive 

Simulation does for uncertainty what the spreadsheet did for numbers.” 
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Note:  Interactive Simulation is not supported in Analytic Solver Cloud or 

AnalyticSolver.com.  However, you can perform the same type of analysis in 

either product by simply running a new simulation after making the change to 

cell G32.   

Multiple Parameterized Simulations 

After playing “what-if” with Interactive Simulation, we can move to ask 

Analytic Solver to automate this process:  Vary a parameter (the number of 

tickets sold) over a range, performing a simulation for each different number of 

tickets sold, and summarize the results. 

Choose Help – Examples on the Ribbon, click the Monte Carlo Simulation 

Examples button, then scroll down to click the Yield Management Model 2 

link to open YieldManagement2.xlsx.  In AnalyticSolver.com, click Help – 

Examples – Monte Carlo Simulation Examples – Yield Management Model 2 to 

open YieldManagement2.xlsx     

We can create YieldManagement2.xlsx from YieldManagement1.xls in just 

three steps: 

1. Select cell G32, choose Parameters – Simulation from the Ribbon, 

and enter a lower limit of 102 and upper limit of 120 in the dialog.  

This creates a formula =PsiSimParam(102,120) in cell G32. 

2. In the Task Pane Platform tab Simulation group, set the Number of 

Simulations to 10 (the maximum number of simulations allowed by 

Analytic Solver Basic).  Cell G32 will take on the value 102 on the first 

simulation, 104 on the second simulation, 106 on the third simulation 

and so on, through 120 on the 10th simulation. 

3. Select cell G36, choose Results – Statistic – Mean, and select a range 

of 10 cells, say G40:G50.  Analytic Solver will place =PsiMean(G36,1) 

in the first cell, =PsiMean(G36,2) in the second cell, and so on for as 

many cells as you specify. 

Now, when you run a simulation either by clicking the green arrow on the 

Model task pane or by using the Simulate icon on the Ribbon, Analytic Solver 

will perform 10 simulations, each with 1,000 Monte Carlo trials, and give you 

access to all of the results.  On the worksheet, you’ll see the expected revenue 

for 100, 102, …, 120 tickets sold.  And you can use the Uncertain Function 

dialog to display the full distribution of outcomes for any of the 10 simulations. 

Examining Results Across Simulations 

Once the simulation finishes, the uncertain function dialog for cell G36 will 

open automatically or you can double-click the cell to open.   
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The dialog now includes a dropdown list that allows you to select a simulation 

to display.  You can examine the Frequency, Cumulative Frequency, Reverse 

Cumulative Frequency, Sensitivity, or Scatter Plots tabs for any simulation. 

The worksheet will initially display values for the last Monte Carlo trial of the 

last simulation performed (except for the cells containing PSI Statistics function 

calls such as PsiMean()).  But you can display any trial from any simulation, by 

changing the selections in the Sim # and Trial # controls on the Ribbon: 

 

By examining this data, you can get a better idea of how many tickets to sell.  

But Analytic Solver can help your further. 

Reports and Charts of Multiple Simulations 

Analytic Solver Comprehensive and Analytic Solver Optimization with Analytic 

Solver Simulation, in Analytic Solver Desktop or Analytic Solver Cloud, has 

rich facilities for reports and charts across multiple simulations.  We’ll cover 

just two chart examples; see the Frontline Solvers Reference Guide for further 

information. 

First, select Charts – Multiple Simulations – Trend from the Ribbon.  

Analytic Solver displays a dialog where you can select one or more simulations 

to include in the chart.  Click the >> button to select all 10 simulations: 
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Analytic Solver then draws the Trend Chart: 

 

The number of tickets sold is on the horizontal axis.  Analytic Solver shows the 

mean, 25th and 75th percentile, and 10th and 90th percentile values of net revenue 

at G36 (this was the only choice in the dropdown list at the top left of the 

Multiple Simulations dialog).  We can see that the mean or expected net revenue 

peaks at about 116 or 177 tickets sold. 

For another view of this information, select Charts – Multiple Simulations – 

Box-Whisker from the Ribbon, and again select all 10 simulations to be 

included in the chart.  Analytic Solver Comprehensive draws the following 

chart: 
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This shows a Box-Whisker diagram for each of the 10 simulations, with the 

mean, median, 25th and 75th percentiles, and the minimum and maximum value 

for net revenue on each one.  In Analytic Solver Desktop, you can click the right 

edge of the Trend and Box-Whisker charts to open a right panel with options for 

customizing these charts.  You can use the icons on the title toolbar to print the 

chart, or copy it to the Clipboard, where it can be pasted into another application 

such as PowerPoint. 

Simulation Optimization 

Running multiple parameterized simulations and examining the results on the 

worksheet and in chart form, has given us a good deal of intuition about the 

behavior of this simulation model.  But Analytic Solver can directly answer the 

question “How many tickets should we sell to realize the maximum expected net 

revenue?” 

You can see this by choosing Help – Examples on the Ribbon, then clicking the 

Simulation Optimization button.  Click the link to Yield Management Model 3 

in the list of example workbooks.  This example will create 

YieldManagement3.xlsx from the existing YieldManagement1.xls, used in the 

previous two examples, in just five steps: 

1. Select cell G32 and click Decisions on the Ribbon.  This makes the 

number of tickets sold a decision variable for optimization.  

Alternatively, click the down arrow under Decisions, then select 

Normal to make the number of tickets sold a decision variable.   

2. With G32 still selected, click the down arrow under Constraints, then 

choose Variable Type/Bound – Integer from the menu.  This 

specifies that G32 must have an integer value at the optimal solution.  

3. With G32 still selected, click the down arrow under Constraints, then 

choose Variable Type/Bound – <= from the menu, and enter 200 for 

the constraint left hand side.  This specifies that G32 must have an 

upper bound of 200.  

4. With G32 still selected, click the down arrow under Constraints, then 

choose Variable Type/Bound – <= from the menu, and enter 0 for the 

constraint left hand side.  This specifies that G32 must have lower 

bound of 0.  
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5. Select cell G38, click the down arrow under Objective, then choose 

Max – Normal from the menu.  The optimizer will maximize G38: = 

PsiMean(G31), the expected value of net revenue. 

The model in Task Pane will now look like the one pictured below. 

 

In YieldManagement3.xls, we’ve made just these selections, and we’ve also 

chosen the GRG Nonlinear Solver from the dropdown list on the Engine tab, to 

solve the problem.  (Other choices are possible, but this one is simplest for this 

example problem.) 

Now we can simply click the green arrow on the Task Pane.  After a moment 

of solving, Analytic Solver returns the solution of 116 or 117 tickets sold 

appears in G32 (the exact number depends on the simulation Random Seed), and 

the expected value of net revenue for this number of tickets appears at G32 

(about $20,500).  “Solver found a solution.  All constraints and optimality 

conditions are satisfied” appears in green in the Output tab of the Task Pane, as 

shown on the next page. 

Note that this required less than a page to explain how you can get answers to 

questions like “How many tickets should we sell to realize the maximum 

expected net revenue?” 
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Using a Compound Distribution 

Starting with V2016-R2, Analytic Solver Comprehensive and Analytic Solver 

Simulation within Analytic Solver Desktop include the ability to sum multiple 

independent random variables using a compound distribution.  A compound 

distribution generates values for the sum of N independent identically 

distributed uncertain variables.  Note: This functionality is not included in 

Analytic Solver Cloud or AnalyticSolver.com.   

There are many common applications for compound distributions in industries 

across the board.  For example, in the insurance industry, compound 

distributions may be used to estimate the amount of claim payouts to customers 

or a portfolio of policies over a period of time.  In healthcare, compound 

distributions can be utilized for many reasons including to estimate the total 

amount of demand for a specific drug over a period of time, the number of days 

a patient will spend in hospital or to estimate the total amount of exposure to a 

certain toxin (i.e., radiation or radon) that a group of people might encounter in 

their lifetime.   In addition, compound distributions are used in the food industry 

to estimate the total number of patients that will become sick due to a food-

borne illness.   

The incorrect implementation of creating a compound distribution manually is a 

primary cause of errors in a simulation model.  In an effort to reduce these 

errors, Frontline Systems has implemented compound distributions with the 

introduction of a single property, PsiCompound(). This property supports any 

existing Psi Distribution function except the Psi multi-variate functions 

(PsiMVLogNormal, PsiMVNormal, PsiMVResample, and PsiMVShuffle), 

PsiSip, and PsiSlurp.  PsiCompound is amended to a Psi Distribution, i.e., 

PsiBeta(3,2, PsiCompound(100))  The signature of this property is:   

PsiCompound(number_cell, deduction, limit) 

A compound distribution is made up of a "severity" distribution and a 

"frequency" distribution.  Assume the following compound distribution, 

=PsiBeta(3, 2, PsiCompound(A2)), where A2 = PsiPoisson(100).  PsiBeta(3,2) 
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is referred to as the "severity" distribution.  The severity distribution is the 

distribution to be added N times.  PsiPoisson(100) is referred to as the 

"frequency" distribution.  The frequency distribution determines the size N of 

the sum (i.e, how many PsiBeta to sum).   N can be a constant but can also be 

computed at each trial by drawing from a discrete distribution.   

• The number_cell argument passes the number of random trial values 

to be summed.  Number_cell can be an integer, a cell containing an 

integer, a formula evaluating to an integer, or a cell containing a 

discrete distribution.   

If a fractional value is passed directly or indirectly (by using a formula) 

or a continuous distribution is passed to this argument, the result will 

be rounded down to the nearest integer.    

Note: If a discrete distribution is passed to the number_cell argument, 

the frequency distribution must be formulated in such a way that the 

trial values generated by the distribution must be greater than 1.  If not, 

trial values < 1 will be set equal to 1.   

• The value passed to the deduction argument is subtracted from every 

term of the compound sum which results in a shift of the compound 

distribution by -N * deduction.     

• If a trial value is larger than a specified limit, then the trial value is 

reset to the limit. 

Depending on what is passed to the number_cell argument, PsiCompound() 

automatically selects from several different compounding methods.   

• First, ASP tries to compute the distribution analytically.  For 

example "=PsiExponential(par, PsiCompund(N))" can be 

computed as PsiGamma(N, par).  Analytic Solver can immediately 

sample from this "shortcut" distribution.   

• If Analytic Solver is unable to compute a compound distribution 

analytically, but the frequency of the severity function (N) is 

greater than the value for the CLT Threshold option, then the 

distribution will be computed according to the Central Limit 

Theorem as PsiNormal(m, s).  The parameters m and s will be 

computed analytically from the corresponding analytical moments 

of the severity distribution.  The maximum value allowed for the 

CLT Threshold option is 1000 while the minimum value allowed is 

1.  The default setting is 100. 

• Otherwise, the compound distribution will be computed using 

Monte Carlo simulation to sum up N independent variates of the 

severity distribution.   

The following examples illustrate how to use the PsiCompound() property when 

a discrete distribution or a constant value is passed to the number_cell argument  
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Discrete Distribution passed to 1st Argument 

Imagine an insurance policy has two basic classes of insured members, class A 

and class B; there are 50 class A members and 10 class B members. The number 

of claims from class A members follows a Negative Binomial distribution with 

parameters (5, 0.25), and the number of claims from class B members follows a 

geometric distribution with parameter 0.25. The size of a claim from class A 

members follows an exponential distribution with mean $40,000, and the claim 

size from class B members is distributed with a Pearson 5 distribution with 

parameters (10, 2000000).  In other words, if there are six Class A claims, the 

size of the payout for each of the six claims will follow the 

PsiExponential(40000) distribution. Calculate the expected claim payment for 

both classes.   

1. Let's start by formulating the compound distribution for the Class A 

members.  Recall that the number of Class A claims follows a Negative 

Binomial distribution using a success parameter = 5 and probability 

parameter = 0.25 while the size of a Class A claim follows an 

exponential distribution with mean $40,000.   

In this example, PsiExponential(40000) is the severity distribution.  

This is the distribution that will be added together.  If there are six 

claims, then PsiExponential(40000) will be compounded six times.   

The frequency distribution is the number of Class A claims,   

=PsiNegBinomial(5, 0.25, PsiTruncate(0, 50)).   

Note:  Since there are 50 class A members, the PsiTruncate property is 

used to ensure that sample values always lie within the range from 0 to 

50. 

If A1 = PsiNegBinomial(5, 0.25, PsiTruncate(0, 50), the full 

compounding formula for the amount paid to Class A claims can be 

entered into cell A2 as "=PsiExponential(40000, PsiCompound(A1))".   

2. Now we can formulate the compound distribution to calculate the 

payouts for the Class B members.  The second compound distribution 

may be formulated in the same manner.  PsiPearson5(10, 2000000) is 

the severity distribution while =PsiGeometric(0.25, PsiTruncate(0, 10)) 

is the frequency function.    Since there are 10 class B members, 

PsiTruncate is used to ensure that sample values lie within the range 0 

to 10.   

If B1 = PsiGeometric(0.25, PsiTruncate(0, 10), the full compounding 

formula for the amount paid to Class B claims can be entered into cell 

B2 as "= PsiPearson5(10,2000000, PsiCompound(B1))".   

3. Enter =PsiMean(A1) and =PsiMean(A2) in cells A3 and B3, 

respectively, to calculate the total expected payout to each class.   

Run a simulation by clicking the green arrow on the Output tab on the 

Solver Task Pane.  Instantly, Analytic Solver performs a new simulation of 

1,000 Monte Carlo trials, and updates the Uncertain Function dialog and the 

worksheet with the results – as shown on the next page. 
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Double click the distribution for $A$2(var) to open the uncertain function dialog 

for cell A2.   

 

If an uncertain variable uses the PsiCompound() property to create a compound 

distribution, you will see added fields on both the Parameter and Analytic 

Moments menus. Curves displayed in the Uncertain Variable dialog and 

statistics listed under the Parameters tab are related to the "severity" distribution.   

On the Parameter tab, the Compound field will appear under Parameters.  (If the 

distribution is not a compound distribution, this field will be blank.)  This field 

holds the arguments passed to the PsiCompound property.   

Click the down arrow next to Parameters and select Analytic Moments from the 

menu.   

 

On the Analytic Moments menu, four additional statistics relating to the 

compound distribution appear under Compound Analytic Moments:  Mean, 
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Variance, Standard Deviation and Skewness.  Statistics listed under Analytic 

Moments relate to the severity distribution.     

 

Constant passed to 1st Argument 

Recall that it is also possible to pass an integer, a cell containing an integer or a 

formula evaluating to an integer to the number_cell argument, the first argument 

of PsiCompound().   

Imagine a department store manager predicting demand for snowboards for the 

coming winter season.  From past analysis, she knows that the purchasing 

behavior of customers that visit her store follow the PsiGamma distribution with 

parameters of shape  = 4 and scale = 1.  She expects 1000 customers in the 

month of October.  Using a compound distribution, calculate the expected 

number of snowboard purchases.     

The severity distribution in this example is PsiGamma(4,1).  Since N = 1000, a 

constant, no frequency distribution exists.  Therefore, the syntax for this 

compound distribution would be =PsiGamma(4, 1, PsiCompound(1000).  

Select the cell containing the compound distribution, then click Results – 

Output – In Cell on the Analytic Solver ribbon; "+ PsiOutput()" will be 

amended to the existing formula.  

Again, run a simulation by clicking the green arrow on the Output tab of the 

Solver Task Pane.  Instantly, Analytic Solver Simulation performs a new 

simulation of 1,000 Monte Carlo trials, and updates the Uncertain Function 

dialog and the worksheet with the results.  If the worksheet only contains this 

one output function, the following dialog appears.   

 

To view the compound distribution results, click the Show Input icon, circled 

below.   
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The Uncertain Variable dialog opens.  Again, we see the Compound field, but 

this time, the constant 10 appears here.   

  

Click the down arrow next to Parameters to view the Analytic Moments for both 

the severity distribution (under Analytic Moments) and the compound 

distribution (under Compound Analytic Moments).   

 

Publishing a Simulation Model to Excel Online or 
Google Sheets 

In late 2014, Frontline Systems released Solver App for use with Excel 2013 and 

Solver Add-on for use with Google Sheets. With the Solver App you can define 
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and solve simulation problems in your Excel workbook, using Excel Online in 

Office 365, the Excel Web App in SharePoint 2016 or 2013, or desktop Excel 

2016 or 2013.  With the Solver Add-on, you can define and solve simulation 

problems in Google Sheets.  You can create and solve models on tablets, 

phones, or anywhere a Web browser can be used.  Solver models that you may 

already have created in old or new versions of Microsoft Excel, are 

automatically recognized by the Solver App and , after the existing worksheet is 

published, with the Solver Add-on. 

In Analytic Solver Desktop and AnalyticSolver.com, the Freeze and Thaw 

buttons have been combined into a single Publish button, as shown in the 

screenshot below. (In Premium Solver Pro/Platform where there was no 

Freeze/Thaw function, the Ribbon now includes a Publish icon.) 

 

Note:  This functionality is not supported in Analytic Solver Cloud.   

Like the “Freeze” button, the Publish button can be used to prepare a workbook 

for distribution to other users who don’t have Analytic Solver or its subsets 

installed: All formulas containing Psi function calls (which would yield 

#NAME? for other users) are replaced by their values, and the formulas are 

saved, so they can be restored later by choosing “Unpublish” (equivalent to the 

old “Thaw”). 

But the major use of the Publish button is to prepare a workbook for use with 

our Risk Solver App for Excel Online and our Risk Solver Add-on for Google 

Sheets (the online spreadsheets have limited or no support for user-defined 

functions).   

In Analytic Solver, when a model is published, the limits for Solver App (for 

Excel Online) and Solver Add-on (for Google Sheets) will be automatically 

adjusted to match the problem limits of your license.  For example, if you 

purchased a license for Analytic Solver, then you will be able to run simulation 

models with an unlimited number of uncertain variables and functions,  if you 

publish your model first by clicking the Publish button on the Analytic Solver  

ribbon.   

Let’s go back to the YieldManagement1.xls example used in the section above, 

click the Publish icon on the Ribbon to display the following dialog. 
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Select Google Sheets then Publish.  (If you are a user of Excel Online, please 

see the example below.)  If you inspect the worksheet, you’ll notice that all Psi 

functions have been replaced with actual values.  For example, cell C16 which 

used to contain the PsiMean() function, now contains a value of $19,00.40.  

Make sure to save the workbook before uploading to Google Drive. 

 

 

Log on to your Google Drive account and upload YieldManagement1.xls, then 

open this file in Google Sheets.     

Uploading and Opening Files in Google Sheets 

Click the orange New button then select File Upload to upload the 

YieldManagement1.xls spreadsheet to Google Drive. 

 

Browse to the location of the file, typically C:\Program Files (x86)\Frontline 

Systems\Analytic Solver Platform\Examples (if using 32 bit Excel with 64 bit 

Windows) or C:\Program Files\Analytic Solver Platform\Examples (if using 64 

bit Excel or 32 bit Excel with 32 bit Windows).  The 

YieldManagementModel1.xls will appear under My Drive.   
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Double click YieldManagementModel1.xls, the file opens in Google Drive 

Preview Viewer (shown below).  Click Open – Google Sheets.   

 

 

To add the Solver Add-on, choose the menu option Add-ons - Get Add-ons... 
 

 

 

In the Add-ons dialog, scroll until you see Risk Solver.  Click to select and 

install. 
 

 

 

Once these steps are finished, Risk Solver should now appear on the Add-ons 

menu.    
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Choose Add-ons - Risk Solver - Start. The Risk Solver Task Pane (Google calls 

this a Sidebar) will appear.  The uncertain variable that appears in cell C7 is 

displayed in this tab.   
 

 

Click the distribution to change the distribution type and parameters or to view 

the cell formula and address.   
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Click Cancel to leave everything “as is” or OK for Risk Solver to accept any 

changes.  For this example, we’ll click the Cancel button to leave the 

Distribution as PsiLogNormal. 

Click the green arrow at the top of the sidebar to run a simulation.   (Click the 

Cancel button to stop the simulation before finishing.) 
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In the sidebar, the Output tab appears with a small frequency chart containing 

the uncertain function in cell C15.  Click the chart to enlarge it.  Click the 

Frequency tab to view statistics (mean, standard deviation, variance, skewness, 

kurtosis, mode, minimum, maximum, and range) or  Percentiles (1 – 100). 
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For more information on the statistics, please see the corresponding Psi function 

(PsiMean, PsiMean, PsiStdDev (Standard Deviation), PsiVariance, 

PsiSkewness, PsiKurtosis, PsiMode, PsiMin, PsiMax or PsiRange) in the Psi 

Function Reference chapter in Frontline Solvers Reference Guide.    
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Click the Sensitivity tab to view a “Tornado chart” that shows you how much 

Total Revenue changes with a change in the uncertain variable in cell C7.   In 

this model there is only one uncertain variable.  This chart shows a negative 

correlation between the Number of No-Shows and Total Revenue.  For more 

information on this tab, please see the section, “A First Simulation Example” 

above.    

 

Select the Correlations tab to view the same negative correlation between the 

uncertain variable in cell C7 and the uncertain function in cell C15. For more 

information on this tab, please see the section above.    

 

Click the icon to go back to the Output tab or click the left 

and right arrow icons to increment through each of the simulation trials.  (The 

default is 1000.)  To change the number of trials per simulation or other option 

settings, click the icon in the upper right corner of the Sidebar.  For more 

information on these options, please see the chapter Platform Solver Options in 

the Frontline Solvers Reference Guide.   
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Now let’s Publish this same model to Excel Online.  Let’s go back to Excel and 

YieldManagement1.xls.  Afterwards, click Publish – Unpublish.  Immediately, 

all  PsiFunctions are restored in cells C7 and C16.   

Click Publish – Publish again, but this time select Excel Online, then click 

Publish.   

 

Click File – Save As and save this file as YieldManagement1.xlsx on your 

SharePoint or Office 365 site.   

Note:  In order to use the Risk Solver App, your file must be saved on 

SharePoint or Office 365 site.  This app cannot solve models saved on your 

local hard drive.   

Open the workbook using Excel Online, then click Edit Workbook – Edit in 

Excel Online.   
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Click Insert – Apps for Office. 

 

Select the Store tab and search for Risk Solver, then select (1st app in the list) 

and Install.  Note:  A Premium Solver app which solves linear models with more 

than 200 variables and nonlinear models with more than 200 variables and 200 

constraints is available for purchase.  Please contact Frontline Systems for more 

information at sales@solver.com.   

 

The Risk Solver App task pane opens on the right of your screen.   

mailto:sales@solver.com


Frontline Solvers 2021 User Guide Page 162 

 

The uncertain variable that appears in cell C7 is displayed in this tab.  Click the 

distribution to change the distribution type and parameters or to view the cell 

formula and address as shown in the Google Sheets example above.   

Note:  In the Solver App red vertical lines have been drawn at the 5% and 95% 

percentiles.   
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Click the green arrow at the top of the task pane to run a simulation.   (Click the 

Cancel button to stop the simulation before finishing.)  If running for the first 

time, you will be asked to “Trust” the app. 

 

 

To cancel the simulation before completion, click Cancel.   
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In the sidebar, the Output tab appears with a small frequency chart containing 

the uncertain function in cell C15.  Click the chart to enlarge it.  Click the 

Frequency tab to view statistics (mean, standard deviation, variance, skewness, 

kurtosis, mode, minimum, maximum, and range) or  Percentiles (1 – 100).  Click 

the Sensitivity tab to view a “Tornado chart” which illustrates the negative 

correlation between the Number of no-shows (uncertain variables) and Total 

Revenue (uncertain function) and the Correlations tab to view the relationship 

between the uncertain variable in cell C7 and the uncertain function in cell C15 

as a scatter chart. For more information on either of these tabs, please see the 

Google Sheets example above.    

Click the icon to go back to the Output tab or click the left 

and right arrow icons to increment through each of the simulation trials.  (The 

default is 1000.)  To change the number of trials per simulation or other option 

settings, click the icon in the upper right corner of the Task Pane.  For more 

information on these options, please see the chapter Platform Solver Options in 

the Frontline Solvers Reference Guide.   
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Examples:  Stochastic 
Optimization 

Introduction 
This chapter introduces stochastic optimization in Analytic Solver 

Comprehensive (Desktop or Cloud) with a series of examples. 

We use the term stochastic optimization to mean optimization of models that 

include uncertainty, using any solution method.  Analytic Solver offers an 

exceptional level of power to find robust optimal solutions to models with 

uncertainty, using three different solution methods: 

• Simulation optimization 

• Stochastic programming 

• Robust optimization 

The first method, simulation optimization, is also available in Analytic Solver 

Optimization with Analytic Solver Simulation, Analytic Solver Upgrade and 

Analytic Solver Basic (Desktop or Cloud), and is the only method in other 

software products such as Crystal Ball Professional and @RISK Industrial.  It 

handles very general models, but it is not scalable to large models (with 

thousands of variables and constraints), and it doesn’t support the important 

modeling concept of recourse decisions. 

Stochastic programming and robust optimization can be applied only to 

linear and quadratic programming models with uncertainty, but they are scalable 

to large models.  Either Analytic Solver Comprehensive, Analytic Solver 

Simulation with Analytic Solver Optimization, Analytic Solver Upgrade or 

Analytic Solver Basic (Desktop or Cloud) are required to use these methods. 

A Project Selection Model 
To open the examples, click Help – Examples on the ribbon.  Click the 

Stochastic link on the Overview tab to open the workbook 

StochasticExamples.xls  which includes three worksheets. In 

AnalyticSolver.com, click Help – Examples, then scroll down to the Stochastic 

link.   

Click the Project Selection tab within the StochasticExamples.xls workbook to 

open the first example, which may surprise you:  It is a capital budgeting 

problem, where the projects being considered for funding have uncertain future 

cash flows.  Models similar to Project Selection have been used with other 

software products for many years to illustrate how simulation optimization can 

be used to optimize models with uncertainty.  We’ll show how to do this in 

Analytic Solver Comprehensive, Analytic Solver Simulation with Analytic 

Solver Optimization, Analytic Solver Upgrade, or Analytic Solver Basic, using 

simulation optimization and the Evolutionary Solver – with much better 

performance.  But when we use Analytic Solver to analyze the structure of this 

model, we’ll see that this model doesn’t require simulation optimization at all.  
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We can solve this model in a fraction of a second – using the LP/Quadratic 

Solver! 

 

In Project Selection, eight different capital projects are proposed for funding.  

Each one has a known initial investment.  Each project has a 90% chance of 

success, and if a project succeeds, it will have an uncertain (but positive) future 

cash flow.  Funding all eight projects would require a total initial investment of 

$2.5 million, but our capital budget is only $1.5 million.  Hence, we must 

choose a subset of the projects to fund that will maximize our expected total 

future cash flow, while ensuring that our total initial investment doesn’t exceed 

our $1.5 million budget. 

Click the tab for the Projection Selection model, shown below. 

 

To model the uncertainty in this problem, we use PSI functions that define 

uncertain variables with certain probability distributions.  We can create these 

functions via the Distributions dropdown gallery and the Uncertain Variable 

dialog, as shown in the last chapter, or we can just type in the formulas. 

To model the “Cash Flow if Successful” in column C, we use the 

PsiTriangular() function, specifying a minimum, most likely, and maximum 

cash flow.  For example, the formula in C4 is =PsiTriangular(400000, 500000, 

900000). 
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To model the “Chance of Success” in column D, we use =PsiBinomial(1,D2) 

where D2=.9.  On each trial, this distribution returns 1 with probability 90% and 

0 with probability 10%.  In column E we multiply the “Cash Flow if Successful” 

and the “Chance of Success” to obtain the “Expected Cash Flow.” 

Column G computes the net cash flow – the “Expected Cash Flow” in column E 

minus the “Initial Investment” in column F.  Column H holds our decision 

variables, which are constrained to be binary integer (0 or 1 at the solution). 

Cell F13 computes the total initial investment as the SUMPRODUCT of the 

project initial investments (column F) and the 0-1 variables in column H. In the 

model, F13 is constrained to be less than the $1.5 million budget in F14. 

Cell F16 computes the total cash flow as the SUMPRODUCT of the project net 

cash flows and the 0-1 variables in column H.  Cell F17 – unique to a model 

with uncertainty – contains =PsiMean(F16):  It computes the mean (expected) 

value of total net cash flow.  This is the objective function we want to maximize. 

We’re asking Analytic Solver to find the best combination of projects – by 

finding 0 or 1 values for the selection variables at H4:H11 – to maximize cell 

F17, the expected value of total net cash flow, subject to the constraint that the 

total initial investment doesn’t exceed our $1.5 million budget. 

Solving with Simulation Optimization 

We’ll first solve this problem using simulation optimization.  To do this, go to 

the Task Pane Platform tab, and confirm the Solve Uncertain Models option is 

set to Simulation Optimization.  (We’ll see later what happens when we allow 

Analytic Solver to choose the solution method automatically.) 

 

On the Engine tab, and confirm that the Evolutionary Solver is selected. 

 

Why do we choose these settings?  In the case of other software products, it’s 

because simulation optimization is the only technology they have – and “if your 

only tool is a hammer, every problem looks like a nail.”  Simulation 

optimization is also a very general approach that can handle nonlinear and non-

smooth functions, and it’s comparatively easy to understand. 

The idea behind simulation optimization is straightforward:  For each set of 

values for the decision variables considered by the optimizer, we perform one 

simulation, a compute user-specified summary measures – such as 

=PsiMean(F16) in the Project Selection model – for the constraints and/or 

objective that depend on uncertainty.  The optimizer uses these summary 
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measures to decide what set of values it should try next for the decision variables 

– and the process is repeated. 

The great strength of simulation optimization is its generality – but this is also 

its weakness:  It requires a new simulation at each step of the optimization, and 

because the method assumes no structure in the model, in general the number of 

steps can grow exponentially with the number of variables and constraints. 

Now click the green arrow in the Task Pane to run a simulation.  If you are using 

Analytic Solver Desktop, after a second or two (much faster than other software 

products), you can press ESC to stop the Evolutionary Solver and display the 

best solution found so far – as shown on the next page. 

 

We’ve decided to fund projects #1, 3, 4, 5, and 7 for an expected total net cash 

flow of $1,389,477.  That’s a great result.  But – how much work did we do to 

solve this model, and did we need to do that much work?  It might not matter for 

a small model like this one – but for a ‘scaled-up’ model that might involve 

hundreds or thousands of projects, the solution might have taken far more time. 

Solving Automatically 

Let’s allow Analytic Solver Comprehensive (or Analytic Solver Simulation with 

Analytic Solver Optimization) to choose the solution method and the Solver 

Engine automatically.  To do this, go to the Task Pane Platform tab, and change 

the Solve Uncertain Models option to Automatic. 

On the Engine tab, check the box to automatically select a Solver Engine in 

Analytic Solver Deskop or select Automaticaly select engine at the top of the 

menu for Analytic Solver Cloud or AnalyticSolver.com. 

    Analytic Solver Desktop 
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   Analytic Solver Cloud  

 

Now click the green arrow on the Task Pane.  In a fraction of a second, a 

solution appears with the same objective value of $1,389,477 and the same 

projects selected, with the message “Solver found a solution.  All constraints and 

optimality conditions are satisfied.”  This means that Analytic Solver found a 

proven globally optimal solution – whereas with simulation optimization, we 

never know whether the solution we found is optimal.  How did this happen? 

If you examine the solution log, you’ll see these messages: 


---- Start Solve ---- 

Using: Full Reparse. 

Parsing started... 

Diagnosis started... 

Warning: Canceled diagnostics *0 at 'Project Selection'!F16;  

6 Canceled diagnostics found.  

Uncertain input cells detected. 

Attempting Stochastic Transformations... 

Using: Full Reparse. 

Parsing started... 

Diagnosis started... 

Convexity testing started... 

Warning: Canceled diagnostics *0 at 'Project Selection'!F16;  

22 Canceled diagnostics found.  

Stochastic Transformation succeeded using Deterministic  

Equivalent. 

Transformed model is "LP/MIP". 

Automatic engine selection: Standard LP/Quadratic     

Model: [StochasticExamples.xlsx]Project Selection 

Using: Psi Interpreter 

Parse time: 0.66 Seconds. 

 

Engine: Standard LP/Quadratic    

Setup time: 0.01 Seconds. 

 

Engine Solve time: 0.33 Seconds. 

 

Solver found a solution.  All constraints and optimality  

conditions are satisfied. 

Solve time: 1.56 Seconds. 

 

Analytic Solver Comprehensive analyzed the model and diagnosed it as a 

Stochastic LP (linear programming) problem, with 8 variables, 2 functions 

(objective and budget constraint), and 16 uncertainties (the PsiTriangular() and 

PsiBinomial() functions) that affect the objective.  As you’ll see in the chapter 

“Mastering Simulation and Risk Analysis Topics,” Analytic Solver can solve a 

Stochastic LP using two other methods besides simulation optimization – 

stochastic programming and robust optimization. For this model, it chose a 

transformation to Stochastic Programming Deterministic Equivalent form. 

But this model is so simple that Analytic Solver determined that no 

transformations were needed to solve the problem.  Despite the presence of 

uncertainty, this model doesn’t require simulation optimization at all.  There 

was no need to run hundreds of Monte Carlo simulations (or many more, with 

some alternative software products).  It was sufficient to run one Monte Carlo 

simulation at the beginning, to compute the constant linear coefficients of the 
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objective function.  Project Selection is simply an LP/MIP (linear mixed-integer 

programming) model! 

In this small model, we found the same solution within seconds using both 

methods.  But in a ‘scaled-up’ model in a large company, with hundreds or even 

thousands of projects, Analytic Solver’s ability to analyze the structure of the 

model could make all the difference – between a solution of unknown quality, 

found after a long wait using the wrong approach – and a proven optimal 

solution, found within seconds using the right approach. 

A Model with Chance Constraints 
The worksheets Gas Company Chance and Gas Company Recourse in 

StochasticExamples.xls are related – they both describe the same problem, but 

with different assumptions about when a certain decision must be made.  With 

Gas Company Chance, we’ll show how a problem with uncertainty can be 

formulated with a chance constraint and solved using robust optimization 

methods.  With Gas Company Recourse, we’ll show how to use a “wait and see” 

or recourse decision – a capability not available at all with simulation 

optimization – to obtain a better optimal solution. 

We hope these examples will motivate you to read the chapter “Mastering 

Simulation and Risk Analysis Topics,” which will give you a unified view of the 

crucial characteristics of models with uncertainty, and the options of solving 

them with simulation optimization, stochastic programming, and robust 

optimization methods. 

Click the Gas Company Chance tab to display the model, which is pictured on 

the next page. 
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In this model, a gas company purchases natural gas from suppliers and resells it 

to consumers in its service area.  Consumer demand is known to be 100 units 

this year (cell C7) but is uncertain for next year (cell C8); the company must 

meet this demand with high probability, or it will encounter public relations and 

regulatory problems.  The price of gas is known to be $5.00/unit this year (cell 

C4), but is uncertain for next year (cell C5):  If the weather is very cold, demand 

may reach 180 units, and the price may reach $7.50/unit, but if the weather is 

warm, demand may remain at 100 units, and the price may remain at $5.00/unit.  

The company’s goal is to minimize its total cost of purchased and stored gas 

(cell C25).  It's decisions are: 

• How much gas to purchase and resell to consumers this year (cell D14) 

• How much gas to purchase this year and store (cell D15) , at a cost of $1 

per unit, for use next year 

• How much to purchase and resell to consumers next year (cell D18) 

In Gas Company Chance, we assume that the gas company must commit to all 

of its gas purchases this year, before next year’s demand is known:  All three 

decision variables D14, D15 and D18 are normal or ‘here and now’ decisions.  

(In the next section, we’ll consider Gas Company Recourse, where we assume 

that next year’s gas purchases can be determined on a ‘wait and see’ basis.) 

Gas Company Chance has a constraint that the company must have enough gas 

to meet next year’s uncertain demand “with high probability.”  We’ll model this 

in Analytic Solver Comprehensive with a chance constraint.  Our objective 

function – total cost, to be minimized – depends in part on next year’s uncertain 

gas price.  We will therefore seek to minimize the expected value of total cost. 
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The objective appears as “Expected($C$25) (Min)” – in Gas Company Chance, 

we used the Ribbon to define the objective interactively, rather than a PsiMean() 

function on the worksheet, as we did earlier in Project Selection.  The decision 

variables are cells D14, D15 and D18, as explained earlier; each of these is 

constrained to be non-negative, as shown in the Bound section of the outline. 

At C22 we calculate =D14-C7 (this year’s gas purchases minus this year’s 

demand), and at C23 we calculate =D15+D18-C8 (gas purchased and stored this 

year, plus gas purchased next year, minus next year’s uncertain demand).  

The normal constraint $C$22 = 0 specifies that we must meet this year’s 

consumer demand exactly (forcing D14 to 100).  The chance constraint 

VaR0.95($C$23) >= 0 requires that the 95th percentile of C23, over all 

realizations of the uncertainty, must be non-negative – in other words, we must 

meet demand with 95% probability. 

We could express this chance constraint by placing =PsiPercentile(D15+D18-

C8,0.95) in cell C23, and using the Ribbon to define a normal constraint C23 >= 

0.  But while PsiPercentile and other PSI Statistics functions are acceptable for 

simulation optimization, the transformation for robust optimization requires that 

we express the chance property directly in the constraint itself, not in a formula.  

Solving with Robust Optimization 

We could solve this model using simulation optimization, as we did for Project 

Selection in the previous section.  But here, we want to show how Analytic 

Solver Comprehensive (or Analytic Solver Simulation with Analytic Solver 

Optimization) can automatically transform this stochastic linear programming 

problem – with its expected value objective and chance constraint – into a larger 

conventional optimization model, using the methods of robust optimization.   

The idea behind robust optimization is to transform an optimization problem 

with known structure – such as a stochastic linear programming problem – into 

a larger, conventional ‘robust counterpart’ problem that accounts for the impact 

of bounded uncertainty on the constraints and objective.  Analytic Solver 

performs one simulation at the outset, to assess the impact of uncertainty and 

construct the robust counterpart problem.   Solving the robust counterpart – a 

single LP or SOCP problem – gives us an approximate solution to the original 

stochastic problem. 

The strength of robust optimization is its scalability to very large problems – 

since only one simulation and one optimization of an LP or SOCP problem is 

required.  But robust optimization cannot solve more general nonlinear, non-

convex problems. 

As saved, the model is ready to be solved using robust optimization.  But to see 

the difference between the original model – a stochastic linear programming 

model – and the robust counterpart model that is the result of the transformation, 

we’ll first set the Solve Uncertain Models option to Simulation Optimization: 
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and then click Analyze – Analyze Transformed Model (on the Model tab) to 

analyze the structure of the model.  The Model Diagnosis section of the Task 

Pane Model tab “pops up” to show the results, as shown below. 

 

The model is diagnosed as a Stochastic LP, with 3 variables, 3 functions, and 1 

uncertainty (the Beta distribution at cell D5, which models the weather).  Now, 

we’ll set the Solve Uncertain Models option to Automatic: 

 

and click the Analyze – Analyze Transformed model again – this will analyze 

the structure of the transformed robust counterpart model. 
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The transformed model has 9 variables and 8 functions (instead of 3 and 3), but 

it has 0 uncertainties – it’s a conventional linear programming model.  Solving 

this robust counterpart model will give us an approximate (and somewhat 

conservative) solution to the original stochastic LP problem. 

Technical note, explained in the chapter “Mastering Simulation and Risk 

Analysis Topics:” The robust counterpart model is an LP because the Platform 

tab Chance Constraints Use option is set to D Norm.  If it had been set to L2 

Norm, the robust counterpart model would have been an SOCP. 

Now click the green arrow on the Task Pane.  In a fraction of a second, the 

solution appears, with the message “Solver found a conservative solution to the 

robust chance constrained problem.  All constraints are satisfied.”  You can 

click this message to display Help with a more complete explanation of what 

this means.  To resolve the formula in cell C26, click the Simulate icon to run a 

simulation.  The results are shown below.   

 

We run one simulation to see the expected value of the objective, which is about $1,509, 

lower than the initial value of $1,693.  But our chance constraint is not only satisfied but 
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over-satisfied – we meet consumer demand about 99% of the time, when we asked for 

only 95%.  This solution is more conservative than necessary. 

But Analytic Solver Comprehensive within Analytic Solver Desktop can automatically 

improve this solution, by adjusting the size of the uncertainty set for the chance 

constraint.  To do this, click the special  button to “Auto Adjust Chance Constraints” 

that appears at the top of the Task Pane.  After a moment, a new solution appears with the 

message “Solver has converged to the current solution of the robust chance constrained 

problem.  All constraints are satisfied.”  To resolve cell C26, double click cell C25 and 

click "Yes" to run a simulation.   

To find this same solution in Analytic Solver Cloud, click the Platform tab and set Auto 

Adjust Chance Constraints to True and then resolve by clicking the green arrow on the 

Model tab.  To resolve cell C26, click the Simulation button to run a simulation.   

The results are shown on the next page.   

 

We run one simulation to see the expected value of the objective, which is about $1,447.  

As noted earlier, this very simple model could have been solved via simulation 

optimization; but with robust optimization, we can scale up a model like this one to large 

size, and solve it efficiently using the LP/Quadratic Solver, or any of several large-scale 

Solver Engines. 

A Model with Recourse Decisions 
We now have a good solution to the Gas Company problem, found with either 

simulation optimization or robust optimization.  But we can do better than this – 

we can reduce our expected total cost to $1,276, a significant improvement. 

We can do this provided that the business situation permits us to make the 

decision of how much gas to purchase next year on a ‘wait and see’ basis, after 

the uncertainty of the weather is resolved – a so-called recourse decision.  In 

this example, our gas supplier must accept our purchase order next year, and not 

require us to commit to a specific amount of gas this year for delivery next year. 

One of the most important messages we can convey is this:  If the business 

situation permits you to make some decisions on a ‘wait and see’ basis, it’s 
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crucial to include this in your optimization model.  If you don’t do this, you 

may find an optimal solution to the wrong model for the actual business 

problem. 

We emphasize this because so many people have built models that don’t include 

‘wait and see’ decisions, because (i) they haven’t learned this concept and (ii) 

their software hasn’t allowed them to create models with recourse decisions.  

Simulation optimization is very popular, but as described in the technical 

literature and implemented in software, it has no concept of recourse decisions. 

In the next example, Gas Company Recourse, we’ll assume that our decision of 

how much gas to purchase next year can be made on a ‘wait and see’ basis, after 

the uncertainty of the weather has been resolved.  Click the Gas Company 

Recourse tab to display the model, which is pictured on the next page. 

 

This model has the same objective (C25), the same decision variables (D14, D15 

and D18), and the same constraints (C22 and C23) as in EXAMPLE2.  It differs 

in just two ways:  (i) Cell D18 – the amount of gas to purchase next year – 

appears as a recourse decision variable.  (ii) Cell C23 is no longer a chance 

constraint – it is a normal constraint, and in fact it’s = rather than >= – we 

expect to satisfy next year’s consumer demand exactly.  The recourse decision 

variable allows us to do this – in each possible future scenario, once the weather 

uncertainty is resolved and consumer demand is known, we will purchase just 

the amount of gas we need to meet demand. 

Solving with Robust Optimization 

We cannot solve Gas Company Recourse with simulation optimization, 

since this method has no concept of recourse decisions.  But we can use robust 

optimization methods to transform and solve Gas Company Recourse, much as 

we did with Gas Company Chance.  We can proceed in much the same way.  If 

we analyze the structure of the original model (by clicking Analyze – Analyze 

Transformed Model with the Solve Uncertain Models option set to Simulation 

Optimization), we find that it is a stochastic LP: 
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Again, the model has 3 variables, 3 functions, and 1 uncertainty – but now 1 of 

the 3 variables is a recourse decision variable.  Note that the recourse variable 

plays a role in 2 functions – the objective, and the constraint that requires us to 

meet next year’s consumer demand.  Our recourse decision variable will have 

many possible values at the optimal solution – one for each realization of the 

uncertain demand.  With default settings in Analytic Solver Comprehensive 

(1,000 Monte Carlo trials in a simulation), the Solver will find 1,000 different 

values for D18. 

If we analyze the structure of the robust counterpart model (by clicking Analyze  

- Analyze Transformed Model with the Solve Uncertain Models option set to 

Automatic or  Stochastic Transformation, and the Stochastic 

Transformation option set to Robust Counterpart), the result is: 

 

The robust counterpart has 9 variables and 8 functions, but the uncertainty and 

the recourse decision have been eliminated, yielding a conventional linear 

programming model.  As with Gas Company Chance, solving this robust 

counterpart model will give us an approximate solution to the original problem. 

Now click the Optimize button, or the green arrow on the Task Pane.  In a 

fraction of a second, the solution appears, with the message “Solver found a 

solution.  All constraints and optimality conditions are satisfied.”  As shown on 

the next page, the expected value of the objective is now about $1,365– a 
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considerable improvement over the minimum cost of about $1,434 in Gas 

Company Chance. 

As noted above, our recourse decision variable will have many possible values 

at the optimal solution – one for each realization of the uncertain demand.  We 

can see these different realizations (there are 1,000 different values) by clicking 

• the left and right arrows on the Ribbon in Analytic Solver Desktop. 

Starting in Analytic Solver Desktop V2015, it's also possible to enter 

the number of trials directly into the Trials field. 

 

• the left and right arrows on the Tools tab in the Task Pane in Anaytic 

Solver Cloud. 

   

If you examine the trials, you’ll see the pattern:  The optimal solution is to not 

store any gas in Year 1 for use in Year 2, but instead to buy just enough gas to 

meet the uncertain demand in Year 2.  (With higher gas costs or lower storage 

costs, the optimal solution might change.)  Click the Simulation icon to run a 

simulation and resolve the contents of cell C26. 

 

This solution offers a lower expected cost (the average cost over all future 

scenarios) because of the flexibility introduced by use of a recourse decision.  

And we were able to do this because we created the right kind of model for the 

business situation. 
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The ‘moral of this story’ is that Analytic Solver Comprehensive (Desktop or 

Cloud) gives you the power to solve such problems, using three different 

technologies – simulation optimization, stochastic programming, and robust 

optimization.  But it’s up to you to take advantage of the concept of recourse 

decisions – when they can be used – and create the right kind of model for your 

company’s business situation. 
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Deploying Your Model   

Introduction 
When using Analytic Solver you have the ability to not only create, design and 

solve your optimization, simulation, simulation optimization and stochastic 

optimization models in Microsoft Excel, but you also have the ability to embed 

your model into your own application and solve it on the Web or within Power 

BI or Tableau by calling our RASON Server.   

RASON (which stands for Restful Analytic Solver Object Notation) is Frontline 

Systems' modeling language embedded in JSON and a REST API that makes it 

easy to create, test and deploy analytic models using optimization, simulation 

and data mining, in web and mobile applications.  

Users of Frontline's Excel Solvers will find that 1.  it's exceedingly easy to 

translate Excel models into RASON models 2.  that your knowledge of Excel 

formulas and functions is immediately usable and 3.  RASON models can be 

more flexibly "bound" to data from a variety of sources.    

When you click the newly added Create App icon located on the Analytic Solver 

ribbon, you'll notice that your optimization or simulation model can be deployed 

to the Cloud, Power BI, Tableau, or your own application on the Web.   

 

Web App Developers will be able to immediately find how exceptionally easy it 

is to embed RASON models as JSON and solve them using Frontline's RASON 

server, which exposes a simple REST API that's scalable to handle very large, 

compute-intensive analytic models.  Months of work, that would have 

previously been required, have been reduced to a single command button click!   

Create App Menu 
The purpose of Create App is to enable your model to be used 

wherever/whenever it is needed – on the factory floor, on a salesperson's laptop 

or smart phone or in a call center custom application.  On your own, without 

web development or IT help, you can get your model working as a cloud 
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service.  Once you've shown that it works, your developers or IT will find they 

can everything they'd like – customize code, connect to operational databases, 

apply security and governance best practices.   

Rason makes your model accessible 24 x 7 via simply REST API and JSON 

responses – the common standard for web and mobile apps.  Even better, it 

makes your model results available via OData – the standard widely supported 

by Microsoft apps including Power Platform.  And Rason has built-in facilities 

to get the updated data your model needs directly from operational busines 

systems.  This is amazingly easy if you are using Power BI, Power Apps, Power 

Automate, or Dynamics 365.   

Rason contains the entire Excel formula language as a subset, including virtually 

all of Excel's built-in functions.  That makes translation possible and it allows 

you to see your Excel formulas embedded in Rason's syntax.  To work well in 

web and mobile apps, Rason is embedded in JSON (JavaScript Object Notation) 

which allows it to work directly in Power BI, Tableau or a page on any website.   

With RASON, you can create more flexible models, by working with Rason 

arrays and tables instead of fixed-size cell ranges.  When products, regions, time 

periods and other "dimensions" change, your model can automatically adjust and 

keep running – without any extra work on your part.   

When you first click the Create App icon on the Analytic Solver ribbon in 

V20.5, the new Create App dialog appears.    
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Follow the steps below to convert an optimization or simulation model into a 

RASON model and solve it in the Cloud, Tableau, Power BI, with Solver SDK 

or on an automatically created web page.   

Deployment Wizard 

If you just aren't sure where to start or what you need, use handy deployment 

wizard to help guide you through the Create App menu options.   

  
     

When you click "Next" you'll be guided to select the best way to deploy your 

Excel model.  In each case, you or a developer can extend your deployed 

application by writing C#, JAVA, C++, Python, R, JavaScript, or you can revise 

your model in Excel and "plug" the new version into the application.   
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Create App Menu 

Clicking the first option, Cloud Service gives you two options, RASON Model 

and Excel Model.  RASON Model translates your optimization, simulation, data 

mining and decision table model into Rason and POSTs the model to your 

RASON account.  Excel Model POSTs the Excel workbook model to the 

RASON account. From here you can maintain and solve your model and get the 

results on www.RASON.com. 

Clicking the second option, Power BI, gives you the ability to turn your Excel-

based optimization or simulation model into a Microsoft Power BI Custom 

Visual.  First, you simply select rows or columns of data to serve as changeable 

parameters, next, you select Create App – Power BI – Managed 

Model/Embedded Model, and thirdly, you save the file created by Analytic 

Solver.  Afterwards, you click the Load Custom Visual icon in Power BI and 

select the file you just saved.  What you get isn’t just a chart – it’s your full 

optimization or simulation model, ready to accept Power BI data, run on 

demand on the web, and display visual results in Power BI!  You simply need 

to drag and drop appropriate Power BI datasets into the “well” of inputs to 

match your model parameters.  This is possible because Analytic Solver 

translates your Excel model into RASON® then “wraps” a JavaScript-based 

Custom Visual around the RASON model.  For more information on this 

feature, see the next chapter “Creating Power BI Custom Visuals”.  

Clicking the third option, Tableau, allows you to turn your Excel-based 

optimization or simulation model into a Tableau Dashboard Extension.  You 

simply select rows or columns of data to serve as changeable parameters, then 

choose Create App – Tableau – Managed Model/Embedded Model, and save 

the file created by Analytic Solver.  In Tableau, you’ll see the newly created file 

under Extensions on the left side of the dashboard, where you can drag it onto 

your dashboard.  You’ll be prompted to match the parameters your model needs, 

with data in Tableau.  Much like with Power BI, what you get isn’t just a chart – 

it’s your full optimization or simulation model, ready to accept Tableau data, 

run on demand (using our RASON server), and display visual results in 

Tableau!  Note:  This feature works (only) with Tableau version 2018.2 or later.  

For more information on this feature, see the chapter “Creating Custom 

Extensions in Tableau”.  

The fourth option, Solver SDK – Rason Model translates your optimization, 

simulation, data mining or decision table Excel model to Rason and then opens 

an application that loads the RASON model.  Solver SDK – Excel Model runs 

the SDK application and loads the RASON model.   

The last option, Quick Test automatically deploys your simulation, optimization, 

data mining or decision table Excel Model to a Web application where it can be 

solved.   

Conversion Exceptions 

There are several types of models that Frontline Excel Solvers are not able to 

convert to RASON models, i.e. Excel models containing errors such as #NUM, 

#VALUE, etc.  For all unsupported features, the conversion generator returns an 

appropriate message.       

Note:  When converting a simulation model into the RASON modeling language 

note that only statistics with explicit numeric arguments such as 

=PsiPercentile(cell, 0.50) or =PsiPercentile(cell, A1) where A1 = 0.05 are 
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supported.  Expressions passed to arguments such as =PsiPercentile(cell, 

A1+A2), where A1  = .1 and A2 = .3 are not supported.   

Manage Models 

Click Manage Models (top right) to display your models and model versions 

from your account on www.rason.com.  Selecting a model name in the left 

column displays the model properties in the right.  Select all models to see all 

your models on your Rason account, Rason as well as Excel models.  Click 

Show Versions to see all versions of each named model.  With a model name 

selected, clicking the Runs button displays a list of the most recent model 

instances in the right column.  Click Show Run Parameters to display query 

parameters.  Clicking Delete deletes the selected named model (all versions) or a 

specific version.   

 

Cloud Service:  Rason or Excel 
Clicking the first option, Cloud Service gives you two options, RASON Model 

and Excel Model.  RASON Model translates the Excel model into Rason and 

POSTs the model to your RASON account.  Excel Model POSTs the Excel 

workbook model to the RASON account. From here you can maintain and solve 

your model and get the results. 

Cloud Service - Rason 

When you select Create App – Cloud Service – Rason Model, Analytic Solver 

automatically translates your Excel workflow or 

optimization/simulation/decision table into Rason.  

In Analytic Solver Desktop, open the Product Mix(RASON).xlsx model by 

clicking Help – Example Models on the ribbon, clicking Optimization Examples 

and then the Product Mix for RASON link.  A similar version of this model was 

http://www.rason.com/
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previously discussed in the Conventional Optimization chapter. Recall that this 

example model determines the optimal mix of products that a company should 

produce in order to maximize profits.   

 

The optimization model is included in the Model tab in the Solver Task Pane.  

This model written in algebraic form is below.     

Maximize:  Total Profit = $75x1 + $50x2 + $35x3 

Subject To:   

Chassis:  1x1 + 1x2 + 0x3 <= 450 

LCD Screen:  1x1 + 0x2 + 0x3 <= 250 

Speaker:  2x1 + 2x2 + 1x3 

Power Supply:  1x1 + 1x2 + 0x3 

Electronics:  2x2 + 1x2 + 1x3 

x1, x2, x3 > 0 

Click Create App on the ribbon, then select Cloud Service – RASON Model. 

Note that this action supports all model types:  optimization, simulation, data 

mining and decision table.     

There is no need to solve the model first unless a change has been made to an 

already existing RASON model. If a change has been made to the workbook 

after a RASON model has been created, then you MUST either solve or diagnose 

the Excel model in order for the changes to be reflected in the new RASON 

model.   

When creating a RASON model through desktop Analytic Solver or 

AnalyticSolver.com, model elements (objective function and all variables and 

constraints) may exist on multiple worksheets within the same Excel workbook.   
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On the Confirm Model Name dialog, you can accept the default name by 

clicking Save or you can enter a new model name and then click Save.   

 

For this example, click Save to accept the default model name.  In a matter of 

seconds, a browser opens and navigates to the Web IDE on the Editor page at 

www.RASON.com.  The Product Mix model, now written in the RASON 

modeling language, is displayed in the Model Editor.   

Notice that the model ProductMix(RASON) is also listed in the Models pane to 

the left.   This is because your Excel model, translated into the RASON 

modeling language, has automatically been posted to the Rason Server.  Now 

you'll be able to solve the model and obtain the returns in JSON.      

 

A RASON model begins with an opening { and closes with a closing }.  Within 

the two braces, our model is made up of various "sections" – there are a total of 

Note on Rason Subscriptions 
 

If you have already registered on 

www.Solver.com, then you will 
automatically be registered on 

www.Rason.com with a basic subscription.  

If you are a subscriber to a premium plan, 
you will be subject to the problem limits of 

the purchased plan.   
 

The free basic Rason subscription allows 
you to: 
 

• Solve linear models with up to 200 

variables. 

• Solve nonlinear models with up to 

100 variables. 

• Run Monte Carlo simulations with up 

to 10,000 trials 

• Includes 240 minutes (4 hours) of 

compute time per month. 
 

If you find yourself pushing the limits of 
the Basic plan, then contact Sales 

@solver.com for information related to 

upgrade plan pricing.   

A Note on Model Versions 

Each time you click Create App – Cloud Service – 

Rason or Excel Model, you will create a new "version" 

of the of the model with a unique ID which will appear 
under the Model Name under "Versions".   

 

http://www.rason.com/
http://www.solver.com/
http://www.rason.com/
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eleven:  "variables", "uncertain variables", "data", "dataSources", 

"engineSettings", "formulas",  "modelSettings", "objective", "constraints", 

"indexSets" and "objective".  Some optimization models will consist of just 3 

sections: variables (where the decision variables will be defined), constraints 

(where the constraints will be defined) and objective (where the objective will be 

defined)) where other larger and more complex models might contain several 

additional segments such as:   engineSettings (where the engine is chosen and an 

engine options are specified), data (where any arrays used in the calculation 

of the constraints or objective are defined), formula (where any intermediate 

calculations are performed) and/or  dataSources (where any data is imported 

from an outside source such as a CSV file).   

Our example is rather simple and only includes four:  variables, constraints, 

data and objective.  Let's compare our Excel model with our newly generated 

RASON model section by section, starting with variables.   

If we click back to the Excel example, we can see the model in the Model tab in 

the Solver Task Pane.   

 

Under Variables, in the Model tab of the Solver Task Pane, we see the cell 

range:  C14:E14.  Now click back to your RASON model.   

Within the variables section, we see the same cell range, "C14:E14".  In our 

RASON model, C14:E14 is an array with three elements: C14, D14 and E14.  

(To refer to an individual element, use:  "C14", "D14", or "E14".)  The initial 

value specified for the value property in the RASON model equals the values 

contained in the Excel cell range C14:E14 at the time the model was converted 

(0 for all three cells).  The lower property in the RASON model exists because a 

constraint specifying the variable lower bounds is present in the Excel model 

(C14:E14 >= 0).  If an upper bound was present, the upper property would be 

inserted into the RASON model too.  Upper and lower bounds may be present in 

the Excel model using explicit constraints, such as we have here, or they may be 

entered into the Platform tab of the Solver Task Pane for Decision Vars Lower 

and Upper.  The properties "value", "lower" and "finalValue" are the default 

properties returned for a variable.   

variables: { 

    "c14:e14": {  

      "value": 0,  

      "lower": 0, 

      "finalValue":[] 

    } 

} 

Let's move on to the data section.   
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The data is contained in the Excel model within the cell range:  C18:E22 

(constraint coefficients) and also C24:E24 (objective function coefficients). 

 

The exact same values have been inserted into 6 arrays containing three 

elements each:  C18:E18, C19:E19, C20:E20, C21:E21, C22:E22 and C24:E24.  

Again, to refer to individual elements of, say, the c18:e18 array, use:  c18, d18, 

or e18.    

data: { 

    "c18:e18": {  

      value: [ 

        [1, 1, 0] 

      ]  

    }, 

    "c19:e19": {  

      value: [ 

        [1, 0, 0] 

      ]  

    }, 

    "c20:e20": {  

      value: [ 

        [2, 2, 1] 

      ]  

    }, 

    "c21:e21": {   

      value: [ 

        [1, 1, 0] 

      ]  

    }, 

    "c22:e22": {  

      value: [ 

        [2, 1, 1] 

      ]  
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    }, 

    "c24:e24": {   

      value: [ 

      [75, 50, 35] 

    ]  

  } 

},  

Click back to the Excel model.  Under Constraints in the Model tab of the Solver 

Task pane, we see the entry:  G18:G22 <= H18:H22.    If we inspect the first cell 

in the range, G18, we find the formula:  =SUMPRODUCT(C18:E18, 

$C$14:$E$14) while H18=450.  The other four cells, G19:G22, hold similar 

formulas.    

 

In the constraint section of the RASON model, we see five arrays, containing 

one element each, corresponding to the five constraints in our Excel model.  The 

value for each upper bound is taken from cells H18:H22.     

constraints: { 

    "g18": {  

      "formula":"SUMPRODUCT(C18:E18,$C$14:$E$14)",      

      "upper": 450  

    }, 

    "g19": {  

      "formula":"SUMPRODUCT(C19:E19,$C$14:$E$14)",     

      "upper": 250  

    }, 

    "g20": {  

      "formula":"SUMPRODUCT(C20:E20,$C$14:$E$14)",  

      "upper": 800  

    }, 

    "g21": {  

      "formula":"SUMPRODUCT(C21:E21,$C$14:$E$14)",   

      "upper": 450  

    }, 

    "g22": {  

      "formula": "SUMPRODUCT(C22:E22,$C$14:$E$14)",  

      "upper": 600 } 

    }, 

 

The objective function being maximized in the Excel model is located in cell 

G24 and contains the formula, =SUMPRODUCT(C24:E24,$C$14:$E$14).  
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Looking back to the RASON model, we see the same formula for the G24 array.  

The type property is set to "max" to maximize the objective.   

"objective": { 

    "g24": {  

      "formula":"SUMPRODUCT(C24:E24,$C$14:$E$14)",  

      "type": "max", 

      "finalValue": [] 

    } 

} 

At the end of this section, a closing } ends the RASON model.  For information 

on what a Rason model looks like for a simulation, decision table or data mining 

model, see the Rason User Guide.   

Models entered into the Rason Model Editor in the Web IDE may be solved or 

analyzed using either a 'Quick Solve' REST API endpoint (also referred to as 

Synchronous Endpoints) or a standard REST API endpoint (also referred to as 

Asynchronous endpoints).  Note:  The endpoints displayed on these command 

buttons are the actual REST API endpoints that will be called when you create 

your own webpage in the next section.  For more information on these 

endpoints, see the RASON User Guide.   

 RASON Model Editor 

 

There are two ways to solve a model in Rason, using the "Quick Solve" or 

Synchronous API calls or the Asynchronous API Calls.  For this example, we 

will use a call to an asynchronous API endpoint.  For more information on 

Quick Solve endpoints, see the RASON User Guide.   

Click the arrow next to the  icon and select Optimize (or Solve) from the 

Solve drop down menu to call the RASON endpoint,  POST 

rason.net/api/model/{nameorid}/optimize.  The model is submitted to the 

Asynchronous 

Endpoints 
Synchronous ("Quick 

Solve") Endpoints 

Attach Input Files or 
use Query 

Parameters. 

Get/Delete 

runtime 

tokens. 

Click to create a Power BI or Tableau model or your 

own web page app.  See the next chapter for details.   

Click to open 

example RASON 
models. 

RASON 
models 

listed 

here.     

RASON model 

editor – Enter 
your RASON 

model here.   

Output Pane – The status of 
all calls to the RASON REST 
API will appear here.   
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RASON Server which solves the model and returns the result in the Output 

window, shown below.   

 

"Solve" calls the REST API endpoint POST 

rason.net/api/model/ProductMix(RASON)/solve which solves any problem type 

(optimization, simulation, decision table or data mining) while Optimize calls 

the REST API endpoint POST 

rason.net/api/model/ProductMix(RASON)/optimize which solves only 

optimization models. 

In the Output Window at the bottom of the screen you'll see similar output. 

Executing asynchronous solve: POST 

https://rason.net/api/model/2590+ProductMix(RASON)+2020-06-17-18-

26-05-284735/solve 

{ 

    "ModelId": "2590+ProductMix(RASON)+2020-06-17-18-47-24- 

     166065", 

    "ModelName": "ProductMix(RASON)", 

    "ModelDescr": "", 

    "ModelFiles": [], 

    "RuntimeToken": "", 

    "ModelType": "Instance", 

    "ModelKind": "Rason", 

    "IsChampion": false, 

    "ParentModelId": "2590+ProductMix(RASON)+2020-06-17-18-26-05-     

    284735", 

    "QueryString": "" 

} 

The results in JSON are inserted into the Models pane beneath "Results". 

 

If we click the entry under Results, the Editor tab will open and display the 

results of the solve in JSON.   
{ 

    "status": { 

        "id": "2590+ProductMix(RASON)+2020-06-17-18-47-24-166065, 

Model ID identifies this instance of 
the ProductMix(RASON) model.  

The ParentModelId is the model that 

was solved to create this instance.  
For more information on the Rason 

REST API, see the Rason User 

Guide downloadable from the Help 

page.      
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        "code": 0, 

        "codeText": "Solver found a solution.  All constraints and 

optimality conditions are satisfied.", 

        "solveTime": 64 

    }, 

    "results": { 

        "c14:e14": ["finalValue"], 

        "g24_": ["finalValue"] 

    }, 

    "c14:e14": { 

        "objectType": "dataFrame", 

        "name": "c14:e14", 

        "order": "col", 

        "colNames": ["finalvalue"], 

        "colTypes": ["double"], 

        "indexCols": null, 

        "data": [ 

            [200, 200, 0] 

        ] 

    }, 

    "g24_": { 

        "objectType": "dataFrame", 

        "name": "g24_", 

        "order": "col", 

        "colNames": ["finalvalue"], 

        "colTypes": ["double"], 

        "indexCols": null, 

        "data": [ 

            [25000] 

        ] 

    } 

} 

The result "Solver found a solution.  All constraints and optimality conditions 

are satisfied" means that no other solution exists that is better than the solution 

found.  (For more information on this and all possible Solver Result messages, 

please see the RASON Reference Guide.)  To maximize profit, we should make 

200 TV sets, 200 stereos and 0 speakers.  The final objective value of 25,000 is 

the maximum profit that we can attain.  

As you can see, Analytic Solver users have the ability to build an 

optimization/simulation/decision table model in Microsoft Excel and deploy it to 

Frontline's Rason server without ever having to write a single line of code.  

From here, users can publish, manage and govern analytic models as RESTful 

decision services, easily update them with new data and solve them, and use the 

results in any application that can consume JSON or OData.   

Rason is the easiest way to transition into the world of web, mobile and cloud-

base applications.  For more information on using Frontline's Rason Services or 

to see how a Rason model looks for a simulation, decision table or data mining 

model, see www.Rason.com or simply contact our Technical Support staff using 

support@solver.com.   

Note:  When converting a simulation model into the RASON modeling language 

note that only statistics with explicit numeric arguments such as 

=PsiPercentile(cell, 0.50) or =PsiPercentile(cell, A1) where A1 = 0.05 are 

supported.  Expressions passed to arguments such as =PsiPercentile(cell, 

A1+A2), where A1  = .1 and A2 = .3 are not supported.   

Cloud Service – Excel  

What if you had a large optimization, simulation or decision table model, or a 

workflow with a combination of each, with literally hundreds of thousands of 

decision variables/uncertain variables and constraints/uncertain functions?  A 

http://www.rason.com/
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translated Rason model could be too large and unwieldy to maintain, or maybe 

you just feel more comfortable maintaining your model in Excel?  That's no 

problem because with Analytic Solver 20.5, it's possible to deploy your model to 

the Rason Server and maintain it in Excel.  You can do so by using the Cloud 

Service – Excel option on the Create App menu.    

To get started, click back to  Help – Example Models on the ribbon, click Monte 

Carlo Simulation Examples and then the Business Forecast link.  Click the 

Forecast with Uncertainty tab.  Recall this example model from the Simulation 

& Risk Analysis chapter which finds the True Average of a sales forecast.  

This example includes just one Statistic function, PsiMean, in cell D20.  As a 

result, our results will only contain one result, the Mean of cell D20. We could 

add additional Psi Statistics functions such as PsiPercentiles, PsiStdDev, etc., if 

desired in order to add these statistics to our results in Rason.    

Before we click Create App, let's use the PsiInput function to expose a few input 

parameters which we might expect will change later. For example, let's expose 

the product cost per scenario and also the maximum market demand, which, due 

to unforeseen circumstances, might change in the future.     

To do so, click a blank cell on the worksheet, say G24 and enter =PsiInput(J16) 

and in cell G25 enter =PsiInput(H20:J20). 

Note: You can also define cell J16 and cells H20:J20 using defined names such 

as MaxDemand (J16) and Cost (cells H20:J20) and then use 

PsiInput(MaxDemand) and PsiInput(Cost).   

If running an optimization model, there are 6 output Psi functions available that 

you could enter into the spreadsheet: PsiFinalValue, PsiInitialValue, 

PsiSlackValue, PsiDualLower, PsiDualUpper and PsiDualValue.  These may all 

be used to obtain the specified value of a constraint or variable in the result.  For 

more information on these functions, see the Psi Functions chapter within the 

Analytic Solver Reference Guide. 

Click Create App – Cloud Service – Excel Model 

 

then click Save to use the default model name.  This option will simply POST 

the Excel model to your Rason account.  (If your model is saved on your 

OneDrive account, click the checkbox.) 
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Notice that the BusinessForecast(Sim) model now appears in the Models pane 

on www.rason.com.   

 
 

 

Under Properties on the left, we will use the Query Parameters edit box to 

change our Cost parameters to, say, Minimum = $10, Most Likely = $15 and 

Maximum = $20 and the Maximum sold to 200,000. 

?J16=200000&H20:J20=[10, 15, 20] 

Note:"?worksheet=Forecast with Uncertainty&J16=200000&H20:J20=[10, 15, 

20]" is also supported. 

Note that if we use PsiInput() to designate multiple cells as input parameters, it 

is not possible to change just 1 of the input parameters, you must pass all or 

none.  If you want to change just one parameter, use PsiInput() for just the single 

parameter as we did in cell G24, = PsiInput(J16) 

 

If your model is saved on your OneDrive 
account, click the "My workbook resides 

on OneDrive" checkbox to expand the 

dialog and enter your Connection Name 

(File name).  

http://www.rason.com/
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Note:  If we had used the defined names, our query would have been: 

?MaxDemand=200000&Cost=[10,15,20] or  

?worksheet=Forecast with 

Uncertainty&MaxDemand=200000&Cost=[10,15,20] 

To run a new simulation with these updated parameters, click the down arrow 

next to the play button and click Solve. 

 

 
 

The results will appear under Results in the Models pane on the right. 

 

 
 

Click the new result entry to view the new simulation results. 
{ 

    "status": { 

        "id": "2590+BusinessForecast(Sim)+2020-07-02- 

         23-56-23-452286", 

        "code": 0, 

        "codeText": "Solver has completed the  

         simulation.", 

        "solveTime": 58 



Frontline Solvers 2021 User Guide Page 196 

    }, 

    "results": { 

        "$D$19.statistics": ["mean"] 

    }, 

    "$D$19": { 

        "statistics": { 

            "objectType": "dataFrame", 

            "name": "$D$19.statistics", 

            "order": "col", 

            "colNames": ["mean"], 

            "colTypes": ["double"], 

            "indexCols": null, 

            "data": [ 

                [-781671.43164415448] 

            ] 

        } 

    } 

} 

 

If you had multiple parameters to update, then you could enter the updated 

values into a spreadsheet or text file and then use the Choose Files button to 

upload the new data to the Rason Cloud Service.  Simply click the Put icon to 

update your model with the attached data sheet and then click Solve to solve 

your model with the latest data.    

 

 

Conversion Exceptions 

There are several types of models that Frontline Excel Solvers are not able to 

convert to RASON models, i.e. Excel models containing errors such as #NUM, 

#VALUE, etc.  For all unsupported features, the conversion generator returns an 

appropriate message.       

Note:  When converting a simulation model into the RASON modeling language 

note that only statistics with explicit numeric arguments such as 

=PsiPercentile(cell, 0.50) or =PsiPercentile(cell, A1) where A1 = 0.05 are 

supported.  Expressions passed to arguments such as =PsiPercentile(cell, 

A1+A2), where A1  = .1 and A2 = .3 are not supported.   

Problem Limits 

Your Frontline Excel Solver license determines the size and type of model that 

can be solved with the RASON Web IDE.  If you have a license for Analytic 

Solver Comprehensive, then the same problem limits will apply when solving a 

RASON model via the Rason Server, i.e. linear models with up to 8,000 

variables (2,000 integers) and 8,000 constraints; smooth, nonlinear models with 

up to 1,000 variables and 1,000 constraints; nonsmooth models with up to 1,000 

variables and 1,000 constraints and SOCP models with up to 2,000 variables and 

8,000 constraints.   
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Power BI:  Managed Model or Embedded Model 
When you choose Create App – Power BI – Managed Model, you must have 

previously used Create App – Cloud Service to create a named model (either in 

Excel or Rason) that "lives" on the public Rason cloud service.  You will be 

prompted for the name of that model. Analytic Solver will automatically create a 

"Custom Visual" that can be used on a Power BI dashboard or report.  (This is 

saved as a file ending in .pbiviz, that you open in Power BI, adding it to your 

palette of visuals.)  

Analytic Solver offers a 2nd "quick" option that works for some (modest size) 

but not all Excel models, when you choose Create App – Power BI – Embedded 

Model.  Analytic Solver automatically translates your Excel model into Rason, 

our high-level modeling language that works in the cloud as well as on desktops 

and servers. 

Analytic Solver then automatically creates a "Custom Power BI Visual" that can 

be used on a Power BI dashboard or report, where the RASON model is 

embedded inside the visual, in a .pbiviz file.  You don't have to create a named 

model that "lives" on the public Rason cloud.  The Custom Visual accepts the 

data your model needs from Power BI; whenever this data changes, it sends your 

Rason model plus this data to the public Rason cloud service where it is solved, 

gets back the results and displays them in bar chart form.   

Note:  This option only supports the creation of a Power BI Custom Visual with 

optimization and simulation models.  Decision Flows, Decision Table and Data 

Mining models are not supported at this time.   

Power BI Managed Model 

Click back to the ProductMix(RASON).xlsx example model.  Since we've 

already posted this model to the Rason cloud service within the previous section, 

we can immediately go to Create App – Power BI – Managed Model. This 

Create App option allows you to create a Data Well in Power BI which accepts 

input data.   

Note:  The menu choice Create App – Cloud Service – Excel Model does not 

support the use of Data Wells in Power BI.  You must first post your model to 

the RASON Server using Create App – Cloud Service – Rason Model.   

Select a blank cell, say J4.  In Analytic Solver Desktop, click Formulas – Insert 

Function to open the Insert Function dialog, then select PSI Dimension for 

Category.  Afterwards, highlight the function PsiDataSrc, and click OK.  
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In Analytic Solver Desktop or AnalyticSolver.com, you can simply type the 

formula directly into the cell.   

The Function Arguments dialog opens displaying 5 arguments:  Src_name, 

Val_col_names, Data, Idx1_name and Idx1_elem.  We will use this dialog to 

create a PsiDataSrc() in cell J4 that will allow us the ability to change the 

inventory values and resolve the Product Mix example model not in Excel, but 

in Power BI. 

PsiDataSrc() Arguments 

Src_name – This argument names the text file, created by the custom visual, 

which is submitted, along with the RASON model, to the RASON server.   For 

this example, type:  inventory_src.   

Val_col_names – This is the name given to the “data well” that will appear in 

Power BI.  This “data well” will hold the actual data. For this example, type: 

inventory. 

Data – Enter the Excel range where the data is located on the spreadsheet for 

this argument.  For this example, use your mouse to click the upward pointing 

arrow to the right of the Data argument and select cells H18:H22.  You can also 

simply type this range into the edit box.     

Idx1_name – Enter the name of the (1st ) index set for the data specified in the 

Data argument.  In this example, our Index set is simply the inventory available 

for each Part.  Therefore, enter “parts” for this argument. 

Idx1_elem – Enter the Excel range containing the data (or elements) for the first 

index set.  For this example, either type or select cells:  B18:B22   
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Since this index set is 1-dimensional, nothing further is needed and we can click 

OK to enter the PsiDataSrc() function into cell J4.  

In Analytic Solver Cloud or AnalyticSolver.com, you can type the formula 

directly into cell J4. 

=PsiDataSrc("inventory_src", "inventory", 

Number_available, "parts", B18:B22) 

Afterwards, cell J4 will display the value given to the Src_name argument, 

inventory_src.  

Save the Excel model and then click Create App – Power BI – Managed Model 

to create the Power BI Custom Visual. 

 

Confirm the name of the model by clicking Save on the Confirm Model Name 

dialog.  This is the name of the model that will reside on the Rason Cloud 

Server.   
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Browse to a location of your choice and enter a name for the PBIViz File.  (This 

example uses ProductMix(Rason). 

 

Then click Save to save the ProductMix(Rason).pbiviz file.  A window appears 

as the file is being created.   

 

In order to provide our new data to Power BI, we must create a data file. This 

data file, containing the new inventory levels by part, will be imported into 

Power BI.  This data file can be of any format supported by Power BI such as a 

CSV file, a text file, a database, etc.  In this example, we will use an Excel 
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workbook to hold the data.  For more information on what types of files Power 

BI supports, please see the Power BI documentation at:   

https://powerbi.microsoft.com/en-us/documentation/powerbi-landing-page/ 

Open a blank worksheet and create a table with two columns.  List the parts by 

name in the first column using the column heading “parts” and the inventory 

levels in the second column using the column heading “inventory”, as shown in 

the screenshot below. Make sure to pass a new inventory value of 1,000 

Speakers.  

Click Help - Example Models - Optimization Examples - Product Mix Data for 

Power BI - Tableau to open a complete data file. This table is included on the 

Parts Inventory tab. 

 

Note:  Column headings must be identical to the names of the Index Sets passed 

to the PsiDataSrc function.  Make sure there are no spaces before or after 

column headings or row elements.   

 

Recall that we labeled the IndexSet as “parts” (4th argument of PsiDataSrc) and 

Val_col_names as "inventory" (2nd argument of PsiDataSrc) so the title for 

column A must be "parts" and the title for column B must be "inventory".  Now 

save the workbook to a desired location.   

Open either desktop or cloud-based Power BI and click Get Data – Excel. 

 

Browse to the location of the saved data file (C:\Program Files\Frontline 

Systems\Analytic Solver Platform\Examples) and click Open.  Select the 

worksheet that contains your newly created data table and click Load. 

 

https://powerbi.microsoft.com/en-us/documentation/powerbi-landing-page/
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After the data table is uploaded to Power BI, click the icon containing three 

horizontal dots at the bottom of Visualizations, then select Import from file from 

the menu.  Navigate to the location of the saved ProductMix(RASON).pbiviz 

file.  Select the file, then click Open.  If the import was successful, you will see 

a message indicating as such.  Click OK to clear this dialog.   A small icon 

appears bearing the Frontline Frontline Solvers logo is added under 

Visualizations.   

 

 

 

 

 

 

 

 

 

 

Click this icon to open Frontline Solvers’ custom visual.  

Click the custom visual, the black and white chart is displayed.  At this point 

you should see newly added items such as “parts” and “inventory” under 

Visualizations,  on the task pane on the right, and the same under Fields.  Recall 

that these are the same names that we passed to the PsiDataSrc() function within 

the Excel example model, ProductMixOpt.xlsx. 

Two fields are added under Inventory in the Fields section of the Task Pane:  

inventory and parts.   

 

ProductMix2 

Custom Visual 
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Click parts Under Fields and move to parts under Visualizations where the 

words “Add data fields here” is located.  Now drag inventory on the right to 

inventory on the left.   

 

Click the down arrow next to both parts and inventory and select Don't 

summarize from the menu.   

 

  

Immediately, the model is sent to the RASON server, solved, and the final 

values are returned.  After enlarging the custom visual, your screen should 

appear similar to the screenshot below.   

At the bottom of the custom visual, we find Solver’s result message:  Solver 

found a solution.  All constraints and optimality conditions are satisfied.  In the 

Variables chart, we see that final variable values are:  Var1 (LCD TV) equal to 

50, Var2 (Stereo) equal to 400 and Var3 (Speakers) equal to 100.  These 

variable values result in an objective function value equal to 27,250.  The payoff 

of increasing the available speakers from 800 to 1,000 is an added profit of 

$2,250 ($27,250 - $25,000).    
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You can use the PsiFinalValue Psi function to add the constraints to the Custom 

Visual output, if desired, by entering PsiFinalValue(G18:G22) in a blank cell 

and then updating the model on the Rason Cloud Service (Create App – Cloud 

Service – RASON Model) and recreating the Custom Visual (Create App – 

Power BI – Managed Model). 

 

You can easily update your inventory on the Parts Inventory tab of 

ProductMixData.xlsx, then click the three dots next to the data source within 

Power BI and select Refresh Data from the menu to resolve the model and 

display the new results in the Custom Visual.   

 

You can update your named model (i.e. change a objective or constraint 

coefficient or a constraint right hand side) to a new version on the Rason Cloud 

service and still use the same Custom Visual in Power BI, as long as the input 

data definition your model requires has not changed. If the input data has 

changed, you'll need to use this menu option to create a new Custom Visual, to 

replace the old one.   

Note:  Continue reading to discover how to deploy a simulation model to Power 

BI or see the following chapter, Creating Power BI Custom Visuals, for more 

information on this feature.   

Create App – Power BI – Embedded Model 

Another "quick" option that works for some (modest size) but not all Excel 

models, when you choose Create App – Power BI – Embedded Model:  Analytic 
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Solver automatically translates your Excel model into Rason and embeds your 

model into the Custom Visual.   

Note:  The menu choice Create App – Cloud Service – Excel Model does not 

support the use of Data Wells in Power BI.  You must first post your model to 

the RASON Server using Create App – Cloud Service – Rason Model.   

You don't have to create a named model that "lives" on the public Rason cloud.  

The Custom Visual accepts the data your model needs from Power BI; whenever 

this data changes, it sends your Rason model plus this data to the public Rason 

cloud service where it is solved, gets back results, and displays it in bar chart 

form.   

Open the Business Forecast for Power BI – Tableau from Help – Example 

Models – Monte Carlo Simulation Examples.  This model includes two 

PsiDataSrc functions in cells G24 and G25 to generate data wells for use in the 

Power BI Custom Visual.   

G24 =PsiDataSrc(“market_src”, “market”, J17:L18, “parameters”, I17:I18, 

“mktdemand”, J16:L16) 

G25=PsiDataSrc(“price_src”, “mktprice”, J21:L21, “price”, J20:L20) 

Two Psi Functions, PsiPercentiles and PsiData, in order to draw the histogram in 

the Custom Visual.   

Note that your model must also contain PsiPercentiles and PsiData to draw a 

histogram with 5th and 95th percentile markers in the Power BI Custom Visual 

when using Create App – Power BI – Managed Model. 

H28 = PsiPercentiles(F20) 

G28 = PsiData(F20) 

The PsiPercentiles function returns all percentiles (0.01-0.99) for the uncertain 

function in cell F20.  The PsiData function returns all trial values for cell F20.   

For more information on these formulas, see the Analytic Solver Reference 

Guide.   

Click Create App – Power BI – Embedded Model to create a new Power BI 

custom visual file. 

 

When asked, provide a name for the Custom Visual.   
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A window appears as the file is being created.   

 

Analytic Solver automatically creates the Custom Visual that can be dragged 

onto the Power BI Dashboard, or a report.  The Rason model will be embedded 

inside the Custom Visual.   

Once the npm window disappears, open Microsoft Power BI.  Upon opening, 

click the three dots beneath Visualizations, and select Import from file.   

 

 

 

 

 

 

Click back to Excel and open a new workbook to enter the following data into 

an Excel table, then save the workbook as BusinessForecastData.xlsx.  (You 

can open the completed data file, BusinessForecastData.xlsx, from Help – 

Example Models – Monte Carlo Simulation Examples.)   
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Open Power BI and add in the custom visual (Import from file – 

BusinessForcast1.pbiviz), then click Get Data – Excel to import the data. 

Afterwards, drag the data fields to the appropriate data wells as shown in the 

table below. 

 

Fields Data Wells 

market market 

mktdemand mktdemand 

mktprice mktprice 

parameters parameters 

price price 

 Your task pane should match the following screenshot.  Make sure that none of 

the Fields are being summarized.   

 

Immediately, once the data wells are filled with the appropriate data fields, a 

simulation will be run.   
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Again, note that as long as your PsiDataSrc functions remain the same, you will 

not need to create a new custom visual.   

If your data changes, say your demand explodes, you can simply edit your data 

file. 

 

Click back to Power BI and click the three dots to the right of the data source… 

 

and select Refresh Data from the menu. 

 

The Custom Visual will automatically redraw using the new data.   



Frontline Solvers 2021 User Guide Page 209 

 

This option is simpler initially, but if you want to update your model in any way, 

you'll have to use this menu option to create a new Custom Visual.  If you 

expect to revise the model over time, it's better to use the first option, Managed 

Model.  For more information on creating a Power BI Custom Visual including 

how to use Data wells in Power BI, see the chapter Creating Power BI Custom 

Visuals.   

Tableau:  Managed Model or Embedded Model 
When you click Create App – Tableau, you'll see two options:  Managed Model 

and Embedded Model, just like with Power BI above.   Continue reading to 

discover which option suits your needs.   

Note:  This option only supports the creation of a Tableau Extension with 

optimization and simulation models.  Decision Flows, Decision Table and Data 

Mining models are not supported at this time.   

Tableau: Managed Model 

When you choose Create App – Tableau – Managed Model, you must have 

previously used Create App – Cloud Service (Rason or Excel) to create a named 

model that "lives" on the public Rason Cloud service.  You will be prompted for 

the name of that model.  Then Analytic Solver will automatically create a 

Tableau Dashboard Extension that can be used on a Tableau dashboard.  (This is 

saved as a set of files, one ending in .trex that must be added to "My Extensions" 

in Tableau.) 

The Dashboard Extension does three things:  1.  It prompts you in Tableau to 

connect the input data your Excel or Rason model needs, for any Tableau 

source; 2. Whenever the Tableau data is updated, it automatically runs your 

model as a cloud service, getting optimization or simulation results; 3. It 

displays results in bar chart form, right where you placed the visual on your 

dashboard or report.   

You can update your named model to a new version on the Rason cloud service, 

and still use the same Dashboard Extension, so long as the input data definition 

your model needs has not changed.  If it has changed, you must return to Create 

App – Tableau – Managed Model to create a new Custom Visual, to replace the 

old one.   
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Click back to the ProductMix(RASON).xlsx example model discussed in the 

Cloud Service section above.  Since we've already posted this model to the 

Rason cloud service within the previous Cloud Service section, we can 

immediately go to Create App – Tableau – Managed Model.  

Note:  The menu choice Create App – Cloud Service – Excel Model does not 

support the use of Data Wells in Tableau.  You must first post your model to the 

RASON Server using Create App – Cloud Service – Rason Model.   

 

Confirm the name of the model by clicking Save on the Confirm Model Name 

dialog.  This is the name of the model that will reside on the Rason Cloud 

Server.  To see a list of all models in your Rason account, click Manage Models 

(at the top of the Create App dialog).  For more information on the Manage 

Models dialog, see the Introduction to this chapter.   

 

Browse to a location of your choice and select a folder to save the Tableau 

Extension.  (This example uses ProductMixExt.)  
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Open Tableau from the Desktop or on the Web.  Upon opening, you'll be asked 

to connect to a data source.  You can use ProductMixData.xlsx file saved locally 

at C:\Program Files\Frontline Systems\Analytic Solver Platform\Examples.     

Click Connect – Microsoft Excel. 

 

Browse to C:\Program files\Frontline Systems\Analytic Solver 

Platform\Examples and open the file ProductMixData.xlsx.  (If you are using 

Analytic Solver Cloud app, then you can download the file from Help – 

Example Models – Optimization Examples and save the file locally or to your 

OneDrive account.) 

 

Click Open. Tableau opens to the Data Source tab.  Select the AllData Sheet to 

open the data table.   
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Click the New Dashboard icon at the bottom of the page to create a new Tableau 

dashboard.  

  

Drag an Extension (from the Objects palette) to the dashboard.   

 

 

Click My Extensions… 

 

…browse to the location of the Tableau Extension.  
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 (In this example, the Tableau Extension was saved to the ProductMix folder.  

Drill down to the Extensions folder to open the Solver.trex file.) Click Open. 

Click OK to allow the extension to be added to the dashboard. 

 

 

You can use the PsiFinalValue Psi function to add the constraints to the  output, 

if desired, by entering PsiFinalValue(G18:G22) in a blank cell and then updating 

the model on the Rason Cloud Service (Create App – Cloud Service – RASON 

Model) and recreating the Tableau Extension (Create App – Tableau – Managed 

Model). 
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You can easily update your inventory on the Parts Inventory tab of 

ProductMixData.xlsx, then click back to the Data Source tab in Tableau and 

click the Refresh icon to refresh the data which will trigger an automatic resolve 

of the model.  New results will be displayed in the Extension.   

 

You can update your named model (i.e. change a objective or constraint 

coefficient or a constraint right hand side) to a new version on the Rason Cloud 

service and still use the same Tableau Extension, as long as the input data 

definition your model requires has not changed. If the input data has changed, 

you'll need to use this menu option to create a new Extension, to replace the old 

one.   

See the following chapter Creating Custom Extensions in Tableau for more 

information on this feature.   

Tableau Embedded Model 

You have another "quick" option that works for some (modest size) but not all 

Excel models, when you choose Create App – Tableau – Embedded Model.  

When this option is chosen, Analytic Solver translates your Excel model into 

Rason, and then automatically creates a "Dashboard Extension" that can be used 

on your Tableau dashboard.   

This option is different than Tableau – Managed Model because with Tableau 

Embedded Model, your model is embedded inside the extensions' JavaScript 

file.  There is no need to create a named model that "lives" on the public Rason 

cloud.  The Dashboard Extension accepts the data your model needs from 

Tableau; whenever this data changes, it sends your Rason model plus this data to 

the public Rason cloud service where it is solved, obtains the results and 

displays them in chart form.   

Although this option is initially simpler, if you want to update your model in any 

way, you'll have to use this menu option to create a new Dashboard Extension.  

If you expect to revise the model over time, it's better to use Create App – 

Tableau – Managed Model.  

Open the Business Forecast for Power BI – Tableau from Help – Example 

Models – Monte Carlo Simulation Examples.  This model includes two 
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PsiDataSrc functions in cells G24 and G25 to generate data wells for use in the 

Tableau Extension.   

G24 =PsiDataSrc(“market_src”, “market”, J17:L18, “parameters”, I17:I18, 

“mktdemand”, J16:L16) 

G25=PsiDataSrc(“price_src”, “mktprice”, J21:L21, “price”, J20:L20) 

Two Psi Functions, PsiPercentiles and PsiData, in order to draw the histogram in 

the Tableau Extension.   

H28 = PsiPercentiles(F20) 

G28 = PsiData(F20) 

The PsiPercentiles function returns all percentiles (0.01-0.99)e for the uncertain 

function in cell F20.  The PsiData function returns all trial values for cell F20.   

For more information on these formulas, see the Analytic Solver Reference 

Guide.   

Click Create App – Tableau – Embedded Model to create a new Tableau 

Extension. 

Note:  The menu choice Create App – Cloud Service – Excel Model does not 

support the use of Data Wells in Tableau.  You must first post your model to the 

RASON Server using Create App – Cloud Service – Rason Model.   

 

Browse to a location of your choice and select a folder to save the Tableau 

Extension.  (This example uses BusinessForecast.)  
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Click back to Tableau and again drag the Extension icon to the dashboard.   

  

 

 

Click My Extensions… 

 

…browse to the location of the new Tableau Extension. (In this example 

…\BusinessForecast\Extensions.) 

 

Click OK to allow the extension to be added to the dashboard. 
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Again, note that as long as your PsiDataSrc functions remain the same, the 

named model can be updated on the Rason Cloud Service and you will not need 

to create a new custom visual.  However, if the PsiDataSrc() functions change, 

you will need to update both the Rason named model residing on the Rason 

Cloud Server and the custom visual.   

SolverSDK: Rason or Excel Model 
When you click Create App – Solver SDK – Rason Model, Analytic Solver 

translates your Excel model into Rason and starts a simple Windows application 

that you can run right away, plus sample source code in C# that you can use to 

modify, compile and run the application.  This time, when the app runs, it calls 

our Solver SDK asking it to load your Rason model from a JSON (text) file and 

solve it by performing an optimization or simulation.  You can easily supply 

input data and pull results from the Rason model.   

When you click Create App – Solver SDK – Excel Model, Analytic Solver 

creates a simple Windows application plus sample source code in C# you can 

use to modify, compile (using Visual Studio) and run that Windows application.  

When the app runs, it calls our Solver SDK and asks it to load your Excel 

workbook model and solve it.  Note:  Data Mining models are not supported.  

Through the SDK's high-level, object-oriented API, users can obtain input data 

from any source available to your code and "plug" this data into your Excel 

model as loaded into memory – in cell ranges that you specify, "point and click" 

in Excel.  Once solved, the app can easily pull results from cell ranges you 

choose in the model such as decision variables or the objective value. 

RASON Model 

Click Help – Example Models –Optimization Examples and click the Product 

Mix link.   

Recall that this model determines the optimal mixture of products to 

manufacture given a set of parts.   

To solve this example in Analytic Solver, we can of course simply click the 

green arrow on the task pane.   
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Notice the decision variable values for Number to Build:  200 TVs, 200 Stereos 

and no Speakers.  The maximum profit is $25,000.   

Now let's solve this same model using Frontline's Solver SDK, Frontline's 

Software Development Kit that allows you to solve your optimization and 

simulation models from within C++, C#, Java, Python or R.   

Click Create App – Solver SDK – RASON Model.  Immediately, the Rason Run 

Test Windows application opens containing the Excel model translated into 

Rason code.   

  

Solve the model by clicking Run – Optimize.  If a simulation model had been 

exported, you would click Run Simulate and Run Calculate for a Decision Table 

Model.   

 

The results are displayed in the output window.  Notice the same final decision 

variable values of 200, 200 and 0 and the same objective function value of 

$25,000. 
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v 

Now what if we wanted to change our selling price for a TV from $75 to $150.   

We can easily expose this parameter by using the PsiInput() function within the 

original excel model.   

Click back to the Product Mix example and enter the following formula into a 

blank cell: =PsiInput(C24) 

Now click Create App – Solver SDK – Rason Model.  Notice the grid at the top 

of the app.  Enter 150 to change the price of a TV from $75 to $150.  Then click 

Run – Optimize to solve the model with the new selling price.   

 

In order to view sensitivity information for the variables or constraints, or initial 

variable values, we could add PsiDualValue() and PsiInitialValue() to the 

original Excel model.   

Click back to Excel and enter the following formulas into blank cells. 

=PsiInitialValue(C14:E14) – Will report the variable initial values. 

=PsiDualValue(G18:G22) – Will report the dual values for the constraints. 

=PsiDualUpper(G18:G22) – Will report the dual upper values for the 

constraints. 

=PsiDualLower(G18:G22) – Will report the dual lower values for the 

constraints. 

=PsiFinalValue(G18:G22) – Will report the final values of the constraints. 

=PsiSlackValue(G18:G22) – Will report the slack values of the constraints.   

Objective Function 

Final Variable Values 

PsiInput() 

New Results 
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Now click Create App – Solver SDK – RASON Model.  Rason Excel Test 

opens and displays the RASON model.   

 

Now click Run – Optimize to solve the model and display the results. 
{ 

  "status" : {  

    "code" : 0,  

    "codeText" : "Solver found a solution.  All constraints and  

     optimality conditions are satisfied."  

  }, 

  "variables" : { 

     "c14:e14" : { "initialvalue" : [[200, 200, 0]] } 

   }, 

   "objective" : { 

     "g24_" : { "finalvalue" : 25000 } 

   }, 

   "constraints" : { 

      "g18" : {  

        "duallower": 400, 

        "dualupper": 1e+30, 

        "dualvalue" : 0,  

        "finalvalue" : 400,     

        "slackvalue" : 50  

      }, 

      "g19" : { 

        "duallower": 400, 

        "dualupper": 1e+30, 

        "dualvalue" : 0,  

        "finalvalue" : 200,  

        "slackvalue" : 50  

      }, 

      "g20" : {  

        "duallower": 400, 

        "dualupper": 1e+30, 

        "dualvalue" : 12.5,  

        "finalvalue" : 800,  

        "slackvalue" : 0  

      }, 

      "g21" : {  

        "duallower": 400, 

        "dualupper": 1e+30, 
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        "dualvalue" : 0,  

        "finalvalue" : 400,  

        "slackvalue" : 50  

      }, 

      "g22" : {  

        "duallower": 400, 

        "dualupper": 1e+30, 

        "dualvalue" : 25,  

        "finalvalue" : 600,  

        "slackvalue" : 0 } 

      } 

   } 

Excel Model 

Click Help – Example Models –Optimization Examples and click the Cutting 

Stock link. 

This model determines how to cut steel sheets, given steel sizes of 100, 80 and 

55 inches, to meet demand in 3 sizes, 45, 30 and 18, while minimizing waste. 

Enter "=PsiInput(D30)" in a blank cell to expose the demand for the 45" cut so 

that it can be changed within the SDK Windows app.  This example uses cell 

D32. 

Click the green arrow on the task pane to solve the model.  The number of 

sheets to cut are located under "Number of Sheets" and the cuts to make per 

sheet are listed under 45, 30 and 18, respectively.   

 

Click Create App – Solver SDK – Excel Model.  Immediately, the Rason Run 

Test Windows application opens. Notice the PsiInput parameters beneath 

Sheets_demand.   

 

Click Run -- Optimize 



Frontline Solvers 2021 User Guide Page 222 

 

The results are displayed in the output window. 

 

Now change the values of the input parameter (the demand for the 45" cut). Let's 

use:  200.  Click Run Optimize again.  The new results are displayed in the 

output window at the bottom of the app.   

 

Click Run – Generate to generate the Rason model.   
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Quick Test:  Web Page or Rason Model 
When you choose Create App – Quick Test – Web Page, Analytic Solver 

automatically translates your Excel model into Rason; then it creates a Web 

page (a file ending in .html) with some text boxes and buttons, and the Rason 

translation of your Excel model and data – embedded in the JavaScript code on 

the Web page.  This is a working version of your model that runs on the Web – 

if you click the Quick Solve or Solve button, after a moment you'll see the same 

solution values that you would see in Excel, but returned in JSON (JavaScript 

Object Notation).   

When you choose Create App – Quick Test – Rason Model, Analytic Solver 

automatically translates your Excel model into Rason.  To show you the new 

Rason model, Analytic Solver opens a new Web browser to www.Rason.com, 

logins as you, uploads the translated model text and displays it in Rason's Model 

Editor.  You can solve the model using Rason's menu Quick Run – 

Optimize\Simulate\Decision\Solve endpoints.   

Whether you keep your model in Excel or translate it to Rason the big difference 

is that your model can be used wherever / whenever it is needed – on the factory 

floor, on a salesperson's laptop or smartphone, or in a call center custom 

application.  And Rason can get the updated data your model needs directly 

from operational business systems.  This is amazingly easy if you are using 

Power BI, Power Apps, Power Automate or Dynamics 365.   

Quick Test Web Page 

Analytic Solver includes the ability to bypass months of development work by 

creating a web application that solves the optimization, simulation, stochastic 

optimization, simulation optimization and/or decision table model in Excel. 

Click back to Excel, and the Product Mix example, then click Create App – 

Quick Test --  Web Page.   

http://www.rason.com/
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NOTE: When creating a RASON model through desktop Analytic Solver or 

AnalyticSolver.com, model elements (objective function, decision variables, 

constraints, uncertain variables and/or uncertain functions) may now appear on 

multiple worksheets within the same Excel workbook.   

Immediately, a browser opens displaying the newly created Web Application.   

See Note on RASON Subscriptions in the section above for log in  and 

subscription information pertaining to solving models via the RASON Server.    

 

Click Solve.   

 
Automatically, the model is submitted to the RASON Server and the 

optimization is started using the RASON Rest API Endpoint POST 

rason.net/api/model/id/solve, the status is checked using the Endpoint GET 

rason.net/api/model/id/status and the results are obtained via the Endpoint GET 

rason.net/api/model/id/result.  All this, at the click of a button.   
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Clicking the Quick Solve command button will call the Quick Solve endpoint.  

Try it for yourself – the results from the Quick Solve will be appended in the 

Result window.   

Click Stop to stop an already executing optimization and Clear Messages to 

clear the output window.   

Click back to Excel and the Business Forecast example, and click Create App – 

Quick Test -- Web Page.  A new browser open displaying a new Web 

Application.  This Web App solves the Business Forecast simulation model.   

Click Solve.  Automatically, the model is submitted to the RASON Server and 

the simulation is started using  the RASON Rest API Endpoint POST 

rason.net/api/model/id/solve, the status is checked using the Endpoint GET 

rason.net/api/model/id/status and the results are obtained via the Endpoint GET 

rason.net/api/model/id/result.  All this, at the click of a button.   

 

Clicking the Quick Solve command button will call the Quick Solve endpoint.   

To view the code used in the Web Application, right click (on the shaded blue 

region at the top of the page) and select View Page Source (if using Mozilla 

Firefox or Google Chrome) or View Source (if using Internet Explorer).  A 

browser will open displaying the code for the Web Application.  This code gives 

examples of how to call all RASON REST API Endpoints.  Please see the 

RASON User Guide for a description of each along with complete information 

about the RASON Rest API.    
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     Quick Test – Rason Model 

When you choose Create App – Quick Test – Rason Model, Analytic Solver 

automatically translates your Excel model into Rason.   

Click back to Excel and the Product Mix model and click Create App – Quick 

Test – Rason Model. 

 

To show you the new Rason model, Analytic Solver opens a new Web browser 

to www.Rason.com, logins as you, uploads the translated model text and 

displays it in Rason's Model Editor.   

 

You can solve the optimization model using Rason's menu Quick Run – 

Optimize or Quick Run – Solve endpoints. 

http://www.rason.com/
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Model results are displayed in the Output window. 

 

Rason is the easiest way to transition into the world of web, mobile and cloud-

base applications.  For more information on Frontline's Rason Cloud Service, 

visit www.rason.com.   

http://www.rason.com/
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Using Custom Functions 

Introduction 
In past versions of Analytic Solver, users were driven to define their own VBA 

function when their models required custom functions.  However, such functions 

were not supported by the PSI Interpreter; a severe limitation.  In Analytic 

Solver V2021, this limitation has been overcome with the implementation of 

custom Box functions and the support of Excel's new LAMBDA function.  This 

chapter begins by illustrating how to create a custom function by using Excel's 

Lambda function and finishes with an explanation of how to use a custom Box 

function.   

LAMBDA Function Design 
Microsoft Excel's LAMBDA function allows users to define a custom function 

written in Excel's formula language.   

Suppose a user wanted to create a function that computes the Total Profit of a 

company that produces TV, Stereos and Speakers.  (Recall this is exactly what 

the Product Mix example model does in the Optimization chapter that occurred 

previously in this guide.)   

=LAMBDA(TV,Stereos,Speakers,75*TV + 50*Stereos + 35* Speakers) 

The LET function can be used in conjunction with the LAMBDA function to 

give:   

=LAMBDA(TV,Stereos,Speakers,LET(TV,TV*75,Stereos,50*Stereos,Speakers

,35*Speakers,TV+Stereos+Speakers)) 

The function takes three arguments named TV, Stereos and Speakers, binds the 

value of 75 * TV to the name TV, the value of 50*Stereos to Stereos, the value 

of 35*Speakers to Speakers and TV + Stereos + Speakers as the result. 

The Name Manager in Excel allows a name to be assigned to the formula. If this 

function is named TotalProfit, then the formula TotalProfit(200,200,0) would 

evaluate to 25,000.  

Note: According to Microsoft's Support for the Lambda function, it's best to 

create the function within an Excel cell before adding to the Name Manager, in 

order to determine if the custom lambda function is calculating correctly.   

Once the function is created, or named, the function can be called by that name 

thereby eliminating the need to enter this formula multiple times in the 

spreadsheet.   

Note:  Although in Excel a LAMBDA can be an argument to another 

LAMBDA, this behavior is not supported in Analytic Solver.   

https://support.microsoft.com/en-us/office/lambda-function-bd212d27-1cd1-4321-a34a-ccbf254b8b67
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LAMBDA Example Models  

Optimization Example 

Open the Airport Box Function example (Help – Example Models – 

Optimization Models) to view an example of how a custom box function could 

be used in an optimization model.  

Original Formulation Recap 

As discussed in the earlier Optimization chapter, the original model formulation 

is in the first worksheet, Original Formulation.  This example uses the distance 

formula in cells G14:G19 to find the optimal location (using X and Y 

coordinates) of a proposed airport.  The airport's location should be as 

equidistant as possible between each of the six cities.   

• The decision variables in this model are in cells E13, F13 and G20.     

• The constraints in this model are G14:G19 <= G20. Cells G14:G19 use 

the distance formula (SQRT(Xc – X)^2 + (Yc – Y) ^2) to calculate the 

distance between the proposed airport location and each city. 

• The objective to be Minimized is the decision variable, G20. 

The objective in cell G20 is being minimized which "squishes" the values in 

cells G14:G19 to be as small as possible. This is what is referred to as a Mini-

Max problem; G20 will equal the maximum of G14:G19 in the final solution. 

LAMBDA Function Formulation 

On the Lambda Function tab, the model has been reformulated to use the 

Microsoft Excel LAMBDA function to calculate the distance between the 

proposed airport location and each of the six cities in cells G14:G19.  The 

LAMBDA function, named DistanceFormula, is defined within Excel's Name 

Manager as: 

DistanceFormula=LAMBDA(Xone,Xtwo,Yone,Ytwo, SQRT((Xtwo-Xone)*2 + 

(Ytwo-Yone)^2)) 

Notice the order of the arguments, Xone, Xtwo, Yone, Ytwo.  When invoked in 

the Excel cell, the arguments must be passed in this same order.   

 

Invoking the LAMBDA Function  

Rather than typing the distance formula into cells G14:G19, this formulation of 

the model calls the newly created DistanceFormula custom function to calculate 

the distance between the proposed airport site and each city.   
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In the Excel sheet, Cell G14 contains the formula:   

=DistanceFormula( $E$13, E14, $F$13, F14 ) 

Following the order of the arguments in the LAMBDA function:  Xone = E13, 

Xtwo = E14, Yone = F13 and Ytwo = F14.   

This custom function in cell G14 calculates as:   

SQRT(( E14 - E13 )^2 + ( F14 - F13 )^2) 

The remaining functions in cells G15:G19 calculate similarly.   

Click LAMBDA and LET for Microsoft Excel documentation.   

Solving the Model 

Click the green arrow on the task pane to solve the model.  Notice that Analytic 

Solver is able to find an optimal solution with an objective equal to 3.5355 and 

final variable values equal to X = 3.5 and Y = 4.5.  This is the same optimal 

solution found with the original formulation.     

Note: Recall that according to Microsoft's Support for the Lambda function, it's 

best to create the function within an Excel cell before adding to the Name 

Manager, in order to determine if the custom lambda function is calculating 

correctly.  This is exactly why you see the LAMBDA function in cells H14:H19. 

Simulation Example 

Open the GBM Simple Model Box Function example (Help – Example Models 

– Simulation Models) to view an example of how a custom box function could 

be used in an simulation model.  

Original Formulation  

As mentioned above, the original model formulation is in the first worksheet, 

Original Formulation.  This example predicts the average daily closing price of a 

stock based on it's previous closing price.     

• The uncertain variables in this model are in cells D13:D36.   

• The uncertain functions in this model are in cells F13:F36.  Recall that 

these cells are designated as uncertain functions by the statistic 

PsiMean that appears in cells H13:H36.   

• Cells H13:H36 contain the PsiMean() function which finds the 

expected value of cells F13:F36.   

In the original formulation of the model, cells F13:F36 contains the formula: 

=(F12*(EXP(($K$18-$K$17*$K$17*0.5)*(1/$K$13))+($K$17*SQRT(1/$K$13)*D13)))   

As mentioned previously, it's easy to imagine how easy it would be to 

accidentally introduce an error when entering this intricate formula.  To alleviate 

this challenge, and the challenge of searching for an error in a spreadsheet with 

formulas such as this, Analytic Solver now fully supports the use of Microsoft's 

LAMBDA function which can be defined once and reused repeatedly.  Custom 

functions reduce "bugs" in the spreadsheet by only requiring an complex 

function to be defined once.   

https://support.microsoft.com/en-us/office/lambda-function-bd212d27-1cd1-4321-a34a-ccbf254b8b67
https://support.microsoft.com/en-us/office/let-function-34842dd8-b92b-4d3f-b325-b8b8f9908999
https://support.microsoft.com/en-us/office/lambda-function-bd212d27-1cd1-4321-a34a-ccbf254b8b67
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LAMBDA Function Formulation 

On the Lambda Function tab, the model has been reformulated to use the 

Microsoft Excel LAMBDA function to calculate the predicted Daily Price of a 

stock.  The LAMBDA function, named PredDailyPrice, is defined within 

Excel's Name Manager (Formulas – Name Manager) as: 

PredDailyPrice=LAMBDA(Volatility,NumofDays,NormDist,Appreciation,Previ

ous,Previous*(Volatility*SQRT(1/NumofDays)*NormDist)+ 

EXP((Appreciation-Volatility^2*0.5)*(1/NumofDays))) 

As with the previous optimization example, notice the order of the arguments:  

Volatility, NumofDays,NormDist,Appreciation, Previous.  When invoked in the 

Excel cell, the arguments must be passed in this same order.   

 

Invoking the LAMBDA Function  

In the Excel sheet, Cell F13 contains the formula:   

=PredDailyPrice(Volatility,NumofDays,D13,Appreciation,F12) 

Following the order of the arguments in the function:  Volatility = Volatility, 

NumofDays = NumofDays, NormDist = D13, Appreciation = Appreciation, 

Previous = F12.    

This custom function in cell F13 calculates as:   

F13*(K17*SQRT(1/K13)*D13)+ EXP((K18-K17^2*0.5)*(1/K13))) 

The remaining functions in cells F14:F36 calculate similarly.   

Click LAMBDA and LET for Microsoft Excel documentation.   

Note: Recall that according to Microsoft's Support for the Lambda function, it's 

best to create the function within an Excel cell before adding to the Name 

Manager, in order to determine if the custom lambda function is calculating 

correctly.  This is exactly why you see the LAMBDA function in cells F13:F36. 

Notes on the LAMBDA Function 

Scope of variables within a LAMBDA function   

When a LAMBDA expression is calculated, Excel/Analytic Solver will first 

search the local scope of the expression for the definition of a variable.  If not 

https://support.microsoft.com/en-us/office/lambda-function-bd212d27-1cd1-4321-a34a-ccbf254b8b67
https://support.microsoft.com/en-us/office/let-function-34842dd8-b92b-4d3f-b325-b8b8f9908999
https://support.microsoft.com/en-us/office/lambda-function-bd212d27-1cd1-4321-a34a-ccbf254b8b67
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found, Excel/Analytic Solver will proceed to search the parent scope and then 

will move to the global scope (cell/range names).   

Assume an empty cell with the defined name "z" and the custom Lambda 

function below exist within the same workbook. 

=LAMBDA (x, y, LET (z, x+1, y * z + b1)) 

In this instance, the local scope is the LET function, the parent scope is the 

LAMBDA function enclosing the LET function, and the global scope is all 

cell/range names in the workbook.  The variable z =x+1 despite the existence of 

z in the global scope.  The variable z inside LET and the z defined name in 

Excel are considered to be different variables.  

Entering the LAMBDA/LET functions in Excel 

It's possible to enter the LAMBDA function in an Excel in multiple lines by 

pressing ALT + ENTER.  For example: 

=LAMBDA( 

    x,y, LET( 

       y * z + b1 

  ) 

) 

Nesting LAMBDA/LET functions 

Analytic Solver supports only nested LET functions.  Nested LAMBDA 

functions are not supported by Analytic Solver.   

Properties of LAMBDA/LET in PSI Interpreter 

The following list contains important properties of both the LAMBDA and LET 

functions when used with Analytic Solver. 

1. Reusability – LET definitions are not reusable while LAMBDA definitions, 

even ones containing LET functions, are resuable.   

2. Nesting – LET definitions can be nested while LAMBDA definitions 

cannot. 

3. Recursion – Although the LAMBDA function is recursive in Excel, 

Analytic Solver does not support recursion with this function. 

4. Threads – Analytic Solver supports both LET and LAMBDA functions 

running in multiple threads. 

5. Polymorphic Evaluation –  Analytic Solver supports the calculation of 

derivates, intervals, etc inside of a LAMBDA and LET function.  

6. Analytical Transformations – Non-smooth trasnformations inside both LET 

and LAMBDA functions is restricted.  Stochastic transformations allow 

both LET and LAMBDA functions.   

7. Cube Evaluations:  Analytic Solver does not support the use of dimensional 

modeling (cubes) within a LAMBDA or LET function. 

8. Environment:  Both LAMBDA and LET functions are supported in 

Analytic Solver, Solver SDK Platform and RASON Decision Services.   
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9. Model Conversion:  Both LET and LAMBDA functions are supported in 

model conversion from Excel to RASON (Create App – RASON).   

• A LET function within an Excel model will appear within the 

"formulas" section within the RASON model, after conversion is 

complete.   

• The LAMBDA function within an Excel model will appear within 

a new section, "boxFunctions" within the RASON model, after the 

model conversion is complete.   

See the RASON User Guide for more information on both the LET and    

LAMBDA functions appearing within a RASON model. 

Box Function Design 
An example of a custom box function is below as implemented in an Excel 

workbook.  Assume both appear in cells A3:D7 in the Excel workbook. 

Box Function Example using FEEL syntax.   

Monthly Payment    

FEEL P r n 

number number number number 

1 payment (p * r / 12) / (1 - (1 + r / 12)**-n) 

2 Fee 0.01 * payment 

payment + fee 

 

Box Function Example using Excel syntax.   

Monthly Payment    

EXCEL P r n 

number number number number 

1 payment (p * r / 12) / (1 - (1 + r / 12)^-n) 

2 Fee 0.01 * payment 

payment + fee 

The first box function is written using the formula syntax for FEEL and the 

second table has been written using Excel syntax.   

 

Box Function 

Component 

Description 

Function name  (Required) The name of the custom function appears above the top-

left cell of the table layout.   

Formula language (Required) The formula language is specified in the top-left cell.   

Supported options are FEEL or EXCEL. 

If FEEL is entered as the formula language, FEEL syntax is 

expected.  (See top screenshot.) 

Returned value type Formula Language = Excel 

Array:  Any Excel cell reference, i.e. A1:C1.   

Function 

Name 

Formula 

Language 

Input Parameters 

Input 
parameter 

types 

Function 
body 

Function 

result 

Returned 
value type 

https://www.omg.org/spec/DMN/1.2/PDF
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This can be used for a Box function, that, say, computes the 

SUMPRODUCT(A1:A3, B1:B3) where A1:A3 is a range for the first input 

parameter and B1:B3 is the range for the second input parameter.   

Boolean:  The entered words TRUE and FALSE are interpreted as 

Boolean reserved words, not strings.  

Empty:  Select "empty" if Formula Language = EXCEL and no 

Data Type is being specified.     

Error:  Any Excel error such as #N/A, #Number, etc. 

Number:   May be an integer or fraction.   

String or Text:  Any string 

 

Language = FEEL 

Boolean:  The entered words TRUE and FALSE are interpreted as 

Boolean reserved words, not strings.  

Date:  Any valid date, such as 05-05-1964 

Duration:  There are two formats for duration, one measuring 

periods in months and another measuring periods in seconds. For 

example, P1DT1H2M3S denotes: 

• P for "period"  

• 1D for 1 day 

• T for "time" 

• 1H for 1 hour 

• 2M for 2 minutes and 

3S for 3 seconds.         

Number:   May be an integer or fraction.   

String or Text:  Any string 

• Time:  Any valid time 

Input parameters (Required) Input parameter values are specified on the first row 

starting in the 2nd column.  Input Parameters may be changing (i.e. 

decision variables, recourse variable, uncertain variables) or 

unchanging (i.e constant values). 

 

Input Parameter types Formula Language = Excel 

Array:  Any Excel cell reference, i.e. A1:C1.  

This can be used for a Box function, that, say, computes the 
SUMPRODUCT(A1:A3, B1:B3) where A1:A3 is a range for the first input 

parameter and B1:B3 is the range for the second input parameter.   

Boolean:  The entered words TRUE and FALSE are interpreted as 

Boolean reserved words, not strings.  

Empty:  Select "empty" if Formula Language = EXCEL and no 

Data Type is being specified.     

Error:  Any Excel error such as #N/A, #Number, etc. 
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Number:   May be an integer or fraction.   

String or Text:  Any string 

 

Language = FEEL 

Boolean:  The entered words TRUE and FALSE are interpreted as 

Boolean reserved words, not strings.  

Date:  Any valid date, such as 05-05-1964 

Duration:  There are two formats for duration, one measuring 

periods in months and another measuring periods in seconds. For 

example, P1DT1H2M3S denotes: 

• P for "period"  

• 1D for 1 day 

• T for "time" 

• 1H for 1 hour 

• 2M for 2 minutes and 

3S for 3 seconds.         

Number:   May be an integer or fraction.   

String or Text:  Any string 

Time:  Any valid time 

Empty row (Required) An empty row separates the function signature with the 

function body. 

Function body (Optional) The body of the function includes 3 columns.   

• The first column contains incrementing numbers:  1,2,3, 

etc.   

• The second column names the intermediary formula being 

calculated in each row.   

• The third column contains the intermediary formula.   

All formulas are executed in the order they are entered.   

Function result (Required) The last row in a single merged column holds the final 

formula.   

The function in the examples above accepts three numbers, p, r and n, and 

returns a number.  In order to calculate the function the first formula, payment,  

is calculated as:  (p * r/12) / (1 – (1+ r/12)^-n).  The 2nd formula, fee, is 

calculated as 0.01 * payment.  Finally, the final result is calculated as:  payment 

+ fee.   

Execution of a Custom Function 

The new PSI function, PsiBoxFunction, executes the custom function.  This 

function must be called with the cell address of the custom function and any 

input parameters. 

=PsiBoxFunction(loc_range, input1, input2, input3, etc.) 
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To invoke the custom function in this example use: 

=PsiBoxFunction(A3:D7, 60000, 0.0374, 360) where 60,000 = p, 0.0374 = r and 

360 = n 

It's also possible to create a defined name for the function location in cells 

A3:D7 and a defined name for each input parameter into a cell with a defined 

name, then pass the defined name as the argument, i.e. 

=PsiBoxFunction(Function1, amount, rate, term) 

Continue to the next section to see these same two example models formulated 

using a custom Box function 

Box Function Examples 

Optimization Example 

Open the Airport Box Function example (Help – Example Models – 

Optimization Examples) to view an example of how a custom box function 

could be used in an optimization model.  

Original Formulation  

The original model formulation is in the first worksheet, Original Formulation.  

This example uses the distance formula in cells G14:G19 to find the optimal 

location (using X and Y coordinates) of a proposed airport.  The airport's 

location should be as equidistant as possible between each of the six cities.   

• The decision variables in this model are in cells E13, F13 and G20.     

• The constraints in this model are G14:G19 <= G20. Cells G14:G19 use 

the distance formula (SQRT(Xc – X)^2 + (Yc – Y) ^2) to calculate the 

distance between the proposed airport location and each city. 

• The objective to be Minimized is the decision variable, G20. 

The objective in cell G20 is being minimized which "squishes" the values in 

cells G14:G19 to be as small as possible. This is what is referred to as a Mini-

Max problem; G20 will equal the maximum of G14:G19 in the final solution. 

Box Function Formulation 

On the Box Function tab, the model has been reformulated to use a custom box 

function to calculate the distance between the proposed airport location and each 

of the six cities.  The box function is located in cells E24:I28.   

 

Creating a Custom Box Function 

To quickly create a Box function on the worksheet, select an empty cell on the 

worksheet, click the down arrow next to the + icon on the Model tab of the 

Solver Task Pane and select Box Function at the bottom.   
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The Define Your Table dialog appears.  

For this example, enter the following: 

• Function Name:  Distance 

A function name is required.   

• Formula Language:  Click the down arrow and select EXCEL.  Recall 

that this setting determines the syntax used in the function.  You must 

select either EXCEL or FEEL. 

• How Many Input Parameters?:  Enter 4   

At least one Input Parameter is required. 

• How Many Body Formulas?:  Enter 2   Recall that these are the 

intermediary formulas.   

Body formulas are optional; if none, enter 0.   

The completed dialog should look similar as the one in the screenshot below. 

 

Click Next.   

In the Define Input Parameters dialog, enter the four Input Parameters (Xone, 

Xtwo, Yone, Ytwo) and their types (number) as shown below.  Recall that the 

Input Parameters are the arguments to the custom function.  The Data Type 

argument is optional.  Select "empty" if not specifying a data type.   



Frontline Solvers 2021 User Guide Page 238 

 

Click Next.  Enter the two intermediary formulas (if using) on the Define Body 

Formulas dialog. Formulas are executed in the order entered.    

 

Click Next.  On the last dialog, the Define Function Result dialog, 

• Select Number for Result Type.  This argument is optional.  Select 

"empty" if not specifying a data type.     

• The formula, SQRT(Formula1+Formula2) for Result Formula. This 

field is required.   

 

Click Finish. 

Notice the form of the function.   

The Function name (required) appears at the top left of the function, in this 

example, the function name appears in cell E23, Distance. 

The Formula Language (required) appears in the cell immediately below the 

Function name.  This setting determines what syntax is used in the function. 

The Input Parameters (required) appear in the columns to the right of the 

Formula Language.  This example uses four input parameters, Xone, Xtwo, 

Yone and Ytwo.   Arguments must be passed to PsiBoxFunction() in this order.   

The 2nd row includes the Result and Input Parameter types, (optional).  Cell 

E25 contains the result type, which will be a number.  The same is true for the 

Input Parameter types, which are all numbers.  Although, the types are optional, 

this row must exist, even if empty.   

The third row is the start of the Function body, (optional). The body is where 

intermediary formulas may be calculated.  The first column of the body contains 

an incrementing number 1,2,3. etc., the second column of the body contains the 

formula name and the third, merged column contains the actual formula. In this 

example, the 1st formula calculated is Formula1, followed by Formula 2.    
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The last merged row contains the Function result., (required).  In this example, 

the function calculates as:  SQRT((Xone-Xtwo)^2 + (Ytwo-Yone)^2).  This is 

the same function used in cells G14:G19 in the original formulation.    

Invoking the Box Function 

The custom box function is invoked in cells G14:G19 using the PSI function, 

PsiBoxFunction.   

G14=PsiBoxFunction($E$24:$I$28, $E$13,E14,$F$13,F14) 

Notes:   

• The "anchors" around the box function location and the E13 and F13 

arguments  are needed when copying this formula down to cell G19. 

• The order of the arguments passed to PsiBoxFunction is the same as the 

order in the custom function, Xone, Xtwo, Yone, Ytwo.   

This formula calculates as:  SQRT((E14-E13)^2 + (F14-F13)^2) 

This formulas in cells G15:G19 are similar. 

The PsiBoxFunctions are displayed in the task pane under Decisions – Box 

Functions. 

 

To solve the model, click the green arrow in the Model Task Pane.  Analytic 

Solver calls the box function to calculate the distance formula and solves the 

optimization model.  Notice that the final variable values (X=3.5, Y = 4.5) are 

exactly the same as in the original formulation. 

Continue to the next section to see this same model formulated using the Excel 

LAMBDA function. 



Frontline Solvers 2021 User Guide Page 240 

Simulation Example 

Open the GBM Simple Model Box Function example (Help – Example Models 

– Simulation Models) to view an example of how a custom box function could 

be used in a simulation model.  

Original Formulation  

The original model formulation is in the first worksheet, Original Formulation.  

This example predicts the average daily closing price of a stock based on it's 

previous closing price.     

• The uncertain variables in this model are in cells D13:D36.   

• The uncertain functions in this model are in cells F13:F36.  Recall that 

these cells are designated as uncertain functions by the statistic 

PsiMean that appears in cells H13:H36.   

• Cells H13:H36 contain the PsiMean() function which finds the 

expected value of cells F13:F36.   

In the original formulation of the model, cells F13:F36 contains the formula: 

=(F12*(EXP(($K$18-$K$17*$K$17*0.5)*(1/$K$13))+($K$17*SQRT(1/$K$13)*D13)))   

Due to the length and intricacy of this formula, one can imagine how easy it 

would be to accidentally introduce an error when entering this formula.  Not to 

mention the effort required when searching for an error in the spreadsheet.  To 

combat these challenges, Analytic Solver now fully supports the use of custom 

Box functions which can be defined once and reused repeatedly.  Custom Box 

functions reduce "bugs" in the spreadsheet by only requiring an intricate 

function to be defined once.   

Box Function Formulation 

On the Box Function tab, the model has been reformulated to use a custom box 

function to calculate the predicted daily stock price.  The box function is located 

in cells K23:M28.   

 

Creating the Custom Box Function 

To quickly create the Box function on the worksheet, select an empty cell on the 

worksheet, click the down arrow next to the + icon on the Model tab of the 

Solver Task Pane and select Box Function at the bottom.   
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Analytic Solver Cloud 

 

The Define Your Table dialog appears.  

For this example, enter the following: 

• Function Name:  DailyPrice 

A function name is required.   

• Formula Language:  Click the down arrow and select EXCEL.  Recall 

that this setting determines the syntax used in the function.  You must 

select either EXCEL or FEEL. 

• How Many Input Parameters?:  Enter 2   

At least one Input Parameter is required. 

• How Many Body Formulas?:  Enter 2   Recall that these are the 

intermediary formulas.   

Body formulas are optional; if none, enter 0.   

The completed dialog should look similar as the one in the screenshot below. 

 

Click Next.   

In the Define Input Parameters dialog, enter the two Input Parameters 

(PrevClose and NormDist) and their types (number) as shown below.  Recall 
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that the Input Parameters are the arguments to the custom function.  The Data 

Type argument is optional.  Select "empty" if not specifying a data type.  See the 

table above for definitions of all Data Types.     

 

Click Next.  Enter the three intermediary formulas (if using) on the Define Body 

Formulas dialog.  Formulas are executed in the order entered.    

 

Click Next.  On the last dialog, the Define Function Result dialog, 

• Select Number for Result Type.  This argument is optional.  Select 

"empty" if not specifying a data type.   See the table in the introduction 

to this chapter for the definitions of all Result Types.   

• The formula, PrevClose*(Formula2+Formula1) for Result Formula. 

This field is required.   

 

Click Finish. 

The form of this function is:   

• Function name  - (Cell K23) Appears at the top left of the function, in 

this example, DailyPrice. (Required) 

• Formula Language – (Cell K24) Appears in the cell immediately 

below the Function name.  This entry can either be EXCEL or FEEL.  

This setting determines what syntax is used in the function. (Required) 

• Input Parameters – (Cells (L23:M23) Appear in the columns to the 

right of the Formula Language.  This example uses two input 

parameters, PrevClose and NormDist .   Arguments must be passed to 

PsiBoxFunction() in this order.  (Required) 

• Result and Input Parameter Types – (Cells K24:M24) contains the 

result type for both the Result and Input Parameters, in this example a 

number.  Although, the types are optional since Formula Language = 
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Excel, this row must exist, even if empty.  (Required if Formula 

Language = FEEL, otherwise optional) 

• Function Body – (Cells K25:M27) The third row is the start of the 

Function body. The body is where intermediary formulas may be 

calculated.  The first column of the body contains an incrementing 

number 1,2,3. etc., the second column of the body contains the formula 

name and the third, merged column contains the actual formula. In this 

example, the 1st formula calculated is Formula1, followed by Formula 

2.   (Optional) 

• Function Result – (Cells K28:M28) The last merged row contains the 

Function result.  In this example, the function calculates as:  

=PrevClose * (Formula1  + Formula 2) 

=PrevClose * (Vol*SQRT(1/NumDays)*NormDist) + EXP((AppRate-

Vol^2 * 0.5) * (1/NumDays) 

where  

o PrevClose = the previous days predicted daily rate (Box 

Function Input Parameter 1) 

o Vol = K17 = 0.09486 

o NumDays = K13 = 100 

o NormDist = PsiNormal() uncertain function in column D (Box 

Function Input Parameter 2) 

o AppRate = K18 = 0.0234992 

Invoking the Box Function 

The custom Invoking box function is invoked in cells F13:F36 using the PSI 

function, PsiBoxFunction.   

F13 = BoxFunction($K$23:$M$28,FirstClose,D13) 

Notes:   

• The "anchors" around the box function location  are needed when 

copying this formula down to cell G36. 

• The order of the arguments passed to PsiBoxFunction is the same as the 

order in the custom function, PrevClose, NormDist.   

This formula in cell G13 calculates as:  =F12 * (K17*SQRT(1/K13)*D13) + 

EXP((K18-K17^2 * 0.5) * (1/K13).   

This formulas in cells F14:F36 calculate similarly. 

The PsiBoxFunctions are displayed in the task pane under Decisions – Box 

Functions. 
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Solving the Model 

To solve the model, click the green arrow in the Model Task Pane.  Analytic 

Solver calls the box function to calculate the predicted daily price over 1000 

trials.   

To view a histogram of each predicted daily price, double click any cell in the F 

column.  The uncertain function dialog below displays the distribution of trial 

values found for the custom function in cell F20.  From this histogram, a user 

can determine that there is a 90% chance that the stock price will range from 

$19.49 to $21.30.  For more information on how to interpret a histogram in 

Analytic Solver, see the Simulation chapter.   
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Using Decision Tables 

Introduction 
Decision Tables were introduced to Analytic Solver starting in V2019.   A 

decision table contains a set of rules which specify actions to perform based on 

specific conditions.  Decision tables are a good tool to use when there is a 

consistent number of rules, or conditions, to be evaluated followed by a specific 

set of actions to be performed once a rule, or condition, is met.   For example, 

the simple decision table below returns an employee's pay based on the number 

of hours worked. 

 

C+ 
hours pay 

number 27,5,3,2 

1 [1..40] 25*hours 

2     >40 45*(hours – 40) 

If the employee worked from 1 to 40 hours in a week, the pay is $25 * hour.  If 

any overtime is worked, the employee gets paid $45 an hour for any hour above 

40.   

In Analytic Solver, a decision table is a specific realization of a custom function.  

A table has a name, input/output parameters and a body implementing the logic 

through a structured framework.  A decision table is invoked in the same way as 

a VBA function when computing one or more output parameters for the passed 

one or more input values.  In Analytic Solver, a decision table is invoked using 

the Psi function, PsiDecTable().  The modeling language inside of Analytic 

Solver's Decision Table tool is S-FEEL extended to standard conversion 

functions in FEEL.  For more information on Decision Tables, we invite you to 

reference the following:  DMN Method and Style by Bruce Silver (Cody 

Cassidy Press, September 28, 20180 and DMN Cookbook by Bruce Silver & 

Edson Tirelli (Cody-Cassidy Press, April 4, 2018).    

Decision Table Structure 
Open the example model, DT Structure.xlsx by clicking Help – Examples – 

Decision Trees/Decision Tables on the Ribbon.  This table returns the number 

of holidays apportioned to an employee based on his/her age and number of 

years in service.  This file defines the regions of the decision table as illustrated 

in the screenshot below.   
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A Decision Table is created using the newly introduced PsiDecTable() function 

where the cell range of the table is passed as the first argument.  See the 

PsiDecTable() function as it appears in cell J17, 

=PsiDecTable(G7:K16,2,age,service,"holidays") where: 

• G7:K16 - The cell address range of the table is G7:K16.   

• 2 – The number of input variables 

• age, service – input variables 

• "holidays" – output  

The steps required to create the decision table above are listed below.   To help 

guide in the creation, Analaytic Solver has created a Decision Table wizard.  

Add a new worksheet to DT Stucture.xlsx and follow along with the steps 

below.  To open, click a blank cell on the worksheet and click the plus on the 

Solver Task pane (to the right of your screen), and select Add Decision Table 

from the menu.  

 

Step 1:  Enter a unique Name for the table immediately above the upper left 

corner of the table, to define the table. (This argument creates the decision table 
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object and identifies the table.)  In this example, the table name is specified as 

"Policy Output Order".  When Excel generates the RASON Code, the name 

component is used to identify this specific table.   

If using the wizard, be sure to enter a unique name such as "Policy Output 

Order 2". 

 

Step 2:  Enter a header, consisting of one or two rows, separated to the right 

and below by a double horizontal line.  The first row in the header is mandatory.  

Two headers are contained in the table above, age, and service.     

If you are using the Decision Table Wizard, this will be done for you. 

Step 3:  Enter a Hit Policy, usually a capital letter or a name, entered in the 

upper left cell of the table.  The Hit policy specifies how the table will be 

evaluated when multiple rules are applicable and hence, multiple output values 

are returned.  The entered value identifies the supported policies by a capital 

letter and an operator when applicable. You may enter the 1st letter of the policy 

or the whole word.  The currently supported Hit types and their meanings are:   

Unique (U):  A unique rule must "hit" evaluating to a unique result.  If 

multiple rules are "hit", an error will be returned.     

Any (A):  If rules overlap, but point to the same result, that unique 

result is returned.   

Priority(P):  If multiple rules are "hit" and multiple results collected, 

return only one result with the highest priority; the priorities are defined 

by the order of the output values.   

First (F):  Only 1 result is returned for this policy.  Once a rule is 

evaluated successfully, or a hit occurs, the search stops.   

Rule Order (R) - If multiple rules are hit, return the collection of 

results as created in the rule order 

Output Order (O) – Currently entered value in cell G7.  If multiple 

rules are hit, return the collection of results in the priority order of the 

listed output values.   

Collect (C) – The same as (R). However, we may make this policy 

more specific by adding an operator to it in order to allow aggregation.  

Note:  If aggregating a date, a scalar is returned.  If using an operator, 

output must not be a string, but only a numerical value.   

C+ - sum the matched output values 

C< - return the min of matched output values 

C> - return the max of matched output values 

C# - return the number of matched output values 
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In the Wizard, click the down arrow next to Hit Policy and select Output Order.  

 

Step 4:  Enter Input Parameters in the 1st header row next to Hit policy and up 

to the double vertical lines.  The input parameter names are listed to the left of 

the double vertical line.  In this example, age and service are the input 

parameters.  These input parameters belong to the local scope of this table.   

In the wizard, enter "2" for "How Many Input Parameters?". 

 

Step 5:  Enter Output Parameters in the 1st header row to the right side of the 

double vertical lines.  In this example, holidays and rule are the output 

parameters.  After calculation, a table returns a few selected or all output 

parameter values in the form of a dynamic array.  If a table has a single output or 

a single output has been selected, the result will be a scalar value.  These input 

parameters belong to the local scope of this table 

In the wizard, enter "2" for "How many Output Parameters?" and click Next. 

 

Step 6:  (Optional)  Enter the Input Values in the 2nd header row, to the left of 

the double vertical line, beneath the input parameter to which they are releated.  

Input Values may be a list of values separated by a commas (i.e. 27, 5, 3, 2), a 

list of unary tests (i.e. <10, >=20, [18..20]), or a data type (i.e. boolean, number, 

text, data, time, and duration).  

Data Types 
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Boolean:  The entered words TRUE and FALSE are interpreted as 

Boolean reserved words, not strings.  

Number:   Maybe an integer or fraction.  This is the data type entered 

in the example above.   

Text:  Any string 

Date:  Any valid date, such as 05-05-1964   

Time:  Any valid time 

Duration:  There are two formats for duration, one measuring periods 

in months and another measuring periods in seconds. For example, 

P1DT1H2M3S denotes: 

• P for "period"  

• 1D for 1 day 

• T for "time" 

• 1H for 1 hour 

• 2M for 2 minutes and 

• 3S for 3 seconds.       

When testing a value against a list of values or unary tests, the OR operator is 

used.  For example, in the first example above, the list of values is evaluated as 

27 OR 5 OR 3 OR 2.  Likewise, the list of unary tests is evaluated as <10 OR 

>=20.  It's possible to negate a list as well.  For example, NOT(27, 5, 3, 2) 

would result in a selection of a record that does not includes 27 OR 5 OR 3 OR 

2.  Similarly, NOT(<10, >=20) would equate to neither <10 OR >=20 being 

selected.   

All input entries in the relevant input column should cover the entered domain, 

otherwise, an error will be generated indicating that the table is not complete.  If 

an input value does not exist, the completeness test is not performed.  

In the wizard, enter "age" and "service" for Input Parameter Names and select 

"Number" from the Data Type menu for both parameters.  Then click Next.   

 

Step 7:  Enter Output values in the 2nd header row, to the right side of the 

double vertical line, beneath the output parameter to which they are related.  

Similar to Input Values, an Output value may be a list of values separated by a 

commas (i.e. 27, 5, 3, 2), a list of unary tests (i.e. <10, >=20, [18..20]), or a data 

type (i.e. boolean, number, text, data, time, and duration).  Similarly, to an Input 

values, if a value appears in the table that does not match the output value, an 

error will be returned.   

In this example, the list "27, 5,3,2" is entered beneath "holidays" and "text" is 

entered beneath "rule".  The list beneath "holidays" gives the priority when 

returning the results.  In other words, the results are to be returned largest to 
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smallest.  The output value, "text"  specifies that the appropriate text contained 

in cells K9:K16 is to be returned along with the holiday.  

In the wizard, enter "holidays" for the first Output Parameter Name and then 

select Ordering for Data Type/Ordering.  Enter "rule" for the second Output 

Parameter Name and then select "Text" for Data Type/Ordering, then click 

Finish.   

 

The top portion of the Policy Output table will be inserted onto the new 

worksheet.   

Policy Output Order 2   

O 
age service holidays rule 

Number Number   Text 

1         

Notice the blank cell beneath "holidays".  Enter the priority order of the rules 

here, " 20,5,3,2" 

Policy Output Order 2   

O 
age service holidays rule 

Number Number 27,5,3,2 Text 

1         

Step 8:  Enter the Decision Table Rules (or Unary tests) in each row below the 

double horizontal line.  The unary test returns information (true or false) about 

the rule. Supported unary tests may have one of the following syntax forms: 

value(Boolean, number, text, date, time, duration),  < value, > value,  <= value, 

>= value, [value..value], (value..value], [value..value), (value..value), "-".  Note:  

Currently, rules may only be entered as rows.  

The first test examines whether the value being tested is equal to the value inside 

the parenthesis.  For example, if the Unary test consists of the single value 

'medium', the resulting test would ensure that the variable being tested was equal 

to 'medium'.  The forms, [value..value], (value..value], [value..value) and 

(value..value), are interval tests.  The [ ] operators denote a closed interval while 

the ( ) operators denote an open interval.  The last test, "-" returns TRUE against 

any value.  Note:  To return a default value for a table, simply use "-" "-" for the 

unary tests.   

Expressions 

Variables and constants can be combines through operations called literal 

expressions.  Literal expressions in S-FEEL are similar to formulas in Excel and 

in the RASON modeling language. 

The following operators are supported in combination with decision table rules: 

addition (+), subtraction (-), multiplication (*), division (/) and exponentiation 
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(**).  Variables and constants can be combined using only these supported 

operators and parentheses.  An example of an expression is:  2 * age – service 

where two variables, age and service, and a constant, 2, are linked by two 

arithmetic operations (* and -). Note that an expression is a FEEL expression, 

NOT an Excel formula.  In this example, the expression "age – service" appears 

in the first rule where "age" and "service" refer to cells H7 and I7.  This 

expression does not refer to any appearances of "age" or "service" outside of the 

scope of this table.  For more information on supported conversion expressions, 

please see the Expressions heading at the end of this chapter.  

Step A:  (Optional) Enter the Rule numbers in the first column 

under the Hit policy starting with "1". Although optional, this 

component of the table is strongly recommended.    

Step B:  Enter the Input entries in the input columns 

Step C:  Enter the Output entries in the output columns.   

Decision Tables at Work 
The decision table contained within DT Structure.xlsx is shown below.  This 

table returns the number of vacation days allotted to an employee based on his 

age and number of years in service. Notice cells G10:H11 at the top of the 

screenshot below containing age and service in the first row and 58 and 31 in the 

second.  Cells G11 and H11 have been given the defined names (Insert – Name 

– Define) of age and service, respectively. These are the input variables on 

which the table depends.  Each time the values of 30 and 10 are changed and a 

recalculation is performed (by clicking the green arrow on the task pane), the 

decision table function (PsiDecTable) will return the appropriate computed 

result in cell I26.   

I26 = PsiDecTable(F16:J25,,, age, service) where:   

• F16:J25 is the location of the decision table on the Excel worksheet 

• Age and service are the two input variables.   Alternative, we could 

have specified the cell address (G11 and H11) or the values (58 and 

31).   

=PsiDecTable(F16:J25,,age,service) or =PsiDecTable(F16:J25,,, 58, 

31) 

Two optional arguments are missing in this formula:  output_names (2nd 

argument) and ret_header (third argument).  These arguments are explained 

below.     

 

Delete the contents of cells J26:K29.  Immediately cells I26:J28 will populate. 
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The PsiDecTable() signature above includes only 2 input parameters, age and 

service.  If using Excel 2019, the result will "spill" into 3 rows and 2 columns as 

shown in the screenshot above starting with cell I26.  In the first column you see 

the rule output:  27, 5, and 3.  The second column contains the rule numbers, r1, 

r6 and r3.  If you are using an earlier version of Excel, which does not support 

Dynamic Arrays, you'll need to use the PsiCalcValues() function, entered as an 

array (CTRL + SHIFT + ENTER) in cells J26:K28, to view the results.  

Note:  It's important when using Dynamic arrays in Excel V2019 that you enter 

the array in a cell location where there are enough blank cells to contain the 

array.  This example contains two output values:  holidays and rule.  Therefore, 

we automatically know that the dynamic array will contain two columns, one 

containing the number of holidays and one containing the rule label. The first 

column will start in the cell containing the PsiDecTable() function. However, 

you will not know in advance how many rows will be used.   This is also true 

when entering PsiCalcValues as an array in earlier versions of Excel.    

   

 

During recalculation, each rule is evaluated. Both unary tests must be satisfied in 

order for a "hit" to occur and the results to be added to the result collection.   

1.  The first rule, under age, uses the unary tests age:  "-"  and service:  "-", which, 

as you will recall, returns TRUE against any value.     Therefore, the first "hit" 

occurs with R1, as age – service or 58 – 31 = 27.   

2. The next rule tests whether age is >= 60 which is not successful as 58 is not 

greater than or equal to 60.   

3. The next rule (rule 3) returns TRUE for age ("-") and TRUE for service (>= 30).  

Therefore, the next "hit" is for R3 which returns "3" (from column J).   

4. The fourth rule returns FALSE for age <= 18. 

5. The fifth rule returns FALSE for age >= 60. 

Must be entered 

as an array by 

selecting cells 

I26:K28, typing 
"=PsiCalcValues(I

26) and then 

pressing SHIFT + 
CTRL + Enter. 
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6. The sixth rule returns TRUE for "-" for age and service >= 30.  Therefore a hit 

occurs and the result for r6, "5", is added to the result collection.   

7. The 7th rule returns FALSE for both the age interval [18..60] and the service 

interval [15..30]. 

8. The 8th rule returns TRUE for the age interval [45..60] but FALSE for service 

<30.   

Three rules, r1, r3, and r6 are added to the result collection.  The results for these 

three rules are 27, 3, and 5, respectively.  After the reslts are updated,  the HIT 

policy is checked.  In this example, the hit policy is "O" or "Output Order" 

which specifies that if multiple rules are hit, the collection is retuned in the 

priority order  of the listed output values which can be found beneath "holidays" 

or 27, 5, 3, 2.  Therefore, our results are returned as 27 (r1), 5 (r6) and 3 (r3) or 

largest to smallest.   

Open the example DT Hit Policy Examples.xlsx to see how the different Hit 

policies work. 

Note:  During parse-time, each PsiDecTable() function is uniquely identified by 

it's cell address.  A "completeness test" ensures that all input/output entries per 

column cover the domain of the input/output values in the same column, as long 

as the output values are not expressions against the output values.  If so, these 

expressions are evaluated at run-time.  Type verification is performed for those 

columns in which a data type is specified rather than an input/output value.   

Decision Table Errors 

Change the priority order in cell I17 to "20, 5, 3, 2" and then perform a 

recalculation by clicking the green arrow on the task pane.  Then click the 

output tab to view the error: 

Output entry not found in the output domain 

PSI could not parse Excel formulas - Use Excel Interpreter. 

Error occurred at range 'Decision Table'!$I$26 

[tblPolicyOutputOrder] 

This error was generated because "20" was not found in the output results.  As 

you can see, it's important to take into account your range of output values when 

generating rules for your decision table, especially when specifying priority 

order.  

Optional Arguments  

PsiDecTable() supports two optional arguments:  output and ret_header.   

To return the result for a given output only, we must pass an additional 

argument to the PsiDecTable() function. For example, to only receive the 

number of holidays, rather than both holidays and the rule label, add "holidays" 

as the second arguent to our existing formula in cell I26.  In this instance, only 

one column will be returned containing the values:  27, 5, 3.   

I26=PsiDecTable(F16:J25, "holidays",, age, service) where 

• F16:J25 is the location of the decision table on the Excel worksheet,  

• "holidays" (optional) to ensure that the returned results only include the 

specified output.   

• age and service are the two input variables. 
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It's also possible to use a 2nd optional argument, ret_header, this time a Boolean 

argument, as the third argument to PsiDecTable().  When TRUE is passed for 

this argument, a header containing the names of the output(s) is included in the 

result. In this instance, one column will be returned containing the values:  

"holidays", 27, 4, 3.  

I26=PsiDecTable(F16:J25, "holidays", TRUE, age, service) where 

• F16:J25 is the location of the decision table on the Excel worksheet,  

• "holidays" (optional) to ensure that the returned results only include the 

specified output, 

• TRUE to add a header to the result and 

• age and service are the two input variables, 

This is the complete signature for the PsiDecTable() function.   

Additional Examples 

This section presents a special class of tables, in which the specific Date, Time, 

and Duration data types are utilized.  

Decision Table Containing Dates 

Open the first tab within the workbook DT Date & Time Examples.xlsx.  This 

table returns the credit risk rating of an individual based on their age and 

medical history.  The PsiDecTable function appears in cell G19 = 

PsiDecTable(B13:E19,,, bd, mh) where 

• B13:E19 is the location of the decision table, 

• bd (cell G14 containing "1964-05-05") and mh (cell H14 containing 

"good") are the input variables. 

  

Notice that the string values in columns D (medHistory) and E (riskRating) in 

the table are entered without quotes.  This is because Analytic Solver always 

assumes any output as an expression requiring parsing. If a single word or 

"token" is detected, the Psi Interpreter first checks if it is a local scope variable 

name.  If not, the word-token is assumed to be a string. In the first example table 

the expression age – service existed in the "holidays" column. Since age and 

service are variables connected through the operator ‘-‘, the Psi Interpreter 

assumed the entry as an expression to be evaluated. If instead, we wanted to 

enter that expression as a string value, then we would need to surround the 

expression with quotation marks.  

The situation with dates is however, different. While in Excel we may enter a 

date without “ “, when a Date is part of a Decision table, we must surround the 

date with single ‘ ‘ or double “ “. S-FEEL defines a single format for the Date 

type ‘yyyy-mm-dd’. Optionally a date may begin with the letter D, for example 

“D1964-05-05”. Other date type formats in Excel are not valid in S-FEEL. 

When we pass a date as an input parameter to a Decision table, the date must be 

a string formatted as S-FEEL Date. If we enter an Excel date in that cell, it will 
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be automatically converted into the date representing number and the Decision 

table will still recognize it as date. However, we strongly recommend using the 

S-FEEL format outside of Decision tables for readability of the model. 

In this example,the unique rule which matches the input birthdate “1964-05-05” 

is rule #3, because “1964-05-05” is in the date interval [‘1935-05-05’..’1970-05-

05’]. 

Decision Table Containing Time  

The Psi Interpreter will convert any time entries in a decision table into the Time 

format,  “hh:mm:ss”.  Optionally, we could enter the times using the format 

beginning with the letter T such as in “T18:29:30”. Usually this time format 

denotes local time. If we want to specify the UTC time, we can simply add z at 

the end of the format, for example “T18:29:30z”. However, it’s important to 

note that the z time format is just a readable format. The Psi Interpreter cannot 

effectively convert local and zulu times, because the location of the local time is 

not specified in the supported format.  

 

Click the 2nd tab in the workbook to open the example shown above which 

returns the traffic prediction (low, medium, or high) for a toll station based on 

the time of day.   

To avoid the downward spill of the result for the two outputs, we use the 

optional output argument in both PsiDecTable() functions in cells G16 and G17.    

G16 = PsiDecTable(B14:E20, "toll",, byNow) 

G17 = PsiDecTable(B14:E20, "traffic",, byNow) 

Decision Table Containing Duration  

Finally, let’s take a look into an example using the data type, duration.  Click the 

third tab in the workbook to open the decision table, shown below, which 

computes the output parking fee according to the input parking time. The table is 

invoked through the Excel formula in cell F16 = PsiDecTable(B11:D16, , , 

period).   

 

There are two types of formats for Duration: 

• P1Y2M - measures duration in months 

• P1DT1H20M10S – measures duration in seconds 

The individual components in these formats are optional. For example, if we 

have 0 hours to represent, we may skip the hour component. For example, we 

can represent a 20 minutes duration using either:  PT0H20M0S or PT20M.   



Frontline Solvers 2021 User Guide Page 256 

While we can skip a duration component in the format, the order of components 

in a format must be followed. For example, we cannot first enter minutes and 

then hours; PT20M1H is not a currently supported syntax. 

Hit Policies 

This section presents a collection of tables to illustrate each of the 7 Hit policies 

currently supported by Analytic Solver:  Any, Collect, First, Rule Order, Output 

Order, Priority Order and Unique.   Open the example workbook, DT Hit Policy 

Examples.xlsx.  This workbook contains 7 tabs, one tab for each example.   

Hit Policy:  Any 

The decision table appearing on the Any tab returns the loan compliance for an 

individual given their credit rating, current card balance, and current student 

loan balance. 

The PsiDecTable() function is located in cell F19.  This function returns 

"compliant" or "not compliant" given a credit rating of "B", a credit card balance 

of $12,000, and a student loan balance of $75,000.  The Hit policy Any will 

return only one result even if multiple rules overlap.     

F19 = PsiDecTable(B13:F18, , , "B", 12000, 75000) 

 

In this table, all rules except for rule 1 are evaluated successfully for a "hit".  

However, the result collection only includes 1 "not compl" entry.   

 Hit Policy:  Collect 

Click the Collect tab to display the 2nd Hit Policy example.  This decision table 

returns the total number of holidays allotted to an employee based on their age 

and number of years in service.  In the previous example, the Hit Policy was 

equal to Unique which resulted in all successfully hit rules returning their unique 

result. In this example, the Collect policy is used with the "+" operator.  This 

operator returns the sum of the collection of results in rule order when multiple 

rules are applicable.  The Collect Policy allows 4 operators, + (sum), < (return 

the minimum of matched output values), > (return the maximum of matched 

output values) and # (return the number of matched output values).   
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In this example, the PsiDecTable() function appears in cell E24 = 

PsiDecTable(B14:E23, , , 58, 31).  As in the previous example, three rules, 1, 3 

and 6, are included in the results returning the values,  22, 3 and 5, respecitvely.  

However, since this Hit policy sums the results, the answer 30 is returned.  

Let's see what happens when we change the Hit Policy to C<.  Simply select cell 

C+ and enter C<, then click the green arrow on the Model tab of the Solver Task 

Pane to recalculate the table.  When the Hit Policy is equal to C<, PsiDecTable() 

returns the minimum result value, 3.  

 

Let's repeat these steps for "C"> to find the maximum result value of 22, 
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and "C#" to find the number of returned results, 3.    

 

Hit Policy:  First 

Click the First tab to display the next Hit Policy example.   In this example, a 

percentage discount is returned based on where an order originated, on the web 

or by phone, the location of the order, inside or outside the US, and customer 

type, wholesaler or retail according to the First Hit Policy.  When this policy is 

in use, only the first entry in the result collection is returned.    

The PsiDecTable() function appears in cell F19.   

F19=PsiDecTable(B13:F18, 3,,, "web", "non_US", "retailer")  

 

Two rules are "hit", rule 3 and rule 4.  However, since we are using the First Hit 

Policy, only the result for rule 3 is returned, 0.   
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Hit Policy:  Rule Order 

Click the next tab to display the Rule Order Hit Policy example.  This table 

returns the amount of money available to a student based on their grade point 

average and number of times they took the ACT.  Funds may be provided via a 

scholarship, loan, or work study program.  The "Rule Order" Hit policy returns 

the collection of results in priority order of the listed output values.  The 

PsiDecTable() function is located in cell F19 = PsiDecTable(B13:G18, 

"eligibility", , 3.6, 4, TRUE).  Given an honors student with a gpa = 3.6 and an 

act_count = 4, this student would be eligible to receive a scholarship covering 

20% of tuition (rule 1) and a student loan covering 30% of tuition (rule 2).  

 

Rules 3 and 4 are not applicable because the student is an honor student 

(honor_member = TRUE) and the student's GPA is greater than 3.0.   

Cells F22:G24 contain PsiCalcValue(F19).  Use these values to return the 

contents of the result collection when using a version of Excel that does not 

support Dynamic Arrays.  Note that if this function is entered into more than the 

number of cells required, #N/A is returned.     

 

Adding in the two optional arguments, output_names and return_header, returns 

the header "eligibility", and only the eligibility text. 

F19 = PsiDecTable(B13:G18, "eligibility", TRUE, 3.6, 4, TRUE).   

Notice that when only one column is returned, the PsiCalcValue array simply 

repeats the results in cells G22:G23.   
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Hit Policy:  Output Order 

Click the next tab to display the Output Order Hit Policy example.  This 

example returns to our original example where the number of holidays allotted 

to an employee is returned based on the employee's age and number of years of 

service.  The output is returned in the order as given in the Output values header 

(cell D3).  The PsiDecTable() function is located in cell E23 = 

PsiDecTable(B13:E22, , , 58, 31). According to the rules of the table, a 58 year 

old employee with 31 years of service is allotted 27 + 3 + 5 vacation days via 

rules 1, 3, and 6, respectively.  However, since the Hit Policy specifies that the 

results must be returned priority order, the result collection is listed as 27, 5, and 

3. 

  

Hit Policy: Priority  

Click the next tab to display the last Hit Policy example.  According to the 

Priority Hit Policy, if multiple rules are "hit" and multiple results are collected, 

only one result will be returned.  The priority of the returned result is defined by 

the order of the output values in the header.   

This example returns a risk of disease rating of low, medium, or high based on a 

person's age and medical history.  The PsiDecTable() function in cell E18 

(=PsiDecTable(B12:E17, , , 61, "bad")) returns "medium" for  a 61 year old 

person with a "bad" medical history.  Note that according to our criteria, two 

rules are returned as successful, rule 2 (age > 60 and medicalHistory = "bad") 

and rule 3 (age = "-" and medHistory = "medium").  Why isn't "high" returned?  

Because the priority list in cell B13  (low, medium, high) specifies that 

"medium" should have higher priority than "high".   
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Hit Policy: Unique 

Click the last tab to display the last Hit Policy example.  According to the 

Unique Hit Policy, only one rule may "hit".  If multiple rules are "hit" and 

multiple results are collected, an error will be returned.   

   

E18  = PsiDecTable(B11:F17, "rule",, 54, "good") 

This table uses the optional output_names argument to return a risk rating (only) 

for an individual based on their age and medical history (medHistory).    In this 

example, given an age or 54 and a "good" medical history, a "medium" risk 

rating is returned by rule 3.   

Merging Decision Table Results  
The DT Loan Recommend Example illustrates how to use the PsiJoin() function 

to merge the results of one decision table with a 2nd table. 

The decision table, in cells B18:I34, returns a loan or loans meeting various 

criteria.  Cell K27 includes the PsiDecTable() formula.  Two types of loans meet 

the 4 loan requirements (reqObj = payment, reqType = fixed 30, conforming = 

TRU and reqDown = 30):  a conventional Arm 3\1 and a conventional Fixed 40.  

(See the results in cells J32:L34).   

K27=PsiDecTable(B18:I34, , True, reqObj, reqType, conforming, reqDown, 

TRUE) 

The PsiCalcValue() functions located in cells Loan Types!K32:M34 are used to 

persist the results from PsiDecTable().    

Notice that the optional "header" argument has been passed to PsiDecTable() in 

cell K27.  This was done in preparation for the use of the PsiJoin() function to 

merge the results (cells K32:M34) with the table on the Bank Rates tab.   
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Click the Bank Rates tab to view the 2nd table in cells A2:I8.  This table lists six 

banks offering loans in the area.  Notice that no bank is offering the Fixed 40 

loan.   

The PsiJoin function has been entered as an array in cells A12:L15.   

A12:L15{= PsiJoin('Loan Types'!J32:L34, A2:I8, "loanType = loanType, 

confType = confType, downPct >= 'minDown %'")} 

This function joins results from the decision table function in Loan Types!J27 

with the second table on the Bank Rates tab.   

PsiJoin() takes three arguments, Table1, Table2, and Clause.  The Table1 

argument passes the first table, in this example, the table in Loan 

Types!A18:H34.  The Table2 argument passes the second table, in this example, 

the table in Bank Rates!A2:I8.  The third argument, Clause, passes the 

conditions for joining the table.  In this example, the results and the table are 

joined via three columns:  loanType, confType, and downPct.  This argument 

must be surround by quotes.   

Note that in this example, two conditions used to join the results from 

PsiDecTable() and the Bank Rates table are the same, i.e. loanType = loanType 

and confType = confType.  This is not a requirement; table headers can be 

different.   

The third condtion, downPct >= 'minDown %' requires that the downPct in the 

Loan Types decision table must be greater than the "minDown %" in the Bank 

Rates table.  In other words, the down payment percentage in the Loan Types 

table must be greater than the minimum percentage down in the Bank Rates 

table in order for the loan to be selected and displayed by PsiJoin().     

Note:  Recall that the PsiDecTable() function in cell Loan Types!J27 included 

the optional "header" argument.  If the results had not included this argument, it 

would not have been possible to use the PsiJoin() function complete the merge. 

All three columns are common to both the PsiDecTable() results and the Bank 

Rates table.    Three banks offer a conventional ARM 3\1 loan:  Mount Diablo, 

AimLoan, and America One.  The first three columns (A12:L15) are the three 

columns passed to the Clause argument: loanType, confType, and downPct.  

Columns D through L contain the remaining information for each offered loan:  

Lender, loanType, confType, minDown%, Term, APR %, Rate %, Points, and 

feesAmt.   
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Using Cascading Decision Tables 
Open the DT Loan Strategy Model to learn how to use cascading decision tables 

where the output of one decision table is the input to another. 

This Input worksheet contains the input parameters to the Loan Strategy model 

contained on the Loan Strategy and Post Bureau worksheets.  Input parameters 

are all constant values.   

 

Click the Loan Strategy worksheet.  This worksheet contains six cascading 

decision tables.  The first table appears in cells A2:E14.  This table returns a 

partial "risk of default" score based on a loan applicant's age, marital and 

employment status.  Higher scores are given to older, employed, married 

applicants.  Cell E15 contains the PsiDecTable() function. 

 

E15=PsiDecTable(A2:E14, , , custAge, maritalSt, employSt) 
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The input parameters from the Input worksheet are:  custAge="40", maritalSt = 

"s", employSt = "selfemployed".  The applicable rules for these input parameters 

are:  4, 6, and 11 resulting in partial scores of 43, 25, and 36, respectively.  Since 

the Hit Policy is "C+" the result collection is added together, 43 + 25, + 36 = 

104.   

The next decision table is located in cells G5:J14, the Bureau Risk Cat table.  

This table returns a risk category of high, medium, or low based on their 

customer status (existing or not) and their application risk score.  Non-existing 

customers are allowed a higher risk score.  Cell J15 contains the PsiDecTable() 

function 

 

J15 =PsiDecTable(G5:J14, , , custExist, tblAppRiskScore)  where custExist = 

False and tblAppRiskScore() refers to the value in cell E15, or 104.    Based on 

these conditions, one rule is "hit", rule 2.  This rule returns "medium" for the 

bureau risk category.  Since the hit policy is equal to U (Unique) only one result 

is returned, even if multiple results are returned.   

The next decision table, Bureau Call Type, is located in cells L11:N14.  This 

table returns the bureau call type based on the bureau risk category found in the 

previous decision table, Bureau Risk Cat.  Cell N15 contains the PsiDecTable() 

function. 

 

N15=PsiDecTable(L11:N14, , , tblBureauRiskCat) where tblBureauRiskCat is 

equal to the result of the PsiDecTable() function in cell J15, or "medium".  Only 

1 rule is "hit", rule 1, which returns "full". 

The next decision table, Eligibility, is located in cells A20:E25.  This table 

returns the applicant's eligibility based on three criteria:  the bureau risk 

category, from cell J15, bureau afford, calculated in cell C36, and customer age, 

located in cell Input!C13.  Since the Hit Policy is equal to P (Priority), the result 

collection will be returned in the order listed according to the list in cell E21.  

The PsiDecTable() function is located in cell E26.   
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E26 = PsiDecTable(A20:E25, , , tblBureauRiskCat, bureauAfford, custAge)  

Intermediate Formulas 

 

Cell C36 calculates the bureau afford statistic, =IF(disposIncome * 

tblCreditContFactor > monthInstall, TRUE, FALSE)  

where disposIncome is calculated in cell C34, tblCreditContFactor is 

calculated in cell N26 (more on this later) and monthInstall is 

calculated in cell C32.   

Cell 34 calculates an applicant's disposable income using the formula, 

=monthIncome - (monthRepay + monthExpenses) where monthIncome 

= 2500, monthRepay is calculated in cell C30 and monthExpenses = 

1000.   

Cell C30 calculates the monthly loan replayment amount using the 

formula, -PMT(loanRate%/12, loanTerm*12, loanAmnt) where 

loanRate is 5%, loanTerm = 30 and loanAmnt = 100,000. 

Finally, cell C28 calculates the monthly fee using the IF statement, = 

IF(loanType = "standard", 20, IF(loanType = "special", 25, 0)), where 

loanType = standard. 

 

Using the final input values of tblBureauRiskCat = medium, bureauAfford = 

True, and custAge = 40, the last rule, rule 4, is the only rule "hit", returning 

"eligible".   

The next decision table is located in cells G22:J25.  This table returns the loan 

strategy based on the applicant's eligibility and bureau call type.  The 

PsiDecTable() function is located in cell J26.   

 

J26=PsiDecTable(G22:J25, , , tblEligibility, tblBureauCallType) where 

tblEligibility is calculated in cell E26 and tblBureauCallType is calculated in 

cell N15.  Both of these inputs are outputs of earlier decision tables.  Based on 

the results calculated by the previous decision tables, this PsiDecTable() 

function results in a "bureau" strategy.   

Finally, the last decision table, Credit Cont Factor, is contained in cells 

L22:N25.  The PsiDecTable() function is located in cell N26.   
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N26 =PsiDecTable(L22:N25, , , tblBureauRiskCat) where tblBureauRiskCat is 

calculated in cell J15.  Again, this input is an output from an earlier discussed 

decision table.   

If the result of the PsiDecTable function in cell J26 would have been either 

"decline" or "through", then our work would be finished.  We would either 

decline or accept the applicant, respectively.  However, since "bureau" was 

returned, more analysis is required and on we must go.  Click the Post Bureau 

worksheet to proceed. 

The first decision table on the Post Bureau tab is the Post Bureau Risk Cat table.  

This table returns a Post Bureau Risk Category based on if the applicant is an 

existing customer, his/her application Risk Score and credit score.  The 

PsiDecTable() function can be found in cell E17. 

 

E17 = PsiDecTable(A2:E16, , , custExist, tblAppRiskScore, creditScore) where 

custExist is False, tblAppRiskScore (104) is calculated in cell E15 and 

creditScore = 610.  Given these input values, 1 rule is "hit", rule 2.  

Finally, we come to the Routing table in cells G2:L8.  This table returns a final 

strategy based on two decision table results (postBureauRiskCat and 

postBureauAfford) and two input parameters, bankrupt and creditScore.  The 

PsiDecTable() function in cell L9 = PsiDecTable(G2:L8, , , 

tblPostBureauRiskCat, postBureauAfford, bankrupt, creditScore) where 

tblPostBureauRiskCat = medium, postBureauAfford = True (calculated in cell 

H15), bankrupt = FALSE (never bankrupt) and creditScore = 610.    
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The input parameter postBureauAfford is calculated in cell H15 according to the 

formula, =IF(disposIncome * postCreditContFactor > monthInstall, TRUE, 

FALSE).  Since the product of disposIncome and postCreditContFactor (963.18 

* .7) is greater than the monthly installment (556.82), the IF function returns 

TRUE. 

The input parameter postCreditContFactor is calculated in cell H12 = 

PsiDecTable('Loan Strategy'!L22:N25, , , tblPostBureauRiskCat).  Note that this 

PsiDecTable() function refers to the App Risk Score decision table in cells Loan 

Strategy!L22:N25.  Analytic Solver supports multiple PsiDecTable() functions 

that refer to the same table, as long as the input variables are different.  Multiple 

PsiDecTable() functions with identical input variables are not supported and will 

result in an error.  Two PsiDecTable() functions return to the App Risk Score 

decision table.    

With these criteria, the last rule, rule 5, is hit, accept the loan application.   

Using Decision Tables in Optimization and Simulation 
It's also possible to build an optimization and simulation model using a decision 

table as input.  See the Data Mining User Guide for an example on how to use a 

decision tree in conjunction with a data mining model saved in PMML format.   

Optimization 

Open DT Opt & Sim Examples.xlsx and click the Optimization tab.  The 

decision table appearing in cells B12:F24 returns the collective score, due to the 

Hit Policy of "Collect +",  of a set of partial scores based on a customer's age, 

marital status, and employment status.  The PsiDecTable() function appearing in 

cell F25 = PsiDecTable(B12:F24, , , I12, maritalSt, employSt) where I12 

currently refers to the age "1", "maritalSt" refers to cell Input!B15 ("s" for 

single) and "employSt" refers to cell Input!B17 ("selfemployed").  

  

The Model tab on the Solver Task Pane shows the optimization model which is 

maximizing the PsiDecTable() function in cell F25 by varying cell I12 subject to 

the variable bounds of 18 and 65.  Click Optimize – Analyze Original Model.  

Analytic Solver will report the model type as "NSP" meaning "nonsmooth 

problem".  The model is nonsmooth due to the use of the decision table.  As a 
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result, you will need to either select the Evolutionary Engine to solve the model 

or set Automatically Select Engine on the Engine tab.  Then click the green 

arrow on the Model tab to solve the optimization model.   

Almost immediately, the Evolutionary Engine stops with the result, "Solver has 

converged to the current solution.  All constraints are satisfied."  This result 

means that the Solver has been unable to find a new, better member of the 

population whose “fitness” represents a relative (percentage) improvement over 

the current best member’s fitness. For more information on this result, see the 

"Solver Result Messages" chapter within the Frontline Solvers Reference Guide.   

The final variable age results in the largest collective score according to the 

decision table rules, based on the initial starting point. (For more information on 

optimizing with the Evolutionary Engine, see the Frontline Solvers Reference 

Guide.)    

 

Simulation    

Click the Simulation tab to open the simulation example.  This example uses the 

same decision table as in the optimization example.  However, in this example, 

the PsiDecTable() function in cell E26 = PsiDecTable(A13:F25, ,  custAge, 

maritalSt, employSt), where "custAge" refers to Input!C11 which holds a 

PsiNormal() function.  This function will pull 1000 values from the PsiNormal() 

distribution, with a mean of 40 and a standard deviation of 7, during the 

simulation.   The PsiMean() function in cell E28 will summarize the 1000 trial 

values into one mean value.  In addition, the PsiMean function will also denote 

cell E26, the cell containing the PsiDecTable() function, as an output cell.  For 

simulations, Analytic Solver tracks the values of all uncertain functions 

(simulation outputs, referenced in PsiOutput() or PSI Statistics function calls). 

Click the green arrow on the Model tab to run a simulation.   Immediately, the 

simulation finishes and the uncertain function dialog opens displaying a discrete 

distribution where we can see that over 70% of the time, the values for the 

collective sum of the partial scores is over 101 when the age parameter follows a 

normal distribution with mean 40 and standard deviation 7.  For more 

information on simulation with Analytic Solver, see the Examples:  Simulation 

chapter that appears previously in this guide.   

Note:  Using a PsiStatistic as an input to the PsiDecTable() is not supported.  

For example, given the formula, =PsiDecTable(a1:f10, , , G1, G2) neither G1 

nor G2 may contain a PsiStatistic, such as PsiMean, PsiMedian, etc.    
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Using Decision Tables with Data Mining 
This DT Loan Strategy + Predictive.xlsx example expands on the DT Loan 

Strategy Model by adding an element to the APP Risk Score table on the Loan 

tab.  The formula in cell Loan!E15 returns the minimum of 2 outputs.  The first 

output is produced from a linear regression model scoring new data contained in 

cells Input!F26:I27.  The second output is from the decision table.   

Input Parameters 

This Input worksheet contains the input parameters to the Loan Strategy model 

contained on the Loan Strategy and Post Bureau worksheets.  Input parameters 

are all constant values.   

 

Loan Strategy 

Click the Loan Strategy worksheet.  Like in the DT Loan Strategy Model.xlsx 

workbook, this worksheet contains six cascading decision tables.  The first table 

appears in cells A2:E14.  This table returns a partial "risk of default" score based 

on a loan applicant's age, marital and employment status.  Higher scores are 

given to older, employed, married applicants.  Cell E15 contains the 

PsiDecTable() function. 
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In this workbook, however, the formula in cell E15, has an added component.  

In this example, the Excel MIN function is used to return the minimum of a 

predicted value obtained from a linear regression model made to score on an 

applicant's data (see cells Input!F26:I28) and the decision table result given the 

applicant's name, marital status, and employment status.   

=MIN(PsiPredict(Predictive_PMML_Model!B12:B44,Input!E15:H16),PsiDecT

able(A2:E14, , , custAge, maritalSt, employSt)) 

The input parameters for the first term in the MIN function 

(PsiPredict(Predictive_PMML_Model!B12:B44,Input!E15:H16) are the linear 

regression model saved in PMML format on the Predict_PMML_Model tab in 

cells B12:B44 and the new data saved on the Input tab in cells E15:H16. The 

result from PsiPredict() is 20. 57 For a complete explanation of the PsiPredict 

function, see the Data Mining User Guide.   

The input parameters from the Input worksheet are:  custAge="40", maritalSt = 

"s", employSt = "selfemployed".  The applicable rules for these input parameters 

are:  4, 6, and 11 resulting in partial scores of 43, 25, and 36, respectively.  Since 

the Hit Policy is "C+" the result collection is added together, 43 + 25, + 36 = 

104.  As shown in the DT Loan Strategy Model, the output from the App Risk 

Score table is 104.   

The minimum value returned is of course 20.57, or the output from the 

PsiPredict() function.   

The remaining decision tables are calculated as in the DT Loan Strategy Model.   

The next decision table is located in cells G5:J14, the Bureau Risk Cat table.  

This table returns a risk category of high, medium, or low based on their 

customer status (existing or not) and their application risk score.  Non-existing 

customers are allowed a higher risk score.  Cell J15 contains the PsiDecTable() 

function 
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J15 =PsiDecTable(G5:J14, , , custExist, tblAppRiskScore)  where custExist = 

False and tblAppRiskScore() refers to the value in cell E15, or 20.57.    Based 

on these conditions, one rule is "hit", rule 2.  This rule returns "high" for the 

bureau risk category.  Since the hit policy is equal to U (Unique) only one result 

is returned, even if multiple results are returned.   

The next decision table, Bureau Call Type, is located in cells L11:N14.  This 

table returns the bureau call type based on the bureau risk category found in the 

previous decision table, Bureau Risk Cat.  Cell N15 contains the PsiDecTable() 

function. 

 

N15=PsiDecTable(L11:N14, , , tblBureauRiskCat) where tblBureauRiskCat is 

equal to the result of the PsiDecTable() function in cell J15, or "medium".  Only 

1 rule is "hit", rule 1, which returns "full"  This means that a full evaluation by 

the bureau must be performed.   

The next decision table, Eligibility, is located in cells A20:E25.  This table 

returns the applicant's eligibility based on three criteria:  the bureau risk 

category, from cell J15, bureau afford, calculated in cell C36, and customer age, 

located in cell Input!C13.  Since the Hit Policy is equal to P (Priority), the result 

collection will be returned in the order listed according to the list in cell E21.  

The PsiDecTable() function is located in cell E26.   

 

E26 = PsiDecTable(A20:E25, , , tblBureauRiskCat, bureauAfford, custAge)  
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Intermediate Formulas 

Cell C36 calculates the bureau afford statistic, =IF(disposIncome * 

tblCreditContFactor > monthInstall, TRUE, FALSE)  

where disposIncome is calculated in cell C34, tblCreditContFactor is 

calculated in cell N26 (more on this later) and monthInstall is 

calculated in cell C32.   

Cell 34 calculates an applicant's disposable income using the formula, 

=monthIncome - (monthRepay + monthExpenses) where monthIncome 

= 2500, monthRepay is calculated in cell C30 and monthExpenses = 

1000.   

Cell C30 calculates the monthly loan replayment amount using the 

formula, -PMT(loanRate%/12, loanTerm*12, loanAmnt) where 

loanRate is 5%, loanTerm = 30 and loanAmnt = 100,000. 

Finally, cell C28 calculates the monthly fee using the IF statement, = 

IF(loanType = "standard", 20, IF(loanType = "special", 25, 0)), where 

loanType = standard. 

Using the final input values of tblBureauRiskCat = high, bureauAfford = True, 

and custAge = 40, the last rule, rule 4, is the only rule "hit", returning "eligible".   

The next decision table is located in cells G22:J25.  This table returns the loan 

strategy based on the applicant's eligibility and bureau call type.  The 

PsiDecTable() function is located in cell J26.   

 

J26=PsiDecTable(G22:J25, , , tblEligibility, tblBureauCallType) where 

tblEligibility is calculated in cell E26 and tblBureauCallType is calculated in 

cell N15.  Both of these inputs are outputs of earlier decision tables.  Based on 

the results calculated by the previous decision tables, this PsiDecTable() 

function results in a "bureau" strategy.   

Finally, the last decision table, Credit Cont Factor, is contained in cells 

L22:N25.  The PsiDecTable() function is located in cell N26.   

 

N26 =PsiDecTable(L22:N25, , , tblBureauRiskCat) where tblBureauRiskCat is 

calculated in cell J15.  Again, this input is an output from an earlier discussed 

decision table.   
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If the result of the PsiDecTable function in cell J26 would have been either 

"decline" or "through", then our work would be finished.  We would either 

decline or accept the applicant, respectively.  However, since "bureau" was 

returned, more analysis is required.   

More Information on Decision Tables 
Supported conversion functions are listed below.   

• date(string date) returns a date serial number, the same as Excel 

DATEVALUE 

• date(number y, number m, number d) 

• time(string time) returns a time serial number, the same as Excel 

TIMEVALUE 

• time(number h, number m, number s[, number offset]) the optional 

offset is duration in seconds, which can be used to model UTC 

• duration(string dur) returns duration in months or seconds depending 

on format 

• yearsAndMonthsDuration(string from_date, string to_date) return 

difference between two dates as a duration in months 

• number(string num, string group_sep, string dec_sep) returns a 

number from a string 

• string(float num) returns a float number as a string 

• Supported numeric functions are: 

• ceiling(number num) rounds up a number 

• decimal(number num, number decimals) rounds a number to the given 

number of decimals 

• floor(number num) rounds down a number 

• Supported string functions: 

• substring(string str, number pos, number num_chars) 

• stringLength(string str) 

• upperCase(string str) 

• lowerCase(string str) 

• substringBefore(string str, string match) 

• substringAfter(string str, string match) 

• contains(string str, string match) 

• startsWith(string str, string match) 

• endsWith(string str, string match) 

• Supported list functions are: 

• min(number n1, number n2,…) returns the minimum number 

• max(number n1, number n2,…) 
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• sum(number n1, number n2,…) 

• mean(number n1, number n2,…) 

• and(bool b1, bool b2,…) 

• or(bool b1, bool b2,…) 
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Creating Power BI Custom 
Visuals 

In past versions of Analytic Solver and still in Version 20.5, it's possible to turn 

an Excel-based optimization or simulation model into a Microsoft Power BI 

Custom Visual. Now with Version 20.5, you can actually embed your 

optimization or simulation model into the Custom Visual which will accept the 

data your model needs from Power BI.  Whenever this data changes, the Custom 

Visual will send your model, plus the data, back to Frontline's Cloud Service 

where it will re-solve the model, obtain the results and will display them in chart 

form in Power BI. 

Where others must learn JavaScript (or TypeScript) programming and a whole 

set of Web development tools to even begin to create a Custom Visual in Power 

BI, after reading this section, Analytic Solver users will be able to create one 

right away. 

In either case, users simply select rows or columns of data to serve as 

changeable parameters, then choose Create App – Power BI, and save the file 

created by Analytic Solver.  Afterwards, users click the Load Custom Visual 

icon in Power BI and select the file just saved.  What is produced isn’t just a 

chart – it’s a full optimization or simulation model, ready to accept Power BI 

data, run on demand on the web, and display visual results in Power BI.  Users 

simply need to drag and drop appropriate datasets into the “well” of inputs in 

Power BI to match the model parameters. 

Analytic Solver translates the Excel model into RASON® (RESTful Analytic 

Solver Object Notation, embedded in JSON), then “wraps” a JavaScript-based 

Custom Visual around the RASON model.  See the previous chapter “Creating 

Your Own Application” for more information on RASON.   

Installing Power BI 
Power BI is Microsoft’s desktop or cloud-based interactive data visualization 

business intelligence tool.  In past versions of Analytic Solver, users have only 

been able to upload their model parameters (model data) to Power BI after 

solving an optimization or simulation model.  Starting with V2017-R2, Analytic 

Solver can turn your Excel based optimization or simulation model into a 

Microsoft Power BI Custom Visual, that is your full optimization or simulation 

model, ready to accept power BI data, run on demand on the web, and display 

visual results in Power BI.   

Note:  Click this link to download Power BI for desktop.   

In order to use this new feature in Analytic Solver, you must first open desktop 

Power BI or the free cloud based version of Power BI.  (Power BI is part of the 

office 365 suite.)  For more information on this business tool, see the following 

website:  https://powerbi.microsoft.com/en-us/documentation/powerbi-custom-

visuals-getting-started-with-developer-tools/   

It is important to note, that in order to create a custom visual in Power BI, you 

will first need to install Power BI’s Developer Tools which is comprised of 

https://powerbi.microsoft.com/en-us/downloads/
https://powerbi.microsoft.com/en-us/documentation/powerbi-custom-visuals-getting-started-with-developer-tools/
https://powerbi.microsoft.com/en-us/documentation/powerbi-custom-visuals-getting-started-with-developer-tools/
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NodeJS and the Power BI tools.   Follow the steps below to install both required 

items.  

1. Click here to download NodeJS.   

2. Click the Download button to download NodeJS for 64-bit Windows.   

3. Once the NodeJS installer is downloaded, run the installer and follow the 

directions on the installer dialogs to install NodeJS onto your machine.  

4. Install the command line tools by opening a command prompt and typing:  

“npm install -g powerbi-visuals-tools” as shown in the screenshot below.   

Note:  If using V2017-R2, type:  “npm install -g powerbi-visuals-

tools@1.5”. 

 

After clicking Enter, you’ll see the following results in the command prompt 

window.   

 

Creating a Custom Visual from an Optimization Model  
Now that the Developer Tools are installed, we can move on to a small 

optimization example.  In this section, we will create a custom visual using the 

Product Mix example model.  

Open the ProductMix(Opt).xlsx model that was previously discussed in the 

Conventional Optimization chapter by clicking Help – Example Models on the 

ribbon, clicking Optimization Examples and then the Product Mix link.  Recall 

this example model determines the optimal mix of products that a company 

should produce in order to maximize profits.   

https://nodejs.org/en/
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The optimization model is included in the Model tab in the Solver Task Pane.  

This model written in algebraic form is below.     

Maximize:  Total Profit = $75x1 + $50x2 + $35x3 

Subject To:   

Chassis:  1x1 + 1x2 + 0x3 <= 450 

LCD Screen:  1x1 + 0x2 + 0x3 <= 250 

Speaker:  2x1 + 2x2 + 1x3 <= 800 

Power Supply:  1x1 + 1x2 + 0x3 <= 450 

Electronics:  2x1 + 1x2 + 1x3 <= 600 

x1, x2, x3 > 0 

The engine selected to solve this model is the Standard LP/Quadratic Engine as 

shown on the Engine tab in the Solver Task Pane.   

 

Click Create App on the ribbon, then select Power BI – Managed Model.  Recall 

that in order to use the Managed Model choice, your model must have already 

been posted to the Rason Cloud Service using Create App – Cloud Service – 

RASON Model.   

Note that it's also possible to embed your model into Power BI using Power BI – 

Embedded Model, however, if your model will change in any way, it's 

recommended to use Managed Model.  For more formation on creating an 

embedded model, see the previous Deploying Your Model chapter.   
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Click Save to confirm the model name as "ProductMix(Opt)" 

 

There is no need to solve the model first unless a change has been made to an 

already existing RASON model. If a change has been made to the workbook 

after a RASON model has been created, then you MUST either solve or 

diagnose the Excel model in order for the changes to be reflected in the new 

RASON model.   

When creating a Power BI custom visual through desktop Analytic Solver, 

model elements (objective function and all variables and constraints) may 

appear across multiple worksheets within the same Excel workbook.   

Immediately, the Save As dialog appears.  Enter a file name in the location of 

your choice and then click Save.   

• The screenshot below displays a file name of “ProductMix1” being 

saved into the Power BI folder, in Analytic Solver Desktop.   

Model Versions 
To create a new version of the model,  enter a 

new name such as "ProductMix(Opt)1".  You 

can manage your model versions by clicking 

the Manage Models icon on the Create App 
dialog. For more information on this dialog, see 

the previous Deploying Your Model chapter.   
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 Analytic Solver Desktop  

 

• In Analytic Solver Cloud, you'll first receive a dialog where you'll 

name the file to be exported.   

 

After you click Save and the file downloads, you'll be asked if you'd 

like to open or save the file.  Choose "Save As" to open the Save As 

dialog and browse to where you'd like to save the Power BI export. 
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Note the Custom Visual Source Code checkbox at the bottom of the dialog.  

This feature will be explained a little later in this chapter. 

Save ProductMix1.pbiviz.  Two command prompt windows will appear on your 

screen. After several moments, both will disappear.  It is during this time that 

your Excel model is being translated into the RASON® modeling language, and 

your Power BI custom visual is created.   

 

 

Open either desktop or cloud-based Power BI.  The screenshot below depicts the 

opening screen of desktop Power BI.  Click the icon containing three horizontal 

dots that appears at the bottom of Visualizations (in the top right-hand corner).   



Frontline Solvers 2021 User Guide Page 282 

 

 

Then select Import a visual from a file from the menu.   

 

Navigate to the location of the saved ProductMix1.pbiviz file.    
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Then click Open.  If the import was successful, you will see a message 

indicating as such.  Click OK to clear this dialog.   

 

A new icon, bearing the Frontline Solvers logo is added under Visualizations.   

 

Click this icon to open Frontline Solvers’ custom visual.  If you glance at the 

custom visual, you'll notice "Solving…" is displayed beneath "Objective" which 

indicates that the model has been submitted to the RASON server.  If the model 

is an optimization or stochastic optimization model, the RASON server will use 

the engine selected in the Excel model to solve the model.  Recall that the 

LP/Quadratic engine was selected in the Product Mix example model, above.  (If 

the model is a simulation model, Frontline Systems’ Risk Solver engine will be 

used.) 
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After the model is solved, values for the objective function, variables and 

constraints, or uncertain variables and uncertain functions, are imported back 

into Power BI and the results are displayed in the Power BI window.  After 

enlarging the custom visual, your screen should appear similar to the screenshot 

below.   

 

At the bottom of the custom visual, we find Solver’s result message:  Solver 

found a solution.  All constraints and optimality conditions are satisfied.  Recall 

that since we are solving a linear model, this message indicates that Solver has 

found the globally optimal solution:  There is no other solution satisfying the 

constraints that has a better value for the objective.  For more information on 

this Solver result, please see the chapter “Solver Results Messages” within the 

Frontline Solvers Reference Guide.   

In the first chart, we see that final variable values are:  Var1 (LCD TV) equal to 

200, Var2 (Stereo) equal to 200 and Var3 (Speakers) equal to 0.  These variable 

values result in an objective function value equal to $25,000.   

Solving this model in Power BI could be useful and the chart is certainly 

informative.  However, what if we wanted to change the inventory?  What if 

Purchasing was able to obtain a discount on Speakers and our inventory 

increased from 800 to 1,000?  In order to solve the new model with the updated 

inventory parameters, we would have to go back to the Excel model, update the 

chassis inventory, save the model, create a new .pbiviz file, Import the new 

.pbiviz file into Power BI and then finally open the new custom visual.  That’s a 

lot of effort to change just one model parameter!   

Thankfully, there is an easier way.  By using the Psi function, PsiDataSrc(), we 

are able to specify the parameters in the Excel model that could change in the 

future, for example, the amount of inventory on hand for each part, the profit 

point for each product or the number of parts that makeup each product.   

Click back to the Excel model and select a blank cell, say J6.  In Analytic Solver 

Desktop, click Formulas – Insert Function to open the Insert Function dialog, 

then select PSI Dimension for Category.  Afterwards, highlight the function 

PsiDataSrc, and click OK.  

Note:  It is suggested that you delete the Constraints text box in order to create 

room for the added PsiDataSrc() functions, described below. 
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In Analytic Solver Desktop or AnalyticSolver.com, you can simply type the 

formula directly into the cell.   

The Function Arguments dialog opens displaying 5 arguments:  Src_name, 

Val_col_names, Data, Idx1_name, and Idx1_elem.  We will use this dialog to 

create a PsiDataSrc() in cell J6 that will allow us the ability to change the 

inventory values and resolve the Product Mix example model not in Excel, but 

in Power BI. 

PsiDataSrc() Arguments 

Src_name – This argument names the text file, created by the custom visual, 

which is submitted, along with the RASON model, to the RASON server.   For 

this example, type:  inventory_src.   

Val_col_names – This is the name given to the “data well” that will appear in 

Power BI.  This “data well” will hold the actual data. For this example, type: 

inventory. 

Data – Enter the Excel range where the data is located on the spreadsheet for 

this argument.  For this example, use your mouse to click the upward pointing 

arrow to the right of the Data argument and select cells H18:H22.  You can also 

simply type this range into the edit box.     

Idx1_name – Enter the name of the (1st ) index set for the data specified in the 

Data argument.  In this example, our Index set is simply the inventory available 

for each Part.  Therefore, enter “parts” for this argument. 

Idx1_elem – Enter the Excel range containing the data (or elements) for the first 

index set.  For this example, either type or select cells:  B18:B22   
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Since this index set is 1-dimensional, nothing further is needed and we can click 

OK to enter the PsiDataSrc() function into cell J6.  

In Analytic Solver Cloud or AnalyticSolver.com, you can type the formula 

directly into cell J6. 

=PsiDataSrc("inventory_src", "inventory", H18:H22, 

"parts", B18:B22) 

Afterwards, cell J6 will display the value given to the Src_name argument, 

inventory_src. Save the Excel model and then click Create App – Power BI – 

Managed Model to save a new file using a new name such as 

ProductMix2.pbiviz.   

In order to provide our new data to Power BI, we must create a data file. This 

data file, containing the new inventory levels by part, will be imported into 

Power BI.  This data file can be of any format supported by Power BI such as a 

CSV file, a text file, a database, etc.  In this example, we will use an Excel 

workbook to hold the data.  For more information on what types of files Power 

BI supports, please see the Power BI documentation at:   

https://powerbi.microsoft.com/en-us/documentation/powerbi-landing-page/ 

Open a blank worksheet and create a table with two columns.  List the parts by 

name in the first column using the column heading “parts” and the inventory 

levels in the second column using the column heading “inventory”, as shown in 

the screenshot below. Make sure to pass the new inventory value of 1,000 

Speakers.  

Click Help – Example Models – Optimization Examples – Product Mix Data for 

Power BI-Tableau to open the complete data file. This table is included on the 

Parts Inventory tab. 

 

Note:  Column headings must be identical to the names of the Index Sets passed 

to the PsiDataSrc function.  Make sure there are no spaces before or after 

column headings or row elements.   

 

Recall that we labeled the IndexSet as “parts” (4th argument of PsiDataSrc) and 

Val_col_names as "inventory" (2nd argument of PsiDataSrc) so the title for 

column A must be "parts" and the title for column B must be "inventory".  Now 

save the workbook to a desired location.   

Open either desktop or cloud-based Power BI and click Get Data – Excel. 

https://powerbi.microsoft.com/en-us/documentation/powerbi-landing-page/
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Browse to the location of the saved data file and click Open.  Select the 

worksheet that contains your newly created data table and click Load. 

 

After the data table is uploaded to Power BI, click the icon containing three 

horizontal dots at the bottom of Visualizations, then select Import from file from 

the menu.  Navigate to the location of the saved ProductMix2.pbiviz file.  Select 

the file, then click Open.  If the import was successful, you will see a message 

indicating as such.  Click OK to clear this dialog.   A new second icon, bearing 

the Frontline Solvers logo is added under Visualizations.   

 

Click this icon to open Frontline Solvers’ custom visual. Your Power BI screen 

should appear similar to the screenshot below.  
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Click the custom visual, the black and white chart.  At this point you should see 

newly added items such as “parts” and “inventory” under Visualizations,  on the 

task pane on the right, and the same under Fields.  Recall that these are the same 

names that we passed to the PsiDataSrc() function within the Excel example 

model, ProductMix(Opt).xlsx. 

Two fields are added under Parts Inventory in the Fields section of the Task 

Pane:  inventory and parts.   

 

ProductMix2 

Custom Visual 
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Click "parts" Under Fields and move to "parts" under Visualizations where the 

words “Drag data fields here” is located.  Now drag "inventory" on the right to 

"inventory" on the left.   

 

Click the down arrow next to both parts and inventory and select Don't 

Summarize from the menu.   

 

 Immediately, you should see the "Solving…" displayed on the custom visual 

while the model is sent to the RASON server, solved, and the final values are 

returned.  After enlarging the custom visual, your screen should appear similar 

to the screenshot below.   
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In the latest version of Analytic Solver, the generated Power BI visual can be 

further customized by the user by clicking the Format icon (Paint roller icon).  

From this menu, chart titles, chart colors, etc can be changed to fine tune the 

chart to the user's specifications.   

 

At the bottom of the custom visual, we find Solver’s result message:  Solver 

found a solution.  All constraints and optimality conditions are satisfied.  In the 

Variables chart, we see that final variable values are:  Var1 (LCD TV) equal to 

50, Var2 (Stereo) equal to 400 and Var3 (Speakers) equal to 100.  These 

variable values result in an objective function value equal to 27,250.  The payoff 

of increasing the available speakers from 800 to 1,000 is an added profit of 

$2,250 ($27,250 - $25,000).    

Now, if you wanted to change another inventory level, let's say you were able to 

obtain 400 more electronic components, for a total of 1000 electronic 

components in inventory.  You would simply update the number of electronic 

components in ProductMixData.xlsx,… 
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refresh your data in Power BI…. 

 

…and the Custom Visual will redraw with the correct objective function value,      

$36,250. 

 

Return the number of electronics in inventory to 600 in ProductMixData.xlsx. 

 

Now let’s go back to the Excel Model and see what happens when we change 

other parameters such as adding 2 more speakers to a Stereo and increasing the 

Stereo’s selling price to $100.   Click Help – Example Models – Optimization 

Examples – Product Mix for Power BI - Tableau to open the completed model.   

First, we will use a 2nd PsiDataSrc() function to denote that new data (an 

increased selling price for Stereos) will be available in Power BI.  Click back to 

the ProductMix(Opt) example model, select cell J7 and then click Formulas – 

Insert Formulas, select PSI Dimension for Category, select PsiDataSrc, then 

click OK.   

Enter the following for the arguments appearing on the Function Arguments 

dialog. 

Src_name – Enter “profit_src” to name the text file, created by the custom 

visual, which will be submitted, along with the RASON model, to the RASON 

server.    
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Val_col_names – Enter “profit” for the data well name.   

Data – Enter the Excel range, C24:E24.   

Idx1_name – Enter “products” which is the name of the 1st index set for the data 

specified in the Data argument.  In this example, our Index set is simply the 

selling price for each product.   

Idx1_elem – Enter the Excel range containing the data for the first index set, 

C13:E13.     

Since this index set is 1-dimensional, nothing further is needed and we can click 

OK to enter the PsiDataSrc() function into cell J7. Afterwards, cell J7 will 

display the value given to the Src_name argument, profit_src. 

 

In Analytic Solver Cloud or AnalyticSolver.com, you can type the formula 

directly into cell J7. 

=PsiDataSrc("profit_src", "profit", C24:E24, 

"products", C13:E13) 

We will use a 3rd PsiDataSrc() function to denote that new data (an increase in 

the number of speakers to be included in the building of a stereo) will be 

available in Power BI.  This time, we will simply enter the formula directly into 

cell J8.     

First type “=PsiDataSrc(“, then enter the arguments below.   

Src_name – Enter “reqparts_src” to name the text file which will be submitted, 

along with the RASON model, to the RASON server.    

Val_col_names – Enter “requiredparts” for the data well name.   

Data – Enter the Excel range, C18:E22.   

Idx1_name – Enter “parts” which is the name of the 1st index set for the data 

specified in the Data argument.  In this example, there are two index sets.  When 

data is 2-dimensional, we must enter the index set that describes the rows first.     

Idx1_elem – Enter the Excel range containing the data for the first index set, 

B18:B22.     

Idx2_name – Enter “products” which is the name of the 2nd index set for the data 

specified in the Data argument.   

Idx2_elem – Enter the Excel range containing the data for the second index set, 

C13:E13.     
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Now we can type “)” to close the function, then press Enter to enter the 

PsiDataSrc() function into cell J8. Afterwards, cell J8 will display the value 

given to the Src_name argument, reqparts_src. 

Your PsiDataSrc function should be similar to the screenshot below.   

=PsiDataSrc("reqparts_src", "requiredparts", C18:E22, "parts", B18:B22, 

"products", C13:E13)  

At this point, cell J6 displays “inventory_src”, cell J7 displays “profit_src” and 

cell J8 displays “reqparts_src”.   

Finally, we will use a 4th PsiDataSrc() function to add our variable names to the 

Power BI chart.  This data well will perform double duty by allowing a "starting 

value" to be passed to the custom visual.  Again, we will simply enter the 

formula directly into cell J9.     

First type “=PsiDataSrc(“, then enter the arguments below.   

Src_name – Enter “vars_src” to name the text file which will be submitted, 

along with the RASON model, to the RASON server.    

Val_col_names – Enter “initialvalues” for the data well name.   

Data – Enter the Excel range, C14:E14.   

Idx1_name – Enter “products” which is the name of the 1st index set for the data 

specified in the Data argument.  In this example, there are two index sets.  When 

data is 2-dimensional, we must enter the index set that describes the rows first.     

Idx1_elem – Enter the Excel range containing the data for the first index set, 

C13:E13.     

Now we can type “)” to close the function, then press Enter to enter the 

PsiDataSrc() function into cell J9. Afterwards, cell J9 will display the value 

given to the Src_name argument, vars_src. 

Your PsiDataSrc function should be similar to the function below.   

=PsiDataSrc("vars_src", "initialvalues", C13:E13, "products", C14:E14)  

At this point, cell J6 displays “inventory_src”, cell J7 displays “profit_src”, cell 

J8 displays “reqparts_src” and J9 displays "vars_src".   

Before we create our new Custom Visual, we will add a PsiFinalValue() 

function to the worksheet in order to add our constraint final values to the visual.  

In cell K18, enter:  =PsiFinalValue(Number_used).   

Then enter the PsiSlackValue() function to display the slack values in the visual.  

In cell L18, enter: =PsiSlackValue(Number_used).   

You'll need to update the model on Rason Cloud Services so save the Excel 

model and click Create App – Cloud Service – Rason Model.  You can reuse the 

previous model name.  Then click Create App – Power BI – Managed Model to 

create a new Custom Visual using a new name such as ProductMix3.pbiviz.   

Now we are ready to add a new data table to the ProductMixData.xlsx file.   

Open your data file, or the ProductMixData.xlsx workbook.  

Important Note:  All data for a custom visual MUST be contained within the 

same Excel table or from within multiple tables with the same number of 

rows and columns.  As a result, we must create a new table in Excel and enter 

all data into this new table, including the information from the Inventory 

worksheet.  
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In a new Excel sheet, create a table (Insert – Table) with 16 rows and 6 columns, 

then list the products in the first column using the column heading “products”, 

the parts by name using the column heading “parts” in the 2nd column, the parts 

required per product (requiredparts) in the 3rd column, the selling price or 

“profit” per product in the 4th column, the part inventory for each product in the 

5th column and the initial variable values in the last column.   Make sure to pass 

the new selling price for Stereos ($100) and the increased number of speakers 

per stereo (4).   

 

Notice that in order to list all of the required parts for each product, we must list 

each part and selling price for each part.  In addition, each column heading 

matches the index sets used in the PsiDataSrc() functions.  Rename the 

worksheet “AllData” then save the workbook.  If there are any leading or 

trailing spaces for the column headings or elements, Power BI will stop with an 

error.   

Open either desktop or cloud-based Power BI, click the icon containing three 

horizontal dots at the bottom of Visualizations, then select Import from file from 

the menu.  Navigate to the location of the saved ProductMix3.pbiviz file.  Select 

the file, then click Open.  If the import was successful, you will see a message 

indicating as such.  Click OK to clear this dialog.   A new icon, bearing the 

Frontline Solvers logo and the name ProductMix3 is added under Visualizations.   

 

Click this icon to open Frontline Solvers’ custom visual.  

If you look to the right of the screen, you will see new data wells appearing 

under Visualizations.  Recall that the “parts” and “inventory” data wells were 

created by the PsiDataSrc() function in the ProductMix(Opt) example model cell 

J6, inventory_src.  Data wells “products” and “profit” were created by the 

PsiDataSrc() function in cell J7, profit_src.  The PsiDataSrc() function in cell J8, 

reqparts_src, created the data well “requiredparts”.  The PsiDataSrc() function in 

cell J9, vars_src, created the data well "initialvalues".     
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Now it is time to upload our data.  Click back to Power BI, then click Get Data – 

Excel and open the ProductMixData.xlsx file.   

 

Select AllData on the left, then click Load on the right.   

The table headings from the AllData worksheet are uploaded to the Fields task 

pane in Power BI.   

 

Drag the fields into the data wells according to the following table. 

Field Data Well 

inventory inventory 
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parts parts 

products products 

profit profit 

requiredparts requiredparts 

initialvalues initialvalues 

 Afterwards, your task pane should match the following screenshot.  Make sure 

to check that none are being summarized by clicking the down arrow beside 

each and selecting "Don't summarize" from the menu. 

 

Immediately, the RASON model is submitted to the RASON Server, the model 

is solved and the final variable values are imported back into Power BI.   
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To update the data source, revise the data, refresh the data source in Power BI 

and watch as your Custom Visual is automatically redrawn.   

As mentioned above, in latest version of Analytic Solver the generated Power BI 

visual can be further customized by the user by clicking the Format icon (Paint 

roller icon).   

 

Troop Rotation Optimization Example 

In this example, we will create a Power BI Custom Visual using a slightly more 

complex example, the Troop Rotation example.  To open, click Help – Example 

Models on the Analytic Solver ribbon, then click Optimization Examples and 

scroll down to Troop Rotation for Power BI-Tableau.  Click the hyperlink to 

open the example model.  This example model illustrates the moving of army 

troops while minimizing cost.      
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The optimization model is included in the Model tab in the Solver Task Pane.  

This model written in algebraic form is below.     

Maximize:  Total Cost = 34 * x1 + 42 * x5 + 36 * x9 + 26 * x2 + 33 * x6 + 29 * 

x10 + 29 * x3 + 28 * x7 + 32 * x11 + 31 * x4 + 35 * x8 + 38 * x12 

Subject To:   

Number of troops from Camps 1, 2 and 3 moved to Bases 1, 2, 3 and 4 must not 

exceed the number of troops available 

Camp1:  x1 + x2 + x3 + x4 <= 500 

Camp2:  x5 + x6 + x7 + x8 <= 400 

Camp3:  x9 + x10 + x11 + x12 <= 400 

Number of troops assigned per base must not be less than the amount required. 

Base 1: x1 + x5 + x9 >= 200 

Base 2: x2 + x6 + x10 >= 250 

Base 3:  x3 + x7 + x11 >= 350 

Base 4:  x4 + x8 + x12 >= 300 

x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 > 0 

The engine selected to solve this model is the Standard LP/Quadratic Engine as 

shown on the Engine tab in the Solver Task Pane.   

 

Next, we will enter four PsiDataSrc() functions into cells J13, J14, J15, and J16 

in order to expose our data to the RASON Server and ultimately Power BI.   



Frontline Solvers 2021 User Guide Page 299 

In J13, we will expose the moving costs per soldier according to the Base and 

Camp dimensions in cells C13:F15.  To open the Function Arguments dialog, 

click Formulas – Insert Function, select PSI Dimension for Category, select 

PsiDataSrc, then click OK.   

Src_name = Enter “cost_src” for this argument.  This names the text file that 

will be submitted to the RASON server, along with the RASON model, when 

the  Power BI custom visual is created.   

Val_col_names – Enter “cost” for this argument.  This will be the name of the 

Power BI data well associated with the data passed in the next argument.   

Data – Enter C13:F15 which is the actual cells containing the moving price per 

soldier. 

Idx1_name – Enter “camps” which is the name of the 1st dimension or index set, 

the row-wise index set.  Remember, you must pass the row-wise index set 

before the column-wise index set.  

Idx1_elem – Enter the elements of the “camps” index set.  These appear in cells 

B13:B15. 

Idx2_name – Enter “bases” which is the name of the 2nd dimension or index set, 

the column wise index set.     

Idx2_elem – Enter the elements of the “bases” index set.  These appear in cells 

C12:F12.   

The Function Arguments dialog should now appear as shown in the screenshots 

below. 

 

 

Click OK to save this function to cell J13.   

In Analytic Solver Cloud or AnalyticSolver.com, you can type the formula 

directly into cell J13. 

=PsiDataSrc("cost_src", "cost", C13:F15, "camps", 

B13:B15, "bases", C12:F12) 

Click cell J14 and open the Function Arguments dialog to enter the next 

PsiDataSrc() function.   

In J14, we will expose the variables that indicate the number of troops moved by 

camp and base in cells C19:F21.  Open the PsiDataSrc function (as explained 

above).   

Src_name = Enter “vars_src” for this argument.   

Val_col_names – Enter “troopsmoved” for this argument.  This will be the name 

of the Data Well in Power BI that is associated with this data. 
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Data – Enter C19:F21 which is the actual cells containing the moving price per 

soldier.  Note:  The data range C19:F21 will automatically convert to 

“Troops_moved” which is the defined name for this Excel range.   

Idx1_name – Enter “camps” which is the name of the 1st dimension or index set, 

the row-wise index set.   

Idx1_elem – Enter the elements of the “camps” index set.  These appear in cells 

B13:B15. 

Note that it is important to re-use the location of the index sets.  If we would 

have entered the elements for "camps" as B19:B21, rather than B13:B15, a new 

index set would be created.    

Idx2_name – Enter “bases” which is the name of the 2nd dimension or index set, 

the column-wise index set.     

Idx2_elem – Enter the elements of the “bases” index set.  These appear in cells 

C12:F12.   

The Function Arguments dialog should now appear as shown in the screenshots 

below. 

 

 

Click OK to save this function to cell J14.   

In Analytic Solver Cloud or AnalyticSolver.com, you can type the formula 

directly into cell J14. 

=PsiDataSrc("vars_src", "troopsmoved", Troops_moved, 

"camps", B13:B15, "bases", C12:F12) 

Let’s enter the last two PsiDataSrc() functions by typing the formulas directly 

into the Excel cells, starting with the function in cell J15 that will expose the 

number of troops available for movement. 

In cell J15, enter:  “=PsiDataSrc(“ 

First the first argument, Src_name, enter “available_src”.   

For the second argument, Val_col_names, enter: "availabletroops".  The Power 

BI Data Well associated with this data will be given this name.   

For the Data argument, the third argument, enter:  Troops_available.  This is the 

defined name for cells H19:H21.  Alternatively, we  could have typed the Excel 

range, H19:H21. 

Type “camps” for the 4th argument, Idx1_name, which is the name given to the 

row-wise index set.  

Enter the range for this index set, B13:B15, for Idx1_elem. 
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Your PsiDataSrc() function should match the one in the screenshot shown 

below. 

=PsiDataSrc("available_src", "availabletroops", 

Troops_available, "camps", B13:B15) 

Click Enter to enter the PsiDataSrc() function into cell J15.   

Finally, the last PsiDataSrc() function in cell  J16 should be entered as: 

=PsiDataSrc("required_src","requiredtroops",Troops_required,"bases",C12:F12) 

Where: 

Data_src = “required_src”  

Val_col_names = “requiredtroops”  This is the name that will appear for the 

Data Well associated with this data in Power BI. 

Data = Troops_required  This is the data associated with Val_col_names. 

Idx1_name = “bases”  This is the name of the index set that is associated with 

the data passed to the Data argument. 

Idx1_elem – c12:f12  This is the Excel range where the elements for Idx1_name 

are located on the worksheet.   

Now we are ready to create the custom visual.   

In order to see our constraint final values in the Custom Visual, we will need to 

use the Psi function PsiFinalValue.  (For more information on this function, see 

the Psi Function chapter in the Analytic Solver Reference Guide.)  

• In cell J22, enter "=PsiFinalValue(Troops_per_camp)" to display the 

final value of the constraints in cells G19:G21 in the Custom Visual. 

This function will "spill" vertically to cells J22:J25, since the 

orientation of cells G19:G21 are vertical.   

• In cell L22, enter "=PsiFinalValue(Troops_per_base)" to display the 

final value of the constraints in cells C22:F22 in the Custom Visual.  

This function will "spill" horizontally to cells L22:O22, since the 

orientation of cells C22:F22 are vertical.   

We can also add PsiSlackValue functions to the workbook to display the 

constraint slack values in the Power BI Custom Visual. Note that the 

PsiFinalValue function in cell J22 will spill down to cell J25 so in order not to 

prevent the spillage, we will enter the PsiSlackValue functions in row 28.   

• In cell J28, enter "=PsiSlackValue(Troops_per_camp)" to see the slack 

values of the constraints in cells G19:G21 

• In cell L28, enter "=PsiSlackValue(Troops_per_base)" to display the 

slack values of the constraints in cells C22:F22.   

First, click Create App on the ribbon, then select Cloud Service – RASON 

Model to post the model to RASON Cloud Services.  Then click Create App 

again and select Power BI – Managed Model.   

Since this is the first time we are creating a custom visual from this model, there 

is no need to solve the model first.  If however, we make a change to the Troop 

Rotation model, then we would need to either diagnose or solve the model first 

to ensure that the changes are captured in the new custom visual.   

Save the .pbiviz file as TroopRotation1.pbiviz in a location of your choice. 
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Next, we will create the data file.  Open a new Excel workbook.  Recall, that 

when supplying data to Power BI, all data must be contained in tables containing 

the exact same number of rows and columns.  If you are unable to pass your data 

using Excel tables with the exact same number of rows and columns, then you 

must pass all data in one table.   

In this example, since we would not be able to pass the data in multiple tables 

with the same number of rows, we will pass all data in one Excel table. 

In a new Excel sheet, create a table (Insert – Table) with 13 rows and 5 columns, 

as shown in the screenshot below.  Notice that in order to enter all 12 costs, 

labels for camps, bases, requiredtroops and availabletroops were repeated.  In 

addition, each column heading matches the index sets used in the PsiDataSrc() 

functions.  Rename the worksheet “AllData” then save the workbook as 

TroopsRotationData.xlsx.   

  

Now let’s click back to Power BI, to import the new custom visual and the data.   

Click the three dots under Visualizations and select Import from file. 

 

Once the Frontline Solvers icon is inserted under Visualizations, click the icon 

to open the custom visual.   

Then click Get Data – Excel.   Browse to the folder where the 

TroopsRotationData.xlsx file was saved, and open the file.  Select the table 

containing your data, then click Load.  (In this example, select "Table 13", then 

Load.) 
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Now it is time to drag the data into the data wells.  Drag: 

availabletroops → availabletroops 

bases → bases 

camps → camps 

cost → cost 

cost → troopsmoved 

requiredtroops → requiredtroops 

Note:  Since “troopsmoved” holds the variable values, we can simply drag 

“cost”, which contains the same number of rows and columns as "troopsmoved", 

as a starting point for the algorithm.  A starting point for this model is not 

needed because our model is linear, however, if our model was nonlinear or 

nonsmooth, this would be more important.   

After dragging each field to its appropriate data well, click the down arrow next 

to each element and select "Don't summarize".  This is selected in order that the 

data not be aggregated in the custom visual.   

 

The resultant Power BI custom visual is shown in the screenshot below.  Now 

each time new data is imported into Power BI, the Troop Rotation example data 
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will be solved from within Power BI.  However, please note that as long as your 

PsiDataSrc functions remain the same, the named model can be updated on the 

Rason Cloud Service and you will not need to create a new custom visual.  

However, if the PsiDataSrc() functions change, you will need to update the 

named model residing on the Rason Cloud service and the Custom Visual.   

 
Notice that PsiSlackValues and the PsiFinalValues are both displayed on the 

right under Constraints.   

Using Optimization Parameters in Power BI 

Now what happens when we would like to see how our final variable values and 

objective function value change as the number of troops required changes.  For 

this type of “What If’ analysis, we can use the PsiOptParam() optimization 

parameter.  Recall from the chapter, Examples:  Parameters and Sensitivity 

Analysis, an optimization parameter (PsiOptParam) is automatically varied 

when you perform multiple optimizations.  You do this by clicking the Optimize 

button on the Ribbon, or the green arrow in the Task Pane, with the Number of 

Optimizations set to a value greater than 1.   

Let’s go back to our example Excel model and enter an optimization parameter 

for the number of troops required in Base 1.  In cell C13, enter 

“=PsiOptParam({34,24,14})”, then click the Platform tab in the Solver Task 

pane and change the Number of Optimizations to “3”.   When I click Solve, 

Analytic Solver will solve 3 optimizations.  In the first optimization, cell C13 

will be set to 34, in the second, 24, and in the third, 14.   

Click the Output tab, then click the green arrow to solve the model.  After the 

solving process is over, we can select the three different optimizations in the 

Optimization drop down menu (in the Tools section of the Analytic Solver 

ribbon), to see how the objective function changes according to the value set for 

this parameter.   

 

In the first optimization, cell C13 = 34 and the resultant objective function value 

was $32,950.  In the second optimization, cell C13 = 24 and the resultant 
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objective function value was $31,150 and in the third optimization cell C13  = 

14 with an objective function value of 29,150.   

Save the Excel file, then click Create App – Cloud Service – RASON Model to 

update the model on RASON server.   

 

Then click Create App – Power BI – Managed Model to create a new custom 

visual file.  This time, we will name the custom visual file, 

TroopRotationOptParam.pbiviz.   

Click back to Power BI and import the newly created custom visual file.  Click 

the new Frontline Solvers icon to open the custom visual.  Immediately, the 

model will solve and the results will be displayed in the Power BI window.  To 

view each solution, click the down arrow within the newly added Multiple 

Optimization drop-down menu.   

Note:  When entering PsiOptParam manually (i.e. simply typing the function 

into an Excel cell) in Analytic Solver Cloud, the taskpane must be refreshed 

before performing a parameter analysis report.   

 

  

Simulation Example Model 

Now let’s create a custom visual from a simulation example.  This time, we will 

embed the model into the Power BI Custom Visual. This option is different than 

Power BI – Managed Model because with Power BI -- Embedded Model, your 

model is embedded inside the custom visuals' JavaScript file.  There is no need 

to create a named model that "lives" on the public Rason cloud.  The custom 

visual accepts the data your model needs from Power BI; whenever this data 

changes, it sends your Rason model plus this data to the public Rason cloud 

service where it is solved, obtains the results and displays them in chart form.   
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Note:  Although this option is initially simpler, if you want to update your model 

in any way, you'll have to use this menu option to create a new Dashboard 

Extension.  If you expect to revise the model over time, it's better to use Create 

App – Power BI – Managed Model.  

Open the Business Forecast Example by clicking Help – Example Models – 

Monte Carlo Simulation Examples ,  Business Forecast hyperlink to open the 

file, then click the Forecast with Uncertainty tab.  To open a completed example, 

open the BusinessForecastPBI example that appears at the bottom of Simulation 

Models. 

 

First, we will use a PsiDataSrc() function to generate data wells for use in the 

Power BI custom visual.   

Click a blank cell, such as cell G24, then type: “=PsiDataSrc(“market_src”, 

“market”, J17:L18, “parameters”, I17:I18, “mktdemand”, J16:L16) 

where: 

market_src – Is the name used to identify the text file that will be submitted to 

the RASON server.  

market – Will be the name of the data well in Power BI.    

J17:L18 – Is the data range for “market”.   

parameters – Is the name of the 1st index set for the data specified in the “data” 

argument, market.    

I17:I18 – Is the Excel range where the data for “parameters” is located.   

mktdemand – Is the name of the 2nd index set for the data specified in the “data” 

argument. 

J16:L16 – Is the Excel range where the data for “mktdemand” is located.   

Type “)” to close the formula and then press the Enter key to enter the formula 

into the Excel cell.   

Click a 2nd blank cell, such as G25, then enter the following function. 

=PsiDataSrc(“price_src”, “mktprice”, J21:L21, “price”, J20:L20) 

where: 

price_src – Is the name used to identify the text file that will be submitted to the 

RASON server.        

mktprice – Will be the name of the data well in Power BI.    

J21:L21 – Is the data range for “mktprice”.   

price – Is the name of the 2nd index set for the data specified in the Data 

argument, market.    

J20:L20 – Is the Excel range where the data for “price” is located.  
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Two Psi Functions, PsiPercentiles and PsiData, must be added to the spreadsheet 

in order to draw the histogram in the Custom Visual.   

H28 = PsiPercentiles(F20) 

G28 = PsiData(F20) 

The PsiPercentile function returns all percentiles for the uncertain function in 

cell F20.  The PsiData function returns all trial values for cell F20.   

For more information on these formulas, see the Analytic Solver Reference 

Guide.   

Click Create App – Cloud Service – Rason Model to post the simulation model 

to the RASON server.    

 

Then click Create App – Power BI -- Managed Model to create a new Power BI 

Custom Visual. Confirm that the name of the model on the Rason Cloud Service 

and then enter a name for the Custom Visual.   

 

 

 

 

 

 

 

 

 

A window appears as the Custom Visual is being created.   
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Click back to Excel and open a new workbook to enter the following data into 

an Excel table.  Then save the workbook as BusinessForecastData.xlsx.    

You can open this completed data file from Help -- Example Models – Monte 

Carlo Simulation Examples – BusinessForecastData.xlsx 

   

Open Power BI and add in the custom visual (Import from file – 

BusinessForcast1.pbiviz), then click Get Data – Excel to import the data. 

Afterwards, drag the data fields to the appropriate data wells as shown in the 

table below. 

 

Fields Data Wells 

market market 

mktdemand mktdemand 

mktprice mktprice 

parameters parameters 

price price 

Analytic Solver automatically creates the Custom Visual, embedded with the 

RASON model, that can be dragged onto the Power BI Dashboard, or a report.   

Once the npm window disappears, open Microsoft Power BI.  Upon opening, 

click the three dots beneath Visualizations, and select Import from file.   

 

Your task pane should match the following screenshot.  Make sure that none of 

the Fields are being summarized.   



Frontline Solvers 2021 User Guide Page 309 

 

Immediately, once the data wells are filled with the appropriate data fields, a 

simulation will be run.   

 

Again, note that as long as your PsiDataSrc functions remain the same, the 

named model can be updated on the Rason Cloud Service and you will not need 

to create a new custom visual.  However, if the PsiDataSrc() functions change, 

you will need to create a new embedded custom visual.   

If your data changes, say your demand explodes, you can simply edit your data 

file. 

 

Click back to Power BI and click the three dots to the right of the data source… 
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and select Refresh Data from the menu. 

 

The Custom Visual will automatically redraw using the new data.   

 

Advanced Settings 

Recall from the examples above, once you click Create App – Power BI – 

Managed Model in the Excel worksheet and confirm the model name, the Save 

As dialog appears.  

At the bottom of this dialog is the Custom Visual Source Code Preserve 

checkbox.  When this option is selected, a folder is created in the same location 

as the .pbiviz file.  This folder will contain the source code for the custom 

visual.   

In the screenshots below, new folders, BusinessForecast in Analytic Solver 

Desktop and ProductMix1 in Analytic Solver Cloud, will be created at the same 

time as the BusinessForecast.pbiviz  and ProductMix1.pbiviz files.    

Analytic Solver Desktop  
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Analytic Solver Cloud 

 

You will find the type script file, visual.ts within the src folder. Users can 

manipulate this file to customize the look and feel of the custom visual, such as 

the face of the custom visual icon (within Visualizations), alter the RASON 

model, etc.  For more information on customizing the visual.ts file, see the 

webpage: https://powerbi.microsoft.com/en-us/documentation/  

  

Note:  If the visual.ts file is altered, a new pbiviz package must be created.   To 

do so, open a command prompt, change the directory to the root directory of the 

custom visual, and enter “pbiviz package”, as shown in the screenshot below.   

https://powerbi.microsoft.com/en-us/documentation/
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The new custom visual file (.pbiviz) will be saved to the Dist folder.   

 

Creating a Custom Visual from a Large Model 

For very large embedded models, node.js might run out of heap space when 

attempting to generate the pbiviz package.  If all heap space is consumed, you'll 

receive the message, " Javascript out of heap space".  In order to increase the 

heap space, simply create a new Environment Variable "NODE_OPTIONS" 

with value "—max-old-space-size=8192". Doing so will increase the heap space 

and allow the custom visual to be generated.   

Error Messages 

If you’ve made an error in your PsiDataSrc() function or in your data file, your 

custom visual will display an error such as “Inconsistent Data source definition 

PSI could not parse Excel formulas" or “Invalid binding source definition PSI 

could not parse Excel formulas”.   

If your custom visual is displaying either of these errors or a different error, first, 

check the PsiDataSrc() function in your Excel model to make sure that you have 

not mixed up the order of your index sets.  In addition, check your data to make 

sure that it is 1.  Contained within an Excel table, 2.  That the column headings 

match the index sets defined in PsiDataSrc() and 3. That your model parameters 

match the elements in your data table.   

For more information on an error message displayed in your custom visual, 

contact Frontline Systems Support Team by emailing support@solver.com or by 

calling 888-831-0333.   

 

mailto:support@solver.com
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Creating Custom Extensions in 
Tableau 

Introduction 
Analytic Solver includes the ability to turn your Excel-based optimization or 

simulation model into a Tableau Dashboard Extension, with just a few mouse 

clicks!  This is quite similar to the ability to create Power BI Custom Visuals as 

discussed in the previous chapter.  This feature is only compatible with versions 

of Tableau version 2018.2 or later. 

To start, simply select rows or columns of data to serve as changeable 

parameters, then choose Create App – Tableau – Managed Model, and save 

the file created byAnalytic Solver.  In Tableau, you’ll see the newly-created file 

under Extensions on the left side of the dashboard, where you can drag it onto 

your dashboard.  You’ll be prompted to match the parameters your model needs 

with data in Tableau.  What you get isn’t just a chart – it’s your full optimization 

or simulation model, ready to accept Tableau data, run on demand (using our 

RASON server), and display visual results in Tableau! 

You can also use Create App – Tableau – Embedded Model to embed your 

optimization or simulation model into a Tableau Extension.  However, your 

extension will not allow Input Functions and is not recommended if your model 

will change at any time.   

Installing Tableau 
Tableau is an industry leading desktop or cloud-based interactive business 

intelligence tool that centers on data visualization, dashboarding and data 

discovery.  In past versions of Analytic Solver, users have only been able to 

upload their model parameters (or their model data) to Tableau after solving an 

optimization or simulation model.  However, starting with V2018, Analytic 

Solver now includes the ability to turn your Excel based optimization or 

simulation model into a Tableau Extension, that is your full optimization or 

simulation model, ready to accept Tableau data, run on demand on the web 

(using our RASON server) and display visual results in Tableau.   

In order to use this new feature in Analytic Solver, you must first install Tableau 

V2018.2 or later or open the free cloud based version of Tableau.  For more 

information on this business intelligence tool, see the following website:  

https://www.tableau.com/ 

Solving Optimization Models in Tableau 
In this section, we will create a custom Tableau Extension using the Product 

Mix example model. 

Open the ProductMix(Opt).xlsx model that was previously discussed in the 

Conventional Optimization chapter by clicking Help – Monte Carlo Simulation 

https://www.tableau.com/
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Examples on the ribbon, clicking Optimization Examples and then the Product 

Mix link.  Recall this example model determines the optimal mix of products 

that a company should produce in order to maximize profits.   

 

The optimization model is included in the Model tab in the Solver Task Pane.  

This model written in algebraic form is below. 

Maximize:  Total Profit = $75x1 + $50x2 + $35x3 

Subject To:   

Chassis:  1x1 + 1x2 + 0x3 <= 450 

LCD Screen:  1x1 + 0x2 + 0x3 <= 250 

Speaker:  2x1 + 2x2 + 1x3 <= 800 

Power Supply:  1x1 + 1x2 + 0x3 <= 450 

Electronics:  2x2 + 1x2 + 1x3 <= 600 

x1, x2, x3 > 0 

The engine selected to solve this model is the Standard LP/Quadratic Engine as 

shown on the Engine tab in the Solver Task Pane.  This is the engine that will be 

used to solve the model within Tableau.   

 

In past versions of Analytic Solver, you only had the option of uploading your 

final solution values (final variable, constraint and objective values) to Tableau.  

As a result, any time there was a change to the model, the model had to be 

solved in Excel first and then the data could be (again) uploaded to Tableau.  All 

of this changed with V2018.  Now you can change your model parameters and 

resolve your model within Tableau - without ever having to go back to Excel!    

To start, we will use the PsiDataSrc() function to “flag” or specify the 

parameters in the Excel model that might possibly change in the future; for 

example, in the product mix model, the amount of inventory on hand for each 

part, the profit point for each product or the number of parts that makeup each 

product.   

Select a blank cell on the Product Mix Example 1 tab, say J6.  Click Formulas – 

Insert Function to open the Insert Function dialog, then select PSI Dimension for 

Category.  Afterwards, highlight the function PsiDataSrc, and click OK.  
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Note:  It is suggested that you delete the Constraints text box in order to create 

room for the added PsiDataSrc() functions, described below. 

 

In Analytic Solver Desktop or AnalyticSolver.com, you can also simply type the 

formula directly into the cell.   

The Function Arguments dialog opens displaying 5 arguments:  Src_name, 

Val_col_names, Data, Idx1_name and Idx1_elem.  We will use this dialog to 

create a PsiDataSrc() in cell J6 that will allow us the ability to change the 

inventory values and resolve the Product Mix example model not in Excel, but 

within Tableau. 

PsiDataSrc() Arguments 

Src_name – This argument names the text file, created by the Extension, which 

is submitted, along with the RASON model, to the RASON server.   For this 

example, type:  inventory_src.   

Val_col_names – The available data in Tableau must be mapped to the data 

source we create in the Excel workbook.  This field provides the name of the 

data repository that will appear in Tableau.  For this example, type: inventory.  

Note:  Names passed to Val_col_names are case sensitive. 

Data – Enter the Excel range where the data is located on the spreadsheet for 

this argument.  For this example, use your mouse to click the upward pointing 

arrow to the right of the Data argument and select cells H18:H22.  You can also 

simply type this range into the edit box.     

Idx1_name – Enter the name of the (1st ) index set for the data specified in the 

Data argument.  In this example, our Index set is simply the inventory available 

for each Part.  Therefore, enter “parts” for this argument.  Note:  Index set names 

are case sensitive.      

Idx1_elem – Enter the Excel range containing the data (or elements) for the first 

index set.  For this example, either type or select cells:  B18:B22   
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Since this index set is 1-dimensional, nothing further is needed and we can click 

OK to enter the PsiDataSrc() function into cell J6.  

In Analytic Solver Cloud or AnalyticSolver.com, you can type the formula 

directly into cell J6. 

=PsiDataSrc("inventory_src", "inventory", H18:H22, 

"parts", B18:B22) 

Afterwards, cell J6 will display the value given to the Src_name argument, 

inventory_src. Save the Excel model. 

Click Create App on the ribbon, then select Tableau – Managed Model.  Recall 

that in order to use the Managed Model choice, your model must have already 

been posted to the Rason Cloud Service using Create App – Cloud Service – 

RASON Model.   

Note that it's also possible to embed your model into Tableau using Create App -

- Tableau – Embedded Model, however, if your model will change in any way, 

it's recommended to use Managed Model.  For more formation on creating an 

embedded model, see the previous Deploying Your Model chapter.   

 

Click Save to confirm the model name as "ProductMix(Opt)" 
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There is no need to solve the model first unless a change has been made to an 

already existing RASON model. If a change has been made to the workbook 

after a RASON model has been created, then you MUST either solve or 

diagnose the Excel model in order for the changes to be reflected in the new 

RASON model.   

When creating a Tableau extension through desktop Analytic Solver, model 

elements (objective function and all variables and constraints) may appear 

across multiple worksheets within the same Excel workbook.   

Immediately, the Save As dialog appears.  Enter a file name in the location of 

your choice and then click Save.   

• In Analytic Solver Desktop, immediately, the Save As dialog appears.  

Select a folder to save the Tableau extension files to, and then click 

Save.  For example, the screenshot below displays a folder name of 

“ProductMixExt”.   

 Analytic Solver Desktop  

 

• In Analytic Solver Cloud, first, you will receive the following dialog.  

Type the filename of the folder, for example, TableauExtensions. 

Model Versions 
To create a new version of the model,  enter a 

new name such as "ProductMix(Opt)1".  You 
can manage your model versions by clicking 

the Manage Models icon on the Create Afpp 

dialog. For more information on this dialog, see 
the previous Deploying Your Model chapter.   
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After the file is downloaded, you'll be asked if you'd like to open or 

save the file, choose Save As, then save the file in the desired location.  

  

Click Select Folder or Save.  At this point your Excel model is translated into 

the RASON® modeling language, and your Tableau extension is created.  After 

a moment, the following message appears.  

 

Viewing the Tableau Extension File 

Open File Explorer and browse to the folder where you saved the Tableau 

extension.  Within that folder will be an Extensions folder.  Click that folder and 

open the Solver.trex file using Notepad.   

This file contains information such as the extensions name (or how it will appear 

in Tableau) and the url where the extension is hosted.  To publish the html file to 

a website, simply replace http://localhost:8000 with the desired url.   

http://localhost:8000/


Frontline Solvers 2021 User Guide Page 319 

 

Starting up the Server 

Since Tableau extensions are simply web pages, we will first need to start up a 

web server to serve our content.  For this example, we will serve up the webpage 

to the default location.  To do so, open a command prompt, navigate to the root 

of the extensions repository and run “http-server -p 8000”.  

 

This command starts up a simple http server listening on port 8000.  

Creating a Data File 

In order to provide the data for the Product Mix example file to Tableau, we 

must create a data file. Within this file, we will pass the inventory levels by part.  

This data file can be of any format supported by Tableau such as a CSV file, a 

text file, a database, etc.  In this example, we will use an Excel workbook to 

hold the data.  For more information on the types of files supported by Tableau, 

please see the Tableau documentation at:   

http://onlinehelp.tableau.com/current/pro/desktop/en-us/default.html 

Open a blank worksheet and create a table with two columns.  List the parts by 

name in the first column using the column heading “parts” and the inventory 

levels in the second column using the column heading “inventory”, as shown in 

the screenshot below.  You can open a completed data file by clicking Help –

Example Models – Optimization Examples – Product Mix Data for Power BI – 

Tableau. 

http://onlinehelp.tableau.com/current/pro/desktop/en-us/default.html
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Note:  Column headings must be identical to the names of the Index Sets passed 

to the PsiDataSrc() function. Make sure there are no spaces before or after 

column headings or row elements.   

Recall that we labeled the IndexSet as “parts” (4th argument of PsiDataSrc) and 

Val_col_names as “inventory” (2nd argument of PsiDataSrc) so the title for 

column A must be “parts” and the title for column B must be “inventory”.  Now 

save the workbook to a desired location.   

Opening Extension within Tableau 

Open either desktop, server or cloud-based Tableau.  The screenshot below 

depicts the opening screen of desktop Tableau.  Click Microsoft Excel under 

Connect. 

 

An Open dialog opens.  
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Browse to the location of your data file (C:\Program Files\Frontline 

Systems\Analytic Solver Platform\Examples) and click Open.   

 

A new worksheet, Sheet 1, is automatically created. Click on the Sheet 1 tab. 

  

On Sheet 1, drag Parts (under Dimensions) to Sheet 1 rows…  

 

… and then drag Inventory (under Measures) to Sheet 1. 
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Hover over , click the down arrow that appears to the right, 

then select Dimensions from the menu.   

Note that the information in ProductMixData.xlsx matches the data in Sheet 1.   

 
Right click the Sheet 1 tab and rename the worksheet to “inventory”, then click 

the New Dashboard icon at the bottom of Tableau to open a new dashboard.   

 
 

First, drag the Inventory worksheet onto the dashboard canvas.   
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Then drag the Extension icon, under Objects, onto the canvas. 

 

 
 

Click My Extensions… 
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…browse to the location of the Tableau Extension.  

 

 (In this example, the Tableau Extension was saved to the ProductMixExt folder.  

Drill down to the Extensions folder to open the Solver.trex file.) Click Open. 

Click OK to allow the extension to be added to the dashboard. 

 
 

… and browse to the location of the Tableau Extension file (Solver.trex).  

Within this folder, select All Files, then double click the Extensions folder and 

select the Solver.trex file.                

Click Open to open the Tableau extension.   A dialog opens asking to select a 

data source for “parts”.    Confirm that “inventory” is selected for “Sheet” and 

“parts” is selected for “Column”.  Note that these are the same names passed to 

the PsiDataSrc() function in the Excel Product Mix.xlsx workbook.       
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Click OK.   

 

On the Select data source for: inventory dialog, select “inventory” for “Sheet” 

and “inventory” for “Column”.  Then click OK.   

Immediately, two gears appear and start to turn while the model is sent to the 

RASON server, solved with the LP/Quadratic engine, and the final values are 

returned.  Your screen should appear similar to the screenshot below.   
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Once the RASON server has imported the final solution values into Tableau, 

Solver’s result message, “Solver found a solution.  All constraints and 

optimality conditions are satisfied”, is displayed at the bottom of the Extension 

window.  In the Variables chart, we see that the final variable values are:  Var1 

(LCD TV) equal to 200, Var2 (Stereo) equal to 200 and Var3 (Speakers) equal 

to 0.  These variable values result in an objective function value equal to 

$25,000.  

  

In the next example we will use the PsiFinalValue function to display the final 

constraint values in the Tableau Extension.   

Now let’s go back to the Excel Model and see what happens when we change a 

few parameters such as increasing the inventory of speakers from 800 to 1,000, 

adding 2 more speakers to a Stereo during manufacturing and increasing the 

Stereo’s selling price to $100.   

First, we will use a 2nd PsiDataSrc() function to denote that new data (an 

increased selling price for Stereos) will be available in Tableau.  Click back to 

the ProductMix(Opt) example model, select cell J7 and then click Formulas – 

Insert Function, select PSI Dimension for Category, select PsiDataSrc, then 

click OK.   

Enter the following for the arguments appearing on the Function Arguments 

dialog. 
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Src_name – Enter “profit_src” to name the text file, created by the custom 

visual, which will be submitted, along with the RASON model, to the RASON 

server.    

Val_col_names – Enter “profit” for the data repository name.  Note:  Names 

passed to Val_col_names argument are case sensitive.   

Data – Enter the Excel range, C24:E24.   

Idx1_name – Enter “products” which is the name of the 1st index set for the data 

specified in the Data argument.  In this example, our Index set is simply the 

selling price for each product.  Note:  Index set names are case sensitive.      

Idx1_elem – Enter the Excel range containing the data for the first index set, 

C13:E13.     

Since this index set is 1-dimensional, nothing further is needed and we can click 

OK to enter the PsiDataSrc() function into cell J7. Afterwards, cell J7 will 

display the value given to the Src_name argument, profit_src. 

 

In Analytic Solver Cloud or AnalyticSolver.com, you can type the formula 

directly into cell J7. 

=PsiDataSrc("profit_src", "profit", C24:E24, 

"products", C13:E13) 

Finally, we will use a 3rd PsiDataSrc() function to denote that new data (an 

increase in the number of speakers to be included in the building of a stereo) 

will be available in Tableau.  This time, we will simply enter the formula 

directly into cell J8.     

First type “=PsiDataSrc(“, then enter the arguments below.   

Src_name – Enter “reqparts_src” to name the text file which will be submitted, 

along with the RASON model, to the RASON server.    

Val_col_names – Enter “requiredparts” for the data repository name.  Note:  

Names passed here are case sensitive.      

Data – Enter the Excel range, C18:E22.   

Idx1_name – Enter “parts” which is the name of the 1st index set for the data 

specified in the Data argument.  In this example, there are two index sets.  When 

data is 2-dimensional, we must enter the index set that describes the rows first.   

Note:  Index set names are case sensitive.      

Idx1_elem – Enter the Excel range containing the data for the first index set, 

B18:B22.     
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Idx2_name – Enter “products” which is the name of the 2nd index set for the data 

specified in the Data argument.   

Idx2_elem – Enter the Excel range containing the data for the second index set, 

C13:E13.  Note:  Index set names are case sensitive.      

Now we can type “)” to close the function, then press Enter to enter the 

PsiDataSrc() function into cell J8. Afterwards, cell J8 will display the value 

given to the Src_name argument, reqparts_src. 

Your PsiDataSrc function should be similar to the screenshot below.   

=PsiDataSrc("reqparts_src, "requiredparts", C18:E22, "parts", B18:B22, 

"products", C13:E13) 

At this point, cell J6 displays “inventory_src”, cell J7 displays “profit_src” and 

cell J8 displays “reqparts_src”. 

Before we create a new Tableau Extension, we need to add a PsiFinalValue() 

function in order to see the final constraint values in the Extension.  In cell K18 

enter "=PsiFinalValue(G18:G22)". 

You'll need to update the model on Rason Cloud Services so save the Excel 

model and click Create App – Cloud Service – Rason Model.  You can reuse the 

previous model name.   

Then click Create App – Tableau – Managed Model to create a new Tableau 

Extension. 

Now we are ready to add a new data table to the ProductMixData.xlsx file.   

Open the ProductMixData.xlsx workbook to see the completed data table.    

Important Note:  In Tableau, unlike when creating a Power BI custom visual, it 

is not necessary that all data be contained within the same Excel table or from 

within multiple tables with the same number of rows and columns.  However, 

for ease of use, this example includes all data within the same Excel table.   

In a new Excel sheet, create a table (Insert – Table) with 16 rows and 5 columns, 

then list the products in the first column using the column heading “products”, 

the parts by name using the column heading “parts” in the 2nd column, the parts 

required per product (requiredparts) in the 3rd column, the selling price or 

“profit” per product in the 4th column, and the part inventory for each product in 

the last column.   Make sure to pass the new selling price for Stereos ($100) and 

the increased number of speakers per stereo (4).   

Note:  Click the 2nd tab in ProductMixData to view the completed data file.   
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Notice that in order to list all of the required parts for each product, we must list 

each part and selling price for each part.  In addition, each column heading 

matches the index sets used in the PsiDataSrc() functions.  Rename the 

worksheet “AllData” then save the workbook.  If there are any leading or 

trailing spaces for the column headings or elements, Tableau will stop with an 

error.   

Click back to Tableau and click Refresh in the top left hand corner.   

 

You will notice that the “AllData” sheet is added beneath Sheets.  Drag this 

sheet to the window.  

 

Tableau displays information from the Excel table at the bottom of the window.    
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Right click the Inventory sheet and again drag “Parts”, under Dimensions, to 

Rows and “Inventory”, under Measures, to the right of the rows.   

Hover over , click the down arrow that appears to the right, 

and select Dimensions from the menu.   

 

Add a new worksheet and drag “Parts”, under Dimensions, to Rows and 

“Products”, under Dimensions, to “Columns”.  Then drag “Requiredparts”, 

under Measures, to the field elements.  

Hover over , click the down arrow that appears to the right, 

and select Dimensions from the menu.   
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Name the sheet “Required Parts” and then add a third sheet.  In Sheet 3, drag 

“Products”, under Dimensions, to “Columns” and drag “Profit”, under 

Measures, to the column elements.   

Hover over  , click the down arrow that appears on the right 

then select Dimensions from the menu.   

 

Rename the sheet from Sheet 3 to Profit and then create a new dashboard.  Drag 

all three sheets, Inventory, Required Parts and Profit, to the canvas and then drag 

a new Extension to the canvas.  Open the Solver.trex file in 

…\TableauExtensions\Extensions.   

At this point we will connect the dimensions created by the PsiDataSrc() 

function in Excel with the actual data in Tableau.  A dialog appears asking to 

“Select a datasource for: parts”.  Select “Inventory” for Sheet and “Parts” for 

Column to match the “parts” dimension in the Excel sheet to the “Parts” 

dimension in the Tableau Inventory sheet.   
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Click OK. 

On the “Select data source for: inventory” dialog, select “Inventory” for Sheet 

and “Inventory” for Column to match the “inventory” dimension in the Excel 

sheet to the “Inventory” dimension in the Tableau Inventory sheet.   

 

Click OK.   

On the “Select data source for: products” dialog, select “Required Parts” for 

Sheet and “Products” for Column to match the “products” dimension in the 

Excel sheet to the “Products” dimension in the Tableau Required Parts sheet.   

 

Click OK. 

On the “Select data source for: profit” dialog, select “Profit” for Sheet and 

“Profit” for Column to match the “profit” dimension in the Excel sheet to the 

“Profit” dimension in the Tableau Profit sheet.   

 

Click OK.   

On the “Select data source for: requiredparts” dialog, select “Required Parts” for 

Sheet and “Requiredparts” for Column to match the “requiredparts” dimension 

in the Excel sheet to the “Requiredparts” dimension in the Tableau Required 

Parts sheet.   

 

Click OK.   

Immediately, the RASON model is submitted to the RASON Server, the model 

is solved with the LP/Quadratic engine and the final variable values are 

imported back into Tableau.   

At the bottom of the extension, we find Solver’s result message:  Solver found a 

solution.  All constraints and optimality conditions are satisfied.  In the 
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Variables chart, we see that the final variable values are:  Var1 (LCD TV) equal 

to 233, Var2 (Stereo) equal to 133 and Var3 (Speakers) equal to 0.  These 

variable values result in an objective function value equal to 30,833.  

 
 

To update your data, simply revise your data source, refresh the source within 

Tableau and your Tableau Extension will automatically update.   

Troop Rotation Optimization Example 

In this example, we will create a Tableau Extension using a slightly more 

complex example.  In this section, we will create an Extension using the Troop 

Rotation example model by clicking Help – Monte Carlo Example Models on 

the Analytic Solver ribbon, then clicking Optimization Examples and scrolling 

down to Troop Rotation.  Click the hyperlink to open the example model.  This 

example model determines how army troops should be moved to minimize 

costs.     

To open a completed version of this model click Help – Example Models – 

Optimization Examples, scroll down and click the link Troop Rotation for 

Power BI - Tableau.   

 

The optimization model is included in the Model tab in the Solver Task Pane.  

This model written in algebraic form is below.     

Minimize:  Total Cost = 34 * x1 + 42 * x5 + 36 * x9 + 26 * x2 + 33 * x6 + 29 * 

x10 + 29 * x3 + 28 * x7 + 32 * x11 + 31 * x4 + 35 * x8 + 38 * x12 

Subject To:   
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Number of troops from Camps 1, 2 and 3 moved to Bases 1, 2, 3 and 4 must not 

exceed the number of troops available 

Camp1:  x1 + x2 + x3 + x4 <= 500 

Camp2:  x5 + x6 + x7 + x8 <= 400 

Camp3:  x9 + x10 + x11 + x12 <= 400 

Number of troops assigned per base must not be less than the amount required. 

Base 1: x1 + x5 + x9 >= 200 

Base 2: x2 + x6 + x10 >= 250 

Base 3:  x3 + x7 + x11 >= 350 

Base 4:  x4 + x8 + x12 >= 300 

x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 > 0 

The engine selected to solve this model is the Standard LP/Quadratic Engine as 

shown on the Engine tab in the Solver Task Pane.  This is the engine that will be 

used to solve the model within Tableau.   

 

Next, we will enter four PsiDataSrc() functions into cells J13:J16 .   

In cell J13, we will expose the moving costs per soldier according to the base 

and camp dimensions.  To open the Function Arguments dialog, click Formulas 

– Insert Function, select PSI Dimension for Category, select PsiDataSrc, then 

click OK.   

Src_name = Enter “cost_src” for this argument.  This names the text file that 

will be submitted to the RASON server, along with the RASON model.   

Val_col_names – Enter “cost” for this argument.  This will be the name of the 

data repository associated with the data passed in the next argument.   

Data – Enter C13:F15 which is the actual cells containing the moving price per 

soldier. 

Idx1_name – Enter “camps” which is the name of the 1st index set, the row-wise 

index set.  Remember, you must pass the row-wise index set before the column-

wise index set. 

Idx1_elem – Enter the elements of the “camps” index set.  These appear in cells 

B13:B15. 

Idx2_name – Enter “bases” which is the name of the 2nd index set, the column 

wise index set.     

Idx2_elem – Enter the elements of the “bases” index set.  These appear in cells 

C12:F12.   

The Function Arguments dialog should now appear as shown in the screenshots 

below. 
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Click OK to save this function to cell J13.  

In Analytic Solver Cloud or AnalyticSolver.com, you can type the formula 

directly into cell J13. 

=PsiDataSrc("cost_src", "cost", C13:F15, "camps", 

B13:B15, "bases", C12:F12) 

Click cell J14 and open the Function Arguments dialog to enter the next 

PsiDataSrc() function.   

In J14, we will expose the variables that indicate the number of troops moved by 

camp and base in cells C19:F21.  Open the PsiDataSrc function (as explained 

above).   

Src_name = Enter “vars_src” for this argument.   

Val_col_names – Enter “troopsmoved” for this argument.  This will be the name 

of the Data Well in Power BI that is associated with this data. 

Data – Enter C19:F21 which is the actual cells containing the moving price per 

soldier.  Note:  The data range C19:F21 will automatically convert to 

“Troops_moved” which is the defined name for this Excel range.   

Idx1_name – Enter “camps” which is the name of the 1st dimension or index set, 

the row-wise index set.   

Idx1_elem – Enter the elements of the “camps” index set.  These appear in cells 

B13:B15. 

Note that it is important to re-use the location of the index sets.  If we would 

have entered the elements for "camps" as B19:B21, rather than B13:B15, a new 

index set would be created.    

Idx2_name – Enter “bases” which is the name of the 2nd dimension or index set, 

the column-wise index set.     

Idx2_elem – Enter the elements of the “bases” index set.  These appear in cells 

C12:F12.   

The Function Arguments dialog should now appear as shown in the screenshots 

below. 
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Click OK to save this function to cell J14.   

In Analytic Solver Cloud or AnalyticSolver.com, you can type the formula 

directly into cell J14. 

=PsiDataSrc("vars_src", "troopsmoved", Troops_moved, 

"camps", B13:B15, "bases", C12:F12) 

Click cell J15.  Let’s enter this function  by typing the formulas directly into the 

Excel cell.  This next PsiDataSrc function exposes the number of troops 

available for movement. 

In cell J15, enter:  “=PsiDataSrc(“ 

First the first argument, Src_name, enter “available_src”.   

For the second argument, Val_col_names, enter: “availabletroops”.  The Data 

Well associated with this data will be given this name.   

For the Data argument, the third argument, enter:  “Troops_available”.  This is 

the defined name for cells H19:H21.  Alternatively, we could have typed this 

Excel range. 

Type “camps” for the 4th argument, Idx1_name, which is the name given to the 

row-wise index set.  

Enter the range for this index set, B13:B15, for Idx1_elem. 

Your PsiDataSrc() function should match the one in the screenshot shown 

below. 

=PsiDataSrc("available_src", "availabletroops", 

Troops_available, "camps", B13:B15) 

Click Enter to enter the PsiDataSrc() function into cell J15.   

Finally, the last PsiDataSrc() function in cell J16 should be entered as: 

=PsiDataSrc("required_src","requiredtroops",Troops_re

quired,"bases", C12:F12) 

Where: 

Data_src = “required_src”  

Val_col_names = “requiredtroops”  This is the name that will appear for the data 

repository associated with this data in Tableau 

Data = Troops_required  This is the data associated with Val_col_names. 

Idx1_name = “bases”  This is the name of the index set that is associated with 

the data passed to the Data argument. 
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Idx1_elem – C12:F12  This is the Excel range where the elements for 

Idx1_name are located on the worksheet.   

Now we are ready to create the Tableau Extension.   

In order to see our constraint final values in the Tableau Extension, we will need 

to use the Psi function PsiFinalValue.  (For more information on this function, 

see the Psi Function chapter in the Analytic Solver Reference Guide.) In cell 

J22, enter "=PsiFinalValue(Troops_per_camp)" to see the final value of the 

constraints in cells G19:G21 in the Tableau Extension.  In cell L22, enter 

=PsiFinalValue(Troops_per_base)" to see the final value of the constraints in 

cells C22:F22 in the Tableau Extension. 

First, click Create App on the ribbon, then select Cloud Service – RASON 

Model to post the model to RASON Cloud Services.  Then click Create App 

again and select Tableau – Managed Model.   

Since this is the first time we are creating an Extension from this model, there is 

no need to solve the model first.  If, however, we make a change to the Troop 

Rotation model, then we would need to either diagnose or solve the model first 

to ensure that the changes are captured in the new extension.   

Save the Solver.trex file (the Tableau Extension file) in a location of your 

choice. 

Next, we will create the data file.  Open a new Excel workbook.  To open the 

completed data file browse to C:\Program Files\Frontline Systems\Analytic 

Solver Platform\Examples\TroopsRotationData.xlsx.   

For convenience sake, in this example, we will pass all data in one Excel table. 

In a new Excel sheet, create a table (Insert – Table) with 13 rows and 5 columns, 

as shown in the screenshot below.  Notice that in order to enter all 12 costs, 

labels for camps, bases, requiredtroops and availabletroops were repeated.  In 

addition, each column heading matches the index sets used in the PsiDataSrc() 

functions.  Rename the worksheet “AllData” then save the workbook as 

TroopsRotationData.xlsx.    (Note that you can find this completed data file by 

clicking Help  -- Example Models – Optimization Examples and scroll down to 

click the Troop Rotation Data for Power BI – Tableau link.) 

 

Rename the worksheet “AllData” then save the workbook as 

TroopsRotationData.xlsx.   

Now let’s click back to the Data Source tab in Tableau, to import the new 

Extension and the data.  First, just to keep our choices limited to the Troop 

Rotation example, hover over ProductMixData, click the down arrow that 

appears on the right and select remove.  Right click the Extension tab and select 

Delete, then Delete all worksheets associated with the Product Mix extension.  

Then, on the Data Source tab, click Add – Microsoft Excel, browse to the 

location of TroopsRotationData.xlsx and click Open.   
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The AllData sheet appears under Sheets and the data from that sheet appears at 

the bottom of the Tableau window.  Click Sheet 1. Under Dimensions, drag 

“Bases” to Columns and “Camps” to Rows.  Under Measures, drag “Cost” to the 

table elements.  Hover over  (in the Marks section), click the 

down arrow that appears to the right, and select Dimensions from the menu.   

 

Rename the worksheet to Cost and then add a new Sheet.   

On Sheet 2, drag “Bases”, under Dimensions, to Columns and “Requiredtroops”, 

under Measures, as the table elements.  Hover over ,  
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click the down arrow that appears to the right, then select Dimensions from the 

menu.   

 

Rename the worksheet to Required Troops and then add a new Sheet. 

On Sheet 3, drag “Camps”, under Dimensions, to Rows and “Availabletroops”, 

under Measures, to the table elements.  Hover over , click the 

down arrow that appears to the right, then select Dimensions from the menu.   

 

Rename the sheet to Available Troops and then open a new Dashboard.   

Drag each of the three sheets (Cost, Required Troops and Available Troops) and 

the Extension to the Tableau canvas as described in the Product Mix example.  

Match the dimensions from the Excel sheet to the dimensions and measures in 

the Tableau sheets as follows.   
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The resultant Tableau Extension is shown in the screenshot below.  Now each 

time new data is imported into Tableau, the Troop Rotation example data will be 

solved from within Tableau without the need to ever return to the original Excel 

workbook.  However, please note that as long as your PsiDataSrc functions 

remain the same, the named model can be updated on the Rason Cloud Service 

and you will not need to create a new extension.  However, if the PsiDataSrc() 

functions change, you will need to update the named model residing on the 

Rason Cloud service and the Tableau Extension.   
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Using Optimization Parameters in Tableau 

Now what happens when we would like to see how our final variable values and 

objective function value change as the number of troops required changes.  For 

this type of “What If’ analysis, we can use the PsiOptParam() optimization 

parameter.  Recall from the chapter, Examples:  Parameters and Sensitivity 

Analysis, an optimization parameter (PsiOptParam) is automatically varied 

when you perform multiple optimizations.  You do this by clicking the Optimize 

button on the Ribbon, or the green arrow in the Task Pane, with the Number of 

Optimizations set to a value greater than 1.   

Let’s go back to our example Troop Rotation Excel model and enter an 

optimization parameter for the number of troops required in Base 1.  In cell C13, 

enter “=PsiOptParam({34,24,14})”, then click the Platform tab in the Solver 

Task pane and change the Number of Optimizations to “3”.   When I click 

Solve, Analytic Solver will solve 3 optimizations.  In the first optimization, cell 

C13 will be set to 34, in the second, 24, and in the third, 14.   

Click the Output tab, then click the green arrow to solve the model.  After the 

solving process is over, we can select the three different optimizations in the 

Optimization drop down menu (in the Tools section of the Analytic Solver 

ribbon), to see how the objective function changes according to the value set for 

this parameter.   

 

In the first optimization, cell C13 = 34 and the resultant objective function value 

was $32,950.  In the second optimization, cell C13 = 24 and the resultant 

objective function value was $31,150 and in the third optimization cell C13  = 

14 with an objective function value of 29,150.   

Save the Excel file, then click Create App – Tableau – Managed/Embedded 

Model to create a new Tableau Extension.   

Click back to Tableau and import the newly created Tableau Extension.  

Immediately, the model solves and the results will be displayed on the Tableau 

canvas.  To view each solution, click the down arrow within the newly added 

Multiple Optimization drop-down menu.   
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Simulation Example Model 

Now let’s create a Tableau extension using a simulation example.  The process 

is exactly the same as when using an optimization model. Open the Business 

Forecast Example by clicking Help – Example Models – Monte Carlo 

Simulation Examples, click the Business Forecast hyperlink to open the file.  To 

open a completed example, open the BusinessForecastPBI example that appears 

at the bottom of Simulation Models. 

 

First, we will use a PsiDataSrc() function to generate data repositories for use in 

the Tableau Extension.   

Click a blank cell, such as cell G24, then type: “=PsiDataSrc(“market_src”, 

“market”, J17:L18, “parameters”, I17:I18, “mktdemand”, J16:L16) 

where: 

market_src – Is the name used to identify the text file that will be submitted to 

the RASON server.  

market – Will be the name of the data repository in Tableau.    

J17:L18 – Is the data range for “market”.   

parameters – Is the name of the 1st index set for the data specified in the “data” 

argument, market.    

I17:I18 – Is the Excel range where the data for “parameters” is located.   

mktdemand – The name of the 2nd index set for the data specified in the “data” 

argument. 
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J16:L16 – Is the Excel range where the data for “mktdemand” is located.   

Type “)” to close the formula and then press the Enter key to enter the formula 

into the Excel cell.   

Click a 2nd blank cell, such as G25, then enter the following function. 

=PsiDataSrc(“price_src”, “mktprice”, J21:L21, “price”, J20:L20) 

where: 

price_src – Is the name used to identify the text file that will be submitted to the 

RASON server.        

mktprice – Is the name of the data repository in Tableau.    

J21:L21 – Is the data range for “mktprice”.   

price – Is the name of the 2nd index set for the data specified in the Data 

argument, market.    

J20:L20 – Is the Excel range where the data for “price” is located. 

Two Psi Functions, PsiPercentiles and PsiData, must be added to the spreadsheet 

in order to draw the histogram in the Tableau Extension.   

G27 = PsiPercentile(F20, 0.95) 

G28 = PsiData(F20) 

The PsiPercentile function returns the 95th percentile for the uncertain function 

in cell F20.  The PsiData function returns all trial values for cell F20.   

For more information on these formulas, see the Analytic Solver Reference 

Guide.   

Click Create App – Cloud Service – RASON Model to post the model to 

RASON Cloud Services.   

 

Confirm the model name as BusinessForecast(Sim).    
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Then click Create App – Tableau – Managed Model to create a new Tableau 

Extension, Solver.trex.   

 

Then save the Tableau Extension to a desired location.   

Click back to Excel and open a new workbook to enter the following data into 

an Excel table.  Rename the worksheet as “Data” and save the workbook as 

BusinessForecastData.xlsx.   (You can open this completed file by clicking Help 

– Example Models – Monte Carlo Simulation Examples, scroll down and open 

the link.) 

   

Open Tableau, connect to Microsoft Excel, browse to the location of the 

BusinessForecastData.xlsx file, then click Open.   

  



Frontline Solvers 2021 User Guide Page 345 

Click on the Sheet 1 tab, under Dimensions, drag “Mktdemand” to Columns and 

“Parameters” to Rows.  Then, under Measures, drag “Market” to the table 

elements.  Hover over                   , click the down arrow that appears to the right 

and select Dimension.  

  

 

Rename Sheet 1 to Market and add a new worksheet.  On Sheet 2, under 

Dimensions, drag “Price” to Columns.  Under Measures, drag “Mktprice” to the 

table elements.  Hover over , click the down arrow that appears to the 

right and select Dimension.   

 

Rename Sheet 2 to Price and create a new dashboard.   
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Drag both the Parameters and Price Sheets to the Tableau canvas.  Drag the 

Extension icon to the canvas, browse to where the Solver.trex file was saved and 

click Open.   

On the “Select data source for: parameters” dialog, select “Parameters” for both 

Sheet and Column to match the “parameters” dimension in the Excel sheet to the 

“Parameters” dimension in the Tableau Parameters sheet.   

.  Then click OK.   

 

On the “Select data source for: mktdemand”, select “Parameters” for Sheet and 

“Mktdemand” for Column to match the “mktdemand” dimension in the Excel 

sheet to the “Mktdemand” dimension in the Tableau Parameters sheet.   

.  Then click OK.   

 

On the “Select data source for: market”, select “Parameters” for Sheet and 

“Market” for Column to match the “market” dimension in the Excel sheet to the 

“Market” measure in the Tableau Parameters sheet.   

 

  

On the “Select data source for: price”, select “Price” for both Sheet and Column, 

then click OK to match the “price” dimension in the Excel sheet to the “Price” 

dimension in the Tableau Price sheet.  .    

  

On the “Select data source for: mktprice”, select “Price” for Sheet and 

“Mktprice” for Column, then click OK to match the “mktprice” dimension in the 

Excel sheet to the “Mktprice” measure in the Tableau Price sheet.   
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Immediately, once the data repositories are filled with the appropriate data 

fields, a simulation will be run.   

 

Again, note that as long as your PsiDataSrc functions remain the same, the 

named model can be updated on the Rason Cloud Service and you will not need 

to create a new extension.  However, if the PsiDataSrc() functions change, you 

will need to update both the Rason named model residing on the Rason Cloud 

Server and the Tableau Extension.   

If your data changes, say your demand explodes, you can simply edit your data 

file. 

 

Click back to Tableau and refresh the data source.  

 

The Tableau Extension will automatically redraw using the new data.   
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Error Messages 

If you’ve made an error in your PsiDataSrc() function or in your data file, your 

Tableau extension will display an error such as “Inconsistent Data source 

definition PSI could not parse Excel formulas" or “Invalid binding source 

definition PSI could not parse Excel formulas”.   

If your Tableau extension is displaying either of these errors or a different error, 

first, check the PsiDataSrc() function in your Excel model to make sure that you 

have not mixed up the order of your index sets.  In addition, check your data to 

make sure that it is 1.  Contained within an Excel table, 2.  That the column 

headings match the index sets defined in PsiDataSrc() and 3. That your model 

parameters match the elements in your data table.   

For more information on an error message displayed in your Tableau Extension, 

see the Frontline Solvers Reference Guide or contact Frontline Systems Support 

Team by emailing support@solver.com or by calling 888-831-0333.   

   

 

 

 

 

mailto:support@solver.com
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Examples:  Parameters and 
Sensitivity Analysis 

Introduction 
This chapter introduces the use of parameters, and functions for sensitivity 

analysis in Analytic Solver, with examples.  In Version 11, the role of 

parameters – for optimization, simulation, and sensitivity analysis – was 

enhanced, and the sensitivity analysis functions were introduced.  The use of 

parameters and sensitivity analysis has also been extended to Analytic Solver 

Cloud.   

Sensitivity analysis is designed to help you explore a conventional Excel 

spreadsheet model, often before you define an optimization or simulation model.  

The goal of sensitivity analysis is to identify the key input parameters that have 

the greatest impact on results of interest in your model (such as Net Profit), and 

to see the effect of varying these key input parameters over a range, in reports 

and graphs.  Analytic Solver helps you automatically identify sensitivity 

parameters, and automatically vary them to produce reports and graphs. 

Parameters and Results 
All Analytic Solver products support three kinds of parameters: 

• A sensitivity parameter (PsiSenParam) is automatically varied when 

you perform a sensitivity analysis.  You do this by selecting Sensitivity 

from the Reports or Charts galleries on the Ribbon. 

• An optimization parameter (PsiOptParam) is automatically varied 

when you perform multiple optimizations.  You do this by clicking the 

Optimize button on the Ribbon, or the green arrow in the Task Pane, 

with the Number of Optimizations set to a value greater than 1.  (Not 

available in Analytic Solver Simulation.)   

• A simulation parameter (PsiSimParam) is automatically varied when 

you perform multiple simulations.  You do this by clicking the 

Simulate button on the Ribbon, or the green arrow in the Task Pane, 

with the Number of Simulations set to a value greater than 1.  (Not 

available in Analytic Solver Optimization.) 

Note:  When entering PsiOptParam, PsiSenParam PsiSimParam manually (i.e. 

simply typing the function into an Excel cell) in Analytic Solver Cloud, the 

taskpane must be refreshed before performing a parameter analysis report.   

Viewing Parameters in the Task Pane 

All three types of parameters appear in the Task Pane Model outline.  In the 

example on the next page, two sensitivity parameters at G11 and H17 have been 

defined by the user.  Parameter G11 is selected, and its properties are shown in 

the lower part of the Task Pane.  It is possible to change the type of a 
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parameter, by simply selecting from the dropdown list in the lower part of the 

Task Pane as shown:  For example, to use G11 in a simulation model, 

automatically varied across multiple simulations, you would select Simulation 

from the dropdown list. 

 

Defining a Parameter 

You can manually define an input cell as a parameter by simply selecting the 

cell, choosing Parameters and Sensitivity, Optimization or Simulation from 

the Ribbon, and entering a lower and upper limit on values for the parameter, or 

a list of explicit values for the parameter.  In the example on the next page, we 

are defining a sensitivity parameter. 
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You can also simply type a formula such as =PsiSenParam(1,9) in a cell, which 

has the same effect as the above steps.  In both cases, the parameter appears in 

the Task Pane Model outline. 

If you specify a lower and upper limit, the step size for successive values is 

determined when you perform a parameterized sensitivity analysis, or multiple 

parameterized optimizations or simulations.  Analytic Solver will subdivide the 

range from the lower to the upper limit into equal-size intervals. 

For example, for the above sensitivity parameter, you would select Reports or 

Charts – Sensitivity – Parameter Analysis and specify the number of points 

on the major axis.  If you specified 18 points, the step size would be 0.5. 

Automatic Parameter Identification 

Analytic Solver can automatically find the input cells with the greatest impact 

on any selected formula cell.  You can then choose one or more of these input 

cells to serve as sensitivity (or optimization or simulation) parameters. 
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To do this, select any formula cell in an Excel model, and choose Parameters 

– Identify from the Ribbon. 

Analytic Solver traces through all ‘precedent’ formulas to find input cells 

(leaves of the formula tree) on which the selected formula cell depends.  It then 

varies each input cell independently, computing its impact on the selected 

formula cell.  The input cells are ranked in descending order by (absolute) 

impact, and the highest-impact cells are displayed in the Tornado chart. 

In the example below, we’ve clicked Help – Examples on the ribbon to open 

the StandardExamples.xlsx.  

 

Click the Example 8 tab and set cells B17:G17 to 1. (If these cells are all 0, then 

no projects are selected and the Total NPV is always 0).  To see which cells 

have the greatest impact on Total NPV, we simply select cell (I28) and choose 

Parameters – Identify from the Ribbon.  After a moment, a Tornado chart like 

the one below appears. 
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The chart shows us, at a glance, that Total NPV is most sensitive to cell E13 – 

which is a large positive cash flow in Year 6 for Opportunity 4.  It is next most 

sensitive (in the opposite direction, decreasing when the parameter increases) to 

the interest rate in cell F4. 

The right panel of the chart shows the lower value and upper value that were 

used for each input cell when computing the formula value.  An ordinary cell 

containing a number is set to its current value – n% and its current value + n%, 

where n% (initially 10%) is specified in the edit box in the lower right corner of 

the chart.  If any input cell is already defined as a parameter, the lower and 

upper limit arguments of its PsiXxxParam() call are used instead. 

By choosing the radio button corresponding to “Show Current Parameters”, 

“Show Candidate Cells”, or “Show both” at the top of the right panel, you can 

show either one or both types of input cells in the Tornado chart.  By checking 

the box on the same row as the cell, you can define a candidate cell as a 

sensitivity parameter (or, if you change the selection in the dropdown list in 

the lower right corner of the chart, an optimization or simulation parameter).  

These definitions take effect when you click the Save icon at the upper left 

corner of the chart.  For this example, we’ll check the boxes on the same rows as 

cells E13 and F4; we’ll also set F4’s Lower value to 0.01 (1%) and the Upper 

Value to 0.10 (10%).   

Now, when you click Charts – Sensitivity Analysis – Parameter Analysis, you'll 

see both parameters appear under Parameters in the Sensitivity Report dialog.  

Continue reading to discover how to create a parameter report using Analytic 

Solver.    
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The simplest way to remove a parameter is to select the parameter cell on the 

worksheet and press the DEL key – which erases its cell formula – or type a 

number value that will overwrite the formula in the cell.  The parameter will 

then disappear from the Task Pane. 

Defining Results 

When you perform a sensitivity analysis (which will automatically vary 

sensitivity parameters), or multiple optimizations or simulations (which will 

vary optimization or simulation parameters), Analytic Solver will keep track of 

one or more result cell values, corresponding to each parameter value. 

• For optimizations, Analytic Solver tracks the final objective and 

decision variable values found by the Solver; you can also track a 

constraint value by setting its Monitor property in the Task Pane. 

• For simulations, Analytic Solver tracks the values of all uncertain 

functions (simulation outputs, referenced in PsiOutput() or PSI 

Statistics function calls). 

• For sensitivity analysis, Analytic Solver tracks results from the cell 

currently selected at the time you perform the analysis, and any other 

results you define. 

To define a sensitivity result cell in Analytic Solver Desktop, select the cell 

(such as A3 below – always a formula cell) on the worksheet, and choose 

Parameters – Monitor Value from the Ribbon.  A small “balloon” will appear, 

containing a function call such as =PsiSenValue(A3).  You can move the mouse 

to “drag and drop” this formula into an empty cell.  When you do this, cell A3 is 
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defined as a sensitivity result cell, and appears in the Task Pane Model outline 

under Sensitivity Results. 

 

To define a sensitivity result cell in Analytic Solver Cloud, select the cell (such 

as A3 below) on the worksheet, and choose Parameters – Monitor Value from 

the Ribbon.  A small dialog will appear, containing the location of the selected 

cell, a second Target field and three radio buttons.  Select the type of parameter 

you would like to add, Sensitivity, Optimization or Simulation, then enter an 

empty cell for the Target field, such as A4.  Click Save to define cell A3 as a 

sensitivity result cell which will appear in the Task Pane Model outline under 

Sensitivity Results. 

 

Sensitivity Analysis Reports and Charts 
The Parameters – Identify step just described performs a simple kind of 

sensitivity analysis; in some situations, this may be all that you need.  But it is 

often useful to document the sensitivity of some computed result to systematic 

variations in the values of one or more parameters.  Analytic Solver can produce 

both reports and charts to document these results. 

How Parameters are Varied 

In reports and charts, Analytic Solver can automatically vary your parameters’ 

values in two ways: 

1. Varying all parameters simultaneously, from their respective lower to 

upper limits, for the number of steps that you specify. 

2. Varying two parameters independently, from their lower to upper 

limits, computing a result for all combinations of the two parameters. 

You select the second choice by checking the box “Vary Parameters 

Independently” at the bottom of the dialog shown on the next page.  If you do 

this, you must select exactly one result cell, and exactly two parameter cells in 
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the dialog below.  A report will appear as a two dimensional table, and a chart 

will appear in 3-D with the two parameters on the axes. 

If you don’t check this box – meaning that all parameters will be varied 

simultaneously – you can select one or more parameter cells, and one or more 

result cells in the dialog below.  A report will contain a column for each 

parameter and each result, and a chart will contain a plot of each result cell. 

Creating Sensitivity Reports 

To create a sensitivity analysis report, select a formula cell on the worksheet 

(whose value should be computed in the report say, cell I28 (Total_NPV)), and 

choose Reports – Sensitivity – Parameter Analysis from the Ribbon.  A dialog 

like the one shown below will appear. 

 

Use the arrow buttons in the top section to select one or more result cells 

(exactly one if you check the box “Vary Parameters Independently”).  Use the 

arrow buttons in the bottom section to select one or more sensitivity parameter 

cells (exactly two if you check the box “Vary Parameters Independently”).  

Then click OK to produce the report, as a new worksheet in into your Excel 

workbook, just to the left of the active worksheet.  An example is shown below. 
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Creating Sensitivity Charts 

To create a sensitivity analysis chart, select a formula cell on the worksheet 

(whose value should be computed in the chart), and choose Charts – Sensitivity 

– Parameter Analysis from the Ribbon.  A dialog like the one on the previous 

page will appear.   Follow the same steps as for sensitivity analysis reports, and 

click OK.  A chart like the one below will appear: 

 

You can use icons on the toolbar at the top of the chart to resize and rotate the 

chart, print the chart, or copy it to the Windows Clipboard (where you can paste 

it into other applications). 
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Optimization and Simulation Reports and Charts 
Reports and charts for multiple parameterized optimizations and simulations 

work in much the same way as the reports and charts for sensitivity analysis 

shown in the previous section.  But where for sensitivity analysis, Analytic 

Solver simply performs a worksheet recalculation, for these reports and charts, 

Analytic Solver performs a complete optimization or simulation for each set 

of parameter values. 

To produce these reports and charts, select Reports or Charts – Multiple 

Optimizations from the Ribbon.  For multiple parameterized simulations, select 

Reports or Charts – Multiple Simulations from the Ribbon. 

When Optimizations and Simulations are Run 

As shown in the earlier Examples chapters, optimizations are run when you 

click the Optimize button on the Ribbon, or the green arrow in the Task Pane, 

and simulations are run when you click the Simulate button on the Ribbon, or 

(assuming there’s no optimization model) when you click the green arrow in the 

Task Pane.  When you select Reports and Charts of Multiple Optimizations or 

Multiple Simulations other than Parameter Analysis, the results cached in 

memory from the last optimization or simulation run are used to create the 

reports or charts. 

However, when you select Reports and Charts of Multiple Optimizations or 

Multiple Simulations with Parameter Analysis, which gives you greater control 

over how parameters are varied, Analytic Solver cannot use the results cached in 

memory.  Instead, a new set of optimizations or simulations is run, varying the 

values of the parameters as you’ve specified; you can for example vary two 

parameters independently, yielding all combinations of these parameter values.  

The number of optimizations or simulations to run is independent of the settings 

you use for Number of Optimizations or Number of Simulations in the Task 

Pane Platform tab; it is the product of the number of Major Axis Points and 

Minor Axis Points you select in the Reports or Charts selection dialog.  With 

the default value of 10 points each, 100 optimizations or simulations are 

required.  This can take some time, especially for optimizations; a progress 

dialog is displayed during this process. 
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Examples:  Decision Trees and 
Discriminant Analysis 

Introduction 
This chapter introduces decision trees in Analytic Solver.  Such trees are a 

useful graphical and computational aid for problems that involve sequential 

decisions and events, where there are a small number of decision alternatives at 

each step, and a small number of alternative outcomes for each event. 

In the example below, we’ve clicked Help – Examples on the ribbon, clicked 

Decision Tree Examples on the Overview Tab, and clicked on 

TreeExample.xls, which is based on an example by Prof. Mike Middleton. 

 

In this example, a firm must decide (1) whether to prepare a proposal for a 

contract, and (2) if the contract is awarded, what method to use to satisfy the 

contract.  The first number shown below each branch (horizontal line) is the 

amount the firm pays out (if negative) or receives (if positive) when it follows 

that branch.  For example, in the path that ends at the terminal node at cell S18, 

the firm (1) pays $50,000 to prepare the proposal, (2) receives $250,000 up front 

when awarded the contract, (3) spends $50,000 to try the electronic method, and 

since that method fails, (4) spends $120,000 on the mechanical method.  The net 

result is a positive cash flow of $30,000 shown at cell T18. 

A decision tree is “solved” by Excel fomulas calculating each of the numbers 

you see on the worksheet. Terminal values such as T18 sum all the partial cash 

flows along the path leading to that terminal node. The tree is then rolled back 

by computing expected values (or certainty equivalents) at event nodes, and by 

maximizing (or minimizing) the alternative values at decision nodes.  The 

rollback values appear below and just to the left of each node, showing the value 

of the subtree rooted at that node. The numbers “inside the boxes” at decision 

nodes show which alternative is optimal for that decision. In the example, the 

1 in the decision node at C31 indicates that it is optimal to prepare the proposal, 

and the 2 in the decision node at K16 indicates the firm should try the electronic 
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method because that alternative leads to a higher expected value ($90,000) than 

the mechanical method ($80,000). 

Since all the computations are performed with Excel worksheet formulas, a 

decision tree is a ‘regular’ Excel worksheet model, where you can ask what-if, 

perform sensitivity analysis, or create simulation or optimization models if 

desired.  For example, the formula at cell F25, for the event where we are or are 

not awarded the contract, is =IF(ABS(1-
SUM($I$14,$I$31))<=0.00001,SUM($I$14*$J$17,$I$31*$J$34),NA()) – an 

expected value calculation – and the formula at B32, for the decision whether to 

prepare a proposal, is simply =MAX(F25,F39), since we are maximizing EV. 

The Task Pane Platform tab includes a Decision Tree group of options, where 

you can choose to maximize or minimize values at decision nodes, and to 

compute expected values (which are risk neutral) or certainty equivalents (which 

reflect risk aversion) at each node.  If you choose certainty equivalents, you can 

specify the parameters of an exponential utility function. 

Creating Decision Trees 
A decision tree consists of nodes and branches.  Nodes may be either decision 

nodes, event nodes, or terminal nodes; branches represent alternative choices 

at decision nodes, and alternative outcomes at event nodes. 

You create and edit a decision tree with the Decision Tree choice on the Ribbon.   

Creating Trees in Analytic Solver Desktop 

In Analytic Solver Desktop, click the Decision Tree icon on the Ribbon to open 

the menu choices.   

 

You can also create and edit a decision tree in Analytic Solver Desktop in the 

Task Pane Model tab, using the Add (+) and Remove (X) icons and the 

properties area at the bottom of the Task Pane; but you can highlight the best or 

worst decision strategy (see below) only from the Ribbon. 

Create Trees in Analytic Solver Cloud 

In Analytic Solver Cloud, click the Decision Tree icon on the Ribbon to open 

the Decision Tree dialog.  You can create and edit decision trees in the Cloud 

app using menu items at the top of the dialog (Add Node, Change Node, and 

Delete Node) and also in the fields on the right under Decision Tree.  To 
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highlight the best and worst decision strategies, click Highlight Best or 

Highlight Works, respectively.   

 

Creating and Editing Nodes 

In Analytic Solver Desktop 

Selecting Node in the dropdown presents choices for working with nodes: 

 

The Add Node and Change Node options display the dialog shown on the next 

page.  To change a node, you must first select it on the Excel worksheet – you 

may select either the node graphic or one of the immediately adjacent cells. 

The Copy Node and Paste Node choices can be used to copy a subtree (rooted 

at the selected node) and paste the copy at another position in the decision tree; 

this is very useful when there are identical choices at later stages in the tree. 

In Analytic Solver Cloud 

In Analytic Solver Cloud, click Add Node to open the Add Node dialog.   
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To change a node, you must first select the desired node on the Decision Tree 

dialog.  In the example below, the Prepare proposal node has been selected in 

the dialog before clicking Change Node on the top left.   

 

Creating and Editing Branches 

In Analytic Solver Desktop 

Selecting Branch in the dropdown presents choices for working with branches: 
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The Add Branch and Change Branch options display the Decision Tree dialog 

shown below.  To change a branch, you must first select it on the Excel 

worksheet – you may select either the branch graphic or one of the immediately 

adjacent cells.  Note that Add/Change Node and Add/Change Branch options 

display the same Decision Tree dialog:  Branches are associated with the node to 

their left, and you can edit properties of the node and its branches in this dialog. 

 

In this dialog, you can change the type of the node, the name of the node, and 

you can add, edit, reorder, or remove branches for this node.  Each branch for a 

decision node has a value (the cost or payoff of taking that decision); each 

branch for an event node has a value and a probability (the cost or payoff, and 

the probability of occurrence, of that outcome). 

In Analytic Solver Cloud 

In Analytic Solver Cloud, clicking Add Node\Change Node also allows you to 

add\change a branch using the Add Branch and Change Branch options.  To 

change a branch, you must first select it on the Excel worksheet.  Branches are 

associated with the node to their left, and you can edit properties of the node and 

its branches here. 

In this dialog, as in Analytic Solver Desktop, you can change the type of the 

node, the name of the node, and you can add, edit, reorder, or remove branches 

for this node.  Each branch for a decision node has a value (the cost or payoff of 

taking that decision); each branch for an event node has a value and a 
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probability (the cost or payoff, and the probability of occurrence, of that 

outcome). 

 

Highlighting a Decision Strategy 
A decision strategy is a complete sequence of decisions that you can make 

through the decision tree.  You can highlight the best or worst decision strategy 

by selecting Highlight in the Decision Tree dropdown list in Analytic Solver 

Desktop or by clicking Highlight Best in the Decision Tree dialog in Analytic 

Solver Cloud, as shown on the next page.  If you are maximizing, the best 

strategy maximizes EV or CE, and the worst strategy minimizes EV or CE. If 

you are minimizing, the opposite applies. 

                                                                 Analytic Solver Desktop  
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                                                                Analytic Solver Cloud  

 

The next page shows the example decision tree shown earlier, with Excel 

worksheet gridlines turned off, and the best decision strategy highlighted. 

Analytic Solver Desktop  

 

Decision Trees in the Task Pane 

Model Tab in Analytic Solver Desktop 

In Analytic Solver Desktop, decision trees may also be viewed and edited 

directly in the Task Pane Model tab, and choices for tree evaluation (see 

“Platform tab” below) can only be made in the Task Pane.  When a node or 

branch is selected in the Task Pane outline, properties of that node or branch 

may be viewed and edited in the lower portion of the Task Pane, as shown on 

the next page.  You can also double-click a node in the Model outline to display 
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the same Decision Tree dialog that appears when you add or change a node from 

the Ribbon. 

 

In this example, we’ve selected the decision node named Method, represented 

by the graphic symbol at cell K16 on the worksheet.  The optimal choice at this 

node (given that we’re maximizing expected value or EV) is branch #2, and the 

rollback value of the subtree rooted at this node is 90,000. 

Note the small Copy icon in the upper right corner of the Decision Tree Node 

properties pane:  You can click this icon to copy a subtree rooted at this node.  

When you’ve selected a Terminal node in the Model outline, you’ll notice a 

small Paste icon in this same area:  You can click this icon to paste a subtree at 

the position of the Terminal node. 

Model Tab in Analytic Solver Cloud 

In Analytic Solver Cloud, decision trees may only be viewed and edited directly 

in the Decision Trees dialog, but choices for tree evaluation can be made either 

in the Decision Tree dialog or in the Task Pane on the Platform tab (see 

“Platform tab” below).   
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Platform Tab 

By default, rollback values for a decision tree are computed assuming that you 

want to Maximize Expected Value or EV.  You can change this by setting 

options in the Decision Tree section of the Task Pane Platform tab, as shown on 

the next page. 

You can select Maximize or Minimize in the dropdown list for the Decision 

Node EV/CE option.  For the Certainty Equivalents option, you can choose 

either Expected Value or Exponential Utility Function.  The remaining three 

options come into play only when you choose Exponential Utility Function – 

they set parameters of this function. 

 

For the Maximize option with exponential utility, the rollback formulas are U = 

A–B*EXP(X/RT) and CE = -LN((A-EU)/B)*RT, where X and EU are cell 

references. For the Minimize option with exponential utility, the formulas are U 

= A-B*EXP(X/RT) and CE = LN((A-EU)/B)*RT.  RT is the value you specify 

for the Risk Tolerance option on the Platform tab, and A and B are the values 

of the Scalar A and Scalar B options on the Platform tab. 

When you use an Exponential Utility Function, the utility (U =) and certainty 

equivalent (CE =) formulas are computed in extra cells on the worksheet, as 

shown on the next page.  For example, B33 computes the utility of the decision 
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at B32; B32 contains =MAX(F25,F39) as before, to choose the decision with the 

maximum certainty equivalent value; F25 contains =-LN((A-$F$26)/B)*RT. 

 

Multiple Discriminant Analysis 
Discriminant analysis is a statistical technique for analyzing a data set, 

consisting of cases or observations of one or more variables, and classifying the 

cases into different groups. MDA is sometimes called discriminant factor 

analysis or canonical discriminant analysis. It has many applications in financial 

services and consumer marketing, among other fields. 

Analytic Solver Data Mining and the Data Mining Cloud app include a powerful 

version of multiple discriminant analysis on the Data Mining tab on the Ribbon, 

through the menu option Classify – Discriminant Analysis, and described in 

depth in the Analytic Solver Data Mining User Guide.  

But since a discriminant analysis facility historically was included with Risk 

Solver Platform (a predecessor to Analytic Solver), before Frontline acquired 

and integrated the XLMiner software (known today as Analytic Solver Data 

Mining), this facility is still available on the Analytic Solver Desktop tab, 

through the menu option Reports – Discriminant Analysis – Discriminant 

Analysis, and is documented here.  Note:  Discriminant Analysis is not 

supported in Analytic Solver Cloud or AnalyticSolver.com.   

Discriminant Analysis Example 
In the example described below, a winery maintains a dataset which includes 13 

variables describing various properties of three different types of wines 

produced at their vineyard.  The three different types of wines produced are 

classified as Type1, Type 2 and Type 3.  The characteristics of each wine type 

include Alcohol content, Malic Acid content, Ash content, Ash Alkalinity 

content, Magnesium content, Total Phenols, Flavonoid content, etc.  There are 

59 observations for Type 1, 71 observations for Type 2, and 48 observations for 
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Type 3. The vineyard wants to develop a classification rule to help them screen 

new wine varieties into the three different wine types. 

In the picture on the next page, we’ve selected Reports – Discriminant 

Analysis – Discriminant Analysis to display the Discriminant Analysis dialog. 

For the Grouping Variable Range, we’ve selected cells B13:B190 which contain 

the categorical variables (1, 2 or 3) representing the three different types of wine 

and cells C13:O190 containing the remaining corresponding variable values for 

the Predictor Variable Range.  For the Classification Sample, we’ve selected 

cells C204:O209 on the same worksheet, containing the values for the 13 

different characteristic variables for six new varieties of wine.  We are using the 

default choices for the Classification Method (Mahalanobis Distance), Prior 

Probabilities (Empirical), and Covariance Matrices (Unpooled Estimates).   

 

 

Clicking OK in this dialog causes a new Discriminant Analysis report to be 

inserted into the workbook, as shown on the next page. The report shows how 

MDA determines ‘centroids’ for each of the three groups in the space of the 

predictor variables, and computes ‘Mahalanobis distances’ for each example of 

test scores from the group centroids. 

At the top of the report, under Group Centroids, the centroids for the three 

groups have been calculated for each variable. X1 corresponds to the Alcohol 

variable, X2 corresponds to the Malic_Acid variable, X3 corresponds to the Ash 

variable, and so on. 

Just down from Group Centroids is the Group Frequency table.  This table lists 

the relative frequency of each wine by type (1, 2, or 3).  The relative frequency 

is found by dividing the number of observations of each wine type by the total 

number of wines.  For example, the Relative Frequency of Group 1 is 33.15% or 
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the number of observations of type (50) divided by the total number of 

observations (178).     

The values listed in the Training Sample Classification Table for Group 1, 

Group 2, and Group 3 are the distance calculations from the individual 

observations to the group centroid or "center".  The minimum value of the three 

groups determines the group assignment. 

The ‘Test Sample Classification’ at the bottom of the report shows the 

predictions obtained by MDA for how the six new wine varieties will be typed.  

All have been assigned to Type 2.   

Just above the ‘Test Sample Classification’ is a table, often called a ‘confusion 

matrix,’ that evaluates how well the classification rule would have handled the 

178 historical cases.  (The types of these 178 cases are all “known”.) 

The matrix shows that all 59 of the Group 1 observations would have been 

assigned to Group 1 correctly.  All 71 of the Group 2 observations would have 

been assigned to Group 2 and all 48 of the Group three assignments would have 

been assigned to Group 3.  The Totals in row 211 show that 178 out of 178, or 

100% of the cases w correctly classified. 
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Getting Results:  Optimization 

Introduction 
This chapter explains how to obtain and interpret results from optimization in 

Analytic Solver Comprehensive and its subset optimization products: Analytic 

Solver Optimization, Analytic Solver Upgrade and Analytic Solver Basic when 

using either Analytic Solver Desktop or Cloud.  We’ll also discuss what can go 

wrong, and what to do about it, and also how to get more than a single optimal 

solution from your model. 

Analytic Solver Optimization has many powerful optimization algorithms, and 

will fully exploit the power of your PC.  But the model that you create may be 

relatively easy to optimize (if you use linear functions like SUM) or extremely 

difficult to optimize (if you use non-convex and non-smooth functions like 

LOOKUP).  The results you get depend on the model you create. 

In the following sections, we’ll focus on immediate actions you can take when 

you get an unexpected result – but if you read the chapter “Mastering 

Conventional Optimization Concepts,” you’ll learn more about optimization 

models and solution methods, and better understand why the unexpected result 

appeared, and how to design your model to get the solutions you want. 

What Can Go Wrong, and What to Do About It 
When you click the Optimize button on the Ribbon, or the green arrow on the 

Task Pane to solve, you’ll normally get one of these outcomes: 

1. A solution that makes sense to you.  This is normally accompanied by a 

Solver Result message in green at the bottom of the Task Pane.  You 

can proceed to “When Things Go Right:  Getting Further Results.” 

2. A Solver Result error message that you understand and can correct, in 

red at the bottom of the Task Pane.  You can take corrective action. 

3. A Solver Result error message that you don’t understand, in red at the 

bottom of the Task Pane.  You should read the solution log in the 

Output tab, click the error message and read Help about the message. 

4. A solution that you don’t understand, or that seems wrong.  Again 

before doing anything else, you should read the solution log in the 

Output tab, click the error message to display Help, run available 

reports as described below, and read the section below “When the 

Solution Seems Wrong.” 

5. Solving runs for a very long time, and you don’t get a solution or a 

Solver Result message until you press ESC or click Pause/Stop.  You 

should read the section below “When Solving Takes a Long Time.” 

In rare cases, you might find Excel shutting down or “locking up” (so nothing 

happens when you click Pause on the Solver Task Pane).  In this case please 

contact Frontline Systems Technical Support at (775) 831-0300 x4 or 

support@solver.com.  Some Solver Result error messages ask you to contact 

Technical Support.  If you can send us your model, this will be very helpful. 
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But experience shows that 99% of all technical support cases involve “pilot 

error” by the user, and that 90% of all such cases could be easily resolved by 

reading online Help or the User Guide.  So we hope you’ll keep reading, and 

that you’ll take these steps before calling technical support! 

Review Messages in the Output Tab 

If using Analytic Solver Desktop, your first step should be to review the 

messages in the solution log in the Task Pane Output tab.  Below is an example 

of the Output tab at the solution of EXAMPLE5 in StandardExamples.xls 

(described more fully in the chapter “Examples: Conventional Optimization”): 

 

If you click the Copy  icon, the contents of the solution log will be copied to 

the Windows Clipboard, where you can paste it into Microsoft Word, NotePad, 

or an email message to Frontline Systems Technical Support.  Below is the 

complete solution log from the above example: 

---- Start Solve ---- 

Using: Full Reparse. 

Parsing started... 

No uncertain input cells. 

Diagnosis started... 

Model diagnosed as "NSP". 

Attempting Transformation. 

Using: Full Reparse. 

Parsing started... 

Diagnosis started... 
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Model transformed into an LP. Transformation will be used. 

User engine selection: Standard LP/Quadratic    

Model: [OptimizationExamples.xls]EXAMPLE5 

Using: Psi Interpreter 

Parse time: 0.22 Seconds. 

 

Engine: Standard LP/Quadratic    

Setup time: 0.00 Seconds. 

 

Engine Solve time: 0.20 Seconds. 

 

Solver found a solution.  All constraints and optimality conditions are satisfied. 

Solve time: 0.62 Seconds. 

This was a successful solution – but in cases where you have a Solver Result 

error message that you don’t understand, or a solution that you don’t under-

stand, the solution log can be quite helpful. 

Note: Information related to the solving process in Analytic Solver Cloud is not 

available during parsing of the model.  As a result, feedback is only available 

once the Solver Engine starts to solve the model.   

More Detail in the Solution Log 

You can obtain more detailed output in the solution log by setting the Task Pane 

Platform tab General group Log Level option to Verbose before you solve: 

 

Below is a portion of the solution log (from the LP/Quadratic Solver) for the 

EXAMPLE5 model: 

Integer solution of 3100 found by Feasibility Pump after 0 iterations and 0 nodes (0.01 

seconds) 

After 0 nodes, 1 on tree, 3100 best solution, best possible 2355.01 (0.18 seconds) 

After 1 nodes, 2 on tree, 3100 best solution, best possible 2355.01 (0.18 seconds) 

Integer solution of 2630 found by Unknown after 285 iterations and 2 nodes (0.19 seconds) 

After 2 nodes, 2 on tree, 2630 best solution, best possible 2361.69 (0.19 seconds) 

Integer solution of 2400 found after 294 iterations and 3 nodes (0.20 seconds) 

After 3 nodes, 1 on tree, 2400 best solution, best possible 2361.69 (0.20 seconds) 

Engine Solve time: 0.20 Seconds. 

If you are having problems finding the solution you want or expect, this detailed 

log can sometimes be helpful. 

Note:  This functionality is not supported in Analytic Solver Cloud.   

Click the Solver Result Message for Help 

The Solver Result message is always underlined – it is a hyperlink to Help.  If 

you aren’t sure that you fully understand it, click the link to open online Help to 

a detailed discussion of the message. 

Below is an example of Help that appears in Analytic Solver Desktop when you 

solve EXAMPLE3 in StandardExamples.xls, and click on the Solver Result 
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error message in red, “The linearity conditions required by this Solver engine 

are not satisfied.”  Notice the two hyperlinks in the Help text, to Functions of the 

Variables and the Linearity Report.  If you click the latter link, the Help text 

below appears. 

 

Below is an example of Help that appears in Analytic Solver Cloud when you 

solve the same example and then click the red hyperlink, "The linearity 

conditions required by this Solver engine are not satisfied." 
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Given our experience that 90% of technical support cases could be easily 

resolved by reading online Help or the User Guide, you can save yourself, as 

well as Frontline Systems, time if you do read online Help first. 

Choose Available Optimization Reports 

The Help above suggests that we select the Linearity Report when we receive 

this Solver Result error message.  As a general rule, it’s good idea to examine 

the available reports and produce the reports that may help you understand 

what’s wrong with your model.  Just select Reports – Optimization Reports on 

the Ribbon – the reports in the gallery are updated each time you solve. 

 

• The Linearity Report and the Structure Report can help when you 

encounter “The linearity conditions required by this Solver engine are not 

satisfied.” 

• The Feasibility Report and Feasibility-Bounds Report can help when you 

encounter “Solver could not find a feasible solution.” 

• The Scaling Report can help when you encounter either of these messages, 

or other unexpected messages or solution values.  See the section below 

“Problems with Poorly Scaled Models.” 

See the section “An ‘Accidentally’ Nonlinear Model” in the chapter “Examples: 

Conventional Optimization” to see how the Linearity Report, and the 

Structure Report produced by the PSI Interpreter can help us pinpoint the 

nonlinear formulas in this model. 

When Solving Takes a Long Time 

When your model takes a long time to solve, the Task Pane Output tab can be 

helpful during the solution process – at a minimum, to reassure you that the 
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Solver is still making progress, and has not “hung up.”  If it is not already visible 

when you first start solving in Analytic Solver Desktop, the Output tab will 

appear automatically after a few seconds of solution time, as long as the Task 

Pane itself is visible. 

The Output tab shows the objective of the best solution found so far, and for 

problems with integer constraints, the Best Integer Objective (“incumbent”), the 

Best Possible Objective (“best bound”), and the Integer Gap or percentage 

difference between these two objectives. 

In Analytic Solver Cloud, the Task Pane Output tab will display a moving task 

pane to indicate the status of the model during the solution process.   

Running Chart of the Objective 

The bottom part of the Output tab shows a running chart of the objective of the 

best solution found so far.  On the next page is an example of the Output tab on 

a problem called Ads.xlsx that takes about 1 minutes to solve, with the 

Evolutionary Solver, on a modern 8 - core PC: 

 

Interrupting the Solution Process 

You can interrupt the solution process at any time, by pressing the ESC key in 

Analytic Solver Desktop, or by clicking the  button in either Desktop or 

Cloud, in the Task Pane Output tab.  If your model is very large, you might have 

to hold down the ESC key for a second or two.  Since the input focus may not be 

on the Task Pane when you click with the mouse, you might have to click the  

button twice.  A dialog like the one below will appear: 
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Click Continue if you want to continue solving; click Stop to cause the Solver 

to stop the solution process (this may take a few seconds) and display the 

message “Solver stopped at user’s request.”  Clicking Restart may be useful 

with the Evolutionary Solver – see the Frontline Solvers Reference Guide. 

Reasons Why Solving Takes a Long Time 

There are several reasons why solving might take a long time: 

1. Most often, you’ve used Excel formulas or functions that make your 

model non-smooth or non-convex, and much more difficult to solve.  

You might gain a lot from consulting assistance, or by reading the 

chapter “Mastering Conventional Optimization Concepts.” 

2. If model diagnosis or problem setup is slow (see timing messages in 

the Task Pane Output tab), you might be using array formulas, 

LOOKUP functions with large ranges as arguments, or long “chains” of 

formulas where each formula depends on an earlier formula. 

3. You might be using a Solver Engine, or Engine option settings, that 

aren’t appropriate for your problem.  You can check the box 

“Automatically Select Engine” on the Task Pane Engine tab.  Click 

Engine options to display Help on each option.  You can gain further 

insight by reading “Optimization Problems and Solution Methods” in 

the chapter “Mastering Conventional Optimization Concepts.” 

4. Your model might be well formulated, but very large, or it might 

require non-smooth functions, or many integer variables.  A more 

powerful plug-in Solver Engine may help considerably, and a faster 

processor, multi-core processor, or more memory can often help. 

Adjusting Automatic Mode Options to Gain Speed 

Be sure to read “Automatic Mode and Solution Time” in the chapter “Analytic 

Solver Overview.” If you’re using the Automatic setting (the default for new 

models) for any of the seven options described in this section, you can save time 

by pre-setting these options to the same values chosen automatically. 

Model Design for Maximum Optimization Speed 

Paying attention to your Excel worksheet layout and design, and avoiding 

certain practices, will help you get the most from the PSI Interpreter.  Below is a 

brief list of Do’s and Don’ts that will help you realize the best possible speed: 

• Do build worksheets starting from the “upper left corner.”  Don’t place 

cells or formulas at extreme row and column addresses all over the 

worksheet. 
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• Do build the model on a small number of worksheets.  Don’t include 

references on these worksheets to other worksheets that aren’t required for 

the simulation model. 

• Do use numeric and logical formulas and functions.  Don’t create string 

results in the middle of numeric calculations (see example below). 

• Do use built-in Excel functions (including Analysis ToolPak functions) 

freely.  Don’t use third-party or user-written functions unless truly needed.  

Such functions must not have “side-effects” other than the value returned. 

• Do use operators like + - * / ^ and functions like SUM, AVERAGE, MAX, 

MIN, AND, OR, NOT, IF, CHOOSE.  Don’t use INDIRECT, OFFSET, or 

TEXT, SEARCH, REPLACE, FIXED, DOLLAR, or ROMAN. 

• If possible, Don’t use array formulas, LOOKUP functions with large ranges 

as arguments, or long “chains” of formulas where each formula depends on 

an earlier formula (and hence on all earlier formulas).  Each of these things 

can slow down analysis of your model considerably (by 10x in some cases). 

A common practice that slows down the PSI Interpreter, and is easy to avoid, is 

illustrated by the following: 

A1:  =IF(B1>100,"Yes","No")  and later  A10:  =IF(A1="Yes",A2,50) 

You don’t need "Yes" and "No" when Excel provides built-in values TRUE and 

FALSE.  You could write =IF(B1>100,TRUE,FALSE), but this is simpler: 

A1:  =B1>100  and later  A10: =IF(A1,A2,50) 

The formula =B1>100 evaluates to either TRUE or FALSE.  A1 holds this value 

and you can test it later in another formula. 

When the Solution Seems Wrong 

When the solution on the worksheet seems wrong, before doing anything else, 

you should read the solution log in the Output tab, click the error message to 

display Help, and run available reports as described above.  We emphasize 

this, because very often when we are contacted in technical support, the user has 

not taken these basic steps. 

Although software bugs are always possible, consider carefully the possibility 

that the solution found by the Solver is correct for the model you’ve defined, 

and that your expectation is wrong.  This may mean that what your model 

actually says is different from what you intended.  In the majority of cases we 

see in technical support, the user has an error in a formula or in the expression of 

a constraint that leads to the unexpected solution. 

Problems with Poorly Scaled Models 

Many unexpected Solver Result messages are due to a poorly scaled model.  

A poorly scaled model is one that computes values of the objective, constraints, 

or intermediate results that differ by several orders of magnitude.  A classic 

example is a financial model that computes a dollar amount in millions or 

billions and a return or risk measure in fractions of a percent.  Because of the 

finite precision of computer arithmetic, when these values of very different 

magnitudes (or others derived from them) are added, subtracted, or compared – 

in the user’s model or in the Solver’s own calculations – the result will be 

accurate to only a few significant digits.  After many such steps, the Solver may 

detect or suffer from “numerical instability.” 



Frontline Solvers 2021 User Guide Page 380 

The effects of poor scaling in a large, complex optimization model can be 

among the most difficult problems to identify and resolve.  It can cause Solver 

engines to return messages such as “Solver could not find a feasible solution,” 

“Solver could not improve the current solution,” or even “The linearity 

conditions required by this Solver engine are not satisfied,” with results that are 

suboptimal or otherwise very different from your expectations.  The effects may 

not be apparent to you, given the initial values of the variables, but when the 

Solver explores Trial Solutions with very large or small values for the variables, 

the effects will be greatly magnified. 

Dealing with Poor Scaling 

Most Solver engines include a Use Automatic Scaling option on the Task Pane 

Engine tab.  When this option is set to True, the Solver rescales the values of the 

objective and constraint functions internally in order to minimize the effects of 

poor scaling.  But this can only help with the Solver’s own calculations – it can’t 

help with poorly scaled results that arise in the middle of your Excel formulas. 

The best way to avoid scaling problems is to carefully choose the “units” 

implicitly used in your model so that all computed results are within a few 

orders of magnitude of each other.  For example, if you express dollar amounts 

in units of (say) millions, the actual numbers computed on your worksheet may 

range from perhaps 1 to 1,000. 

If you’re experiencing results that may be due to poor scaling, you can check 

your model for scaling problems that arise in the middle of your Excel formulas 

by selecting the Scaling Report after solving your model.  If you’re using 

Analytic Solver Upgrade, you’ll have to go through each of your formulas and 

play “what-if” manually to identify such problems. 

The Integer Tolerance Option 

Users who solve problems with integer constraints using the standard Excel 

Solver occasionally report that “Solver claims it found an optimal solution, but I 

manually found an even better solution.”  What happens in such cases is that the 

Solver stops with the message “Solver found a solution” because it found a 

solution within the range of the true integer optimal solution allowed by the 

Tolerance option in the standard Solver’s Options dialog.  In similar cases, 

Analytic Solver displays a message “Solver found an integer solution within 

tolerance,” to avoid confusion.  

When you solve a problem with integer constraints, the solution process in 

almost all Solver engines is governed by the Integer Tolerance option on the 

Task Pane Engine tab.  When this option value is non-zero – say 0.05, as in the 

standard Excel Solver – the Solver engine stops when it has found a solution 

satisfying the integer constraints whose objective is within 5% of the true integer 

optimal solution. Therefore, you may know of or be able to discover an integer 

solution that is better than the one found by the Solver. 

To avoid this common problem, the default Integer Tolerance value in Analytic 

Solver Platform V9.0 and beyond is 0 or 0.001 (depending on the engine used) 

rather than 0.05.  But this has an important consequence for solution time:  The 

solution process for integer problems often finds a near-optimal solution 

(sometimes the optimal solution) relatively quickly, and then spends far more 

time exhaustively checking other possibilities to find (or verify that it has found) 

the very best integer solution. 
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To avoid this extra time, you can either set the Integer Tolerance to a non-zero 

value – say 0.025 or 0.05 – or you can watch the Task Pane Output tab during 

the solution process, which displays the current Integer Gap – the value against 

which the Integer Tolerance is compared.  Here’s an example from the solution 

of the EXAMPLE5 model shown earlier, where the Integer Gap was 1.6% just 

before the Solver “proved optimality” and reported the solution: 

 

You can make a real-time decision that the current solution is “good enough,” 

and press ESC or click the Pause/Stop button, then click the Stop button in the 

Show Trial Solution dialog, to stop the Solver with the current solution. 

When Things Go Right:  Getting Further Results 
When you do receive a solution that makes sense to you, and you have a Solver 

Result message in green at the bottom of the Task Pane, there are several ways 

you can get further results.  We’ll cover three possibilities: 

1. Obtaining dual values from a linear or smooth nonlinear optimization 

problem. 

2. Obtaining multiple solutions from an integer programming problem, 

or a global optimization problem. 

3. Performing multiple parameterized optimizations, and capturing all 

the solutions in reports and charts. 

Dual Values 

When you formulate and solve a linear programming problem, or a smooth 

nonlinear optimization problem, the solution process also yields numbers, called 

dual values, for the decision variables and constraints that are “pressed to the 

limit” at the optimal solution.  A dual value can tell you, for example, how much 

you could pay to acquire more units of a scarce resource that is fully utilized in 

the solution; it is sometimes called a shadow price or marginal value. 

• The dual value for a decision variable is nonzero only when the variable’s 

value is equal to its upper or lower bound at the optimal solution.  This is 

called a nonbasic variable, and its value was driven to the bound during the 

optimization process.  Moving the variable’s value away from the bound 

will worsen the objective function’s value; conversely, “loosening” the 

bound will improve the objective.  The dual value measures the change in 

the objective function’s value per unit change in the variable’s value. 

• The dual value for a constraint is nonzero only when the constraint is 

equal to its bound.  This is called a binding constraint, and its value was 

driven to the bound during the optimization process.  Moving the constraint 

left hand side’s value away from the bound will worsen the objective 

function’s value; conversely, “loosening” the bound will improve the 

objective.  The dual value measures the change in the objective function’s 

value per unit change in the constraint’s bound. 
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In nonlinear optimization problems, the dual values are valid only at the single 

point of the optimal solution – if there is any curvature involved, the dual values 

begin to change as soon as you move away from the optimal solution.  In linear 

programming problems, the dual values remain constant over a range of 

increases and decreases in the variables’ objective coefficients and the 

constraints’ right hand sides, respectively. 

To obtain dual values in report form, simply select Reports – Optimization – 

Sensitivity from the Ribbon.  An example Sensitivity Report appears below. 

In Analytic Solver Desktop, you can also obtain dual values via the Analytic 

Solver Object-Oriented API, with simple references such as 

myProb.VarDecision.DualValue(i) or myProb.FcnConstraint.DualValue(i) in 

your VBA code.  This is described in greater depth in the chapter “Automating 

Optimization in VBA.” 

On the next page is a Sensitivity Report for EXAMPLE1, the Product Mix 

model which is the first example in the chapter “Examples: Conventional 

Optimization.”  (Note:  Number formatting has been expanded in cells E15 and 

E22 to show decimal values.)  At the optimal solution, we use all 800 Speaker 

Cones and 600 Electronics units, but not all of the other components.  We don’t 

produce any Speakers – cell F9 is driven to its lower bound of 0.  What do the 

dual values tell us about the two binding constraints, and the one “nonbasic” 

decision variable? 

The dual value of 12.5 for Speaker Cones tells us that we could increase Total 

Profits by $12.50 for every additional Speaker Cone we can acquire, up to 100 

more.  Similarly, the dual value of 25 for Electronics units tells us we could use 

up to 50 more units and increase Total Profits by $25.00 for each extra unit. 

The dual value of -2.5 for F9 tells us that, if we were forced to produce some 

Speakers, we would reduce Total Profits by $2.50 for each Speaker we made 

(because we’d give up production of another product that is more profitable). 
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Multiple Solutions 

When you solve an integer programming problem or a global optimization 

problem, the final solution you see on the Excel worksheet is typically the best 

of several candidate solutions that were found during the solution process.  You 

can obtain and examine these other solutions; this can be useful, especially if 

you have other criteria, not captured in the formulation of the optimization 

model, for preferring one solution over another.  For each candidate solution, 

you can examine the final values of the decision variables and the objective. 

To obtain multiple solutions in report form, select Reports – Optimization – 

Solutions from the Ribbon. 

• For integer programming problems, the report shows each ‘incumbent’ or 

feasible integer solution found by the Branch & Bound method during the 

solution process. 

• For global optimization problems, the report shows each locally optimal 

solution found by the Multistart method. 

• For non-smooth optimization problems solved with the Evolutionary 

Solver, the report shows key members of the final population of solutions. 

For all types of problems, if only one candidate solution was found, the 

Solutions choice will not appear in the Reports – Optimization gallery.  For 

example, advanced Solvers for integer programming problems may find optimal 

solutions at the root node of the Branch & Bound tree, without considering any 

other incumbent solutions.  For integer programming problems solved with the 

LP/Quadratic or Large-Scale LP/QP Solver, the Engine tab Integer group 

PreProcessing option must be set to None in order to create a Solutions Report. 

On the next page is an example of a Solutions Report created when the GRG 

Nonlinear Solver with Multistart was used to solve a model called SPACE2, a 

global optimization problem with many locally optimal solutions.  (Given more 

time, the Solver would find an even better solution than the ones shown.) 
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You can also obtain multiple solutions via the Analytic Solver Object-Oriented 

API, by accessing a property such as myProb.Solver.NumSolutions, setting the 

property myProb.Solver.SolutionIndex to choose a solution, then accessing the 

solution in the usual manner. 

Multiple Parameterized Optimizations 

Once you have a model where you’re getting an optimal solution that makes 

sense for one set of inputs or parameters, it’s often useful to vary one or more 

parameters across a range of values, and find the optimal solution for each 

individual parameter value.  With Analytic Solver, you can easily define 

optimization parameters, run multiple optimizations and save the solutions to 

each optimization, and summarize the results in reports and charts. 

The earlier chapter “Examples:  Parameters and Sensitivity Analysis” gives an 

overview of the role of parameters for optimization, simulation, and sensitivity 

analysis, and the Frontline Solvers Reference Guide fully documents the 

features available for multiple parameterized optimization. 

In this chapter, we’ll illustrate what you can do with EXAMPLE4, the Marko-

witz portfolio optimization model in StandardExamples.xls described in the 

chapter “Examples: Conventional Optimization” under “Nonlinear Program-

ming Examples.”  The model is pictured on the next page. 
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When we perform a single optimization with this model, we get an optimal 

allocation of funds to stocks that minimizes portfolio variance (a risk measure) 

while earning a portfolio rate of return of at least 9.5%, as shown in the Task 

Pane Model tab.  This solution is a single point on the “efficient frontier;” we 

can find other points on this frontier by solving the problem for different levels 

of the required portfolio return.0 

This is easy to do in Analytic Solver:  We’ll define a single optimization 

parameter, use it in the portfolio return constraint right hand side, and then run 

multiple (say 10) optimizations where the parameter is automatically varied 

from (say) 8% to 14%.  Let’s do this step by step. 

To define an optimization parameter, select an empty cell – say I20, and choose 

Parameters – Optimization from the Ribbon, as shown below. 
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Analytic Solver displays a dialog where you can enter a lower and upper limit 

for the parameter value, or alternatively a list of values or a cell range: 

 

When you click OK, the formula =PsiOptParam(0.08,0.14) appears in cell I20. 

Next, we’ll use this parameter in the portfolio return constraint.  To do this, we 

select the constraint ‘Portfolio Return >= 0.095’ in the Task Pane Model tab, 

and edit its properties in the lower part of the Task Pane. 

 

We click the cell selector icon to the right of the field containing 0.095, and then 

point and click to select cell I20.  The properties of the constraint are updated to 

use cell I20 for the right hand side, as shown on the next page. 

 

Note:  Editing optimization parameters in the task pane is not supported in 

Analytic Solver Cloud.  To change a constraint in the Cloud, simply double 

click the I19 >= 0.095 constraint in the task pane to open the Add Constraint 

dialog, then change 0.095 to I20. 

Just one more step is required:  We must specify how many optimizations we 

want to perform.  On the Task Pane Platform tab, we set the very first option 

Optimizations to Run to 10, as shown on the next page. 
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Now we simply click the Optimize button on the Ribbon, or the green right 

arrow on the Task Pane, to run all 10 optimizations.  By default, Analytic Solver 

saves the optimal objective and decision variable values from all 10 

optimizations; you can save other results, such as constraint values, by setting 

their Monitor property in the Task Pane to True. 

Just after solving, Analytic Solver Optimization displays the results of the last 

optimization on the worksheet.  But you can display the results of any of the 

other 9 optimizations by selecting from the Opt # dropdown list on the Ribbon: 

 

Analytic Solver has built-in facilities to create charts of multiple parameterized 

optimizations.  Just select Charts – Multiple Optimizations – Monitored Cells 

from the Ribbon.          

 

Select the optimization result you would like to chart:  In this example, 

we want to plot the optimal objective (Portfolio Variance) across the 10 
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optimizations, where the Portfolio Return threshold is varied on each 

optimization. 

 

When you click OK, Analytic Solver draws the chart, as shown below.  That’s a 

lot more useful results than a single optimal solution! 



Frontline Solvers 2021 User Guide Page 389 

 



Frontline Solvers 2021 User Guide Page 390 

Getting Results:  Simulation 

Introduction 
This chapter explains how to obtain and interpret results from simulation in 

Analytic Solver Comprehensive and its subset product Analytic Solver 

Simulation.  We’ll discuss what can go wrong, and what to do about it, and also 

how to get maximum insight from the results of a simulation. 

Simulation is ‘simpler’ than optimization in the sense that it requires only (i) 

sampling of input values, (ii) calculation of your Excel model with these values, 

and (iii) collection of the results; no ‘search for a best solution’ is involved.  A 

simulation can be performed on almost any model, using any Excel functions.  

But the way you build your model does affect the speed of simulation, or the 

time required to get results.  And the structure of your model will become even 

more important in the next chapter, when we consider optimization and models 

that include uncertainty.  

In the following sections, we’ll focus on immediate actions you can take when 

you get an unexpected result – but if you read the chapter “Mastering Simulation 

and Risk Analysis Concepts,” you’ll learn more about the Monte Carlo 

simulation process, and better understand how to design your model to get the 

best results in the least time. 

What Can Go Wrong, and What to Do About It 
When you click the Simulate button on the Ribbon, or the green arrow on the 

Task Pane to run a simulation, you’ll normally get one of these outcomes: 

1. Results on the worksheet, and the message “Simulation finished 

successfully” in green at the bottom of the Task Pane.  You can 

proceed to “When Things Go Right:  Getting Further Results.” 

2. An error message that you understand and can correct, in red at the 

bottom of the Task Pane.  You can take corrective action. 

3. An error message that you don’t understand, in red at the bottom of the 

Task Pane.  You should read the solution log in the Output tab, click 

the error message and read Help about the message. 

4. Results on the worksheet that you don’t understand.  Again, before 

doing anything else, you should read the solution log in the Output 

tab, click the error message to display Help, and read the section 

below “When Simulation Results Seem Wrong.” 

5. Simulation runs for a very long time, and you don’t get results or a 

message in the Task Pane until you press ESC or click Pause/Stop.  

You should read the section “When Simulation Takes a Long Time.” 

In rare cases, you might find Excel shutting down or “locking up” (so nothing 

happens when you press and hold the ESC key for several seconds).  In this case 

please contact Frontline Systems Technical Support at (775) 831-0300 x4 or 

support@solver.com.  Some error messages ask you to contact Technical 

Support.  If you can send us your model, this will be very helpful. 
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But experience shows that 99% of all technical support cases involve “pilot 

error” by the user, and that 90% of all such cases could be easily resolved by 

reading online Help or the User Guide.  So we hope you’ll keep reading, and 

that you’ll take these steps before calling technical support! 

Review Messages in the Output Tab 

If using Analytic Solver Desktop, your first step should be to review the 

messages in the solution log in the Task Pane Output tab.  Below is an example 

of the most common simulation error message, and Help that appears when you 

click the message: 

 

Note: Information related to the solving process in Analytic Solver Cloud is not 

available during parsing of the model.  As a result, feedback is only available on 

the Output tab once the Solver Engine (for a simulation, Risk Solver Engine)  

starts to solve the model.   

Click the Error Message for Help 

Most simulation error messages are underlined – they are hyperlinks to online 

Help.  If you aren’t sure that you fully understand it, click the link to open Help 

to a detailed discussion of the message. 

As the Help text explains in the example above, if your model doesn’t define 

any simulation outputs, either via a PsiOutput() function that is added to the 

formula in an output cell or that refers to the output cell, or via a PSI Statistics 

function that refers to the output cell, there will be no results when you run a 

simulation.  As corrective action, you simply need to define the formula cells for 

which you want results as simulation outputs. 

Here is this same error in Analytic Solver Cloud.   
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Hyperlinks are not supported in Analytic Solver Cloud.   

Role of the Random Number Seed 

The seed, or initial value, of the random number generator used in the 

simulation process determines whether your results are exactly reproducible 

when you re-run a simulation, or whether your results are similar but not 

identical because a different random sample was drawn. 

By default, the seed for each simulation is set from the value of the system 

clock, which is different each time you run a simulation.  If you set a seed value 

as explained below, the same seed value is used on each simulation, which 

means that the entire stream of random numbers drawn, and hence your 

simulation results, will be exactly reproducible on each simulation run. 

To set the seed, use the Task Pane Engine tab.  From the dropdown list at the 

top of the tab, select Risk Solver Engine, the software engine that actually 

performs a simulation.  The options for Risk Solver Engine will be displayed: 

 

Enter a positive number for the option Sim. Random Seed.  A value of 0 here 

means “use the value of the system clock as the seed on each simulation.” 
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When Simulation Takes a Long Time 

When a simulation takes a long time, or if you are running multiple parame-

terized simulations, the Task Pane Output tab shows you a progress indicator.  If 

it is not already visible when you first start solving, the Output tab will appear 

automatically after a few seconds, as long as the Task Pane itself is visible. 

If you are using Analytic Solver Desktop and have the Task Pane Platform tab 

Simulation group Interpreter option set to Excel Interpreter, the progress 

indicator will be updated during the Monte Carlo trials of a single simulation, as 

shown in the example below. 

 

If you have the Interpreter option set to Psi Interpreter, the progress indicator 

usually won’t be updated during the trials of a single simulation, because all of 

these trials are being executed in parallel.  If you are running a multiple 

parameterized simulation, the progress indicator will be updated for each new 

simulation, as shown in the example below. 

 

Interrupting the Simulation Process 

You can interrupt the simulation process at any time, by pressing the ESC key 

in Analytic Solver Desktop, or by clicking the  button in the Task Pane 

Output tab in either app.  If your model is very large, you might have to hold 

down the ESC key for a second or two.  Since the input focus may not be on the 

Task Pane when you click with the mouse, you might have to click the  button 

twice.  A dialog like the one below will appear: 
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Click Stop to stop the simulation or Continue if you want to continue. 

Reasons Why Simulation Takes a Long Time 

Analytic Solver Simulation is by far the fastest Monte Carlo simulation software 

for Excel on the market, and it takes full advantage of multi-core processors for 

even faster simulations.  But it’s still possible to create a model where a 

simulation takes a long time.  There are several reasons for this: 

1. If you have the Platform tab Simulation group Interpreter option set to 

Excel Interpreter in Analytic Solver Desktop, Excel is used to 

recalculate the worksheet on each Monte Carlo trial.  This is usually an 

order of magnitude slower than the PSI Interpreter, though it requires 

significantly less memory.  This functionality is not supported in 

Analytic Solver Cloud.   

2. If you have Platform tab Simulation group Interpreter option set to Psi 

Interpreter (this is always the case in Analytic Solver Cloud), and the 

simulation is slow, you may be using certain Excel functions in ways 

that slow down the PSI Interpreter.  See below for Do’s and Don’ts to 

get the most from the PSI Interpreter. 

3. Your model may simply be very large, with many complex formulas, 

references to other worksheets or workbooks, etc. that take a long time 

to evaluate.  If your workbook includes sizable elements that aren’t 

essential to the simulation model and its results, these extra elements 

may be slowing down the simulation process. 

Time Versus Memory Tradeoffs in Analytic Solver Desktop 

The PSI Interpreter is designed to take maximum advantage of available 

memory, and trade off memory against time.  When Excel interprets 

=A1+A2*(A3-4), it uses memory for only four numbers – the values of A1, A2, 

A3 and the constant 4.  But when PSI interprets this formula, it uses memory for 

3,001 numbers – 1,000 each for A1, A2 and A3.  If your PC has plenty of 

memory, PSI will help you take advantage of it.  But if you are tight on memory, 

you may find that simulations slow down, because Windows will use ‘virtual 

memory’ and swap your data between main memory and your hard disk.  You 

can add more memory --  DRAM chips for PCs and notebooks are an amazing 

value today. However, the best solution is simply to run your simulation model 

using Analytic Solver Cloud!  Since the Cloud app runs on Microsoft's Azure 

App Service, memory is not an issue in the cloud!     

Model Design for Maximum Simulation Speed 

Paying attention to your Excel worksheet layout and design, and avoiding 

certain practices, will help you get the most from the PSI Interpreter.  Below is a 

brief list of Do’s and Don’ts that will help you realize the best possible speed: 

• Do build worksheets starting from the “upper left corner.”  Don’t place 

cells or formulas at extreme row and column addresses all over the 

worksheet. 

• Do build the model on a small number of worksheets.  Don’t include 

references on these worksheets to other worksheets that aren’t required for 

the simulation model. 

• Do use numeric and logical formulas and functions.  Don’t create string 

results in the middle of numeric calculations (see example below). 
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• Do use built-in Excel functions (including Analysis ToolPak functions) 

freely.  Don’t use third-party or user-written functions unless truly needed.  

Such functions must not have “side-effects” other than the value returned. 

• Do use operators like + - * / ^ and functions like SUM, AVERAGE, MAX, 

MIN, AND, OR, NOT, IF, CHOOSE.  Don’t use INDIRECT, OFFSET, or 

TEXT, SEARCH, REPLACE, FIXED, DOLLAR, or ROMAN. 

• If possible, Don’t use array formulas, LOOKUP functions with large ranges 

as arguments, or long “chains” of formulas where each formula depends on 

an earlier formula (and hence on all earlier formulas).  Each of these things 

can slow down analysis of your model considerably (by 10x in some cases). 

A common practice that slows down the PSI Interpreter, and is easy to avoid, is 

illustrated by the following: 

A1:  =IF(B1>100,"Yes","No")  and later  A10:  =IF(A1="Yes",A2,50) 

You don’t need "Yes" and "No" when Excel provides built-in values TRUE and 

FALSE.  You could write =IF(B1>100,TRUE,FALSE), but this is simpler: 

A1:  =B1>100  and later  A10: =IF(A1,A2,50) 

The formula =B1>100 evaluates to either TRUE or FALSE.  A1 holds this value 

and you can test it later in another formula. 

When Simulation Results Seem Wrong 

When the simulation results seem wrong, before doing anything else, you should 

read any messages in the Output tab, and click the message to display Help as 

described above.  We emphasize this, because very often when we are contacted 

in technical support, the user has not taken these basic steps.  As next steps: 

1. Make sure you understand how your formulas behave in an ordinary Excel 

recalculation.  If you’ve “raced ahead” with a simulation model before 

doing this and you are using Analytic Solver Desktop, you can use the 

Publish button on the Ribbon to turn your simulation model back into a 

“what-if” model (by moving all PSI function calls into cell comments), and 

later click Publish --  Unpublish to restore the PSI functions that make up 

your simulation model. 

2. Bear in mind that an uncertain function cell normally displays the calculated 

value for the last Monte Carlo trial of the last simulation run.  It’s usually 

more meaningful to look at the results returned by PSI Statistics functions, 

such as PsiMean() or PsiPercentile(), across all the trials of the simulation. 

3. It can be very helpful to cycle through the Monte Carlo trials of a 

simulation, and examine the values of uncertain function cells, as well as 

intermediate formula cells on which they depend.  Just use the left and 

right arrows on the Analytic Solver Desktop Ribbon or the up and down 

arrows on the Tools tab of the Solver task pane in Analytic Solver Cloud to 

change the trial index. You may find that your model calculates a result 

you did not expect for some values of the uncertain variables. 

4. If you are using multiple simulations, check that the Sim # index on the 

Ribbon in Analytic Solver Desktop or on the Tools tab of the Solver task 

pane in Analytic Solver Cloud, or the Sim # dropdown in the Uncertain 

Function dialog title bar, are selecting the simulation you want, and that 

parameters (PsiSimParam() functions) are returning the values you expect 

for that simulation. 
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5. If you haven’t already done so, double-click uncertain function cells and 

examine the Frequency tab chart and Percentiles tab numbers to see how 

the values of this function were distributed across Monte Carlo trials in the 

simulation.  This will help explain the values of PSI Statistics functions. 

Although software bugs are always possible, consider carefully the possibility 

that the simulation results are correct for the model you’ve defined, and that 

your expectation is wrong.  We sometimes find in technical support that what 

your model actually says is different from what you intended. 

When Things Go Right:  Getting Further Results 
When you have simulation results on the worksheet that make sense to you, and 

you have the message “Simulation finished successfully” in green at the bottom 

of the Task Pane, there are several ways you can get further results.  We’ll cover 

five possibilities: 

1. Documenting your results in a Simulation Report. 

2. Using all the features of the Uncertain Function dialog. 

3. Fitting an analytic distribution to uncertain function results. 

4. Charting multiple uncertain functions, typically over time. 

5. Performing multiple parameterized simulations, and capturing the 

results on the worksheet or in charts. 

Using the Simulation Report 

One quick step you can take, when you have simulation results that you want to 

recall later, is to select Reports – Simulation – Simulation to produce a report 

worksheet, inserted into your workbook, like the one for the example model 

BusinessForecastPsi.xls, shown on the next page. 
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The Simulation Report in Analytic Solver Desktop documents the option 

settings used to perform the simulation and provides summary information about 

the uncertain variables and uncertain functions in your simulation model.  You 

are much more likely to use simulation charts, or snapshots of your own 

worksheet layout when you are presenting reports to others, but this report can 

be quite useful when you want to refer later to the assumptions behind a 

simulation analysis. 

This report has been completely redesigned in Analytic Solver Cloud.  Select 

Reports – Simulation – Simulation Report to produce a report worksheet, 

inserted into your Excel Online or Desktop Excel workbook, like the one for the 

example model BusinessForecast.xlsx, as shown on the next page. 

 

In Analytic Solver Cloud, this report displays the number of input and output 

functions in the simulation model, the number of simulations and the number of 

trials.  The body of the report contains the distribution of values for all uncertain 

variables and functions along with the cell address, the mean, the standard 

deviation, the 5th and 95th percentiles of each.   

Using the Uncertain Function Dialog 

The Uncertain Function dialog has many features, described in the Frontline 

Solvers Reference Guide, that you can use to get enhanced results from your 

simulation.  For an introduction to these features, refer back to “A First 

Simulation Example” in the chapter “Simulation and Risk Analysis,” especially 

the sections starting with “Viewing the Full Range of Profit Outcomes.”  Here, 

we’ll just reiterate the results available at your fingertips in the Uncertain 

Function dialog: 

Dialog Tabs 

• The Frequency, Cumulative Frequency, and Reverse Cumulative 

Frequency tabs provide three different views of the full range of outcomes 
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for an uncertain function.  In Analytic Solver Desktop, you can click to 

display “crosshairs” with numerical values on these charts or add Lower 

and Upper bounds to see the estimated probability of a profit or loss. 

• The Tornado chart on the Sensitivity tab quickly shows you which 

uncertain variables have the greatest impact on this uncertain function, 

across the full range of Monte Carlo trials.  The Scatter Plots tab often 

reveals further insights about the behavior of this uncertain function versus 

each uncertain variable, or versus other uncertain functions. 

Panels and Toolbars 

• Using the right panel of the dialog, you can access a drop down menu 

including Statistics, Percentiles, Chart Type, Chart Options (Analytic 

Solver Desktop), Axis Options (Analytic Solver Desktop), and Markers 

(Analytic Solver Desktop). From the Options dialog (accessible from the 

Options button on the Analytic Solver Desktop Ribbon), on the Charts and 

Markers tabs, you can set default chart and marker settings for all of your 

charts. 

• Using the title toolbar icons in Analytic Solver Desktop, you can save your 

settings, print the charts or numbers from any of the dialog tabs, or copy 

the charts or numbers to the Windows Clipboard, where they can be pasted 

into other applications.  You can also fit a distribution (as shown below) to 

the simulation results or upload the simulation results to Microsoft's Power 

BI application or Tableau. (See the previous chapter, Examples:  Simulation 

and Risk Analysis, for instructions on exporting model results to Power BI 

and Tableau.) 

• Click the rightmost icon on the title toolbar in Analytic Solver Desktop to 

display the 3-D toolbar that lets you – with a single click – shift between 2-

D and 3-D, shrink or magnify the chart, or move or rotate the chart to a 

different perspective. 

 

Fitting a Distribution to Simulation Results 

One way to analyze your simulation results is to see whether the distribution of 

outcomes is similar to a well-known analytic distribution.  Frontline Solver's 

Analytic Solver supports a wide range of analytic distributions, and can fit a 

distribution and its parameters to sample data.  To fit your sample simulation 

results, click the  icon on the Uncertain Function dialog title toolbar in 

Analytic Solver Desktop or click Tools – Fit on the Analytic Solver Cloud 

ribbon. 

Click cell B11 on the BusinessForecastPsi tab within BusinessForecast.xlsx.  

When the Fit icon on the Analytic Solver Desktop Ribbon is clicked or Tools – 

Fit on the Analytic Solver Cloud ribbon, the Fit Options dialog appears.   
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If we accept the default settings and click the Fit button, in a few seconds, 

Analytic Solver fits a wide range of distributions to the sample data, ranks them 

in order of the selected goodness-of-fit criterion (AIC/BIC statistics by default, 

for more information see the Frontline Solvers Reference Guide), and displays 

the best-fitting distribution. 

 

If you select the checkboxes adjacent to the additional distributions in the left 

panel, they will be superimposed on the frequency chart in the middle of the 

dialog.  Other tabs of this dialog give you a visual picture of the fit, in the form 

of P-P and Q-Q charts, and a chart of CDF Differences, shown below. 
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The P-P tab displays the Probability-Probability chart.  This graph is used to 

determine how well a specific distribution fits the observed data. This chart will 

be approximately linear (or lie on the y = x line) if the specified distribution is 

the correct choice. 

Click the Q-Q tab to see the Quantile – Quantile chart.  Again, if the two 

distributions being compared are a good fit, the plot will lie approximately on 

the y = x line.   

The Cumulative Distribution Function Differences chart quantifies the 

difference between the empirical distribution function and the cumulative 

distribution function of the distribution.   

You can also fit an analytic distribution to data that you obtain from another 

source, such as historical observations of the process you want to model.  If you 

have this sample data on your Excel worksheet, you can simply select the cell 

range containing the data and click the Fit icon on the Analytic Solver Desktop 

Ribbon or Tools – Fit on the Analytic Solver Cloud ribbon.  Using this tool, you 

can easily create an uncertain variable whose distribution models this data.   

Note:   When using Analytic Solver Cloud or AnalyticSolver.com, fitting a 

PsiMetalog function is supported only when using the PsiMetalogFit() function.   

Fitting a Meta-Log Distribution 

A meta-log distribution is an alternative distribution to a fitted distribution.  The 

metalog distributions are a collection of continuous univariate probability 

distributions which can be used when cumulative distribution function data is 

available. For more information on this distribution, see the descriptions for 

PsiMetalog() in the Continuous Analytic Distribution subsection within the “Psi 

Function Reference” chapter that appears in the Frontline Solvers Reference 

Guide.   

A general meta-log distribution is defined in a simulation model by using the Psi 

distribution, PsiMetalog().  This function has as arguments a vector of 

coefficients (coefficients) and optionally lower (min) and upper (max) bounds. 

The metalog distribution family is designed to be determined from historical 



Frontline Solvers 2021 User Guide Page 401 

data, without requiring a distribution fitting process.  They are computed from a 

set of historical data pairs {y, x}, where y is a cumulative probability and x is 

the corresponding percentile.  The coefficients argument is either a range or an 

array of 2 to 10 numerical elements.    

Fitting the PsiMetalog() function in Analytic Solver Desktop may be performed 

in two ways, by using the Psi function PsiMetalogFit() or by using the Metalog 

Fit Options dialog.    Currently, this function may be used in Analytic Solver 

Cloud only by using the Psi function PsiMetalogFit().   

To open this dialog on Analytic Solver Desktop, click on a blank Excel cell, 

then click the Fit Distribution icon on the PsiMetalog() uncertain variable 

dialog.   

Note:  In Analytic Solver Cloud, the PsiMetalogFit return a Dynamic Array.  To 

use this function in the Cloud, you need only enter the Psi function in one cell as 

a normal function, i.e., not as a control array.  The contents of the Dynamic 

Array will "spill" down the column.  If a nonblank cell is "blocking" the 

contents of the Dynamic Array, PsiMetalogFit will return #SPILL until such 

time as the blockage is removed.  When used in the Cloud apps, the first 

argument, numCoef, is a scalar, the number of coefficients to produce.     

 

https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531
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Argument Descriptions 

• Cumulative Probabilities -  Excel range containing the historical 

cumulative probabilities (y values) 

• Percentiles – Select the Excel range containing the percentile values (x 

values) 

• Rank – If omitted, the rank is equal to 3.  The value entered for Rank 

must be greater than or equal to 2 and less than or equal to 10.  In 
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addition, this value should be less or equal to the number of historical 

pairs given in the Cumulative probability and Percentiles arguments.  

• Upper Bound – The function may be limited on the right by the upper 

bound.  If omitted, positive infinity is used for the upper bound. 

• Lower Bound – The function may be limited on the left by the lower 

bound.  If omitted, negative infinity isused for the lower bound. 

Click Fit in Analytic Solver Desktop to fit the Meta-log distribution.  (Click 

Cancel to close the dialog without performing the distribution fitting.) Analytic 

Solver replaces the distribution currently in the Uncertain Variable dialog with 

the PsiMetalog() distribution parameters.  If you click the Save button or close 

the dialog by clicking the “X” in the upper right hand corner in the title bar of 

this dialog, the PSIMetalog() distribution function with the fitted parameters is 

written to the current cell. 

For example, given the following input parameters. 

   

The arguments in the Metalog Fit Options dialog would be as follows.  Note that 

since the Upper and Lower Bound fields are empty, the fitted distribution will be 

unbounded.  Distributions may be bounded on both sides, semi-bounded 

(bounded on one side) or unbouded.  Note:  Rank is equal to 2 which falls 

between the rank argument lower bound, which is equal to 2, and the number of 

historical pairs passed for Cumulative probability and Percentiles, 5.    
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After clicking Fit, the uncertain variable dialog changes to the following.   

 

Click Save to close the uncertain variable dialog and save the fitted parameters 

to the Excel cell.  To inspect the coefficients obtained by the fitting, see the 

resultant PsiMetalog() function that was saved to this cell. In this example, the 

coefficients obtained were 31.6 and 4.431777. 

 

Charting Multiple Uncertain Functions 

In some simulation models, you will have a series of uncertain functions that 

represent the evolution of some process over time.  The individual cells might 

represent sales or inventory levels, interest rates or exchange rates, or some 

other uncertain factor.  You want to understand how this uncertain function 

changes over time, taking into account its uncertainty. 

Analytic Solver Comprehensive has a general facility for creating charts of 

multiple simulation results, including Overlay, Trend, and Box-Whisker charts.  

Below, we’ve used this facility to visualize the evolution of a stock price over 



Frontline Solvers 2021 User Guide Page 405 

time, using the example model GBMSimpleModel.xls, which simulates stock 

prices using a Geometric Brownian Motion model.  When we perform a 

simulation, select Charts – Multiple Simulation Results – Trend, and select 

the first 24 uncertain functions for inclusion in the chart, we get a Trend Chart 

like the one below: 

 

Here we can see a slow upward drift of the mean value of the stock price, and 

also its volatility around the mean, depicted here with the 25th and 75th, and the 

10th and 90th percentiles. 

Multiple Parameterized Simulations 

Once you have results from a single simulation, you normally want to explore 

“what if” scenarios, where you change some parameter that is under your 

control and run simulations to observe the effects of the uncertain variables that 

are not under your control. 

Using Interactive Simulation in Analytic Solver Desktop 

Analytic Solver Simulation offers a powerful facility to do this through 

Interactive Simulation:  You can simply click the Simulate button on the 

Analytic Solver Cloud Ribbon to enter Interactive mode, then change a number 

on your worksheet and instantly see new simulation results.  This is illustrated in 

“A First Simulation Example” in the earlier chapter “Simulation and Risk 

Analysis.”  Analytic Solver is fast enough to make this sort of “what-if” analysis 

practical. 
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Using Multiple Simulations 

But after exploring the model and its results through Interactive Simulation, 

you’ll likely want to automate the “what-if” process, and more systematically 

evaluate the effects of changing some parameter or parameters under your 

control on the simulation results.  Analytic Solver makes this easy, with multiple 

parameterized simulations.  This is illustrated in “An Airline Revenue 

Management Model” in the chapter “Simulation and Risk Analysis.” 

Setting Up Multiple Parameterized Simulations 

Two simple steps are required to set up a multiple parameterized simulation: 

1. Define one or more simulation parameters, and use them in your model. 

2. Set the number of simulations option to a value greater than 1, and run the 

simulation. 

To define a simulation parameter, simply select Parameters – Simulation from 

the Ribbon: 

 

Analytic Solver Simulation displays a dialog box, where you can enter a lower 

limit and upper limit for the parameter value, or a specific list of values that you 

would like the parameter to take on successive simulations.  If you specify a 

lower and upper limit, then when you set the number of simulations, the 

parameter will take on equally-spaced values from the lower to the upper limit. 

To set the number of simulations, simply edit the option in the Task Pane 

Platform tab Simulation group option Simulations to Run: 
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When you next click the green arrow in the Task Pane, or choose Simulate – 

Run Once from the Analytic Solver Desktop Ribbon, all 10 (in this example) 

simulations will be run, automatically varying each simulation parameter over 

its range or list of values, and all the results will be collected and stored.  (If you 

click the Simulate icon in Analytic Solver Desktop to activate Interactive 

Simulation, all 10 simulations will be run each time you make a change on the 

worksheet.) 

Viewing Results of Multiple Simulations 

After running multiple parameterized simulations, you can view the results on 

the worksheet, or in the Uncertain Function dialog, by selecting the simulation 

of interest from the Sim # dropdown.  You can create reports and charts of 

results that span all or some of the simulations.  We highly recommend that you 

read “An Airline Revenue Management Model” in the earlier chapter 

“Simulation and Risk Analysis,” which illustrates how this is done – creating a 

Trend Chart and a Box-Whisker Chart across all 10 simulations in this model. 

Once you become familiar with multiple parameterized simulations, you’ll 

likely want to use them in nearly every simulation analysis you do.  They’re a 

natural way to get further results from the effort you’ve put into a simulation 

model, and communicate those results to colleagues or clients. 

Time Series Forecasting 

Starting with version 2014-R2, Analytic Solver Data Mining includes the ability 

to forecast a future point in a time series in one of your spreadsheet formulas 

(without using the Score button on the Ribbon) using a PsiForecast() function in 

conjunction with a model created using ARIMA or one of our smoothing 

methods (Exponential, Double Exponential, Moving Average, or Holt Winters).  

PsiForecast() is similar to the previous PSIForecastXXX functions supported in 

V2014, 2015, and 2016: it will compute future-looking forecasts based on the 

fitted model, using the provided new time series observations as initial points. 

The number of forecasts is determined by the number of selected cells in array-

formula entry. The result of PsiForecast() can be deterministic, if the Simulate 

argument is FALSE, or non-deterministic, if the Simulate argument is TRUE– in 

which case the forecasts are adjusted with random normally distributed errors, 

defined by the forecasts’ statistics. 

Open the Airpass.xlsx example dataset by clicking Help – Examples on the Data 

Mining ribbon, then clicking Forecasting/Data Mining Examples.  This example 
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dataset includes International Airline Passenger Information by month for years 

1949 – 1960.  Since the number of airline passengers increases during certain 

times of the year, for example Spring, Summer, and in the month of December, 

we can say that this dataset includes “seasonality”.  

First, we will partition this dataset into two datasets:  a training dataset and a 

validation dataset.  We’ll use the training dataset to create the ARIMA model 

and then we’ll apply the model to the validation dataset to forecast six future 

data points, or one half year of data.   

Click Partition in the Time Series section of the Data Mining ribbon to open the 

Time Series Partition Data dialog.  Select Passengers for the Variables in the 

Partition Data and Month for the Time Variable.  

 

Click OK to accept the defaults for Specify Partitioning Options and Specify 

Percentages for Partitioning.  Recall that when a time series dataset is 

partitioned, the dataset is partitioned sequentially.  Therefore, 60% or the first 86 

records, will be assigned to the training dataset and the remaining 40%,  or 58 

records, will be assigned to the validation dataset.  (For more information on 

partitioning a time series dataset, see the previous chapter Exploring a Time 

Series Dataset.)   

The TSPartition worksheet will be inserted into the Model tab of the Analytic 

Solver task pane under Transformations – Time Series Partition.  Recall the 

steps needed to produce the forecast.  Click ARIMA -- ARIMA to open the 

ARIMA dialog.  Month has been pre selected as the Time variable.  Select 

Passengers as the Selected variable.   
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This example will use a SARIMA model, or Seasonal Autoregressive Integrated 

Moving Average model, to predict the next six datapoints in the dataset.  (For 

more information on this type of time series model, please see the earlier 

chapter, “Exploring a Time Series Dataset.”)  A seasonal ARIMA model 

requires 7 parameters, 3 nonseasonal (autoregressive (p), integrated (d), and 

moving average (q)), 3 seasonal (autoregressive (P), integrated (D), and moving 

average (Q)), and period.  Each parameter must be a non-negative integer.    

Selecting appropriate values for p, d, q, P, D, Q and period is beyond the scope 

of this User Guide.  Consequently, this example will use a well documented 

SARIMA model with parameters p  = 0, d = 1, q = 1, P = 0, D = 1, Q = 2 and 

period (P) = 12.  Please refer to the classic time series analysis text Time Series 

Analysis:  Forecasting and Control written by George Box and Gwilym 

Jenkins for more information on parameter selection.      

Select Fit seasonal model and enter 12 for Period since it takes a full 12 months 

for the seasonal pattern to repeat.  Set the Non-seasonal Parameters  as 

Autoregressive (p) = 0, Difference (d) = 1, Moving Average (q) = 1 and the 

Seasonal Parameters as Autoregressive (P) = 0, Difference (D) = 1, and Moving 

Average (Q) = 2. 

 

Click OK to create the SARIMA model.   

ARIMA_Output will be inserted into the Model tab of the XLMiner task pane 

under Reports – ARIMA.  This output contains the Training Error Measures and 

Fitted Model Statistics.  (For more information on this report, please see the 

chapter Exploring a Time Series Dataset within the Analytic Solver Data Mining 

Reference Guide.)  ARIMA_Stored contains the stored model parameters.   

Now we’ll use this ARIMA model to predict new data points in the validation 

dataset using the PsiForecast() function.  (Note:  The first forecasted point will 

be more accurate than the second, the second forecasted point more accurate 

than the third and so on.) The PsiForecast() function will be interactive in the 
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sense that if any of the input values (values passed in the 2nd argument) change, 

the forecast will be recomputed.   

In later versions of desktop Excel, the PsiForecast() function returns a Dynamic 

Array.  To use this function in the Cloud, you need only enter the Psi function in 

one cell as a normal function, i.e., not as a control array.  The contents of the 

Dynamic Array will "spill" down the column.  If a nonblank cell is "blocking" 

the contents of the Dynamic Array, the Psi Data Mining function will return 

#SPILL until such time as the blockage is removed.  In Excel versions that do 

not support Dynamic Arrays, PsiForecast() must be entered as an Excel array.   

The PsiForecastARIMA function takes five arguments:  Model, Input Data, 

Simulate, Num_forecasts, and Header.  Select  a blank cell on the Data 

worksheet and enter =PsiForecast(.  If using a version of Excel that does not 

support Dynamic Arrays, select B146:B152 on the Data worksheet, then enter 

=PsiForecast(. 

The first argument, Model, is the range of cells used by Analytic Solver Data 

Mining to store the ARIMA model on the ARIMA_Stored worksheet.  This data 

range will change as the forecast method changes.  Select or enter 

ARIMA_Stored!B12:B38, for this argument.   

The second argument, Input_Data, is the range containing the initial starting 

points from the validation data set. The minimum number of initial points that 

should be specified for a seasonal ARIMA model is the larger of p + d + s * (P + 

D) and q + s * Q.  In this example, p + d + s * (P + D) is equal to 13 (0 + 1 + 12 

* (0 + 1) and q + s * Q is equal to 13 (1 + 12 * 1), therefore the minimum 

number of initial starting points required is 13 (MAX (13, 13)).  If you provide 

fewer than the minimum required number of starting points, PsiForecast() will 

return a column of zeros.  (See the table below for the minimum number of 

initial starting points required by each Forecasting method included in Analytic 

Solver Data Mining.)  The maximum number of starting points is the number of 

points in the validation dataset.  All points supplied in the second argument will 

be used in the forecast. Select or enter Data!A1:B145, for this argument.   

Pass True or False for the third argument.  Passing False will result in a static 

forecast that will only update if a cell passed in the 2nd argument is changed.  If 

True is passed for this argument, a random error will be included in the 

forecasted points.  See the Time Series Simulation example below for more 

information on passing True for this argument.  In this case, Pass False) for this 

argument. 

Your formula should now be the following:  

=PsiForecast(ARIMA_Stored!B12:B38,Data!A1:B145, False).   If using a 

version of Excel that does not support Dynamic Arrays, press CTRL + SHIFT 

+ ENTER to enter this formula as an array in all seven cells (B146:B152).    

It’s also possible to enter this formula using the Insert Function dialog by 

clicking Formulas – Insert Function, select PSI Data Mining for Category, then 

PsiForecastARIMA.   

https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531
https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531
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The results from this function are displayed below. 

Enter True for the Header argument to insert a heading above the forecasted 

values.   

Notice that the formula is entered into cell B146 and the contents of the 

PsiForecast() Dynamic Array "spill" down into cells B147:B152.   

 

If any values change in the ranges ARIMA_Stored!B12:B38 or Data!B2:B145, 

the forecast will be recomputed; but if the input argument values stay the same, 

the PsiForecast() function will always return the same forecast values.  As 

mentioned above, the first forecasted value in cell B146 is the most accurate 

predicted point.  Accuracy declines as the number of forecasted points increases.   

See the Frontline Solvers Reference Guide for specifications on PsiForecast().   

Time Series Simulation 

Analytic Solver Data Mining includes the ability to perform a time series 

simulation, where future points in a time series are forecast on each Monte Carlo 

trial, using a model created via ARIMA or one of our smoothing methods 

(Exponential, Double Exponential, Moving Average, or Holt Winters).   

To run a time series simulation, we must pass “True” as the third argument to 

PsiForecast().  When the third argument is set to True, Analytic Solver will add 

a random (positive or negative) “epsilon” value to each forecasted point.  Each 

time a simulation is run, 1000 trial “epsilon” values are generated using the 

PsiNormal distribution with parameters mean and standard deviation computed 
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by the PsiForecast() function.  You can view the output of this simulation in the 

same way as you would view “normal” simulation results in Analytic Solver 

Comprohensive, Analytic Solver Simulation, Analytic Solver Upgrade, or 

Analytic Solver Basic, simply by creating a PsiOutput() function and then 

double clicking the Output cell to view the Simulation Results dialog.    

Select a blank cell, or Data!C146:C152 if using a version of Excel that does not 

support Dynamic Arrays, then click Formulas – Insert Function to display the 

Function Argument dialog.   

As discussed previously, the first argument, ARIMA_Stored!B12:B38, is the 

range of cells used by Analytic Solver to store the ARIMA model on the 

ARIMA_Stored worksheet.    

For the second argument the range containing the initial points in the series must 

be greater than the minimum number of initial points for a static forecast.  For a 

seasonal ARIMA model when Simulate = True, the minimum number of initial 

points must be greater than Max((p + d + s * (P + D), (q + s * Q).  In this 

example, p + d + s * (P + D) is equal to 13 (0 + 1 + 12 * (0 + 1) and q + s * Q is 

equal to 13 (1 + 12 * 1), therefore the minimum number of initial starting points 

required is 13 (Minimum #Initial Points > MAX (13, 13)).   However, when 

PsiForecastARIMA() is called with Simulate = True, it is recommended to add 

an additional number of datapoints, equal to the #Periods, to the minimum 

number required.  In this instance the number of initial points will be 25:  13 

(minimum # of points) + 12 (# of points for Period in the Time Series - ARIMA 

dialog).   If you provide fewer than the minimum required number of starting 

points (13 in this example) PsiForecastARIMA() will return #VALUE.  (See the 

table below for the minimum number of initial starting points required by each 

forecast method in Analytic Solver.)  All points supplied in the second argument 

will be used in the forecast. Select or enter Data!A1:B145, for this argument.   

Passing TRUE for the third argument indicates to Analytic Solver Data Mining 

that you plan to use this function call in a Monte Carlo simulation, so it should 

add a random epsilon value (different on each Monte Carlo trial) to each 

forecasted point.  

 

In versions of Excel supporting Dynamic Arrays, this formula is entered into 

cell C146 and the contents of the PsiForecast() Dynamic Array "spills" down 

into cells C147:C152.  If versions of Excel that do not support Dynamic Arrays, 

the formula must be entered as an Excel array.   

To view the results of the simulation including frequency and sensitivity charts, 

statistics, and percentiles for the full range of trial values, we must first create an 

output cell.  Select cell C147, then click Analytic Solver – Results – Referred 

Cell.  Select cell D147 (or any blank cell on the spreadsheet) to enter the 



Frontline Solvers 2021 User Guide Page 413 

PsiOutput formula.  Copy this formula from cell D147 down to cell D152.  

Therefore D147 = PsiOutput(C147), D148 = PsiOutput(C148), and so on.   

 

 
 

Click the down arrow on the Simulate icon and select Run Once.  Instantly, 

Analytic Solver will perform a simulation with 1,000 Monte Carlo simulation 

trials (the default number).  Since this is the first time a simulation has been 

performed, the following dialog opens.  Subsequent simulations will not produce 

this report.  However, it is possible to reopen the individual frequency charts by 

double clicking each of the output cells (B147:B152). 

Important Note:  For Users who are familiar with simulation models in Analytic 

Solver Simulation, you’ll notice that the time series simulation model that we 

just created now includes 6 uncertain functions, B147:B152, which are the cells 

containing our PsiForecast() functions.  For more information on simulation 

with Analytic Solver, please see the Frontline Solvers User Guide chapter, 

“Examples:  Simulation and Risk Analysis”.   

 

 
 

This dialog displays frequency charts for each of the six cells containing the 

forecasted data points.  Double click the chart for cell C147 (top left) to open the 

Simulation Results dialog for the PsiForecast() function in cell C147.  From here 
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you can view frequency and sensitivity charts, statistics and percentiles for each 

forecasted point.       

 

 
 

The frequency chart displays the distribution of all 1000 trial values for cell 

C147 with and observed mean 440.76 and standard deviation of 16.90 shown in 

the Chart Statistics.  Select Simulate – Run Once a few more times (or click the 

green “play” button on the Solver Pane Model tab).  Each time you do, another 

1,000 Monte Carlo trials are run, and a slightly different mean will be displayed.   

 

Enter 444 for the Lower Cutoff in the Chart Statistics section of the 

right panel,  A vertical bar appears over the Frequency chart to display the 

frequency with which the forecasted value was greater than this value during the 

simulation.  You can use this as an estimate of the probability that the actual 

value will be less than the forecasted value.  In this case there was a 58.20% 

chance that the number of international airline passengers would be less than 

444,000 in January 1961 and a 41.80% chance that the number of passengers 

would be greater than 444,000. 

 
   

Looking to the right, you’ll find the Statistics pane, which includes 

summary statistics for the full range of forecasted outcomes. We can see that the 

minimum forecasted value during this simulation was 397.78, and the maximum 

forecasted value was 493.37. Value at Risk 95% shows that 95% of the time, the 

number of international airline passengers was 469.72 or less in January 1961, in 

this simulation. The Conditional Value at Risk 95% value indicates 

that the average number of passengers  we would have seen (up to the 95% 

percentile) was 438.86.  For more information on Analytic Solver Platform’s 

full range of features, see the Frontline Solvers User Guide chapter, “Examples:  

Simulation and Risk Analysis”.   
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Select cells E147:E156 and then enter the formula, =PsiData(C147)  If using a 

version of Excel that does not support Dynamic Arrays, press CTRL + SHIFT + 

ENTER to array enter the formula into all 10 cells.  Repeat the same steps to 

array enter “=PsiData(C148)” in cells F147:F156, “=PsiData(C149)” in cells 

G147:G156, “=PsiData(C150)” in cells H147:H156, “PsiData(C151)” in cells 

I147:I156, and “=PsiData(C152)” in cells J147:J156.  Then click Simulate – 

Run Once to run a simulation.   

 

The ten Excel cells in these columns will update with trial values for each of the 

PsiForecast() functions in column C.  For example, cells E147:N147 will 

contain the first 10 trial values for the PsiForecast() function in cell C147, Cells 

E147:N147 will contain the first 10 trial values for cell C148 and so on.  (For 

more information on the PsiData() function, please see the Excel Solvers 

Reference Guide chapter, “Psi Function Reference.”) 

Note:  In Analytic Solver Cloud and in later versions of desktop Excel, the 

PsiData() function returns a Dynamic Array.  To use this function in the Cloud, 

you need only enter the Psi function in one cell as a normal function, i.e., not as 

a control array.  The contents of the Dynamic Array will "spill" down the 

column.  If a nonblank cell is "blocking" the contents of the Dynamic Array, 

PsiData() will return #SPILL until such time as the blockage is removed.  Use 

the optional numTrials argument to specify the number of trials returned in the 

Dynamic Array.  If not present, all trials will be returned.   

If we create an Excel chart of these values, you’ll see a chart similar to the one 

below where each of Series1 through Series6 represents a different Monte Carlo 

trial.  The random “epsilon” value added to each forecast value accounts for (all 

of) the variation among the lines.  If the third argument were FALSE or omitted, 

https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531
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all of the lines would overlap, assuming that the table or parameters and the 

starting values were not changing. 

 

 

 
 

The remaining Forecasting methods can be used in the same way using 

PsiForecast() with information from their respective Stored Model sheets.   

 

Forecasting 

Algorithm 

Stored Model Sheet Minimum # of 

Initial Points when 

Simulate  = False 

Minimum # of 

Initial Points when 

Simulate  = True 

Non- Seasonal ARIMA ARIMA_Stored Max(p + d, q) Max(p + d, q) 

Seasonal ARIMA ARIMA_Stored Max((p + d + s *(P 

+ D), (q + s * Q) 

1 + Max((p + d + s 

*(P + D), (q + s * 

Q)** 

Exponential Smoothing Expo_Stored 1 1 

Double Exponential 

Smoothing 

DoubleExpo_Stored 1 1 

Moving Average 

Smoothing 

MovingAvg_Stored # of Intervals # of Intervals 

Holt Winters 

Smoothing 

MulHoltWinters_Stored 

AddHoltWinters_Stored 

NoTrendHoltWinters_Stored 

2 * #Periods 2 * #Periods 

 

**Adding a number of data points equal to the Number of Periods (as shown on the Time Series – ARIMA dialog) 

to the Minimum # of Initial Points when Simulate = True is recommended when calling PsiForecast() with Simulate 

= True.   

Excel 2016 Forecast Functions 

Users of Analytic Solver Comprehensive, Analytic Solver Simulation and 

Analytic Solver Basic will notice two Psi Forecast functions: 
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PsiForecastLinear() and PsiForecastETS().  These two functions were 

introduced to coincide with the new Excel 2016 Forecast functions:  

Forecast.Linear and Forecast.ETS.   

PsiForecastLinear predicts future values for a time series data set (containing 

known or historical data) using linear regression.  PsiForecastETS uses 

exponential smoothing to predict future values in a time series dataset with the 

option to either automatically detect seasonality in the data set or pass a 

seasonality period.  Passing False as the last argument to either function will 

result in a static forecast.  If True is passed for this argument, a random error 

will be included in the forecasted points.  

Note:  When comparing the results of the Psi functions with the Excel functions, 

you may see slightly different calculated forecast values depending on whether 

the Psi Interpreter or Excel Interpreter is selected on the Task Pane Platform tab.  

When the Psi Interpreter is used, a slightly different (but arguably better) 

methodology is used to compute these forecast functions.  When the Excel 

Interpreter is selected, Microsoft Excel is used to calculate the worksheet, and 

thus Excel's methodology will be used. 

To illustrate an example of how to use these two functions, we'll reuse the 

Airpass time series dataset.  Click back to the Data tab within Airpass.xlsx.  

Recall that the Airpass time series dataset contains international airline 

passenger data from January 1949 to December 1960.  Using this historical data, 

we will forecast the number of passengers in 1961.   

PsiForecastLinear() performs linear regression of known_y values with 

known_x time variables to forecast the value at time, X.  This function takes the 

following arguments.   

PsiForecastLinear(X, known_ys, known_xs[, simulate]) 

• X:  The target date.  A data point for which you want the predicted value.  A 

data point may be date/time or numeric. 

• known_ys:  An Excel range containing the independent variables in the 

given dataset. 

• known_xs:  An Excel range containing the time variables in the given 

dataset.   

• simulate: (Optional) Pass True or False for the third argument.  Passing 

False (the default) will result in a static forecast that will only update if a 

cell passed in the known_ys argument is changed.  If True is passed for this 

argument, a random error will be included in the forecasted points.   

Click a blank cell on the worksheet, say cell E3, then in Analytic Solver Desktop 

click Formulas – Insert Function on the Ribbon to display the Function 

Argument dialog.  In Analytic Solver Cloud, you'll need to type the formula 

directly into cell E3.   

Select PsiData Mining form the Category drop-down menu, then scroll down to 

PsiForcastLinear and click OK.  The Function Arguments dialog opens. 

• X: Select cell Data!E3 for the target argument.   

• Known_ys: Select or enter B3:B146.  These are the independent y 

values.  Be sure to anchor this range of cells (as shown in the 

screenshot below) so that we can easily copy the formula.   
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• Known_ys:  Select or type A3:A146 for the third argument, 

known_xs. Again, anchoring this Excel range now allows easy 

copying and pasting later.     

• Simulate:  Pass False for this argument.  See the Time Series 

Simulation example below for more information on passing True for 

this argument.   

 

Click OK to enter the formula into the Excel cell, then copy and paste this 

formula into cells E4:E14.   

 

If any values change in the ranges Data!A3:A146 or Data!B3:B146, the forecast 

will be recomputed; however, if the input argument values remain the same, 

PsiForecastLinear() will always return the same forecast values.  As mentioned 

above, the first forecasted value in cell E3 is the most accurate predicted point.  

Accuracy declines as the number of forecasted points increases.   

We can create a similar forecast using PsiForecastETS().  PsiForecastETS() 

performs Exponential Triple Smoothing on known values to forecast future 

values at time, target.  The fourth argument, seasonality, is optional.  If not 

given, seasonality is automatically detected from the the data.  If given, 

automatic seasonality detection is turned off, and the given seasonality period is 

enforced.   This function takes the following arguments.   
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PsiForecastETS(target_date, values, timeline[,  

seasonality][, data_completion][, aggregation][, 

simulate]) 

• target_date:  A data point for which you want the predicted value.  A 

data point may be date/time or numeric. If a target date is given that appears 

before the start of the timeline in the dataset, PsiForecastETS will return 

#NUM (i.e., if 1940 is passed for X). 

• values:  An Excel range containing the historical values in the given data 

set. 

• timeline: An Excel range containing the time variables in the given 

data set.  Both functions require the historical data to be structured using a 

constant interval between data points. Since the Airpass data set presents 

monthly passenger data, the forecast must also predict the number of 

passengers by month.  

• seasonality: (Optional) This argument indicates the length of the 

seasonal pattern.  The following values are accepted as valid inputs.  All 

other values will return a #NUM error.   

0:  Signifies no seasonality exists in the data.  The result is a linear 

prediction.   

1: (Default Value) Triggers Solver to automatically detect seasonality 

within the data.    

1 < N < 8,760:  Positive integer values greater than 1 but less than 8,760, 

will can be entered as the seasonality period.   

• data_completion:   (Optional) This argument specifies  how to handle 

missing values.  The default value of 1 replaces missing values by 

interpolation.  If 0 is passed, missing values will be replaced with 0's.   

• aggregation:  (Optional)  PsiForecastETS can aggregate multiple points 

with the same time stamp.  Pass an integer value from 0 to 6 to indicate 

which method should be used.  

0:  (Default)  Average 

1:  SUM 

2:  COUNT 

3:  COUNTA 

4:  MIN 

5:  MAX 

6:  MEDIAN 

• simulate: (Optional) Pass True or False for the third argument.  Passing 

False (the default) will result is a static forecast that will only update if a 

cell passed in the second argument is changed.  If True is passed for this 

argument, a random error will be added to each forecasted point.   

On the Excel ribbon, click Formulas – Insert Function to display the Function 

Argument dialog.   

Select PsiData Mining form the Category drop-down menu, then scroll down to 

PsiForcastETS and click OK. 

• Target_date:  Select cell Data!E3. 
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• Values:  Select or enter B3:B146.  These are the independent y 

values.  Anchoring the cell range (as shown in the screenshot below) 

will allow us to easily cut and paste the formula later.   

• Timeline:  Enter the dates January 1961 – December 1961 in cells 

D3:D11 for timeline.  These are our target dates or the dates that we 

want to predict.    These are our time variables.  Anchoring the cell 

range, as shown in the screenshot below, will allow us to easily cut and 

paste the formula.   

• Seasonality:  Enter 1 for this argument to automatically detect the 

seasonality within the data.   

• data_completion:  Enter 0 for this argument to substitue any 

empty value with 0.  

• aggregation: Enter 0 for this argument to aggregate multiple points 

with the same date using AVERAGE.    

• Simulate:  Passing TRUE for the third argument indicates to 

XLMiner that you plan to use this function call in a Monte Carlo 

simulation.  Therefore, a random epsilon value (different on each 

Monte Carlo trial) will be added to each forecasted point.  

  

Click OK to enter the formula into the Excel cell.  This formula can easily be 

copied to cells E4:E14.   

 

As with the PsiForecast Data Mining functions, to view the results of the 

simulation, including frequency and sensitivity charts, statistics, and percentiles 
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for the full range of trial values, we must first create an output cell.  Select cell 

F3, then click Analytic Solver Platform – Results – Referred Cell on the 

Excel ribbon.  Select cell F17 (or any blank cell on the spreadsheet) to enter the 

PsiOutput formula.  Copy this formula from cell F17 down to cell F28.  

Therefore F17 = PsiOutput(F3), F18 = PsiOutput(F4), and so on.   

Click the down arrow on the Simulate icon on the Analytic Solver Platform 

ribbon and select Run Once.  Instantly, Analytic Solver Simulation performs a 

simulation with 1,000 Monte Carlo simulation trials (the default number).  Since 

this is the first time a simulation has been performed, the following dialog 

opens.  Subsequent simulations will not produce this report.  However, it is 

possible to reopen the individual frequency charts by double-clicking each of the 

output cells (F17:F28). 

Important Note:  For users who are familiar with simulation models in Analytic 

Solver, you will notice that the time series simulation model that we just created 

now includes 12 uncertain functions (F17:F28) which are the cells containing 

our PsiForecastETS() functions.   

 

The dialog above displays frequency charts for the first nine, of the total 12, 

uncertain function cells containing the forecasted data points.  Double-click the 

chart for cell F3 (top-left) to open the Simulation Results dialog displaying 

PsiForecastETS() function in cell F3.  From here, you can view frequency and 

sensitivity charts, statistics and percentiles for each forecasted point. 
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The frequency chart displays the distribution of all 1000 trial values for cell F3 

with an observed mean 455.825 and standard deviation of 38.23 shown in the 

Chart Statistics.   

On the right of the dialog, you’ll find the Statistics pane, which includes 

summary statistics for the full range of forecasted outcomes. We can see that the 

minimum forecasted value during this simulation was 290.98, and the maximum 

forecasted value was 579.84. In this simulation, Value at Risk 95% shows that 

95% of the time, the number of international airline passengers was 519.65 or 

less in January 1961. The Conditional Value at Risk 95% value indicates that the 

average number of passengers  we would have seen (up to the 95% percentile) 

was 451.69.  For more information on Analytic Solver Platform’s full range of 

features, see the chapter, “Examples:  Simulation and Risk Analysis”.   

 

As in the previous section, we will graph the first few trial values (out of a total 

of 1000) for each forecasted point.  Select cells G17:G28, then enter the 

formula, =PsiData(F17), then press CTRL + SHIFT + ENTER to array enter the 

formula into all 12 cells.  Repeat the same steps to array enter “=PsiData(F18)” 

in cells H17:H28, “=PsiData(F19)” in cells I17:I28, and so one.  On the Analytic 

Solver Platform ribbon, click Simulate – Run Once to run a simulation.   

 

The 12 Excel cells in these columns will update with trial values for each of the 

PsiForecastETS() functions in cells F3:F14.  Cells G17:G28 will contain the first 

12 trial values for the PsiForecastETS() function in cell F3, cells G17:G28  will 

contain the first 12 trial values for cell F4, and so on.  (For more information on 

the PsiData() function, please see the Excel Solvers Reference Guide chapter, 

“Psi Function Reference.”) 

 

If we create an Excel chart of these values, you will see a chart similar to the one 

below where each of Series 1 through Series 12 represents a different Monte 

Carlo trial.  The random “epsilon” value added to each forecast value accounts 

for (all of) the variation among the lines.  If the third argument were FALSE or 
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omitted, all of the lines would overlap, assuming that the table or parameters and 

the starting values were not changing. 
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Getting Results:  Stochastic 
Optimization 

Introduction 
This chapter explains how to obtain and interpret results from stochastic 

optimization (optimization of models with uncertainty) in Analytic Solver 

Comprehensive or Analytic Solver Simulation with Analytic Solver 

Optimization.  We’ll discuss what can go wrong, and what to do about it, and 

also how to get more than a single optimal solution from your model. 

Analytic Solver Comprensive has powerful algorithms for automatically 

transforming and solving optimization models with uncertainty.  But since a 

stochastic optimization model includes decision variables, uncertain 

variables, and constraints and an objective that may depend on both, there are 

“more things that can go wrong.”  Indeed, everything you’ve read in the 

previous two chapters, “Getting Results:  Optimization” and “Getting Results: 

Simulation” will apply to stochastic optimization – plus there are a variety of 

special result messages and error messages that apply only to stochastic 

optimization models. 

The good news is that everything you’ve learned so far about conventional 

optimization and Monte Carlo simulation does apply to stochastic optimization 

in Analytic Solver Comprehensive.  Unlike most other software packages, 

Analytic Solver Comprehensive has one consistent user interface, set of terms, 

and model elements for all types of simulation and optimization models. 

In the following sections, we’ll focus on immediate actions you can take when 

you get an unexpected result – but if you read the chapter “Mastering Stochastic 

Optimization Concepts,” you’ll learn far more about stochastic optimization 

models and solution methods, and better understand why the unexpected result 

appeared, and how to design your model to get the solutions you want. 

What Can Go Wrong, and What to Do About It 
When you click the Optimize button on the Ribbon, or the green arrow on the 

Task Pane to solve, you’ll normally get one of these outcomes: 

1. A solution that makes sense to you.  This is normally accompanied by a 

Solver Result message in green at the bottom of the Task Pane.  You 

can proceed to “When Things Go Right:  Getting Further Results.” 

2. A Solver Result error message that you understand and can correct, in 

red at the bottom of the Task Pane.  You can take corrective action. 

3. A Solver Result error message that you don’t understand, in red at the 

bottom of the Task Pane.  You should read the solution log in the 

Output tab (in Analytic Solver Desktop), click the error message and 

read Help about the message. 

4. A solution that you don’t understand, or that seems wrong.  Again 

before doing anything else, you should read the solution log in the 
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Output tab (in Analytic Solver Desktop), click the error message to 

display Help, run available reports as described below, and read the 

section below “When the Solution Seems Wrong.” 

5. Solving runs for a very long time, and you don’t get a solution or a 

Solver Result message until you press ESC or click Pause/Stop.  You 

should read the section below “When Solving Takes a Long Time.” 

In rare cases, you might find Excel shutting down or “locking up” (so nothing 

happens when you press and hold the ESC key for several seconds in Analytic 

Solver Desktop or the Pause button in Analytic Solver Cloud).  In this case 

please contact Frontline Systems Technical Support at (775) 831-0300 x4 or 

support@solver.com.  Some Solver Result error messages ask you to contact 

Technical Support.  If you can send us your model, this will be very helpful. 

But experience shows that 99% of all technical support cases involve “pilot 

error” by the user, and that 90% of all such cases could be easily resolved by 

reading online Help or the User Guide.  So we hope you’ll keep reading, and 

that you’ll take these steps before calling technical support! 

Review Messages in the Output Tab 

If using Analytic Solver Desktop, your first step should be to review the 

messages in the solution log in the Task Pane Output tab.  This is especially 

important when you’re solving a stochastic optimization model, to ensure that 

you understand the solution method that Analytic Solver Comprehensive used, 

and how your model was transformed and solved. 

A Model Solved with Simulation Optimization 

On the next page is an example of the Output tab at the solution of the example 

model  YieldManagementModel3.xls (described more fully in the chapter 

“Examples: Simulation and Risk Analysis”). 

If you are using Analytic Solver Desktop, you can click the Copy  icon to 

copy the contents of the solution log to the Windows Clipboard, where you can 

paste it into Microsoft Word, NotePad, or an email message to Frontline 

Systems Technical Support.  Also, on the next page is the complete solution 

log from the Gas Company Chance model (before clicking the button to 

automatically improve the solution). 

Note what happened during the solution process:  Analytic Solver 

Comprehensive found that a Stochastic Transformation could not be applied to 

this model, because it has a decision-dependent uncertainty (the number of no-

shows at cell C7 depends on the number of tickets sold, our decision variable, at 

C11).  See the chapter “Mastering Stochastic Optimization Concepts” for more 

information on this important property of your model. 

Analytic Solver diagnosed the model as “SIM NonCvx,” and solved it using 

simulation optimization – the most general, but least scalable stochastic 

optimization method in Analytic Solver Comprehensive.  It used the GRG 

Nonlinear Solver Engine (selected by the user) for optimization, and on every 

trial solution explored by the GRG Solver, it automatically performed a 

simulation. 



Frontline Solvers 2021 User Guide Page 426 

 

---- Start Solve ---- 

Using: Full Reparse. 

Parsing started... 

Diagnosis started... 

Warning: Non-smooth operation PSILOGNORM at 'Yield Management 3'!H25; 5 Non-

smooth operations found.  

User selected "Simulation Optimization". 

Diagnosis started... 

Warning: Non-smooth operation PSILOGNORM at 'Yield Management 3'!H25; 10 Non-

smooth operations found.  

Model diagnosed as "SIM NonCvx". 

User engine selection: Standard GRG Nonlinear   

Model: [YieldManagementModel3(SimOpt).xls]Yield Management 3 

Using: Psi Interpreter 

Parse time: 0.30 Seconds. 

 

Engine: Standard GRG Nonlinear   

Setup time: 0.00 Seconds. 

 

Engine Solve time: 0.22 Seconds. 

 

Solver found a solution.  All constraints and optimality conditions are satisfied. 

Solve time: 0.76 Seconds. 

Note:  Information such as what is shown above is not available in the Cloud 

app since the RASON Server does not rely any information back to the app until 

the model is handed over to the Solver engine. 

Let’s contrast what happened above with another example, where there are no 

decision-dependent uncertainties, and the underlying optimization model is a 

linear programming problem, but there is a chance constraint. 
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A Model Solved with Robust Optimization 

Below is an example of the Output tab in Analytic Solver Desktop at the 

solution of the Gas Company Chance model  in StochasticExamples.xls  

(described more fully in the chapter “Examples: Stochastic Optimization”). 

 

Again, if you click the Copy  icon, the contents of the solution log will be 

copied to the Windows Clipboard, where you can paste it into Microsoft Word, 

NotePad, or an email message to Frontline Systems Technical Support.  

Below is the solution log from the Gas Company Chance model (before clicking 

the button to automatically improve the solution). 

---- Start Solve ---- 

Using: Full Reparse. 

Parsing started... 

Uncertain input cells detected. 

User requested Robust Counterpart. 

Diagnosis started... 

Convexity testing started... 

Stochastic Transformation succeeded using Robust Counterpart with D Norm. 

Transformed model is "LP Convex". 

Model: [StochasticExamples.xls]Gas Company Chance 

Using: Psi Interpreter 

Parse time: 1.19 Seconds. 

Engine: Standard LP/Quadratic    

Setup time: 0.02 Seconds. 

Engine Solve time: 0.00 Seconds. 

 

Solver found a conservative solution to the robust chance constrained problem. All constraints 

are satisfied. 

Solve time: 1.36 Seconds. 

Click the Solver Result Message for Help 

The Solver Result message in Analytic Solver Desktop is always underlined – 

it is a hyperlink to Help.  If you aren’t sure that you fully understand it, click 

the link to open online Help to a detailed discussion of the message.   

Below is an example of Help that appears when you solve the Gas Company 

Chance model, and click on the Solver Result error message in green, “Solver 

found a conservative solution to the robust chance constrained problem. All 

constraints are satisfied.” 
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Notice that the Help topic points out the option to Auto Adjust Chance 

Constraints.  This is one key to better solutions when robust optimization is 

used, as in this example.  Clicking the  icon at the top of the Task Pane yields 

an improved solution, and the following solution log: 

---- Start Solve ---- 

Model: [StochasticExamples.xls]Gas Company Chance 

Using: Psi Interpreter 

Using: Full Reparse. 

Parsing started... 

Diagnosis started... 

Parse time: 0.19 Seconds. 

Engine: Standard LP/Quadratic    

Setup time: 0.00 Seconds. 

Engine Solve time: 0.00 Seconds. 

(above lines appear 7 times) 

 

Solver has converged to the current solution of the robust chance constrained problem. All 

constraints are satisfied. 

Solve time: 0.39 Seconds. 

This was a successful solution – but in cases where you have a Solver Result 

error message that you don’t understand, or a solution that you don’t under-

stand, the solution log can be even more helpful. 

Note:  If you are using Analytic Solver Cloud, set Operating Mode (Help – 

Operating Mode) to either Guided Mode or Auto Help Mode to find detailed 

information on the Solver result messages.   

Choose Available Optimization Reports 

As for conventional optimization, the available reports can help you understand 

the properties of a solution found by Analytic Solver.  Just select Reports – 

Optimization Reports on the Ribbon – the available reports in the gallery are 

updated each time you solve. 
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Below is an Answer Report obtained for the Gas Company Chance model when 

we first received the Solver Result message “Solver found a conservative 

solution to the robust chance constrained problem. All constraints are satisfied.”  

Note:  This report is only generated in Analytic Solver Cloud when uncertain 

exceptions exist.   

 

Note especially row 26, which reports the status of the chance constraint 

VaR0.95($C$23) >=0:  We asked for satisfaction of this constraint 95% of the 

time, but at this solution the constraint is being satisfied 99.5% of the time.  

This is a strong hint that the solution is conservative, and can be improved. 
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The Uncertainty Report for this model shows us the subset of the constraints and 

objective that depend on uncertainty.  (Note:  Since this model is automatically 

transformed to its robust counterpart, which has no uncertainty, you must set the 

Task Pane Platform tab Optimization Model group Solve Uncertain Models 

option to Simulation Optimization, then choose Analyze Original Problem to 

produce this report.) 

Note:  This report is not available in Analytic Solver Cloud.   

 

When Solving Takes a Long Time 

When your model takes a long time to solve, the Task Pane Output tab can be 

helpful during the solution process – at a minimum, to reassure you that the 

Solver is still making progress, and has not “hung up.”  If it is not already visible 

when you first start solving, the Output tab will appear automatically after a 

few seconds of solution time, as long as the Task Pane itself is visible. 

Running Chart of the Objective 

The bottom part of the Output tab shows a running chart of the objective of the 

best solution found so far.  This is most often useful for simulation optimization 

models, which may take some time to solve.  Below is an example (staffing for a 

call center, not included among the installed example files): 

 

Interrupting the Solution Process 

You can interrupt the solution process at any time, by pressing the ESC key in 

Analytic Solver Desktop, or by clicking the  button in either Analytic Solver 

Desktop or the Cloud app, in the Task Pane Output tab.  If your model is very 

large and you are using Analytic Solver Desktop, you might have to hold down 

the ESC key for a second or two.  Since the input focus may not be on the Task 

Pane when you click with the mouse, you might have to click the  button 

twice.  A dialog like the one on the next page will appear. 
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Click Continue if you want to continue solving; click Stop to cause the Solver 

to stop the solution process (this may take a few seconds) and display the 

message “Solver stopped at user’s request.”  Clicking Restart may be useful 

with the Evolutionary Solver – see the Frontline Solvers Reference Guide. 

Reasons Why Solving Takes a Long Time 

There are several reasons why solving a stochastic optimization model might 

take a long time.  To better understand why, read the chapter “Mastering 

Stochastic Optimization Concepts.” 

1. If your model doesn’t meet the requirements for the stochastic 

programming or robust optimization solution methods, then the slowest 

method – simulation optimization – must be used.  Since this requires 

an optimizer (such as the Evolutionary Solver) that will explore many 

Trial Solutions, and a new simulation must be performed for every Trial 

Solution, this method can take a lot of computing time.  

2. If you are using Analytic Solver Desktop and you have the Platform tab 

Simulation group Interpreter option set to Excel Interpreter, Excel is 

used to recalculate the worksheet on each Monte Carlo trial.  This is 

usually an order of magnitude slower than the PSI Interpreter, though 

it requires significantly less memory. 

3. If model diagnosis or problem setup is slow (see timing messages in 

the Task Pane Output tab), you might be using array formulas, 

LOOKUP functions with large ranges as arguments, or long “chains” of 

formulas where each formula depends on an earlier formula, which can 

slow down the PSI Interpreter.  See the analysis in the chapter 

“Getting Results: Optimization.” 

4. Your model might be well formulated, but very large, or it might 

require non-smooth functions, or many integer variables.  A faster 

processor, multi-core processor, or more memory may help. 

When the Solution Seems Wrong 

When your optimization results seem wrong, before doing anything else, you 

should read any messages in the Output tab, and click the message to display 

Help as described above.  We emphasize this, because very often when we are 

contacted in technical support, the user has not taken these basic steps. 

Bear in mind that the uncertain function cells in your optimization model 

normally display the calculated value for the last Monte Carlo trial of the last 

simulation run.  (All of Analytic Solver’s solution methods – stochastic 

programming, robust optimization, and simulation optimization – perform at 

least one simulation).  It can be very helpful to cycle through the Monte Carlo 
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trials, and examine the values of uncertain function cells, as well as interme-

diate formula cells on which they depend.  Just use the left and right arrows on 

the Ribbon to change the trial index. You may find that your model calculates a 

result you did not expect for some values of the uncertain variables. 

Although software bugs are always possible, consider carefully the possibility 

that the simulation results are correct for the model you’ve defined, and that 

your expectation is wrong.  We sometimes find in technical support that what 

your model actually says is different from what you intended. 

When Things Go Right:  Getting Further Results 
When you do receive a solution that makes sense to you, and you have a Solver 

Result message in green at the bottom of the Task Pane for your stochastic 

optimization model, you have available all the optimization and simulation 

reports and charts that apply to your model and solution.  Since a simulation is 

performed for every stochastic optimization model, you can double-click the 

uncertain function cells in your model (in Analytic Solver Desktop) or on the 

Model tab of the Solver Task Pane (in Desktop or the Cloud) to display the 

Uncertain Function dialog, and obtain many different views of the uncertainty in 

your model: 

Dialog Tabs 

• The Frequency, Cumulative Frequency, and Reverse Cumulative 

Frequency tabs provide three different views of the full range of outcomes 

for an uncertain function.  In Analytic Solver Desktop, you can click to 

display “crosshairs” with numerical values on these charts, or add Lower 

and Upper bounds to see the estimated probability of a profit or loss, for 

example. 

• The Tornado chart on the Sensitivity tab quickly shows you which 

uncertain variables have the greatest impact on this uncertain function, 

across the full range of Monte Carlo trials.  The Scatter Plots tab often 

reveals further insights about the behavior of this uncertain function versus 

each uncertain variable, or versus other uncertain functions. 

• The Statistics and Percentiles tabs give you a full range of numerical 

results for this uncertain function, across the full range of Monte Carlo 

trials.  Using PSI Statistics functions, you can place any of these values into 

a worksheet cell. 

Panels and Toolbars 

Analytic Solver Desktop includes rich charting abilities that are currently not 

available in Anlaytic Solver Cloud, but are coming soon.  The suggestions 

below all pertain to Analytic Solver Desktop.   

• Using the right panel of the dialog, you can change the chart type and color 

in both Analytic Solver Desktop and Cloud apps.  In Analytic Solver 

Desktop you can additionally add titles, legends, gridlines, or chart markers.  

From the Options dialog (accessible from the Options button on the 

Analytic Solver Desktop Ribbon), on the Charts and Markers tabs, you 

can set default chart and marker settings for all of your charts. 

• Using the title toolbar icons in Analytic Solver Desktop, you can save your 

settings, print the charts or numbers from any of the dialog tabs, or copy 

the charts or numbers to the Windows Clipboard, where they can be pasted 
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into other applications.  You can also fit a distribution to the simulation 

results or export your results to either Power BI or Tableau. 

• In Analytic Solver Desktop, click the leftmost icon on the second row to 

display the 3-D toolbar that lets you – with a single click – shift between 2-

D and 3-D, shrink or magnify the chart, or move or rotate the chart to a 

different perspective. 
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Dimensional Modeling 

Introduction 
Dimensional Modeling is a fundamental new capability in Analytic Solver 

Comprehensive when using Analytic Solver Desktop.  It introduces new 

concepts such as dimensions and cubes, and provides all the tools you need to 

build and solve models using these concepts.  If you’re used to spreadsheet 

modeling, Dimensional Modeling will require some learning and practice.  But 

when you want to construct larger models for common business situations 

where there are multiple products, projects or investments, multiple customer 

types, geographic regions, or time periods, multiple sources and destinations, 

dimensional modeling can turn a very complex, hard-to-maintain spreadsheet 

problem into a simple, well-structured, easily maintained and expandable model.   

Note: Dimensional modeling is not currently supported in Analytic Solver 

Cloud.   

If you’ve used Pivot Tables or PowerPivot in Excel, or if you’ve used a 

multidimensional database, data warehouse or business intelligence tool, the 

concepts behind Dimensional Modeling will probably be familiar.  But these 

tools primarily deal with multidimensional data, generally reflecting the past.  

Dimensional Modeling makes it easy to construct multidimensional models, 

mostly composed of formulas, that you can use in planning for the future.  

Unlike other tools, in Analytic Solver you can use everything you know about 

Excel formulas in Dimensional Modeling.  For example, if cell A1 contains a 

number and cells B2 and C3 contains =PsiCube() functions, a formula like 

=A1+B2*C3 in a cell will yield a “cube result,” multiplying and adding the 

appropriate values along several dimensions.  You can also define B2 and C3 

based on Pivot Tables containing input data, and easily obtain a Pivot Table that 

displays the results of like =A1+B2*C3. 

Very often, a successful model is expanded to include more products, regions, 

time periods, etc.  This is much easier to do with a Dimensional Model than 

with a traditional spreadsheet model.  Formulas like =A1+B2*C3 need not 

change at all when you add elements (more cell or database values) to the 

existing dimensions.  You can even add new dimensions to B2 and C3, or turn 

A1 from a single cell to a cube, and =A1+B2*C3 will automatically calculate 

results across the additional dimensions. 

Dimensional Modeling in Optimization and Simulation 

Dimensional Modeling can be used to create multidimensional “what if” models 

– a very powerful capability by itself.  But you can also use it to create better 

structured, more compact and easily readable optimization and simulation 

models.  For example, blocks of constraints that once required large ranges of 

repetitive formulas can now be entered in one or a few cells, drastically reducing 

the number of formulas.  Similarly, in a simulation model, blocks of uncertain 

functions that once required large numbers of repetitive formula cells can be 

reduced to one or a few cells.  You can define as many “structural dimensions” 

as you like, and use up to 8 of them at one time, in any PsiCube() function or 

calculated “cube intermediate result” in a formula.  
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Dimensional Modeling and Parametric Analysis 

Dimensional Modeling also offers a powerful extension of Analytic Solver’s 

capabilities for multiple parameterized optimization and simulation (described in 

the earlier chapters “Examples:  Parameters and Sensitivity Analysis,” “Getting 

Results: Optimization” and “Getting Results: Simulation”).  It enables you to 

perform sensitivity analysis, or run many optimizations or simulations, varying 

parameters across multiple dimensions on each run, and capture all the results – 

optionally in Pivot Tables and Pivot Charts. 

Without Dimensional Modeling, you define parameters for sensitivity analysis, 

optimization and simulation, using PsiSenParam(), PsiOptParam() and 

PsiSimParam() functions, respectively.  These parameters function like simple 

“cubes” defined over just one dimension – the “run index” 1, 2, 3, etc.  You run 

multiple calculations, optimizations or simulations, where all the parameters of a 

given type “move together” through their arrays of values. 

With Dimensional Modeling, you can define as many “parametric dimensions” 

as you like, and create cubes of parameter values that are defined over one or 

more dimensions.  You can then perform sensitivity analysis or run multiple 

optimizations or simulations, where any subset of your parametric dimensions 

are “active” (the others are “locked”), and get results for all combinations of the 

parameter values you’ve defined. 

Just as you can expand a model by adding a structural dimension and generalize 

one or more cubes over the new dimension, without changing your formulas, 

you can add a parametric dimension, use it in one or more cubes, and expand 

your sensitivity analysis, optimization or simulation runs to include more 

scenarios, without changing any formulas. 

Visualizing Dimensional Modeling Results 

As mentioned earlier, you can define cubes based on Pivot Tables containing 

input data, and easily create new Pivot Tables that displays results of formulas 

like =A1+B2*C3.  But creating a Pivot Table does require several steps, as well 

as “real estate” on your spreadsheet.  If you want to inspect the results of 

intermediate calculations, you might need a separate table area for each “cube 

formula” cell in your model. 

Analytic Solver makes this much easier.  Just double-click on any cube formula 

to see a pop-up window that behaves like an “instant Pivot Table,” allowing you 

to ‘drag and drop’ both structural and parametric dimensions across the columns 

and rows, and reorganize and display the data or calculated results.  You’ll see a 

number of examples of these pop-up windows in this chapter.  For final results 

and reporting, you can use Pivot Tables and Charts. 

Dimensions and Cubes 
Let’s define the concepts in Dimensional Modeling more formally.  You can 

define two types of dimensions, Structural and Parametric, and use them in 

calculation/sensitivity analysis, optimization and simulation models. You give a 

name (such as “Region”) for the dimension, and you provide names/labels or 

numbers for the elements of the dimension – for example “North,” “South,” 

“East” and “West.”  Note that a dimension doesn’t define the data itself – it 

defines a structure, relevant for your business situation, for the data. 

 

Cubes are multi-dimensional arrays that hold the data.  Other names used in data 

warehouse and business intelligence systems, are measures and/or fact tables.   
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A cube has an element (data value) for each combination of elements of the 

dimensions you specify when defining the cube.  For example, you might create 

a cube named “Sales,” defined over the “Regions” dimension, with four numeric 

values representing sales in the North, South, East and West regions.  The 

structure of a cube is very much like a Pivot Table, and you can create a cube by 

placing a PsiPivotCube() function in a cell, referencing an existing Pivot Table. 

 

A single cube holds a single “measure” or type of value.  For example, a person 

has many attributes such as height, weight, hair color, and eye color.  You might 

define a dimension “Person” with elements such as “John”, “Mary” and 

“Susan.”  But since a cube holds a single attribute or measure, you’d need four 

different cubes, each defined over the “Person” dimension, to hold the values of 

height, weight, hair color, and eye color. 

 

There are three main steps involved in creating a Dimensional Model.  Step 1 is 

to define at least one dimension, either parametric or structural.  Step 2 is to 

define at least one (usually several) cubes.  Step 3 is to define at least one 

output cell – for example, the objective cell in an optimization model – with a 

formula that depends on a cube.  Often, you’ll have outputs that are cubes and 

contain many – even thousands of – result values. 

An Example Dimensional Model 

This chapter will use the Product Mix example, introduced at the beginning of 

the chapter “Examples:  Conventional Optimization,” to illustrate Dimensional 

Modeling concepts, and the menu choices and Psi functions you can use to build 

a Dimensional Model step by step.  The example is very simple, with just two 

structural dimensions – Products and Parts.  This will make it easier to fully 

grasp the concepts and step-by-step operations, but since you can usually “lay 

out” two-dimensional data in regular spreadsheet columns and rows, Dimen-

sional Modeling might seem like “overkill” for this simple example.  The 

advantages of Dimensional Modeling will be apparent when you are modeling a 

more realistic business situation with many dimensions. 

Click Help – Example Models on the Analytic Solver ribbon, to open the 

Frontline Example Models Overview workbook.  Click the Optimization 

Examples button, or select the Optimization tab, and scroll down to find and 

click Structural Dimensions from the list.  When this workbook opens, click 

the Product Mix Original tab, which displays a conventional version of the 

Product Mix model. 
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This example solves the problem of how many TVs, Stereos and Speakers a 

company should manufacture.  It has three decision variables (C14:E14) that 

correspond to the number of TVs, Stereos and Speakers that the company will 

manufacture.  The profit margins for each product are known. The gross margin 

(cell C24) for a TV is $75.  The gross margin for stereos (cell D24) is $50 and 

the gross margin for speakers (cell E24) is $35.   

Five different parts are used in the manufacturing process of these three 

products.  The parts needed to build a TV are:  1 chassis, 1 picture tube, 2 

speaker cones, 1 power supply, and 2 electronic kits.  To build a stereo requires 

1 chassis, 2 speaker cones, 1 power supply, and 1 electronic kit.  Finally, 

speakers require 1 speaker cone and 1 electronic kit. 

The constraints are simply that the number of parts used to build each product 

(calculated in cells G18:G22) cannot exceed the inventory (found in cells 

H18:H22).  A non-negativity bound has also been added to the variables 

(C14:E14 >= 0) as it would be impossible to manufacture a negative amount of 

products.  Since the company wants to maximize profit, we ask ASP to 

maximize the value of the objective (cell G24), the total gross profit. 

You can view the complete model in the Task Pane Model tab.  Solve the model 

by clicking the green arrow in the Model tab.  ASP will run an optimization to 

find a solution of 200 TVs (cell C14), 200 Stereo (cell E14) and 0 speakers (cell 

E14). This solution gives a final objective of $25,000 in cell G24. 

Now let's inspect a model of this same problem setup using Dimensional 

Modeling:  Click the Dimensional Modeling tab.   

 

Cells K13 and L13 define the Products and Parts dimensions.  Cells K16:L17 

define four cubes, using the PsiCube() function.  Cells K20 and L20 contain 

cube formulas that calculate the constraints and objective, using the PsiReduce() 

function.  Cells K25:K29 contain an Excel array formula{ =PsiCubeData(K20)} 

to display the values of the left hand sides of the constraints on the spreadsheet; 

but if you simply double-click cell K17, you’ll see the same values in a pop-up 

window that functions like an “instant Pivot Table.” 

Notice that the Task Pane Model tab outline (not pictured here) lists the 

Dimensions and Cubes in the model, as well as the Variables, Constraints, 
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Objective and other model elements.  To keep things simple for users who aren’t 

using Dimensional Modeling, these outline elements appear only when you have 

functions such as PsiDim() and PsiCube() in cells on your worksheet. 

The decision variables are still in cells C14:E14.  Try changing one of these 

cells to a new value such as 100.  You’ll see that the worksheet recalculates just 

like a normal Excel model, even though it is composed of dimensions and cubes. 

Dimensional optimization models continue to use a separate cell for each 

decision variable – whereas they might have thousands of constraints in a single 

cell.  Keeping decision variables in individual cells makes it easy to capture final 

solution values, save them in your workbook, and use Excel to recalculate the 

spreadsheet later.  Cube formulas appear to Excel as ordinary formulas (with 

single values) using user-defined functions such as PsiCube() and PsiReduce(); 

the actual multidimensional calculations are performed “behind  the scenes” by 

the PSI Interpreter. 

Solve the model by clicking the green arrow in the Model tab, just as you did on 

the Original sheet. You’ll see the same optimal solution appear in cells C14:E14. 

The following sections will take you step by step through the process of building 

a Dimensional Model like the one above.  You can use the Analytic Solver 

menu choices, grouped under the Model button, to define dimensions, cubes and 

results, or you can type functions such as  PsiCube() and PsiReduce() directly 

into cells, without using the GUI at all. 

Using Dimensional Modeling in Optimization 

Keep in mind the following three steps when using Dimensional Modeling:   

1. Define a Dimension. 

2. Define a Cube. 

3. Define a Cube Output cell.  (This step is optional).    

Defining a Dimension 

Two dimensions have been created in cells K13 and L13, Products and Parts, 

respectively.  The Products dimension (cell K13) contains three items or 

elements:  TVs, Stereos and Speakers.  The Parts dimension (cell L13) contains 

five items or elements:    Chassis, LCD Screens, Speakers, Power Supply, and 

Electronics.  

To create a dimension, you may either type the PsiDim() function call directly 

into a cell, or use the Model menu, shown below, to insert the PsiDim() formula 

into the active (selected) cell. 
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To use the Model menu, click Model – Dimension – From Cell Range.  The 

Add Dimension dialog appears.   

Enter a name of your choice for the Name field.  In this case, we have used 

Products.  Select Range and enter the Excel cell range that contains the product 

names.  One could also enter an integer here, say “11”, which would result in the 

creation of a dimension with 11 elements.  Select Bounds to enter a lower and 

upper bound.  These bounds can be entered directly into the lower and upper 

bound fields or cell addresses can be used.  For example, if bounds of 1 and 10 

are entered directly or cell addresses of cells containing 1 and 10 are entered into 

the Lower and Upper fields, a dimension with 10 (upper  - lower + 1) elements 

will be created.  (In this case, there will be no names associated with the 

elements other than indices from 1 to n.)        

Enter the range address of C13:E13 which hold the product names:  TVs, 

Stereos and Speakers.  Specify the cell address or defined cell name for 

Location, this example uses K10.  Finally, select Structural to create a 

Structural dimension.  (See below for instructions on how to create a Parametric 

Dimension.)  Click OK to add the formula “=PsiDim("Products",C13:E13)” to 

cell K13, Repeat these steps in cell L10 using the Name Parts and Range 

B18:B22. 

 

For more information on the PsiDim() function, please see the Frontline Solvers 

Reference Guide. 

Let’s take a look at the Model tab on the Solver Task Pane.  You should now 

have two dimensions listed under the Sheet1 worksheet, Products and Parts.  The 

Products dimension has three elements: TVs, Stereos and Speakers.  The Parts 
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dimension has five elements:  Chassis, Screen, Speaker, Power Supply and 

Electronics.     

 

Select the Products dimension. 

 

Several options will appear at the bottom of the task pane under Dimension (as 

shown in the screenshot above).  Here you can view the cell where the 

dimension is located (cell K13), the formula, the name of the dimension and the 

type of dimension (structural or parametric).  These fields are all read-only.  

Current Value, however, controls the values displayed in the cell containing the 

cube.  For example, select Speakers for Current Value.  Values in cells K16, 

K17, L16, and L17 will change to reflect values for Speakers.  For example, 

K13 will change to Products[3] to indicate that the third element of the Products 

dimension has been selected.  K16 will change to 0 (the value of cell C13), K17 

will change to 450 (the value of cell H18), L16 will change to 35 (the value of 

cell E24), and cell L17 will change to 0 to reflect that 0 chassis are used in the 

production of speakers.   
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Defining a Cube 

Four Cubes have been created in cells K16 (which holds the variable cells), L16 

(which holds the Profit values for each product), K17 (which holds the 

constraint right hand sides), and L17 (which holds the amount of parts used per 

product).  To create a cube, you may either type the PsiCube() formula into a 

cell or use the Model menu, shown below, to insert the formula into the selected 

cell. 

 

To use the Model menu, click Model – Cube – From Cell Range.  The Add 

Cube dialog appears.   

Enter an Excel cell range for Range, in this instance, select cells C14:E14, the 

variable values.  Select Products from the Dimension drop down menu.  To add 

more than one dimension to the cube, click “+” button.  Select a blank cell for 

Location – this example uses cell K16.  Click OK to create the cube.  The 

following formula will be entered into cell K16, 

=PsiCube($C$14:$E$14,"Products").  (This formula may also be entered 

directly.) 

 

The first argument of any cube is the cell address of the data.  In the cube 

located in cell K16, the first argument is C14:E14 (the variable cells).  The 

second thru ninth arguments are the dimensions for which the data will be 

calculated.  (At least one dimension is required.)  This 1-dimensional cube, 

calculated over the Products dimension, holds the data in cells C14:E14 which 
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are the number of products to build - the decision variables.  The data for the 

cube located in cell L16 can be found in cells C24:E24.  This 1 dimensional 

cube contains the profit values for each of the products.  This cube is also 

calculated over the Products dimension.  In the 1 – dimensional cube located in 

cell K17 (the cube holding the constraint right hand sides), the data is contained 

in cells H18:H22. In cell L17, a 2-dimensional cube has been created using the 

Products and Parts dimensions.  This cube holds the fact table containing the 

parts required per product (cells C18:E22).   

Note:  When calculating a cube over multiple dimensions, the “most 

rapidly changing” dimension must be first, while the “most slowly 

changing” dimension must appear last. Take the example table below. 

 

Starting from cell B2 (the start of the fact table) and reading from left 

to right, the 1st element of the cube will be 1 (Chassis & LCD TV), the 

2nd element of the cube will be 1 (Chassis & Stereo), the 3rd element of 

the cube will be 0 (Chassis & Speakers).  The 4th element of the cube 

will be 1 (Screen & LCD TV), the 5th element of the cube will be 0 

(Screen & Stereo) and the 6th element of the cube will be 0 (Screen & 

Speakers).  Between Products and Parts, which dimension is changing 

more frequently as we read from left to right?  Correct!  Products is 

changing more frequently which means this dimension should come 

first in the AddCube dialog or PSICube() function.   

Double click cell L17 to open the fact table for the cube located in this cell.  The 

following window appears. The data contained in this fact table is the same data 

contained in cells C18:E22. Click the arrows on the right side of the dialog to 

open an additional pane.  Here you can control the display formatting of the 

cube by selecting Cube Rows or Cube Columns from the drop down menu or 

by simply dragging Parts to Products and vice versa.   
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Click the Refresh Cube Data icon when changes have been made to the 

contents of the cube on the spreadsheet.  Click the Export Pivot Table icon to 

export the contents of the cube to an Excel Pivot Table.  Click the Copy icon 
(or click the down arrow to the right of the icon) to copy the grid to the 

spreadsheet, to Outlook, Word, etc.  Click the Autosize Pivot Table icon to 

autosize the columns in the grid.  Click the Print icon (or click the down arrow 
to the right of the icon) to send the grid to the printer, see a print preview, or 

to change printer or page settings.   

Cube Formulas:  Operations and Dimensions 

When executing an operation over cubes, if all participating cubes have the 

same dimensions, then the result cube will have the same dimensions too.  For 

example, if a cube with 4 dimensions is multiplied (or added, subtracted, 

divided, etc.) with another cube also containing the same 4 dimensions, the 

result cube will contain the same 4 dimensions. 

Otherwise, the result cube will be a union of the participating dimension sets.  

For example, if a cube B2 with two dimensions is multiplied by a cube C3 with 

one dimension that also appears in the first cube, the result B2*C3 will be two-

dimensional.  If C3 is defined over a dimension different from either of the two 

dimensions in B2, the result cube will be three-dimensional. 

You can use almost any Excel arithmetic or intrinsic operations, as well as 

almost all Excel built-in functions in cube formulas.  There are a few Excel 

functions that are not supported by the PSI Interpreter and are thus not supported 

in Dimensional Modeling.  These functions include: CubeX(), Call(), Cell(), 

EuroConvert(), GetPivotData(), Info(), Hyperlink(), Indirect(), RegisterID() and 

SQLRequest().   

Now let’s calculate the constraints.  In the original model, the constraints are the 

number of parts used (cells G18:G22) must be less than the inventory (found in 

cells H18:H22).  

To calculate the constraint in this example using Dimensional Modeling, we 

must use the PsiReduce() function.  This function reduces or aggregates a multi-

dimensional cube along one dimension.  A cube may be aggregated using the 

following supported functions:  average, sum, max, min, stdev, or var.  (For 

example, if PsiReduce() is used to aggregate a 3 –dimensional cube, the 

resultant cube would contain 2 dimensions.)  A cube reduced along all its 

dimensions is called a Degenerated Cube and will be a single value, or scalar.   

Select cell K20, then click Model – Reduction.  The Add Reduction dialog 

appears. 

Select Other Cell from the Cube drop down menu, then enter L17*K16 into the 

empty field.  Since we want to reduce the cube along the Products dimension, 

select Products from the Dimension drop down menu.  Next select Sum from 

the Reduce By drop down menu.  This is how the cube will be aggregated.  

Refresh Cube Data 

Export Pivot Table 

Copy Autosize Pivot Table 

Print 
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Confirm that Location is cell K20, then click OK.  The formula, 

=PsiReduce($L$17*$K$16, "sum","Products"), is entered into cell K20.  In 

general, the equation for this cube is:  , for each i= 1 to 5, 

where X equals the products (TVs, stereos and speakers), Y equals the parts 

(chassis, screen, speaker, power supply, & electronics) and R is a 1-dimensional 

vector containing 5 elements. 

  

The multiplication of the two cubes in cells L17 and K16 in the first argument of 

PsiReduce will result in a third cube containing the product of the number of 

parts per product and the variable values in cells C14:E14.  The cube in cell 

L17 contains 15 elements and is calculated along two dimensions, Products and 

Parts.  The cube in cell K16 has 3 elements and holds the fact table for only 1 

dimension, Products.  Remember, when multiplying two cubes with different 

dimension sets, the resultant cube will be structured along the Union of both 

dimension sets.  In this case, the resultant cube will be structured along both the 

Products and Parts dimensions and will also contain 15 elements.  PsiReduce() 

reduces or eliminates the specified dimension in the third argument, in this case 

the Products dimension.   The cube multiplication and reduction occurring in 

this single cell (cell K20) perform the same operations as cells G18:G22 in the 

original problem! Since Cubes are single cells, they can display only the first 

element of their cube result.  In order to see all cube elements, simply double 

click cell K20.  A popup window appears containing the following fact table. 
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It’s also possible to check the contents of a cube on the worksheet using the 

PsiCubeData() function.  Please see the Frontline Solvers Reference Guide for 

more information on this function.   

PsiReduce() is also used to calculate the objective function.  To compute the 

objective, we must multiply the cube containing the decision variables (cell 

K16) by the cube containing the Profit values (cell L16).  Select cell L20 and 

click Model – Reduction.  The Add Reduction dialog appears.   

 

Select Other Cell from the Cube drop down menu and enter K16*L16 in the 

blank field.  Since we are looking to sum over the Products dimension (sum the 

products of Products * Profits), select Products from the Dimension menu and 

Sum from the Reduce By menu.  Confirm the Location is cell L20 and then click 

OK.  The formula, =PsiReduce($K$16*$L$16, "sum","Products"), is entered 

into cell L20.  The result of this cube is a scalar or a single value.   

Defining Outputs in Dimensional Models 

It’s also possible to use an output function such as PsiOptData() to observe the 

contents of a fact table on the spreadsheet, rather than in a pop up fact table.  

Let’s designate cells K25:K29 as output cells to observe the final values of all 

five constraints calculated in cell K20.  To do so highlight cells K25:K29, then 

enter “=PsiOptData(K20)”, then CTRL + SHIFT + ENTER on the keyboard to 

enter this formula as an array.  Once Solver finds a solution, these cells will be 

populated with the left hand side of each constraint.  For example, cell K25 will 

display the left hand side of the first constraint, cell K26 will display the left 

hand side of the 2nd constraint, cell K27 will display the left hand side of the 3rd 

constraint, and so on.    

It’s also possible to create “what if” scenarios using Dimensional Modeling 

without ever having to run an optimization (or simulation) using a 2nd type of 

output function, PsiCubeOutput().  For more information, please see below 

under Additional Functions.   

Now let’s create our Solver model by adding the variables and constraints to the 

Platform Task Pane. 
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Building the Model 

At this point we can now start building our model in the Platform Task Pane.  

1. Add the Variables:  Select cells C14:E14, then click Decisions on the 

Ribbon. (Alternatively, click Decisions – Normal on the Ribbon.) If 

you inspect the Task Pane, you will find that cells C14:E14 now appear 

under the Normal Variables section.   

2. Add the Constraints:  Select cell K20, then click Constraints on the 

Ribbon.  The Add Constraint dialog will appear.  (Alternatively, click 

the down arrow under Constraints, then select Normal -- <= from the 

menu.) Enter cell K20 as the left hand side of the constraint and cell 

K17 as the right hand side of the constraint, then click OK.  If you 

inspect the Task Pane, you will find K20 <= K17 now appears under 

Normal Constraints.   

3. Add the Objective:  Select cell L20, then click Objective, then OK. 

(Alternatively click the down arrow under Objective, then select Max 

– Normal from the menu.)  If you inspect the Task Pane, you will find 

that cell L20 now appears under Objective with “(Max)” appearing to 

the right.   

4. Add Variable Bounds:  Since it would be impossible to make a 

negative amount of products, we must add a non-negativity bound.  To 

do so, select cells C14:E14, then click Constraints.  (Alternatively, 

click the down arrow under Constraints, and select Variable 

Type/Bound -- >= from the menu.)  The Add Constraint dialog will 

open. Select >= for the “sense” of the constraint (drop down menu in 

the middle).  Enter “0” as the constraint left hand side, then click OK.  

If you inspect the Task Pane, you will find C14:E14 >= 0 now appears 

under Bound.   

The Task Pane will look like the following. 
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Solving the Model 

Enter 0’s into cells C14:E14 then solve the model by clicking the green arrow on 

the Model Task Pane.   

 

Solver will solve the model and display the final variable values in cells 

C14:E14: 200, 200, and 0, respectively.  The status bar (found beneath the Task 

Pane) will display the message Solver found a solution with a green background.  

Analytic Solver will populate the objective formula located in L20 when the 

optimization finishes successfully.  Note:  All Solver engines except Interval 

Global Solver support Dimensional Modeling.    

Double click cell K20 to open a grid displaying the right hand sides of the 

constraints or the number of parts used to manufacture the three products.   

  

As you can see by the comparison of these two models, using a cube to model a 

problem will result in a more compact and easier to read model.  Continue 

reading the next section to learn about the 2nd goal of dimensional modeling, the 

parametric dimension. 

Now close this example, and continue reading to discover how to use a 

parametric dimension within an optimization model.  

Additional Functions 

Using Dimensional Modeling, it’s possible to create what if scenarios without 

ever having to run an optimization (or simulation).  The function PsiCubeData() 

will list the contents of any cube on the spreadsheet much like PsiOptData() 

listed the left hand sides of the constraints in the example above.  The difference 

between these two functions is that PsiOptData() will only be populated after an 

optimization is run, while PsiCubeData can be populated at any time.  Let use 

PsiCubeData() to list the contents of the Cube located in cell K17.  (This cube 

holds the constraint right hand sides.)    First, highlight 5 blank cells, say 

K31:K35, enter “=PsiCubeData(K17)”, then press CTRL + SHIFT + ENTER to 

enter the formula as an array in all five cells.  Next, click Model – Cube Result 

– Calculate to calculate the cube without performing an optimization.  

Afterwards, Cell K31 will display 450, cell K32 will display 250, cell K33 will 

display 800, cell K34 will display 450, and cell K35 will display 600.  These 

values correspond to the values in cells H18:H22.   
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You’ll notice that after you performed a manual cube calculation (by clicking 

Model – Cube Result – Calculate), the objective function cell (cell L20) now 

displays #NA.  To calculate and display the value of a degenerated cube (a cube 

that has been reduced to a scalar value), click Model – Cube Result – Output 

to append “+PsiCubeOutput()” to the existing formula to designate this cell as a 

cube output.  Afterwards, click Model – Cube Result – Calculate to recalculate 

all cubes on the worksheet.  Note:  PsiCubeOutput is not required in cell L20 

when running an optimization as Solver will calculate and display the contents 

of the objective function after a solution is found. 

Now let’s use PsiCubeData() to display the multidimensional cube in cell L17. 

First, we need to determine whether the result in L17 is a cube and which 

dimensions constitute that cube.  Since no more than two dimensions (Parts and 

Products) are defined in the worksheet, we’ll highlight two blank cells and enter 

PsiCubeData() as an array formula in these cells.  (Note:  If you aren’t sure how 

many dimensions are contained in a cube, select a few extra columns and rows 

for the array formula.  The excess cells will simply display #N/A.)  Let’s pretend 

that we aren’t sure of the number of dimensions contained in this cube, we know 

there are at least two, so let’s highlight three cells, K32:M32.  With all three 

cells highlighted, enter the following formula:  =PsiCubeData(L17, “dims”).  

When “dims” is passed for the struc_format argument (2nd argument), the name 

and size of each dimension will be returned.  Afterwards, press SHIFT + CTRL 

+ ENTER to enter this formula as an array in cells K32:M32.  Afterwards, K32 

will display “Parts[5]” indicating that there are 5 elements in the Parts 

dimension.  L32 will display “Products[3]” indicating that there are 3 elements 

in the Products dimension.  M32 will display “#N/A” indicating that a third 

dimension does not exist in the cube.  Now that we know the number of 

elements (or size) of the dimensions, we can display the fact table again by 

entering PsiCubeData() as an array, but this time we’ll use “vals” for the 

struc_format argument.   

When passing “vals” for this argument, PsiCubeData(), when entered as an 

array, will display the data as a relational table.  Since there are 3 elements in the 

Products table and 5 elements in the Parts table, the fact table for this cube will 

contain 15 (3 x 5) elements. Therefore, we will need to highlight 1 column for 

the first dimension (Parts), a 2nd column for the 2nd dimension (Products), a 3rd 

column for the actual values and 15 rows to hold all 15 values in the fact table. 

In this example, we’ll use the blank cells K33:M47.  (This area encompasses 

three columns and 15 rows.)  Select these cells, enter “=PsiCubeData(L17, 

“vals”), then press SHIFT + CTRL + ENTER to enter this formula as an array 

formula.  The following table will be displayed.   

Important Note:  While PsiCubeData() formulas are populated when Model – 

Cube Result – Calculate is selected, these formulas will not be populated 

during the optimization unless Dimensional Calculation is set to Automatic on 

the Platform tab in the Task Pane.  If Dimensional Calculation is set to Manual, 

PsiOptData() can be used in place of PsiCubeData() but only with cubes holding 

an optimization model component, such as a cube holding decision variables 

(K16) or calculating constraints (K20).  PsiOptData() will be populated after an 

optimization even when Dimensional Calculation is set to Manual.  However, 

PsiOptData() will not be populated when Model – Cube Result – Calculate is 

selected on the Ribbon.  Please see PsiOptData() in the Frontline Solvers 

Reference Guide for more information on this function.   
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If you wanted to display only the values in the fact table, then you would need to 

highlight 15 blank cells, in say the M column (we’ll use cells M33:M47), then 

enter PsiCubeData() without the 2nd argument or “=PsiCubeData(L17)” then 

press SHIFT + CTRL + ENTER to enter the formula as an array formula in cells 

M33:M47.  Afterwards, these cells would display only the values of the fact 

table as shown in cells M33:M47 in the above screenshot.  

PsiCubeData() can also be used to display a slice or even a single element of the 

fact table.  For example, to display the cube data only for Part:  Screen and 

Product:  TV, select three cells, say N36:P36 and enter the following formula: 

=PsiCubeData(L17, “[Parts].[Screen], [Products].[TV]”). Then press SHIFT + 

CTRL + ENTER to enter as an array formula.  Afterwards, the following table 

will be displayed.   

 

Parametric Dimensions with Optimization 

You can define and use a Parametric Dimension to run multiple optimizations, 

simulations, and/or calculations.  Analytic Solver treats all data included in a 

parametric cube as parameter values, such as ones defined by  PsiOptParam(), 

PsiSimParam() and PsiSenParam(). Recall that these parameters are 

automatically varied by ASP in order to create a type of “what-if” analysis.  

Please see the chapter “Examples: Parameters and Sensitivity Analysis” in this 

Guide for more information on the PsiOptParam(), PsiSimParam() and 

PsiSenParam() functions.  If a model only includes Parametric Dimensions, 

each value in the Output cube will be associated with a different simulation or 

optimization parameter, rather than a set of model functions.   
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Open the example, Parametric Dimensions.xlsx by clicking Help – Example 

Models on the Analytic Solver ribbon.  The Frontline Example Models 

Overview.xls file will open.  Select the Optimization tab and choose the 

ParametricDimensions workbook from the list. 

In this example, we will illustrate the use of a Parametric Dimension by adding 

an additional element to the model.  Imagine that you have a choice to purchase 

two different types of TV screens, plasma or LCD, from three different 

suppliers, Sony, Vizio, and Phillips, for about the same price. Each supplier can 

deliver a specific number of screens depending on the type of screen chosen.  

For example, Sony can only deliver 150 LCD screens, but 210 Plasma screens 

while Vizio can deliver 250 LCD screens but only 175 Plasma.  Your job is to 

now not only decide how many TVs, stereos and speakers to make, but also to 

decide what type of screen will go into the TVs: plasma or LCD.     

 

Cell B30 contains a parametric dimension.  To add this dimension, click Model 

– Dimension – From Cell Range to open the Add Dimension dialog.  Enter 

Screens for Name, Select the Range radio button, select or enter cells B28:B29 

in the Range field, confirm cell B30 is selected for Location, then select 

Parametric.  Then click OK.  
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The following formula is entered into cell B30, = PsiParamDim("Screens", 

B28:B29).  As you can see, the arguments for PsiParamDim() are identical to 

PsiDim().  The first argument is the name of the dimension and the 2nd argument 

is an Excel range.  It’s also possible to enter upper and lower bounds for the 2nd 

argument (select Bounds on the Add Dimension dialog) or to simply enter an 

integer n which will create a parametric dimension with n elements.  (In this 

case, there will be no names associated with the elements other than indices 

from 1 to n.)   Repeat the steps above to create a second Parametric Dimension 

in cell H19 using the name Suppliers and the Excel range C27:E27.   

Now select cell H19 and click Model – Cube – From Cell Range to bring up 

the Add Cube dialog.  This cube will contain the values from cells C28:E29.  

Therefore, select cells C28:E29 for Range.  Select Suppliers for Dimensions, 

then click the “+” command button to add a 2nd dimension, Screens.  Note:  As 

mentioned above, when calculating over multiple dimensions, the “columns” 

dimension, or the dimension that is most often changing, must always come 

first.  Confirm that H19 is listed for Location and click OK.   

 

The formula =PsiCube($C$28:$E$29,"Suppliers","Screens") will be entered 

into cell H19.   

If you inspect the Model tab on the Task Pane, you’ll see that two more 

dimensions (Suppliers and Screens) and one more cube ($H$19) appear under 

the appropriate headings.   

 

Now click the green arrow on the Model tab to run Solver.  Solver will run six 

different optimizations each time using a different value from the cell range 

C28:E29 for cell H19.  For example, for the first optimization, Solver will use 

150 for the value of H19, for the 2nd optimization, Solver will use 210 for the 

value in cell H19, for the 3rd optimization, Solver will use 250 for the value in 

cell H19, etc.   
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To easily. view the results of the six different optimizations, simply double click 

cell L20 to display the grid shown below. 

 

Instantly six different “what if” scenarios are displayed organized by supplier 

and screen.  (Click the resize icon to autofit the columns to display all 

values/text.) As you can easily see there are four different options that result in 

the largest profit.  Purchasing LCD screens from either Vizio or Phillips or 

Plasma screens from Sony or Phillips will result in a Gross Profit of $25,000.  

Purchasing Plasma screens from Vizio will result in a decreased profit of 

$24,875 and purchasing LCD screens from Sony results in an even smaller 

profit of $24,750.  To view the products across the top and the manufacturers 

down the left of the grid, simply drag “Screens” above “Suppliers”. 

  

Double click cell K20 to view the number of parts required in the construction 

of the TVs for each of the six different screen options.  (Click the  icon to 

autofit the columns to display all values/text.)   

  

Note:  The organization of the grid can be easily changed to meet your needs by 

simply dragging the dimensions Parts, Suppliers, and Screens into the 

formulation of your choice.  Or click the double arrows on the right side of the 

dialog to open the options window.  Check the dimensions to be listed by row 

and by column.   
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If you wanted to view the final objective value when Sony Plasmas as used in 

the construction of the TVs, first select Screens on the Model tab, then select 

Plasma for Current Value.     

 

Now select Suppliers on the Model tab, then select Sony for Current Value. 

 

Cell H19 will change to 210 to reflect the value in cell C29 which is the number 

of Plasma screens Sony can supply. In addition, the final variable values in cells 

C14:E14 will change to 200, 200, 0, the objective shown in cell L20 will change 

to $25,000, the parametric dimensions in cells B27 and B30 will change to 

Suppliers[1] (to reflect that the first element of the Suppliers dimension is 
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selected as the current value) and Screens[2] (to reflect that the 2nd element of 

the Screens dimension is selected as the current value).   

As with PsiParamDim(), several options will appear at the bottom of the task 

pane under Dimension (as shown in the screenshot above).  Here you can view 

the cell where the dimension is located (B27), the formula, the name of the 

dimension (Suppliers) and the type of dimension (structural or parametric).  

These fields are all read-only.  However, Current Value, Locked, Active in 

Optimization, Active in Simulation, and Active in Sensitivity Analysis can all be 

edited.  Current Value controls the values displayed in the cube cells.  For 

example, select Vizio for Current Value.  The value in cell H19 will change to 

reflect the Vizio value for the Current Value of the Screens dimension (210).   

Setting Locked to True, will result in the dimension being “locked” or “frozen” 

to the Current Value element during optimization.  For example, if Current 

Value is set to Sony for the Suppliers Parametric Dimension and Locked is set to 

True only two optimizations will be ran when the green arrow is clicked, one 

optimization for the value 150 (cell C28) and one optimization for the value 210 

(cell C29).  Double click the objective cell (L20) to display the results for the 

two different screens supplied by Sony. 

  

You can also reduce the dimensions displayed in the grid by performing a 

Parametric Analysis. Click Reports – Optimization – Parameter Analysis to 

open the Cube Optimization Report dialog.   

  

All seven cubes appear under Cubes and Selection, select cells L20 and K20 and 

click > to select.  Both dimensions (Suppliers and Screens) appear under 

Parametric Dimensions, select one dimension, say Suppliers, then click > to 

select.  Afterwards, click OK.  The following grid appears. 
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Here the “slices” of the structural dimensions can be viewed.  Click the two 

arrows on the right of the dialog to open the “options” pane.  

 

This grid displays the number of chassis parts required when Screens are 

purchased from each Supplier.  For example, if the screens are purchased from 

Sony, only 350 chassis will be needed.  If screens are purchased from Vizio or 

Phillips, 400 chassis will be required. Note:  When a dimension is deactivated, it 

is essentially locked to its first element.  In this case, the Screens dimension is 

locked to the LCD values of 150, 250, and 200.  Click the down arrow under 

Parts to see how many of each part will be required when screens are purchased 

from each supplier. 

Currently both the Screens and Suppliers Parametric Dimensions are active in 

all three types of analyses: optimization, simulation and sensitivity.  As stated 

earlier, this means that if you wanted to use these dimensions for a parameter 

analysis, you could do so as an optimization parameter, sensitivity parameter, 

and/or simulation parameter.  To remove this Parametric dimension from any of 

these analyses, simply change True to False.  If Active in Optimization is set to 

False, this dimension will be ignored in the next optimization.  Likewise, if 

Active in Simulation or Active in Sensitivity Analysis is set to False, then this 

dimension will be ignored in the next simulation or sensitivity analysis.     

For example, select Screens in the Model Task Pane, select Plasma for Current 

Value, then change Active in Optimization to False. 
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Now run an optimization either by clicking the green arrow on the Task Pane or 

Optimize – Solve Complete Problem on the ribbon.   

Solver will run three optimizations – one each for values 150, 250, and 200 or 

the number of LCD screens (the first element in the Screens dimension) that can 

be supplied by Sony, Vizio and Phillips, respectively (cells C28:E28).  To view 

the results of each value, simply select Suppliers on the Model Task Pane and 

select Sony, Vizio, or Phillips or double click any of the cubes to display the 

values for these three optimizations. For example, click cell L20 and K20 to 

display the following grids.  Both grids only reveal the optimization results for 

the three suppliers calculated using the first element from the Screens 

dimension.   

  

 

It’s also possible to view all Parametric Dimensions included in the workbook 

by clicking Parameters – Dimension on the Ribbon to bring up the Parametric 

Dimension Participation dialog.  From here you can select which dimensions are 
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active for Optimization, Sensitivity Analysis and Simulation, all on one screen.   

For example, to remove the Suppliers Parametric Dimension from Simulation, 

select Suppliers and click <.  To remove all Parametric Dimensions from 

Simulation, click <<.   

 

After an optimization has finished, click Charts – Multiple Optimizations – 

Monitored Cells to open the Optimizations Chart dialog.   
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Expand Variables (by clicking the “+”), then expand C14:E14.  Select C14, then 

click > to add the decision variable to the chart.  Repeat this step for cells D14 

and E14, then click OK to create the chart below, which tracks the decision 

variable values for each of the three optimizations. 
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Using Dimensional Modeling in Simulation 

Dimensional modeling can also be used with simulation models as well as with 

simulation optimization models.  (Note:  Dimensional Modeling is not available 

with Stochastic Transformation.) Open the example, CityCube.xlsx by clicking 

Help – Example Models on the Analytic Solver ribbon.  The Frontline Example 

Models Overview.xls file will open.  Select the Simulation tab and choose 

CityCube.xlsx from the list. 

 

Defining a Dimension 

In this simple example, a dimension, City, has been created in cell F15 which is 

comprised of the names of major cities in California (cells B15:B18). Cells 

C15:C18 contain the gross income per city.  Each Gross Income is uncertain.  

The Gross Income for San Francisco follows the Gamma distribution, Gross 

Income for San Diego follows a Triangular distribution, San Jose follows a 

Normal distribution and Los Angeles follows a Uniform distribution.  

Defining a Cube 

One key benefit of this model is that it defines a simulation output in one cell 

which would require four cells without dimensional modeling.  In cell F16, a 

cube has been created along the City dimension which is comprised of each 

city’s gross income in $Millions.  Double click this cell to display the grid.  

(Click the  icon to autofit the columns to display all values/text.)   

 

In cell F17, a 2nd cube has been created by using the cube in cell F16 in the 

formula, =F16*(1-C12), which multiplies the elements of the cube in cell F16 by 

the after tax rate or 91% (1-.09).  If dimensional modeling is not used, four 

output cells would be required to capture the simulation statistics, percentiles, 

etc, for  the after-tax income of each city.  However, in this example, the cube in 

cell F17 captures all relevant information.   
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Notice that “calc” follows the cell address in the dialog title.  This means that a 

trial value is being displayed.   

Defining an Output 

Cell F18 contains the PsiMean() function which creates both a simulation output 

as well as a dimensional modeling output.  To view the statistics and percentiles 

for each city’s Gross Income, simply set the Current Value of the City 

dimension to the desired city. For example, to view the simulation results for 

San Diego, select City under Dimensions in the Model tab of the Task Pane, 

then set Current Value to San Jose.   

 

Now click the green arrow on the Output tab to run a simulation.  The 

Simulation results window that appears contains simulation results for San 

Jose’s after-tax income.   

 

To view the mean results for each city, double click cell F18 to display the 

following grid.  Notice that (sim-mean) now follows the cell address ($F$18) in 
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the dialog title.  This title signifies that these results are the mean from a 

simulation.   

 

Note:  PsiMean() can be substituted with any PsiXxx statistic function except 

PsiCorrelation and PsiFrequency.  

Double click cell F17. 

 

Currently, this grid displays the mean results from the simulation.  Click the 

down arrow next to Mean and select Trials.   

 

All 1000 trial values for each city are listed.  Drag “City” above “All Trials” to 

list the trials vertically. 
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To see mini histograms for each uncertain function, click the down arrow next to 

Trials and select Histogram.   

 

Cells F18:F21 contain the PsiMean() simulation statistic entered as an array 

formula.  The results of this function are similar to the results of PsiCubeData() 

and PsiOptData() (for objective and constraint cubes only) in that when entered 

as an array, the function will display the fact table for the desired cube.   

When a Psi Statistic function (such as PsiMean(), PsiStdDev(), PsiVariance(), 

etc.) is entered as an array formula and used with a simulation model using 

Dimensional Modeling, the statistic function will display all elements of the 

cube fact table formatted according to the optional 3rd argument, struc_format.  

To begin, we’ll need to determine the size of our array.  Since the cube in cell 

F17 is comprised of one dimension (Cities), we’ll need to select one cell and 

enter “=PsiMean(F17, 1, “dims”)” in this cell.   (When “dims” is passed for the 

struc_format argument (3rd argument), the size of each dimension contained in 

the cube in cell F17 will be returned.)  Afterwards, this cell will display 

“City[4]” indicating that there are 4 elements in the City dimension.  Now that 

we know the number of elements (or size) of the dimensions, we can display the 

entire fact table by entering PsiMean() as an array, but this time we’ll use “vals” 

for the struc_format argument.  When passing “vals” for this argument, 

PsiMean(), when entered as an array, will display the data as a relational table.  

Since there are 4 elements in the City dimension, the fact table for this cube will 

contain 4 elements. Therefore, we will need to highlight 1 column for the first 

dimension (City) and a 2nd column for the actual values and 4 rows to hold all 4 
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values in the fact table. In this example, we’ll use the blank cells H15:I18.  (This 

area encompasses 2 columns and 4 rows.)  Select these cells, enter 

“=PsiMean(F17, 1, “vals”), then press SHIFT + CTRL + ENTER to enter this 

formula as an array formula.  The following table will be displayed.  Note:  

PsiMean() can be substituted with any PsiXxx statistic function except 

PsiCorrelation and PsiFrequency.  

 

Now we’ll use a different statistic, PsiStdDev() but this time we’ll list only the 

values in the fact table  To do so, select cells K15:K18, then enter 

“=PsiStdDev(F17)”, then press SHIFT + CTRL + ENTER to enter the formula 

as an array.  Notice we are only supplying the first argument.  Afterwards, these 

cells will display only the values of the fact table as shown in cells K15:K18 in 

the screenshot below.  Repeat the same steps in cell L15:L18 but this time using 

the statistic, PsiVariance() (“=PsiVariance(F17)”).   

A statistics function can also be used to display a slice or even a single element 

of the fact table.  For example, to display the mean gross margin for the City of 

San Diego, select two blank cells, say H20:I20, and  enter the following 

formula: =PsiMean(F17,1, “[City].[SanDiego]”). Then press SHIFT + CTRL + 

ENTER to enter as an array formula.  Afterwards, the following table will be 

displayed.   

 

Now let’s close this example and continue on to the next section to learn about 

using a parametric dimension in a simulation model.   

Parametric Dimensions  

Now let’s see how Parametric Dimensions can be used with simulation.  Open 

the example, ParametricCube_SimExample.xlsx by clicking Help – Example 

Models on the Analytic Solver ribbon.  The Frontline Example Models 

Overview.xls file will open.  Select the Simulation tab and choose Parametric 

Cube Simulation Example.   ParametricCube_SimExample.xls opens. 
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This example models the Estimated Technology costs for two years in the future 

(year 1 and year 2) for JoeBen Gaming based on which computer manufacturer 

the company selects.  This model includes a structural dimension and a 

parametric dimension.  The structural dimension is held in cell H16.  This 

dimension contains the type of technology that JoeBen gaming will purchase for 

their employees:  Tablets, Desktops, and Laptops.  The parametric dimension is 

contained in cell H17.  This dimension contains the manufacturers of the 

technology:  Apple, Sony, Samsung, HP, and Dell.   

Cells L22 and L23 contain the projected number of machines needed for years 1 

and 2, respectively, based on the projected growth distributions in cells K17 and 

L17.  The ratio of tablets, desktops, and laptops, to the total number of machines 

will remain constant.  Therefore, the percentage of tablets will remain at 33%, 

the percentage of desktops will remain at 46.7%, and the percentage of laptops 

will remain at 20% for the next two years.   As a result, the values in cells 

I28:K29 are calculated by multiplying the number of machines (cells L22 and 

L23) by the percentages in cells I21:K21. 

Three cubes are located in cells I27:K27.  These cubes contain the data for the 

Manufacturer dimension.  The values in these cells will determine the total 

technology costs for each year.   Cell I27 contains pricing data for each tablet by 

manufacturer, cell J27 contains pricing data for each desktop by manufacturer, 

and cell K27 contains pricing data for each laptop by manufacturer.   Double 

click each of these cells to display their data values.  For example, double 

clicking cell I27 brings up the following dialog which displays tablet pricing for 

each manufacturer.   

 

Once the green arrow has been clicked in the Model tab of the  Solver task pane, 

or Simulate – Run Once is clicked on the ASP Ribbon, five different simulations 

will be run simultaneously in less than one second – one simulation for each 

manufacturer.   

Double click cell L28 to display a grid revealing the total technology costs for 

Year 1 for each manufacturer.  (Click the           icon to expand the columns to 
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display the full text in the first column.) With Dimensional Modeling, you can 

perform a What If analysis with the double click of one button! 

 

Click the down arrow next to Mean and select Trials from the drop-down menu.  

1000 trial values are displayed for each manufacturer.  (Click the  icon to 

expand the columns to display the full text in the first column.)  1000 what-if 

scenarios are again available at the double click of a button! 

 

To view the trial values vertically (rather than horizontally), simply drag 

Manufacturer above All Trials in the grid or simply click the double arrows on 

the right of the dialog and select Manufacturer on the Cube Columns menu.   
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Let’s view the results for Dell only.  First, select the Manufacturer parametric 

dimension in the Model tab of the Solver task pane.  Then select Dell for 

Current Value.   
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The values in cells I27:K27 display $525, $980 and $1,270, respectively, which 

equals the value for Dell in cells F20:F22.   

The PsiMean() functions in cells M28 and M29 display the projected mean 

technology costs for years 1 and 2, respectively, when computers manufactured 

by Dell are purchased.   

Note:  Double clicking the cubes in cells I27:K27 will display the tablet, 

desktop, or laptop values by Manufacturer.  For example, double click cell I27 

to open the following grid which displays the tablet costs for Year 1 for each 

manufacturer. 

 

Double click K17 in the Model tab of the Solver Task Pane to display the 

simulation results for technology costs for Year 1.  

 

 

Then double click cell L16 to display the simulation results for Year 2.   
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Note:  To obtain simulation results for a different manufacturer, select the 

Manufacturer dimension in the Model tab of the Solver task pane, select the 

desired manufacturer for the Current Value field, then double click K17 or L17 

on the Model tab of the Solver task pane.  The uncertain function dialog will 

update to display the current element of the Manufacturer dimension. 

To view the results of cells L28 and L29 at the same time, click Reports – 

Simulation – Parameter Analysis.  The Cube Simulation Report dialog opens 

displaying the two uncertain function cells L15 and L16 under Results and the 

two dimensions (Manufacturer and Computer Type) under Parametric 

Dimensions.   

 

Click >> under Outputs to select both L15 and L16.  Highlight the Manufacturer 

dimension, then click > to select.  Afterwards, click OK.  The following dialog 

opens.     

 

Within this dialog, you can toggle between the results for cells L28 (which 

contains the total technology cost for year 1 by Manufacturer) and L29 (which 

contains the total technology cost for year 2 by Manufacturer). 
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As you can easily see, purchasing machines from HP will yield the least amount 

of technology costs for both Years 1 and 2.   

All charts under Multiple Simulations now also support Dimensional Modeling.  

(“Locked” or non-active dimensions will not appear in the charts.)    Click 

Charts – Multiple Simulations – Box-Whisker to open the Multiple 

Simulations Chart dialog.  Click >> to select Simulation 1 and click OK.  

Analytic Solver draws the following chart.  

 

This shows a Box-Whisker diagram for each of the 15 simulations, with the 

mean, median, 25th and 75th percentiles, and the minimum and maximum value 

for net revenue on each one.  You can click the right edge of the Trend and Box-

Whisker charts to open a right panel with options for customizing these charts.  

You can use the icons on the title toolbar to print the chart, or copy it to the 

Clipboard, where it can be pasted into another application such as PowerPoint. 

Perform the same steps for each of the remaining charts: Trend, Overlay, and 

Statistics.  For more information on these charts, please see the Frontline Solvers 

Reference Guide.     
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In addition, the three reports under Charts – Multiple Simulation Results are also 

supported in Dimensional Modeling.  Click Charts – Multiple Simulation 

Results  -- Trend to open the Multiple Simulation Results dialog. 

 

Click >> to select both output cells L28 and L29, then click OK.  A trend chart 

of both uncertain functions is produced.   

  

Here we can see a steep upward climb of the mean value of the total technology 

costs, and also the volatility around the mean, depicted here with the 25th and 

75th percentiles. 

Repeat the same steps to produce the remaining charts:  Overlay and Box-

Whisker.  For an explanation of these reports, please see the Frontline Solvers 

Reference Guide.   

Now close this example and continue onto the next section to learn how to use a 

pivot table with Dimensional Modeling.   
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Using Dimensional Modeling with Pivot Tables 
In general, cubes are defined as multi-dimensional, not just two – dimensional as 

shown in the examples above.  Unfortunately, a normal Excel worksheet is not 

the easiest medium for working with multidimensional cubes. An Excel pivot 

table, however, lends itself to this very practice.  An Excel Pivot Table is a tool 

within Excel that can be used to summarize data located in an Excel worksheet.  

Once data is inserted into a pivot table, it can easily be sorted, counted, totaled, 

etc. by dragging and dropping the fields into the desired layout.   

Click Help – Example Models on the Analytic Solver ribbon.  The Frontline 

Example Models Overview.xls file will open.  Select the Simulation tab and 

choose Pivot Table Simulation Example from the list.  (This example uses 

parametric dimensions but structural dimensions are also supported.)   

An Excel Pivot table is located in cells B13:F27.  This table is comprised of the 

Product Line for Mark’s Breakfast Delights.  This company has two product 

lines:  Waffle Mix and Pancake Mix.  Each of these product lines contain two 

flavors:  blueberry and plain.  The Sales team is comprised of 4 individuals who 

are responsible for a specific region of the Las Vegas area where the company is 

based:  Henderson, Summerlin, North Las Vegas, and Fremont Street.  Sales 

figures for each product and region are located in the Sales column.  Note:  

Since values in a pivot table cannot be evaluated, pivot table values must be 

constants.   

How to create the Pivot Table 

Highlight the data on the worksheet, then click Insert – Pivot Table – Pivot 

Table on the Excel ribbon. The Create PivotTable dialog opens.  Select a 

table or range is prefilled, leave this selection as is.  Select New Worksheet, 

then select a blank cell for Location.  Then click OK.   

  

The pivot table will be inserted into a new worksheet.  Manipulate the table as 

desired.  Afterwards, click Design – Report Layout – Show in Tabular 

Form.    

Next, we’ll create three dimensions, one each for Product, Product_Line, and 

Region.  Select a blank cell, in this case cell I15 was used, then click Model – 

Dimension – From Pivot Table to open the Add Dimension dialog.  Select the 

name of the pivot table, in this case PivotTable1, select Product for 

Dimensions, select Parametric for Type and cell I15 for Location.  Then click 

OK.  The formula =PsiPivotDim(B13,"Product", TRUE) will be inserted into 

cell I15.    Repeat these steps in cells I16 and I17 to create parametric 

dimensions for Product_Line and Region, respectively.  Alternatively, this 

formula could also be typed directly into the cell.   
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Now we will create a cube from the pivot table.    Select a blank cell, in this 

example cell I19, then click Model – Cube – From Pivot Table to open the Add 

Pivot Table Cube dialog.   

 

Leave PivotTable1 and Location at their defaults, and click OK.  The following 

formula will be inserted into cell I19 =PsiPivotCube($B$13:$F27).  

Alternatively, this formula could have been entered into the cell directly.   

From here we can create a simulation or optimization model.  In this example, 

we’ve created a simulation model.  Cell I21 holds an uncertain variable which 

calculates a selling price using a triangular distribution with a minimum 

parameter of 100, a maximum parameter of 200, and a likely parameter of 160.  

This sales price is multiplied by the cube result in cell I19.   

To simulate gross sales for the Western region, select the Product Dimension 

on the Model tab in the Task Pane, then change Current Value to “Blueberry”.  

Afterwards, perform the same steps for the remaining dimensions (Product_Line 

and Region) changing the current value of the Product_Line dimension to 

“Pancake Mix” and the current value of the Region dimension to “Blueberry”.  

Cell I15 will display the value in cell F15, 18.  Now click the green arrow on the 

Model tab to run a simulation.  The simulation runs using the value of 18 as the 

number of products sold.  The simulation results for the uncertain function in 

cell I22 are below.   

Important Note:   Pivot tables cannot be evaluated by the PSI Interpreter.  This 

means that decision variables, uncertain variables, uncertain functions, and 

constraint or objective functions must not be used within an Excel Pivot Table.  

All values inside of a pivot table must be constant, or computed from constants.   
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Double click the cube in cell I22 to display a grid containing the Gross Sales by 

product and region.   

 

 
 

Click the down arrow next to Mean and select Trials to display the 1000 trial 

values used in the simulation.   
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Double click cell I23 to open the grid containing the Mean Gross Sales by 

product and region.   

 

    
 

It’s also possible to list the trial values in cells in the spreadsheet.  Cells I25:I39 

contain the function PsiData(I22) entered as an array function.  These cells 

display the first 15, of 1000, trial values for cell I22, or Gross Sales.   

 

 

Using Sparse Cubes 
Analytic Solver provides the option to calculate cubes defined by PsiCube() or 

PsiTableCube() when the Optimization or Simulation Interpreter option is set to 

Psi Interpreter. 

Most large cubes are sparse in nature.  While they may contain thousands of 

elements, in practice, not all combinations of dimension elements are possible; 

mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Optimization_Interpreter.htm
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therefore, not all will define a model function during the Psi Interpreter's 

evaluation of the problem.  This means that most cubes will provoke output 

results as sparse cubes (with missing constraints).  Such sparsity in a cube (also 

known as structural sparsity) can be exploited to save memory and gain speed. 

A sparse cube is defined by missing values in cells for PsiCube() and by missing 

records for PsiTableCube().  If this option is equal to False, and you have 

defined a cube using PsiCube() or PsiTableCube(), elements missing from the 

cube will be considered equal to 0. If you set this option to True, you have 

defined a cube using PsiCube() with missing values or PsiTableCube() with 

missing records, and the percentage of elements missing or empty is more than 

30% of the total possible cube elements, those missing elements or records will 

not be included in the model.   

To illustrate this new feature, we will use the newly added example, 

Sparse_Cubes.xlsx.  To open, click Help – Examples on the Analytic Solver 

ribbon, click the Simulation tab, then the link to Sparse_Cubes.xlsx.   

 

Two dimensions have been created in cells B14 and B15, dim_vehicle and 

dim_model, respectively.  The dim_vehicle dimension (cell B14) contains three 

items or elements: car, suv, and truck.  The dim_model dimension (cell B15) 

contains five items or elements:   Toyota, Honda, Nissan, Mazda, and 

Mitsubishi. Both dimensions together specify the number of cars, SUVs and 

trucks available on a car lot, organized by manufacturer.   

One cube is defined using PsiCube() in cell B17 = PsiCube(C18:G20, 

"dim_model", "dim_vehicle").  The first argument is the cell address of the data, 

"C18:G20".   The second and third arguments are the dimensions for which the 

data will be calculated.  To display the contents of the cube, double-click cell 

B17. 

 

Cell B24 contains the PsiNormal distribution with mean equal to 0, and standard 

deviation equal to 1.  This is a simple error term that will be added to each cube 

element.   

The formula in cell B22 (B22 = B17 + B24 + PsiOutput()  ) adds the error term 

(that follows the PsiNormal distribution) to each element in the cube in cell B17 
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(i.e., the first element of the cube = 1 + PsiNormal(0,1), the second element of 

the cube = 2 + PsiNormal(0, 1) and so on).  PsiOutput is used to designate cell 

B22 as an output function.  For details on the PsiOuput() function see the 

previous chapter, "Examples:  Stochastic Optimization."   

PsiMean() has been array entered into cells D22:D36.  After a simulation has 

been run, these cells will display the PsiMean() value as calculated for each of 

the 15 elements of the cube (i.e., cell D22 will contain the mean for the first 

cube element, D21 will contain the mean for the second cube element, and so 

on).   

The formula, = PsiMean(B22, 1, "[dim_vehicle].[suv], [dim_model].[maz]"), 

has been array entered into cells E24:G24 to illustrate how to display just one 

element of the cube (i.e., the number of Toyota SUVs available). 

Run a simulation by clicking the down arrow beneath Simulate and selecting 

Run Once.  Instantly, Analytic Solver performs a new simulation of 1,000 

Monte Carlo trials, and updates each of the 15 cube elements and the worksheet 

with the results.  The mean of each element can be found in cells D22:D36 or by 

double clicking cell B22, as shown in the screenshot below.   

 

Notice that the value of the first cube element (Toyota/Car) corresponds to the 

value in cell D22, the value of the second cube element (Honda/Car) 

corresponds to the value in cell D23, and so on.  In addition, the value for the 

number of available Toyota SUVs in cell G24 corresponds to the number of 

Toyota SUVs in the cube display. 

Next, let's move to the right of the spreadsheet.  Cell O15 contains 

PsiTableCube().  PsiTableCube() defines a sparse table.  The first argument 

passes the dimension elements, while the second argument passes the values.  

(For more information on PsiTableCube, see PsiTableCube() in the Frontline 

Solvers Reference Guide.)   

Notice that only 6 out of a possible 15 elements are used in the table. When Use 

Sparse Cubes is set to False (the default), the missing 9 elements will be set to 

0 during the Psi Interpreter's evaluation of the problem.  To display the 

following cube, double-click cell O15.   
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PsiMean has been array entered into cells M22:M36.   Cell K22 contains the 

formula "= B24 + M15 + PsiOutput()", which adds an error term to each 

element in the cube table.   (This formula re-uses the PsiNormal() distribution in 

cell B24 as the error term).   

Use Sparse Cubes = False 

With Use Sparse Cubes = False on the Platform tab on the Solver Task Pane, 

run a simulation by clicking the down arrow beneath Simulate and selecting Run 

Once.   

 

Instantly, Analytic Solver performs a new simulation of 1,000 Monte Carlo 

trials, and updates each of the 15 cube elements and the worksheet with the 

results.  The mean of each element can be found in cells M22:M36 or by double-

clicking cell K22, as shown in the screenshot below.  
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The formula, = PsiMean(K22, 1, "[dim_vehicle].[suv], [dim_model].[maz]"), 

array entered into cells J24:L24, illustrates how to display a single element of 

the cube, in this case the number of available Toyota SUVs.  Notice this number 

is a fraction because the value for a Toyota SUV was missing in PsiTableCube().  

Since Use Sparse Cubes is equal to false, the value for this element was set to 0.   

The formula, =PsiMean(K22, "vals") has been array entered into cells M24:Q29 

to illustrate how to display the cube dimensions and values in the worksheet.  

Since this formula has been array entered into only seven rows, only the first 

seven cube elements will be displayed.   

Use Sparse Cubes = True 

Click the Platform tab on the Solver Task Pane, scroll down to Advanced and 

enter True for Use Sparse Cubes.   

 

Since the ratio of the number of missing elements to the total number of possible 

elements is greater than 30% (6 out of a possible 15), Solver will only consider 

those six elements included in PsiTableCube() in the model formulation.  In 

other words, while Use Sparse Cubes is set to True, only 6 elements are 

contained in the cube.   

Run a simulation by clicking the down arrow beneath Simulate and selecting 

Run Once.   

Notice that only the first six cells within the range M22:M36 hold values. This is 

because the cube only contains six elements!   The remaining nine elements 

have not been included in the model.  The value in cell M22 corresponds to the 

first cube element, Toyota cars, the value in cell M23 corresponds to the second 

cube element, Honda cars, the value in cell M24 corresponds to the third cube 

element Nissan cars, the value in cell M25 corresponds to the fourth cube 

element, Mazda SUVs, the value in cell M26 corresponds to the fifth cube 

element, Mitsubishi SUVs, and the value in cell M27 corresponds to the sixth 

cube element Toyota trucks.   

The same is true for the elements in cells O24:O30.   Cells O30:O30 show #N/A 

because only six elements are included in the model.  Those six elements are 

displayed in cells O24:O29.  

To display the cube output, double-click cell K22. Notice that the missing 

elements are now labeled as "NA," which means they do not exist in the 

simulation model.  Our 15 element cube has been reduced to 6.   
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Automating Optimization in VBA 

Introduction 
This chapter explains how to use the Object-Oriented API in Analytic Solver 

Desktop to create, modify and solve optimization models under the control of 

your custom application written in VBA.   

Note:  Analytic Solver Cloud does not currently support this functionality.   

This API is compatible with the object-oriented API offered by Frontline’s 

Solver SDK Platform and Solver SDK Pro, used to build custom applications of 

optimization and simulation using C++, C#, VB.NET, Java, MATLAB and 

other languages. 

Analytic Solver also supports “traditional” VBA functions, which are upward 

compatible from the VBA functions supported by the standard Excel Solver.  

This API is described in the Frontline Solvers Reference Guide. 

Why Use the Object-Oriented API? 

The new object-oriented API is more powerful and much more convenient for 

programming than the “traditional” VBA functions. 

With the “traditional” VBA functions: 

• You work with procedural functions that correspond to operations – such as 

SolverOK and SolverSolve – you can perform interactively in the Solver 

dialogs.  To access the model and its variables and constraints, you must 

process the arrays of text and numbers returned by the SolverGet function. 

• To obtain solution values, you must use the Excel object model (usually the 

Range object) to access the decision variable cells on the worksheet.  You 

must take care to access the correct cells for specific decision variables. 

• To obtain dual values and ranges, you must call the SolverFinish function 

to insert a report worksheet into the workbook, then use the Excel object 

model to access cells in the report.  You must take extra care to access the 

correct report cells containing dual values and ranges. 

With the new Object-Oriented API: 

• You work with objects that correspond to the Problem, Model, Solver, 

Engine, Variables, and Functions.  You can access sets of variables and 

constraints in the current model directly with expressions such as 

myProb.VarDecision and myProb.FcnConstraint. 

• You can obtain solution values directly, with expressions such as 

myProb.VarDecision.FinalValue(i).  If you need the cell address for a set of 

decision variable cells, you can write myProb.VarDecision.Name. 

• You can access dual values and ranges for variables and constraints directly, 

with expressions such as myProb.VarDecision.DualValue(i) or 

myProb.FcnConstraint.DualValue(i). 

The result is VBA code that’s easier to read, and easier to write in the first place.  

Since the VBA Editor recognizes the object model exposed by Analytic Solver – 
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just as it recognizes the object model exposed by Excel – you’ll receive 

IntelliSense prompts as you write code.  For example, if you type a line Dim 

myProb as New Problem, then start a new line with myProb., you’ll be 

prompted with the properties and methods available for Problems: 

 

If you select FcnConstraint and then type a period, you’ll be prompted with the 

properties and methods available for Functions: 

 

This makes it much easier to write correct code, without consulting the manual.  

What’s more, you can use this object-oriented API when programming Excel 

and Analytic Solver from new languages such as VB.NET and C#, working in 

Visual Studio, and receive IntelliSense prompts in the syntax of these languages! 

If you’re using new functionality in Analytic Solver, the object-oriented API is 

your best bet.  And if you’re planning to move your application outside of Excel 

in the future – so it will run as a standalone program – you’ll find that 

Frontline’s Solver Platform SDK offers an object-oriented API that closely 

resembles the new APIs in Analytic Solver. 

Running Predefined Solver Models 

Controlling the Solver can be as simple as adding two lines to your VBA code!  

Each worksheet in a workbook may have a Solver problem defined, which is 

saved automatically with the workbook. You can create this Solver model 

interactively if you wish.  If you distribute such a workbook, with a worksheet 

containing a Solver model and a VBA module, you can simply add a reference 

to the Analytic Solver COM server (see below), activate the worksheet, and add 

these two lines of code: 

  Dim prob As New Problem 
  prob.Solver.Optimize 

Using the Macro Recorder 

If you want to set up a Solver model “from scratch” programmatically, one easy 

way to see how to use the object-oriented API is to turn on the Excel Macro 

Recorder and then set up a Solver model interactively.  Microsoft Excel will 
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record a macro in VBA that calls the object-oriented API to mimic the actions 

you perform. You can then edit and customize this macro, and incorporate it into 

your application. 

Note: You must use the classic Solver dialog to record a macro, rather than the 

Solver Task Pane.  To open, click Add-ins – Premium Solver.  By default, the 

Excel Macro Recorder will record calls to the object-oriented API.   

Adding a Reference in the VBA Editor 

To use the new object-oriented API in VBA, you must first add a reference to 

the type library for the Analytic Solver COM server.  To do this: 

1. Press Alt-F11 to open the VBA Editor. 

2. Select menu choice Tools References. 

3. Scroll down until you find Analytic Solver 2021 Type Library. 

4. Check the box next to this entry, and click OK to close the dialog. 

5. Use File Save to save your workbook. 

Note that this is a different reference from Solver, which is the reference you 

add in order to use the “traditional” VBA functions. 

Analytic Solver Object Model 
Analytic Solver makes available a hierarchy of objects for describing 

optimization problems, as pictured on the next page.  Note that the same objects 

are used for both optimization and simulation problems; see the next chapter, 

“Automating Simulation in VBA,” for more information. 
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The Problem object represents the whole problem, and the Model object 

represents the internal structure of the model, which in Analytic Solver is 

defined by your formulas on the spreadsheet.  The Solver object represents the 

optimization process – you call its Optimize method to find an optimal solution.  

The Engine object represents either a built-in or plug-in Solver engine.  A 

Variable object represents a range of one or more contiguous cells that contains 

decision variables, while a Function object represents a range of cells that 

contains either constraint left hand sides or the objective.  Each Problem has a 

collection of Variable objects, and a collection of Function objects.  An 

Evaluator represents a function you write that the Solver will call on each 

iteration (Trial Solution), or on each subproblem in a larger problem. 

The Model has a collection of ModelParam objects, each representing a single 

option or parameter of the PSI Interpreter (appearing in the Task Pane Platform 

tab).  An Engine has a collection of EngineParam objects, each representing a 

single option or parameter of a Solver engine (appearing in the Task Pane 

Engine tab).  It also has an EngineLimit object, holding problem size limits for 

this Solver engine, and an EngineStat object, holding performance statistics for 

the last optimization problem solved by this engine.  An OptIIS object holds 

results of an infeasibility analysis of the problem. 
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Using the VBA Object Browser 

You can examine Analytic Solver objects, properties and methods in the VBA 

Object Browser.  To do this, press Alt-F11 to open the VBA Editor, and select 

menu choice View Object Browser.  This displays a child window like the one 

pictured below. 

 

The dropdown list at the top left corner of the Object Browser initially displays 

<All Libraries> – change this to select RSP.  In the object browser pictured, 

we’ve highlighted the properties of the Function object 

Programming the Object Model 
You use the Analytic Solver object-oriented API by first creating an instance of 

a Problem, and initializing it with the Solver model defined on a worksheet in 

an open workbook.  When you do this, a collection of Variable objects and a 

collection of Function objects are created automatically.  Each Variable object 

corresponds to a cell range of decision variables that appears in the outlined list 

of variables, and each Function object corresponds to a cell range of constraints 

that appears in the list of constraints in the Task Pane. 

Once you have an initialized Problem object, you can do several things: 

• Set Solver and Engine parameters such as the maximum time or number of 

iterations, the method used to compute gradients, and other options and 

tolerances. 

• Perform an optimization, and check the final status of the solution process. 

• Get results of the optimization, by accessing properties of the Variable and 

Function objects, and performance statistics, by accessing properties of the 

EngineStat object. 
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Example VBA Code Using the Object Model 

Below is an example of VBA code that could be linked to a command button on 

the worksheet: 

Private Sub CommandButton1_Click() 

  Dim prob As New RSP.Problem 

  prob.Engine = prob.Engines("Standard LP/Quadratic") 

  prob.Engine.Params("MaxTime") = 600 

  prob.Solver.Optimize 

  MsgBox "Status = " & prob.Solver.OptimizeStatus 

  MsgBox "Obj = " & prob.FcnObjective.FinalValue(0) 

  For i = 0 To prob.Variables.Count – 1 

    For j = 0 To prob.Variables(i).Size - 1 

      MsgBox prob.Variables(i).FinalValue(j) 

    Next j 

  Next i 

  Set prob = Nothing 

End Sub 

The first line creates an instance of a Problem, which by default is associated 

with the Solver model defined on the active worksheet.  You could associate the 

Problem object with a different worksheet by calling the prob.Init method: 

 
Private Sub CommandButton1_Click() 

  ‘create new problem 

  Dim prob As New RSP.Problem 

‘initialize model on Invent2 worksheet 

  prob.Init Worksheets("Invent2") 

 

The second line selects the Standard LP/Quadratic Solver engine, and the third 

line sets the maximum solution time to 600 seconds.  The string names of 

parameters such as "MaxTime" are documented in the Frontline Solvers 

Reference Guide. 

The next set of three lines performs the optimization, displays the Solver Result 

status code (for example 0), and displays the final value of the objective. 

The double for-loop in the next five lines steps through the Variable objects – 

each one representing a range of contiguous cells – and displays the final value 

for each variable cell in each range. 

Evaluators Called During the Solution Process 

You can write a VBA function that Analytic Solver will call at certain points 

during the solution process.  In this “callback function,” you can access 

information about the problem and solution so far, to monitor or report progress 

and decide whether to stop or continue the solution process. 

The object-oriented API defines an Evaluator object that is associated with your 

“callback function” and specifies when Analytic Solver should call it.  You can 

define Evaluators to be called on each iteration or Trial Solution, or on each 

subproblem or each new solution (“incumbent”) when the solution process 

involves multiple subproblems (global optimization problems, and problems 

with integer variables). 
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The VBA function you write to serve as an Evaluator must be contained in a 

class module – not a ‘regular’ VBA module – and it must be declared to have 

the With Events property. 

On the next page is an example of code for an Evaluator, in a class module 

named Class1. 

 

Private WithEvents EvalIterator As RSP.Evaluator 

Private Function EvalIterator_Evaluate _ 

  (ByVal Evaluator As RSP.IEvaluator) As _ 

  RSP.Engine_Action 

  MsgBox "Iteration = " _ 

    & Evaluator.Problem.Engine.Stat.Iterations _ 

    & Chr(13) & Chr(10) & "Objective = " _ 

    & Evaluator.Problem.FcnObjective.Value(0) _ 

    & Chr(13) & Chr(10) 

  EvalIterator_Evaluate = Engine_Action_Continue 

End Function 

Public Sub MySolve() 

  Set EvalIterator = New RSP.Evaluator 

  Dim prob As New RSP.Problem 

  prob.Evaluators(Eval_Type_Iteration) = EvalIterator 

  prob.Solver.Optimize 

  Set EvalIterator = Nothing 

End Sub 

Having created the class module Class1, in a 

‘regular’ VBA module you can create an instance of 

Class1, and then call the MySolve method in Class1: 

Private Sub CommandButton1_Click() 

  Dim c As New Class1 

  c.MySolve 

End Sub 

Refinery.xls:  Multiple Blocks of Variables and 
Functions 

A further example of programming the object-oriented API is shown in the 

model Refinery.xls, which is installed in the Examples folder, normally at the 

path C:\Program Files\Frontline Systems\Analytic Solver Platform\Examples.  

(You can also open this example by clicking Help – Examples on the Ribbon, 

then click Optimization Examples.) 

The Refinery.xls model, which is based on Problem 12.6 in the 3rd edition of 

Model Building in Mathematical Programming by H.P. Williams (see the 

Recommended Books on www.solver.com for details), has ten blocks of 

decision variables and eleven blocks of constraints, plus bounds on certain 

variables. 

The VBA code for this model illustrates some of the many ways you can use the 

object-oriented API.  For example, the following line displays the time that was 

required to solve the problem: 

MsgBox prob.Engine.Stat.Milliseconds & " msec"  
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The following line inserts an Answer Report into the active workbook: 

prob.Solver.Report "", "Answer"  

The VBA code on the next page illustrates one way to display final solution 

values for each of the ten blocks of decision variables in this problem: 

  For i = 0 To prob.Variables.Count – 1 

    prob.Variables(i).MakeCurrent 

    For j = 0 To prob.VarDecision.Size - 1 

      MsgBox prob.VarDecision.Name _ 

        & "[" & j+1 & "] = " & _ 

        prob.VarDecision.FinalValue(j) 

    Next j 

  Next i 

When executed, this code displays MessageBoxes such as: 

 

The line prob.Variables(i).MakeCurrent associates the Problem 

property VarDecision (a single block of decision variables) with each of the ten 

blocks of variables in turn, allowing you to refer to solution values and dual 

values of this block in more compact notation.  A similar line of code can be 

used to make the Problem property FcnConstraint represent one of the eleven 

blocks of constraints.  The .Name property of the block, which usually returns a 

string such as “$A$1:$A$10”, returns “Distilled_oil” in this case, since the 

Excel model has a defined name for this block of cells. 

Adding New Variables and Constraints to a 
Model 

So far, we’ve seen how to access variables and constraints that were defined 

interactively through the Ribbon and Task Pane (or the Solver Parameters 

dialog), using the Problem object and its VarDecision and FcnConstraint 

properties, as well as the Variables and Functions collections.  But you can also 

add new variables and constraints to a model through the Object-Oriented API, 

and have them appear in the Task Pane Model tab.  To illustrate some additional 

properties used in full Analytic Solver Comprehensive, let’s add a recourse 

decision variable and a chance constraint. 

To add a new decision variable, we create a Variable object, associate it with a 

worksheet cell, set its properties, and add it to the Variables collection.  To make 

this a recourse decision variable, we simply set its VariableType property: 

   Dim v As New RSP.Variable 
   v.Init "$D$18" 

   v.VariableType = Variable_Type_Recourse 

   v.NonNegative 

   prob.Variables.Add v 
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Similarly, to add a new constraint, we create a Function object, associate it with 

a formula cell on the worksheet, set its properties, and add it to the Functions 

collection.  To make this a chance constraint, we simply set its FunctionType, 

ChanceType and Chance properties: 

   Dim f As New RSP.Function 
   f.Init "$C$23" 

   f.FunctionType = Function_Type_Chance 

   f.ChanceType = Chance_Type_VaR 

   f.Chance = 0.95 

   f.LowerBound.Array = 0 '>= 0 

   prob.Functions.Add f 

CuttingStock.xls:  Multiple Problems and 
Dynamically Generated Variables 

A more ambitious example of programming the object-oriented API is shown in 

the model CuttingStockVBA(Opt).xls, which is installed in the Examples 

folder, normally at the path C:\Program Files\Frontline Systems\Analytic Solver 

Platform\Examples.  (You can also open this example by clicking Help – 

Examples on the Ribbon, then click Optimization Examples.) 

This application uses the object-oriented API to define and repeatedly solve two 

optimization problems, passing information back and forth between the two 

problems.  One problem is instantiated from a worksheet with the prob.Init 

method as mentioned earlier; the other problem is created “from scratch,” with 

new dynamically generated decision variables added each time the problem is 

solved. 

Cutting Stock Problem 

CuttingStockVBA(Opt).xls solves a classical “cutting stock” problem, which 

arises for example in lumber and paper mills.  Imagine that you have a number 

of sheets of wood or rolls of paper of a fixed width, waiting to be cut; you have 

customer orders for sheets or rolls of various different widths.  Your task is to 

cut the larger, fixed-width sheets or rolls into different sizes in a way that 

minimizes the total stock used while meeting customer demand. 

You might for example cut a 100 inch sheet into two sheets of 45 inches 

(leaving 10 inches wasted), three sheets of 31 inches (leaving 7 inches wasted), 

one 45-inch sheet and one 31-inch sheet (leaving 24 inches wasted), etc.  Each 

of these is called a pattern, and the main problem will have a decision variable 

representing the number of copies of that pattern to cut.  In a ‘real-life” 

application, the number of possible patterns is exponentially large, yielding a 

model that’s too large to solve. 

Column Generation Method 

We can instead use the technique of column generation (‘columns’ here refers to 

variables in the main problem).  We choose a small initial set of patterns to 

include in the model, and solve the main problem (an LP).  Since it is unlikely 

that we chose the perfect set of patterns initially, we use the dual variable 

information from the main problem to generate a new pattern.  We generate this 

new pattern by solving a second optimization problem, called a ‘knapsack’ 

problem.  A decision variable for the new pattern is dynamically created and 

added to the main problem, which is solved again.  These two problems, the 
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main problem and the knapsack problem, are solved in turn until no more 

patterns can be generated that will reduce the total stock used. 

Worksheets and VBA Code 

In CuttingStockVBA(Opt).xls, sheet Input contains the ‘knapsack’ problem, 

which is solved to generate new patterns, and sheet Patterns contains the main 

problem.  Our VBA code executes a loop, alternately solving the main problem 

and the knapsack problem.  When the solution to the main problem can no 

longer be improved, we solve a final problem where we add integer constraints 

on the variables, so the final solution yields an exact count of the patterns that 

should be cut. 

Open CuttingStockVBA(Opt).xls and press Alt-F11 to view its VBA code in the 

VBA Editor.  The first block of code clears the Patterns sheet and sets up the 

initial patterns.  This code simply sets values and formulas into cells, using the 

Excel object model. 

Dim nPat As Integer, i As Integer, _ 

nNumDemands As Integer 

nPat = Range("Demands").Count 

nNumDemands = nPat 

Worksheets("Patterns").Activate 

Range("$A$1:$Z$100").Clear 

' create initial patterns 

For i = 1 To nPat 

  Cells(2 + i, i) = Int(Range("RollSize").Value2 _ 

      / Range("Widths").Cells(i).Value2) 

  Cells(2 + i, nPat + 1).Formula = "=sumproduct(" _ 

      & Range(Cells(1, 1), Cells(1, nPat)).Address 

      & "," & Range(Cells(2 + i, 1), _ 

        Cells(2 + i, nPat)).Address & ")" 

  Cells(3 + nPat, i) = Range("RollSize").Value2 - _ 

        Cells(2 + i, i) * 

Range("Widths").Cells(i).Value2 

Next i 

The code then enters the main loop in which we add a new pattern to the main 

problem, and set up and solve that problem using Analytic Solver’s object 

model: 

  'generate patterns 

  Cells(2, 1).Formula = "=sum(" _ 

    & Range(Cells(1, 1), Cells(1, nPat)).Address & 

")" 

  For i = 1 To nNumDemands 

    Cells(2 + i, nPat + 1).Formula = "=sumproduct(" _ 

      & Range(Cells(1, 1), Cells(1, nPat)).Address _ 

      & "," & Range(Cells(2 + i, 1), Cells(2 + i, _ 

        nPat)).Address & ")" 

  Next i 

  Dim prob As New RSP.Problem 

  ' variables 

  prob.Variables.Clear 

  prob.Functions.Clear 

  Dim vars As New RSP.Variable 

  vars.Init Range(Cells(1, 1), Cells(1, nPat)) 
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  vars.NonNegative 

  prob.Variables.Add vars 

  Set vars = Nothing 

  ' objective 

  Dim objective As New RSP.Function 

  objective.Init Range(Cells(2, 1), Cells(2, 1)) 

  objective.FunctionType = Function_Type_Objective 

  prob.Functions.Add objective 

  Set objective = Nothing 

  ' constraints 

  ReDim constraints(1 To nNumDemands) As _ 

    New RSP.Function 

  For i = 1 To nNumDemands 

    constraints(i).Init Range(Cells(2 + i, nPat + 1), 

_ 

      Cells(2 + i, nPat + 1)) 

    constraints(i).LowerBound(0) = _ 

      Range("Demands").Cells(i).Value2 

    prob.Functions.Add constraints(i) 

  Next i 

  prob.Solver.SolverType = Solver_Type_Minimize 

  prob.Engine = prob.Engines("Standard LP/Quadratic") 

  prob.Solver.Optimize 

Next, the code obtains the dual values from the solution to the main problem, via 

the Analytic Solver object model, and stores these values as parameters of the 

knapsack problem on the Input worksheet, via the Excel object model: 

  ' capture shadow prices 

  For i = 1 To nNumDemands 

    Worksheets("Input").Cells(2 + i, 5) = _ 

      prob.Functions(Range(Cells(2 + i, nPat + 1), _ 

      Cells(2 + i, nPat + 1))).DualValue(0) 

  Next 

  Worksheets("Input").Activate 

  Dim j As Integer 

  j = 1 

  For i = 1 To prob.Functions.Count 

    If prob.Functions(i - 1).FunctionType = _ 

       Function_Type_Constraint Then 

         Cells(2 + j, 5) = _ 

           prob.Functions(i - 1).DualValue(0) 

         j = j + 1 

    End If 

  Next i 

The code then sets up and solves the knapsack problem, again using the Analytic 

Solver object model: 

  Dim prob1 As New RSP.Problem 

  prob1.Init Worksheets("Input") 

  prob1.Engine = prob1.Engines("Standard     

  LP/Quadratic") 

  prob1.Engine.Params("IntTolerance").Value = 0 

  prob1.Solver.Optimize 
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If the objective value of the knapsack problem is less than 1 (allowing for 

rounding error) – meaning that there are no more patterns that will improve the 

solution – we can exit the loop. 

  If 1 - prob1.FcnObjective.FinalValue(0) _ 

     >= -0.00001 Then 

     Exit Do 

  End If 

Otherwise, the code writes the new pattern to the Patterns (main problem) 

worksheet, using the Excel object model: 

  Worksheets("Patterns").Activate 

  Cells(nNumDemands + 3, nPat + 1) = _ 

    Range("RollSize").Value2 

  ' write out new pattern, and associated waste 

  For i = 1 To nNumDemands 

    Cells(2 + i, nPat + 1) = _ 

      prob1.VarDecision.FinalValue(i - 1) 

    Cells(nNumDemands + 3, nPat + 1) = _ 

      Cells(nNumDemands + 3, nPat + 1).Value2 - _ 

      prob1.VarDecision.FinalValue(i - 1) * _ 

      Range("widths").Cells(i).Value 

  Next i 

  nPat = nPat + 1 

  Set prob1 = Nothing 

When the Do … Loop is exited, all patterns have been generated.  Finally, the 

code solves one more problem with integer constraints on the variables, to 

ensure that we produce the exact count needed to meet customer demand: 

  Worksheets("Patterns").Activate 
  prob.Init Worksheets("Patterns") 

  prob.Functions.Clear 

  prob.Variables.Clear 

  ' variables 

  Dim finalvars As New RSP.Variable 

  finalvars.Init Range(Cells(1, 1), Cells(1, nPat)) 

  For i = 1 To nPat 

    finalvars.IntegerType(i - 1) = 

Integer_Type_Integer 

  Next i 

  finalvars.NonNegative 

  prob.Variables.Add finalvars 

  ' objective 

  Cells(3 + nNumDemands, nPat + 1).Formula = _ 

    "=sumproduct(" & Range(Cells(1, 1), _ 

    Cells(1, nPat)).Address & "," _ 

    & Range(Cells(3 + nNumDemands, 1), _ 

    Cells(3 + nNumDemands, nPat)).Address & ")" 

  Dim TotalWaste As New RSP.Function 

  TotalWaste.Init Range(Cells(3 + nNumDemands, _ 

    nPat + 1), Cells(3 + nNumDemands, nPat + 1)) 

  TotalWaste.FunctionType = Function_Type_Objective 

  prob.Functions.Add TotalWaste 

  ' constraints 

  ReDim constraints(1 To nNumDemands) As _ 
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    New RSP.Function 

  For i = 1 To nNumDemands 

    Cells(2 + i, nPat + 1).Formula = "=sumproduct(" _ 

      & Range(Cells(1, 1), Cells(1, nPat)).Address _ 

      & "," & Range(Cells(2 + i, 1), Cells(2 + i, _ 

      nPat)).Address & ")" 

    constraints(i).Init Range(Cells(2 + i, nPat + 1), 

_ 

      Cells(2 + i, nPat + 1)) 

    constraints(i).LowerBound(0) = _ 

      Range("Demands").Cells(i).Value2 

    prob.Functions.Add constraints(i) 

  Next i 

  prob.Engine = prob.Engines("Standard LP/Quadratic") 

  prob.Engine.Params("IntTolerance").Value = 0 

  prob.Solver.Optimize 

  Set prob = Nothing 

This example illustrates some of the power of the object-oriented API.  

Although you could use the “traditional” VBA functions to obtain similar 

results, it would require quite a bit more code to do so, especially at the step of 

obtaining the dual values from the solution of the main problem and using them 

to solve the next knapsack problem. 

If you wanted to move this application from Excel to a standalone program, 

you’d find that nearly all the code in CuttingStockVBA(Opt).xls that references 

the Analytic Solver object model could be re-used, with few or no changes, in 

building an application for the Solver Platform SDK.  You’d have to rewrite the 

code that references cells via the Excel object model to use arrays in a 

programming language instead, but this would not be difficult. 

 



Frontline Solvers 2021 User Guide Page 493 

Automating Simulation in VBA 

Introduction 
This chapter explains how to use the Object-Oriented API in Analytic Solver 

Desktop to create, modify and solve simulation models under the control of your 

custom application written in VBA. 

Note:  Analytic Solver Cloud does not currently support this functionality.   

In the simplest case, you can use a few standard lines of VBA code to enable 

and disable Interactive Simulation, as described below.  But you can do much 

more in VBA, to create custom risk analysis applications. 

You can define a Problem and instantiate it from the spreadsheet with two lines 

of code, then access the uncertain elements of your model via Variable and 

Function objects.  You can perform simulations, access trials and summary 

statistics, and present them the way you want to your end user.  All the power of 

the Excel object model is available, including database access, charts and 

graphs, and custom dialogs and controls. 

Analytic Solver’s VBA object model closely resembles the object-oriented API 

of Frontline’s Solver SDK Platform or Solver SDK Pro – which both include a 

complete toolkit for Monte Carlo simulation.  This makes it easier to move an 

application from Excel to a custom program written in C/C++, Visual Basic, 

VB.NET, Java or MATLAB. 

Adding a Reference in the VBA Editor 

To use the new object-oriented API in VBA, you must first add a reference to 

the type library for the Analytic Solver COM server.  To do this: 

1. Press Alt-F11 to open the VBA Editor. 

2. Select menu choice Tools References. 

3. Scroll down until you find Analytic Solver 2021 Type Library. 

4. Check the box next to this entry, and click OK to close the dialog. 

5. Use File Save to save your workbook. 

Note that this is a different reference from Solver, which is the reference you 

add in order to use the “traditional” VBA functions. 

You need this reference if your VBA code uses the Event Listener as described 

in the next section, or uses other elements of the Analytic Solver VBA object 

model, described in later sections of this chapter (or both).  

Activating Interactive Simulation 
If you simply want to activate or deactivate Interactive Simulation under 

program control, you need a few standard lines of VBA code.  You can place 

this code in any VBA procedure you write, and cause it to be run in any manner 

that is convenient for your application.  For example, you could use: 
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Public Sub ISActivate 

    Dim ev As New EventListener 

    ev.AttachEvent Application 

    Set ev = Nothing 

End Sub 

Public Sub ISDeactivate 

    Dim ev As New EventListener 

    ev.DetachEvent 

    Set ev = Nothing 

End Sub 

You could use the Tools Macro Run menu choice in Excel to run these VBA 

procedures, or you could associate a Ctrl-Key combination with each procedure, 

so it is run when that key combination is pressed. 

Another approach appears in the example workbook BusinessPlanPsiChart.xls 

(normally installed at C:\Program Files\Frontline Systems\Analytic Solver 

Platform\Examples):  Two buttons named CommandButton1 and 

CommandButton2 are placed on the spreadsheet, along with two images named 

Picture Bulb On and Picture Bulb Off, that are stacked on top of each other.  The 

VBA code is: 

Private Sub CommandButton1_Click() 

    Dim ev As New EventListener 

    ev.AttachEvent Application 

    Set ev = Nothing 

    Me.Shapes("Picture Bulb On").Visible = True 

    Me.Shapes("Picture Bulb Off").Visible = False 

End Sub 

Private Sub CommandButton2_Click() 

    Dim ev As New EventListener 

    ev.DetachEvent 

    Set ev = Nothing 

    Me.Shapes("Picture Bulb On").Visible = False 

    Me.Shapes("Picture Bulb Off").Visible = True 

End Sub 

When the “On” button (CommandButton1) is clicked, Interactive Simulation is 

activated, and the light bulb is “turned on.”  When the “Off” button is clicked, 

Interactive Simulation is deactivated, and the light bulb is “turned off.” 

Using VBA to Control Analytic Solver 
You can do much more with VBA:  You can perform simulations under your 

control, rather than on every worksheet recalculation.  You can obtain results of 

the simulation – statistics, percentiles, or even raw trial data – that you’d 

otherwise obtain through worksheet functions such as PsiMean(), 

PsiPercentile(), or PsiData().  You can even define certain worksheet cells as 

uncertain variables and supply trial data for them in a simulation, without using 

functions such as PsiNormal() or PsiUniform() in cell formulas. 

You also have access in VBA to the Excel object model, which provides a very 

rich source of high-level functions for manipulating cells and ranges, creating 

charts and graphs, accessing external databases, and much more.  This gives you 

a powerful set of tools for developing custom risk analysis applications. 
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Analytic Solver Object Model 

Analytic Solver makes available a hierarchy of objects for describing Monte 

Carlo simulation problems, pictured below.  This object model is a simplified 

subset of the object hierarchy offered by Frontline’s Solver Platform SDK 

product, which is used to build custom applications in C/C++, Visual Basic, 

VB.NET, Java or MATLAB.  Note that the same objects are used for both 

optimization and simulation problems. 

 

The Problem object represents the whole problem, and the Model object 

represents the internal structure of the model, which in Analytic Solver is 

defined by your formulas on the spreadsheet.  The Solver object represents the 

Monte Carlo process – you call its Simulate method to perform a simulation.  

The Engine object represents the PSI Technology “engine” – its parameters 

include the sampling method, for example.  A Variable object represents a 

range of one or more contiguous cells that contains uncertain variables, while a 

Function object represents a range of cells that contains uncertain functions.  

You may have a collection of Variable objects, and a collection of Function 

objects in one Problem. 

Using the VBA Object Browser 

You can examine the Analytic Solver objects, properties and methods in the 

VBA Object Browser.  To do this, press Alt-F11 to open the VBA Editor, and 

select menu choice View Object Browser.  This displays a child window like the 

one pictured below.  The dropdown list at the top left corner of the Object 

Browser initially displays <All Libraries> – change this to select RSP.  Below, 



Frontline Solvers 2021 User Guide Page 496 

we’ve highlighted the properties of the Statistics object, which is a child of the 

Variable and Function objects. 

 

Using Analytic Solver Objects 
You use the Analytic Solver object model by first creating an instance of a 

Problem, and initializing it with the simulation model defined in your Excel 

workbook.  Once you have an initialized Problem object, you can do several 

things: 

• Add one or more new Variable objects to the problem.  (This is an advanced 

step, covered near the end of this chapter.) 

• Set Solver and Engine parameters such as the number of simulations, 

number of trials per simulation, the sampling method, and the random seed. 

• Perform a simulation. 

• Get results of the simulation, by accessing properties of the Variable and 

Function objects, and of their “child” Statistics objects. 

The simplest action you might want to take is to create a Problem representing 

the workbook, set parameters, perform a simulation, and display results.  Below 

is an example that could be linked to a command button on the worksheet: 

Private Sub CommandButton3_Click() 

   Dim prob As New RSP.Problem 

   prob.Init ActiveWorkbook 

   prob.Solver.NumTrials = 5000 

   prob.Engine.Params("SamplingMethod") = 2 

   prob.Solver.Simulate 
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   For i = 0 To prob.Functions.Count – 1 

      MsgBox prob.Functions(i).Statistics.Mean(0) 

   Next i 

   Set prob = Nothing 

End Sub 

The first two lines create an instance of a Problem, and initialize it with the 

simulation model defined in your Excel workbook.  The next two lines set the 

number of trials in the simulation to 5000, and the sampling method to Latin 

Hypercube.  The fifth line performs a simulation. 

The for-loop in the next three lines will step through the Function objects – 

assuming, for simplicity here, that each Function object represents just one cell – 

and display the Mean property of the child Statistics object (the mean or average 

value of the function across all trials) for each one. 

Using Variable and Function Objects 

When you create and initialize a Problem, a collection of Variable objects and 

a collection of Function objects are created automatically.  Each Variable object 

corresponds to a range of one or more cells that contain PSI Distribution 

functions.  Each Function object corresponds to a formula cell referenced as the 

first argument of a PSI Statistics function, or a range of one or more formula 

cells referenced by PsiOutput().  For more information on the grouping of cells 

into Function objects, please see the Frontline Solvers Reference Guide. 

Indexing Variable and Function Objects 

The VBA code example above assumes that any cells containing =PsiOutput() 

are separated from each other on the worksheet.  When uncertain variable and 

uncertain function cells lie in a contiguous range – for example A1:A5 or A1:E1 

– one Variable or Function object is created to represent all the cells in the 

range.  The Size property of this object tells you the number of cells in the 

range, and its other properties may be indexed to access statistics – for example 

– of individual cells.  The for-loop above could be written in more general form 

as: 

   For i = 0 To prob.Functions.Count – 1 
      For j = 0 To prob.Functions(i).Size - 1 

         MsgBox prob.Functions(i).Statistics.Mean(j) 

      Next j 

   Next i 

Percentiles and AllTrials Properties 

In addition to the Statistics child object used above, Variable and Function 

objects have properties named Percentiles and AllTrials (the raw trial data). 

The Percentiles property plays the same role as the PsiPercentile() function on 

the spreadsheet.  It yields a DoubleMatrix object that takes two subscripts: the 

index (starting from 0) of the cell in the range represented by the Variable or 

Function object, and the percentile index, which runs from 0 to 98 for the 1st 

through 99th percentile. 

The AllTrials property plays the same role as the PsiData() function on the 

spreadsheet.  It yields a DoubleMatrix object that takes two subscripts:  the 

index (starting from 0) of the cell in the range represented by the Variable or 

Function object, and the index of the Monte Carlo trial (starting from 0).   
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The example code below illustrates how to obtain and display the values of the 

uncertain functions for each simulation trial. 

 
For i = 0 To prob.Functions.Count - 1 

     For j = 0 To prob.Functions(i).Size - 1 

      MsgBox prob.Functions(i).Percentiles(j,94) 

        For k = 0 To prob.Solver.NumTrials -1 

            MsgBox prob.Functions(i).AllTrials(j, k) 

        Next k 

    Next j 

Next i 

GetFrequency Method 

Variable and Function objects also have a GetFrequency method, that plays the 

same role as the PsiFrequency() function on the spreadsheet.  It takes an argu-

ment specifying the type of frequency distribution (density, cumulative, etc.) 

and an array argument specifying the upper limits of the “bins” for which you 

want to obtain frequency data.  It yields a DoubleMatrix object that takes two 

subscripts:  the index (starting from 0) of the cell in the range represented by the 

Variable or Function object, and the index (starting from 0) of the frequency bin. 

The example code below illustrates the use of the Get Frequency method to 

create 14 different "bins" for categorizing the values of the uncertain functions 

for each simulation trial. 

 
 For i = 0 To prob.Functions.Count - 1 

          For j = 0 To prob.Functions(i).Size - 1 

              Dim binlimits(14) As Double 

              binlimits(0) = -125000 

      For Count = 1 To 13 

                         binlimits(Count) =  

                         binlimits(Count - 1) + 25000 

              Next 

                    Dim mymat As New RSP.DoubleMatrix 

                 Set mymat =    

prob.Functions(i).GetFrequency(Frequency_Type_Density

,                binlimits) 

                    For Count = 0 To 13 

                       MsgBox "Upper Bin Limit" 

& ": " & binlimits(Count) & " = " &             

mymat(0, Count) 

              Next Count 

         Next j 

 Next i 

Controlling Simulation Parameters in VBA 

Analytic Solver provides a number of parameters you can use to control the 

simulation process, such as the number of Monte Carlo trials to perform, or the 

random number seed.  You can set these parameters interactively, or by setting 

certain Solver properties or Engine.Params properties in VBA.  

For example, the first line below sets the number of Monte Carlo trials to 5000.  

The second line set the random number seed to a fixed value – so the same 
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random number sequence is used on each run.  The third line sets the sampling 

method to Latin Hypercube:  

   prob.Solver.NumTrials = 5000 

   prob.Engine.Params("RandomSeed") = 12345 

   prob.Engine.Params("SamplingMethod") = 2   

For a list of simulation parameters that you can set in VBA, see the descriptions 

of the “EngineParam Object” and the “ModelParam Object” in the Frontline 

Solvers Reference Guide. 

Evaluators Called During the Simulation 
Process 

You can write a VBA function that Analytic Solver will call at certain points 

during the simulation process.  In this “callback function,” you can access 

information about the problem and simulation so far, to monitor or report 

progress and decide whether to stop or continue the simulation process. 

The object-oriented API defines an Evaluator object that is associated with your 

“callback function” and specifies when Analytic Solver should call it.  The VBA 

function you write to serve as an Evaluator must be contained in a class module 

– not a ‘regular’ VBA module – and it must be declared to have the WithEvents 

property. 

Here is an example of code for an Evaluator, in a class module named Class1: 

Private WithEvents EvalSim As RSP.Evaluator 

Private Function EvalSim_Evaluate _ 

  (ByVal Evaluator As RSP.IEvaluator) As _ 

  RSP.Engine_Action 

  MsgBox "Current Simulation = " _ 

    & Evaluator.Problem.Engine.Stat.Simulations 

  EvalSim_Evaluate = Engine_Action_Continue 

End Function 

Public Sub MySim() 

  Set EvalSim = New RSP.Evaluator 

  Dim prob As New RSP.Problem 

  prob.Init ActiveWorkbook 

  prob.Evaluators(Eval_Type_Simulation) = EvalSim 

  prob.Solver.Simulate 

  Set EvalSim = Nothing 

End Sub 

Having created the class module Class1, in a ‘regular’ VBA module you can 

create an instance of Class1, and then call the MySim method in Class1: 

Private Sub CommandButton1_Click() 

  Dim c As New Class1 

  c.MySim 

End Sub 

You can define Evaluators to be called when the random sample for all 

uncertain variables is generated (Eval_Type_Sample), after each simulation is 

completed (Eval_Type_Simulation), or after each trial is completed 

(Eval_Type_Trial).  However, because PSI Technology evaluates all trials in 

parallel, an Evaluator to be called on each trial is meaningful only if you use the 
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Excel Interpreter rather than the PSI Interpreter to calculate the worksheet on 

each trial. 

Working with Trials and Simulations in VBA 
Analytic Solver can perform multiple simulations in one run, where each 

simulation consists of a number of Monte Carlo trials that you specify.  Multiple 

simulations can be run whenever you choose Simulate – Run Once, whenever 

you change a number with Interactive Simulation, or whenever you call the 

Problem.Solver.Simulate method in VBA. 

In VBA, you can set the property Problem.Solver.NumSimulations = n to 

perform n different simulations on a single call to Problem.Solver.Simulate. 

After a simulation is run, Analytic Solver Simulation can display each Monte 

Carlo trial from the simulation on the Excel worksheet, if desired.  In VBA, you 

can set the property Problem.Solver.TrialIndex = n to display the nth trial, or 

you can call the method Problem.Solver.TrialStep to cycle through the trials.  

Displaying Normal or Error Trials 

Analytic Solver filters out ‘error trials’ from your simulation results when 

computing statistics and displaying charts.  An ‘error trial’ is a Monte Carlo trial 

where any uncertain function returns an Excel error value.  However, all trials 

are saved in memory, and you can access the values of uncertain variables and 

uncertain functions for each trial, or display each trial on the Excel worksheet. 

The Variable and Function objects contain an embedded Statistics object 

(described later in this chapter).  The property Statistics.NumValues gives the 

number of ‘normal’ trials, over which statistics were calculated, and property 

Statistics.NumErrors gives the number of error trials that occurred. 

You can cause a specific Monte Carlo trial to be displayed on the Excel 

worksheet by setting the property Problem.Solver.TrialIndex = n to the index 

(starting from 1) of the trial you want.  This causes the PSI Distribution function 

for each uncertain variable to return the sample value it had on the nth trial.  The 

worksheet is then recalculated, so that each uncertain function will have the 

value it had on the nth trial. 

To “step through” all trials, normal trials only, or error trials only, and display 

them on the Excel worksheet, call the method Problem.Solver.TrialStep 

stepsize, trialtype.  Trialtype is 0 for all trials, 1 for normal trials, and 2 for error 

trials.  The stepsize may be positive (1, 2, etc.) or negative (-1, -2, etc.).  After 

each call to the TrialStep method, the TrialIndex property is set to the index of 

the trial just displayed.  If stepsize is so large that it would go beyond the last 

trial (if positive, or the first trial if negative), the TrialIndex will be set to the last 

(or first) trial, and that trial will be displayed. 

Using Multiple Simulations 

For multiple simulations to be useful, some parameter of the model – normally 

something you can control – must have a different value in each individual 

simulation.  Also, you must access statistics, percentiles, and trial data (if used) 

for each simulation, so you can compare the results. 

If you set Problem.Solver.NumSimulations = n to perform several simulations 

on each run, you can use the function PsiSimParam().  This function takes 
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either two arguments lower and upper, as in PsiSimParam(1,3), or one argument 

that’s a cell range or array of numbers, such as PsiSimParam({6.0, 7.5, 9.0}).  

On the nth simulation, PsiSimParam() returns the nth value from its argument 

list, held constant for all the trials in that simulation.  In calls to the PSI 

Statistics functions, you can select the simulation for which you want results.  

For example, if you have an uncertain function in cell F1, you can write 

=PsiMean(F1,1), =PsiMean(F1,2), and =PsiMean(F1,3) to access the mean 

value of F1 across all the trials in the first simulation, second simulation, and 

third simulation, respectively. 

If you leave the NumSimulations property at its default value of 1, and call 

Problem.Solver.Simulate inside a for-loop, you can set parameter values that 

you compute on-the-fly in cells before each simulation using the Excel Range 

object.  You can either get the values of PSI Statistics functions through the 

Excel object model, or (often better) you can access the Statistics, Percentiles 

and AllTrials properties, or call the GetFrequency method of your Variables and 

Functions, to retrieve the results of that simulation. 

Creating Uncertain Variables and SLURPs in VBA 
The chapter “Mastering Simulation and Risk Analysis Concepts” describes 

Stochastic Library Units, Relationships Preserved or SLURPs, and shows how 

to create a SLURP on the spreadsheet.  You can also create SLURPs in VBA, 

and use the SLURP trial data for uncertain variables in your spreadsheet model. 

To do this, you first create a Problem object, and initialize it with the simulation 

model defined in your Excel workbook.  At this point, the Problem’s collection 

of Variables will contain Variable objects for each contiguous range of cells 

containing PSI Distribution functions in the workbook (if any).  You can then: 

1. Create a new Variable object in VBA. 

2. Set its Name property to an unused cell range (say “Sheet1:A1:A5”). 

3. Set its AllTrials property to the SLURP trial data. 

4. Add the Variable object to the Problem’s collection of Variables. 

The simulation model then behaves just as if these cells contained =PsiSlurp() 

function calls that referred to the SLURP trial data you supplied via VBA.  The 

SLURP data could be generated by your VBA program, read from a database, or 

otherwise obtained – it never appears on the Excel spreadsheet.  For example: 

   Dim prob As New RSP.Problem 
   prob.Init ActiveWorkbook   

   Dim trials As RSP.DoubleMatrix 

   Set trials = New RSP.DoubleMatrix 

   trials.InitDense 1, prob.Solver.NumTrials 

   Randomize 

   For i = 0 To prob.Solver.NumTrials – 1 

       trials(0, i) = Rnd() 

   Next i 

   Dim var As New RSP.Variable 

   var.VariableType = Variable_Type_Uncertain 

   var.Init Range("Sheet1$A$1") 

   var.AllTrials = trials 
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   prob.Variables.Add var 

   prob.Solver.Simulate 

The first two lines create an instance of a Problem, and initialize it with the 

simulation model defined in your Excel workbook.  The next three lines create a 

DoubleMatrix object named trials to hold SLURP data, and set its dimensions – 

just 1 x NumTrials in this case, since we’re adding just one uncertain variable. 

The next four lines show how the trials matrix can be initialized with newly 

generated values.  Of course, you’d want to use a better, application-specific 

method – not the Rnd() function – to generate this trial data, or perhaps read the 

trial data from a database or external file. 

In the next three lines, we create a Variable object, set its Name property to the 

cell address Sheet1!A1 (this must be an empty cell on the spreadsheet), and set 

its AllTrials property to the trial data we just generated. 

In the last two lines, we add the new Variable object to the Problem’s collection 

of Variables, and then perform a simulation. 

The newly added Variable object, and the SLURP data represented by its 

AllTrials property, participates in the simulation model only for so long as the 

VBA Problem object exists – it is “transient” and is not saved in the workbook.  

Of course, your VBA program code is saved with the workbook, and it can be 

run at a later time to re-create the Variable object and re-generate or retrieve the 

SLURP data. 
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Mastering Conventional 
Optimization Concepts 

Introduction 
This chapter explains basic and advanced concepts of optimization, such as the 

types of problems you can solve, types of constraints (regular, integer, conic, 

alldifferent) you can specify, the nature of linear, quadratic and nonlinear 

functions, convex and non-convex functions, smooth and non-smooth functions, 

and the algorithms and methods used by Analytic Solver (or its optimization 

sub-set products) and plug-in Solver engines. 

This chapter focuses on conventional or deterministic optimization models, 

which do not include any uncertainty.  The next chapter “Mastering Simulation 

and Risk Analysis Concepts” explains the concepts of stochastic optimization 

models – those that do include uncertainty – and solution methods such as 

robust optimization, stochastic programming, and simulation optimization. 

If you are using Analytic Solver for the first time, we recommend that you try 

out the examples described in the chapter “Examples: Conventional 

Optimization” before tackling this material.  If you are relatively new to 

optimization, you may find it useful to read the first section below, “Elements of 

Solver Models,” and then proceed to the Examples chapters.  If you’ve been 

using the Solver for a while, and you’d like a more in-depth review of the 

mathematical relationships found in Solver models, and the optimization 

methods and algorithms used by the Solver, read the more advanced sections of 

this chapter, and the next chapter. 

Elements of Solver Models 
The basic purpose of the Solver is to find a solution – that is, values for the 

decision variables in your model – that satisfies all of the constraints and maxi-

mizes or minimizes the objective function value (if there is one).  Let’s examine 

this framework more closely. 

The model you create for use with the Solver is no different from any other 

spreadsheet model.  It consists of input values; formulas that calculate values 

based on the input values or on other formulas; and other elements such as 

formatting.  You can play “what if” with a Solver model just as easily as with 

any other spreadsheet model.  This familiar concept can be very useful when 

you wish to present your results to managers or clients, who are usually 

“spreadsheet literate” even if they are unfamiliar with Solvers or optimization. 

Decision Variables and Parameters 

Some of the input values may be numbers that you use, but you cannot change 

on your own – for example, prevailing interest rates or supplier’s prices.  We’ll 

call these values parameters of the model. You may have several cases, 

scenarios, or variations of the same problem to solve, and the parameter values 
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will change in each problem variation; you can define these parameters via the 

Parameters button on the Ribbon.  In this chapter, we’ll assume that parameter 

values are certain, but the chapter “Mastering Stochastic Optimization 

Concepts” will cover situations where the parameter values are uncertain. 

Other input values may be quantities that are variable, or under your control in 

the course of finding a solution.  We’ll refer to these as the variables or decision 

variables; the Excel Solver refers to them as Changing Cells.  The Solver will 

find optimal values for these variables or cells.  Often, some of the same cell 

values you use to play “what if” are the ones for which you’ll want the Solver to 

find solution values.  These cells are listed in the Variables group in the Task 

Pane Model tab, or the Solver Parameters dialog. 

The Objective Function 

The quantity you want to maximize or minimize is called the objective or 

objective function; the Excel Solver often uses the term Set Cell for the 

objective.  For example, this could be a calculated value for projected profits (to 

be maximized), or costs, risk, or error values (to be minimized).  It appears 

under ‘Objective’ in the Task Pane Model tab, or the Solver Parameters dialog. 

You may have a Solver model that has nothing to maximize or minimize, in 

which case no cell will be listed for the objective.  In this situation the Solver 

will simply find a solution that satisfies the constraints.  Typically this will be 

only one of many such solutions, located close to the starting values of the 

decision variables. 

The Solver also permits you to enter a specific value that you want the objective 

function to achieve.  This feature was originally included in the Excel Solver to 

match the Excel Goal Seek... command, which allows you to seek a specific 

value for a cell by adjusting the value of one other cell on which it depends.  

Using the ‘Value Of’ option for the objective cell has the same effect as adding 

an = constraint in the outlined list, with the objective cell on the left hand side 

and the constant value on the right hand side; again there is nothing to maximize 

or minimize. 

There is rarely a good reason to use the Value of option.  If your problem 

requires only a single objective cell and a single variable cell with no 

constraints, you can just use the Goal Seek... command.  If you have nothing to 

maximize or minimize, we recommend that you omit the objective and enter all 

of your constraints in the outlined list under “Constraints.” 

Constraints 

Constraints are relations such as A1 >= 0.  A constraint is satisfied if the 

condition it specifies is true within a small tolerance.  This is a little different 

from a logical formula such as =A1>=0 evaluating to TRUE or FALSE which 

you might enter in a cell.  In this example, if A1 were -0.0000001, the logical 

formula would evaluate to FALSE, but with the default Solver Precision setting, 

the constraint would be satisfied.  Because of the numerical methods used to 

find solutions to Solver models and the finite precision of computer arithmetic, 

it would be unrealistic to require that constraints like A1 >= 0 be satisfied 

exactly – such solutions would rarely be found. 

In the Excel Solver, constraints are specified by giving a cell reference such as 

A1 or A1:A5 (the “left hand side”), a relation (<=, = or >=), and an expression 

for the “right hand side.”  Although Excel allows you to enter any numeric 

expression on the right hand side, for reasons that will be explained in the 
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chapter “Best Practices for Building Large-Scale Models,” we strongly 

encourage you to use only constants, or references to cells that contain constant 

values on the right hand side.  (A constant value to the Solver is any value that 

does not depend on any of the decision variables.) 

A constraint such as A1:A5 <= 10 is shorthand for A1 <= 10, A2 <= 10, A3 <= 

10, A4 <= 10, A5 <=10.  A constraint such as A1:A5 <= B1:B5 is shorthand for 

A1 <= B1, A2 <= B2, A3 <= B3, A4 <= B4, A5 <= B5. 

Another type of constraint is of the form A1:A5 = integer, where A1:A5 are 

decision variables.  This specifies that the solution values for A1 through A5 

must be integers or whole numbers, such as -1, 0 or 2, to within a small 

tolerance.  This form of constraint, and related forms such as A1:A5 = binary, 

A1:A5 = semicontinuous, and A1:A5 = alldifferent, are explored in the section 

“More About Constraints.” 

A new type of constraint supported by Analytic Solver is of the form A1:A5 = 

conic, where A1:A5 are decision variables.  This is called a second order cone 

constraint and is further described in “More About Constraints.” 

Solutions:  Feasible, “Good” and Optimal 

A solution (set of values for the decision variables) for which all of the 

constraints in the Solver model are satisfied is called a feasible solution.  In 

some problems, a feasible solution is already known; in others, finding a feasible 

solution may be the hardest part of the problem. 

An optimal solution is a feasible solution where the objective function reaches 

its maximum (or minimum) value – for example, the most profit or the least 

cost.  A globally optimal solution is one where there are no other feasible 

solutions with better objective function values.  A locally optimal solution is one 

where there are no other feasible solutions “in the vicinity” with better objective 

function values – you can picture this as a point at the top of a “peak” or at the 

bottom of a “valley” which may be formed by the objective function and/or the 

constraints. 

The Solver is designed to find feasible and optimal solutions.  In the best case, it 

will find the globally optimal solution – but this is not always possible.  In other 

cases, it will find a locally optimal solution, and in still others, it will stop after a 

certain amount of time with the best solution it has found so far.  But like many 

users, you may decide that it’s most important to find a good solution – one that 

is better than the solution, or set of choices, you are using now. 

The kind of solution the Solver can find depends on the nature of the 

mathematical relationships between the variables and the objective function and 

constraints (and the solution algorithm used).  As explained below, if your 

model is smooth convex, you can expect to find a globally optimal solution; if it 

is smooth but non-convex, you will usually be able to find a locally optimal 

solution; if it is non-smooth, you may have to settle for a “good” solution that 

may or may not be optimal. 

Below, we summarize the capabilities of the five Solver engines bundled with 

Analytic Solver Comprehensive and Analytic Solver Optimization within both 

Analytic Solver Desktop and the Cloud app:  the LP/Quadratic Solver, SOCP 

Barrier Solver, nonlinear GRG Solver, Interval Global Solver, and Evolutionary 

Solver.  (Analytic Solver Upgrade uses the LP/Quadratic Solver, the nonlinear 

GRG Solver, and the Evolutionary Solver.)  Later sections of this chapter 

provide an overview of the optimization methods and algorithms employed by 

each of these Solver engines. 
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Linear Simplex and LP/Quadratic Solver 

The Simplex LP Solver with the Excel Solver finds optimal solutions to 

problems where the objective and constraints are all linear functions of the 

variables.  (The term linear function is explained below, but you can imagine its 

graph as a straight line.)  Since all linear functions are convex, the Solver 

normally can find the globally optimal solution, if one exists.  Because a linear 

function (a straight line) can always be increased or decreased without limit, the 

optimal solution is always determined by the constraints; there is no natural 

“peak” or “valley” for the objective function itself. 

In Analytic Solver Comprehensive, Analytic Solver Optimization, Analytic 

Solver Upgrade and Analytic Solver Basic, the linear Simplex Solver is 

extended to the LP/Quadratic Solver.  This Solver handles problems where the 

constraints are all linear, and the objective may be linear or quadratic (explained 

further below).  If the quadratic objective function is convex (if minimizing, or 

concave if maximizing) the Solver will normally find a globally optimal 

solution.  If the objective is non-convex (further explained below), the Solver 

will find only a locally optimal solution. 

SOCP Barrier Solver 

The SOCP Barrier Solver, included in all optimization products, finds optimal 

solutions to problems where the objective and constraints are all linear or 

convex quadratic functions of the variables.  (This is in contrast to the 

LP/Quadratic Solver, which permits only the objective function to be quadratic.)  

It also finds optimal solutions to problems with a linear objective, linear 

constraints, and second order cone (SOC) constraints; this is called a second 

order cone programming (SOCP) problem, as explained further below.  Since all 

linear functions and SOC constraints are convex, the SOCP Barrier Solver 

normally finds a globally optimal solution, if one exists. 

Nonlinear GRG Solver 

The nonlinear GRG Solver (in all Analytic Solver products except Analytic 

Solver Simulation) finds optimal solutions to problems where the objective and 

constraints are all smooth (convex or non-convex) functions of the variables.  

(The term smooth function is explained below, but you can imagine a graph – 

whether straight or curved – that contains no “breaks.”)  For non-convex 

problems, the Solver normally can find a locally optimal solution, if one exists – 

but this may or may not be the globally optimal solution.  A nonlinear objective 

function can have a natural “peak” or “valley,” but in most problems the optimal 

solution is partly or wholly determined by the constraints.  The nonlinear GRG 

Solver can be used on problems with all-linear functions, but it is much less 

effective and efficient than the LP/Quadratic Solver or the SOCP Barrier Solver 

on such problems. 

If you use multistart methods for global optimization with the nonlinear GRG 

Solver, you will have a better chance (but not a guarantee) of finding the 

globally optimal solution.  The idea behind multistart methods is to 

automatically start the Solver from a variety of starting points, to find the best of 

the locally optimal solutions – ideally the globally optimal solution.  These 

methods are more fully described (and contrasted with other methods for global 

search) below under “Global Optimization” and in the chapter “Solver Engine 

Option Reference” in the Frontline Solvers Reference Guide. 
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Interval Global Solver 

The Interval Global Solver, included in all optimization products, finds globally 

optimal solutions to problems where the objective and constraints are all smooth 

(convex or non-convex) functions of the variables.  Unlike the Evolutionary 

Solver or the GRG Solverswith multistart methods, the Interval Global Solver is 

normally able to determine for certain that the solution is globally optimal.  The 

tradeoff is that the Interval Global Solver usually takes much more time to solve 

a given problem than the GRG Solver, and this time rises steeply as the number 

of variables and constraints in the problem increases.  Hence, the Interval Global 

Solver is practically able to solve only smaller problems, compared to the GRG 

Solver.  

Evolutionary Solver 

The Evolutionary Solver in Analytic Solver, and all subsets except Analytic 

Solver Simulation, usually finds good solutions to problems where the objective 

and constraints include non-smooth or discontinuous functions of the variables – 

in other words, where there are no restrictions on the formulas that are used to 

compute the objective and constraints.  For example, if your model uses IF, 

LOOKUP or similar functions of the variables, it’s likely that the graphs of these 

functions will contain “jumps” or “breaks.”  For this class of problems, the 

Solver will return the best feasible solution (if any) that it can find in the time 

allowed. 

The Evolutionary Solver can be used on problems with all-smooth functions that 

may have multiple locally optimal solutions, in order to seek a globally optimal 

solution, or simply a better solution than the one found by the nonlinear GRG 

Solver alone; however, the Interval Global Solver or the combination of 

multistart methods and the GRG Solver are likely to do as well or better than the 

Evolutionary Solver on such problems.  It can be used on problems with smooth 

convex functions, but it is usually less effective and efficient than the nonlinear 

GRG oSolver on such problems.  Similarly, it can be used on problems with all-

linear functions, but there is little point in doing so when the Simplex (Excel 

Solver), LP/Quadratic, or SOCP Barrier Solver is available. 

More About Constraints 
This section explains in greater depth the role of certain types of constraints, 

including bounds on the decision variables, equality and inequality constraints, 

second order cone constraints, and different forms of integer constraints. 

Bounds on the Variables 

Constraints of the form A1 >= -5 or A1 <= 10 (for example), where A1 is a 

decision variable, are called bounds on the variables and are treated specially by 

the Solver.  These constraints affect only one variable, whereas general 

constraints have an indirect effect on several variables that have been used in a 

formula such as A1+A2.  Each of the Solver engines takes advantage of this fact 

to handle bounds on the variables more efficiently than general constraints. 

The most common type of bound on a variable is a lower bound of zero (A1 >= 

0), which makes the variable non-negative.  Many variables represent physical 

quantities of some sort, which cannot be negative.  As a convenience, most 

Solver Engines offer an option “Assume Non-Negative,” which automatically 

places a lower bound of zero on every variable which has not been given an 

explicit lower bound in the model outline.  If you need bounds other than zero, 
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the Task Pane Platform tab Default Bounds section lets you set default lower 

and upper bounds on every decision variable. 

Regardless of the Solver engine chosen, bounds on the variables always help 

speed up the solution process, because they limit the range of values that the 

Solver must explore.  In many problems, you will be aware of realistic lower 

and upper bounds on the variables, but they won’t be of any help to the Solver 

unless you include them in the Constraints list box!  Bounds on the variables are 

especially important to the performance of the Evolutionary Solver, the Interval 

Global Solver, and multistart methods for global optimization.  They are also 

very important if you want the Solver to automatically transform your model, 

replacing non-smooth functions (such as IF) with additional variables and linear 

constraints. 

Equations and Inequalities 

Constraints such as A1 = 0 are called equality constraints or equations; 

constraints such as A1 <= 0 are called inequality constraints or simply 

inequalities.  An equality is much more restrictive than an inequality.  For 

example, if A1 contains the formula =C1+C2, where C1 and C2 are decision 

variables, then A1 <= 0 restricts the possible solutions to a half plane, whereas 

A1 = 0 restricts the solutions to a line where all possible values of C1and C2 

must sum to 0 (C1 = -C2 within a small tolerance, as explained above).  Since 

there is only a tiny chance that two randomly chosen values for C1 and C2 will 

satisfy C1+C2 = 0, solution methods that rely on random choices, such as 

genetic algorithms, may have a hard time finding any feasible solutions to 

problems with equality constraints.  To satisfy equality constraints, the Solver 

generally must exploit properties of the constraint formula – such as linearity or 

smoothness, discussed below – to solve for one variable in terms of another. 

A linear equality constraint (like C1+C2 = 0 above) maintains the convexity of 

the overall problem, but a nonlinear equality constraint is non-convex, and 

makes the overall problem non-convex.  Interior point methods may have 

difficulty solving problems with nonlinear equality constraints, since they 

restrict the ability of the Solver to follow the “central path” inside the feasible 

region. 

A problem with only equality constraints (and no objective) is sometimes called 

a system of equations.  The Solver can be used to find solutions to systems of 

both linear and nonlinear equations.  If there are several different solutions (sets 

of values for the decision variables) that satisfy the equations, most Solver 

engines will find just one solution that is “close” to the starting values of the 

variables; but the Interval Global Solver can be used to find all real solutions to 

a system of smooth nonlinear equations – a capability that was once felt to be 

beyond the limits of any known algorithm. 

Second Order Cone Constraints 

Analytic Solver supports constraints of the form A1:A5 = conic.  This is called a 

second order cone (SOC) constraint; it specifies that the vector formed by the 

decision variables A1:A5 must lie within the second-order cone (also called the 

Lorentz cone, or “ice cream cone”) of dimension 5 – a convex set that looks like 

the figure below in three dimensions.  
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Algebraically, a second-order cone constraint specifies that, given a value for 

one variable, the L2-norm of the vector formed by the remaining variables must 

not exceed this value:  In linear algebra notation, a1 ≥ ║a2:a5║2.  In Excel, this 

could be written as A1 >= SQRT(SUMSQ(A2:A5)).  You can also use a variant 

called a “rotated second order cone” constraint.  A problem with a linear 

objective and linear or SOC constraints is called a second order cone 

programming (SOCP) problem; it is always a convex optimization problem. 

Decision variables that are constrained to be non-negative also belong to a cone, 

called the non-negative orthant.  A problem with all linear functions – a linear 

programming problem – is a special case of an SOCP problem, where the only 

cone constraint is non-negativity. 

A convex quadratic objective or constraint can be transformed into an equivalent 

second order cone constraint.  Hence, a problem with a quadratic objective – a 

quadratic programming or QP problem – or a problem with quadratic constraints 

– called a QCP problem – is also a special case of an SOCP problem.  The 

SOCP Barrier Solver and the MOSEK Solver will automatically transform 

quadratics into SOC form internally; you can simply define your quadratic 

objective and/or constraints using ordinary Excel formulas and <= or >= 

relations, and use these Solver engines to obtain fast, reliable, globally optimal 

solutions to your problem. 

Integer and Binary Constraints 

As explained in the last section, integer constraints are of the form A1:A5 = 

integer, where A1:A5 are decision variables.  This specifies that the solution 

values for A1 through A5 must be integers or whole numbers, such as -1, 0 or 2, 

to within a small tolerance.  A common special case that can be entered directly 

in the Add Constraint dialog is A1 = binary, which is equivalent to specifying 

A1 = integer, A1 >= 0 and A1 <= 1.  This implies that A1 must be either 0 or 1 

at the solution; hence A1 can be used to represent a “yes/no” decision.  Integer 

constraints have many important applications, but the presence of even one such 

constraint in a Solver model makes the problem an integer programming 

problem (discussed below), which may be much more difficult to solve than a 

similar problem without the integer constraint. 

Semi-Continuous Constraints 

It is often useful to place a semi-continuous constraint on a decision variable.  

This specifies that, at the solution, the variable must be either 0, or else a 

continuous value within a range, determined by the bounds on the variable.  For 

example, if a machine is either “off” or running at a speed between 5 and 50, 

you can model the machine’s speed with A1 = semicontinuous, A1 >= 5 and A1 

<= 50.  In situations where you might need a binary integer variable and a 

regular (continuous) variable, you can sometimes use a single semi-continuous 

variable instead – and such a variable can be handled very efficiently by most 

Solver engines. 
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Alldifferent Constraints 

A special type of integer constraint supported by Analytic Solver and its subset 

products is called an “alldifferent” constraint.  Such a constraint is of the form 

(for example) A1:A5 = alldifferent, where A1:A5 is a group of decision 

variables, and it specifies that these variables must be integers in the range 1 to 

N (N = 5 in this example), with each variable different from all the others at the 

solution.  Hence, A1:A5 will contain a permutation of integers, such as 1,2,3,4,5 

or 1,3,5,2,4.  The alldifferent constraint can be used to model problems 

involving ordering of choices, such as the Traveling Salesman Problem. 

Functions of the Variables 
Since there are large differences in the time it takes to find a solution and the 

kinds of solutions – globally optimal, locally optimal, or simply “good” – that 

you can expect for different types of problems, it pays to understand the 

differences between linear, quadratic, smooth nonlinear, and non-smooth 

functions, and especially convex and non-convex functions.  To begin, let’s 

clarify what it means to say that the spreadsheet cells you select for the objective 

and constraints are “functions of the decision variables.” 

The objective function in a Solver problem is a cell calculating a value that 

depends on the decision variable cells; the job of the Solver is to find some 

combination of values for the decision variables that maximizes or minimizes 

this cell’s value.  During the optimization process, only the decision variable 

cells are changed; all other “input” cells are held constant.  If you analyze the 

chain of formulas that calculates the objective function value, you will find that 

parts of those formulas (those which refer to non-decision variable cells) are 

unchanging in value and could be replaced by a numeric constant for the 

purposes of the optimization. 

If you have constant values on the right hand sides of constraints, then the same 

observation applies to the left hand sides of constraints:  Parts of the constraint 

formulas (those which refer to non-decision variable cells) are unchanging in 

value, and only the parts that are dependent on the decision variables “count” 

during the optimization. 

When you consider whether your objective and constraints are linear, quadratic, 

smooth nonlinear, or non-smooth, or convex or non-convex functions of the 

variables, always bear in mind that only the parts of formulas that are dependent 

on the decision variables “count.”  Below, we explain that linear functions are 

most desirable, and non-smooth and non-convex functions are least desirable in 

a Solver model (if you want the fastest and most reliable solutions).  A formula 

such as =IF(C1>=10,D1,2*D1) is non-smooth if C1 depends on the decision 

variables; but if C1 doesn’t depend on the variables, then only D1 or 2*D1 – not 

both – can be selected during the solution process.  Hence if D1 is a linear 

function of the variables, then the IF expression is also a linear function of the 

variables. 

You may also find that a function that is “bad” (non-smooth or non-convex) 

over its full domain (any possible values for the decision variables) can still be 

“good” (smooth and/or convex) over the domain of interest to you, determined 

by other constraints including bounds on the variables.  For example, if C1 

depends on the variables, then =IF(C1>=10,D1,2*D1) is non-smooth over its 

full domain, but smooth – in fact linear – if C1 is constrained to be 10 or more.  

=SIN(C1) is non-convex over its full domain, but is convex from  –pi to 0, or 

from pi to 2*pi. 
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Convex Functions 

The key property of functions of the variables that makes a problem “easy” or 

“hard” to solve is convexity.  If all constraints in a problem are convex functions 

of the variables, and if the objective is convex if minimizing, or concave if 

maximizing, then you can be confident of finding a globally optimal solution (or 

determining that there is no feasible solution), even if the problem is very large 

– thousands to hundreds of thousands of variables and constraints. 

In contrast, if any of the constraints are non-convex, or if the objective is either 

non-convex, concave if minimizing, or convex if maximizing, then the problem 

is far more difficult:  You cannot be certain of finding a feasible solution even if 

one exists; you must either “settle for” a locally optimal solution, or else be 

prepared for very long solution times and rather severe limits on the size of 

problems you can solve to global optimality (a few hundred to perhaps one 

thousand variables and constraints), even on the fastest computers.  So it pays to 

understand convexity! 

Geometrically, a function is convex if, at any two points x and y, the line drawn 

from x to y (called the chord from x to y) lies on or above the function – as 

shown in the diagram below, for a function of one variable.  A function is 

concave if the chord from x to y lies on or below the function.  This property 

extends to any number of ‘dimensions’ or variables, where x = (x1, x2, …, xn) 

and y =( y1, y2, …, yn).  

 

Algebraically, a function f is convex if, for any points x and y, and any t between 

0 and 1, f( tx + (1-t)y ) <= tf(x) + (1-t)f(y).  A function f is concave if –f is 

convex, i.e. if f( tx + (1-t)y ) >= tf(x) + (1-t)f(y).  A linear function – described 

below – is both convex and concave:  The chord from x to y lies on the line, and 

f( tx + (1-t)y ) = tf(x) + (1-t)f(y).  As we’ll see, a problem with all linear 

functions is the simplest example of a convex optimization problem that can be 

solved efficiently and reliably to very large size. 

A non-convex function “curves up and down.”  A familiar example is the sine 

function (SIN(C1) in Excel), which is pictured below. 

 

The feasible region of an optimization problem is formed by the intersections of 

the constraints.  The intersection of several convex constraints is always a 

convex region, but even one non-convex function can make the whole region 

non-convex – and hence make the optimization problem far more difficult to 

solve. 
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Linear Functions 

In many common cases, the objective and/or constraints are linear functions of 

the variables.  This means that the function can be written as a sum of terms, 

where each term consists of one decision variable multiplied by a (positive or 

negative) constant.  Algebraically, we can write: 

a1x1 + a2x2 + ... + anxn 

where the ais, which are called the coefficients, stand for constant values and the 

xis stand for the decision variables.  A common example is =SUM(C1:C5), 

where C1:C5 are decision variables and the ais are all 1.  Note that a linear 

function does not have to be written in exactly the form shown above on the 

spreadsheet.  For example, if cells C1 and C2 are decision variables, B1 = 

C1+C2, and B2 = A1*B1 where A1 is constant in the problem, then B2 is a 

linear function (=A1*C1+ A1*C2). 

Geometrically, a linear function is always a straight line, in n-dimensional space 

where n is the number of decision variables.  On the next page is a perspective 

plot of 2x1 +1x2.  As noted above, a linear function is always convex. 

 

Remember that the ais need only be constant in the optimization problem, i.e. 

not dependent on any of the decision variables.  For example, suppose that the 

function is =B1/B2*C1 + (D1*2+E1)*C2, where only C1 and C2 are decision 

variables, and the other cells contain constants (or formulas that don’t depend on 

the variables).  This would still be a linear function, where a1 = B1/B2 and a2 = 

(D1*2+E1) are the coefficients, and x1 = C1 and x2 = C2 are the variables. 

Note that the SUMPRODUCT and DOTPRODUCT functions compute exactly 

the algebraic expression shown above.  If we were to place the formula =B1/B2 

in cell A1, and the formula =(D1*2+E1) in cell A2, then we could write the 

example function above as: 

=SUMPRODUCT(A1:A2,C1:C2) 

This is simple and clear, and is also useful for fast problem setup as described in 

the chapter “Best Practices for Building Large-Scale Models.”  If the decision 

variable cells that should participate in the expression are not all contiguous on 

the spreadsheet, the DOTPRODUCT function can be used instead of 

SUMPRODUCT. 

As explained below in the section “Derivatives, Gradients, Jacobians and 

Hessians,” each coefficient ai in the linear expression a1x1 + a2x2 + ... + anxn is the 

first partial derivative of the expression with respect to variable xi.  These partial 

derivatives are always constant in a linear function – and all higher-order 

derivatives are zero. 
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A nonlinear function (explained further below), as its name implies, is any 

function of the decision variables which is not linear, i.e. which cannot be 

written in the algebraic form shown above – and its partial derivatives are not 

constant.  Examples would be = 1/C1, =LOG(C1), =C1^2 or =C1*C2 where 

both C1 and C2 are decision variables.  If the objective function or any of the 

constraints are nonlinear functions of the variables, then the problem cannot be 

solved with an LP Solver. 

Testing for a Linear Model 

What if you have already created a complex spreadsheet model without using 

functions like SUMPRODUCT, and you aren’t sure whether your objective 

function and constraints are linear or nonlinear functions of the variables?  If 

you have Analytic Solver, you can easily find out by pressing the Analyze 

button in the Task Pane.  Moreover, you can easily obtain a report showing 

exactly which cells contain formulas that are nonlinear. 

You can try solving the model with the standard LP/Quadratic Solver.  If the 

problem contains nonlinear functions of the variables, you will (in virtually all 

cases) receive the message “The linearity conditions required by this Solver 

engine are not satisfied.”  You can then ask the Solver to produce a Linearity 

Report, which shows whether the objective and each of the constraints is a linear 

or nonlinear function of the variables.  This report also shows which variables 

occur linearly, and which occur nonlinearly in your model – another way of 

summarizing the same information.  You should next look closely at the 

objective or constraint formulas that the Linearity Report indicates are 

nonlinear, and decide whether (or not) the formula can be written in linear form. 

Quadratic Functions 

The last two examples of nonlinear functions above, =C1^2 or =C1*C2, are 

simple instances of quadratic functions of the variables.  A more complex 

example is: 

=2*C1^2+3*C2^2+4*C1*C2+5*C1 

A quadratic function is a sum of terms, where each term is a (positive or 

negative) constant (again called a coefficient) multiplied by a single variable or 

the product of two variables.  In linear algebra notation, we can write xTQx + cx 

where x is a vector of n decision variables, Q is an n x n matrix of coefficients, 

and c is an n vector of linear coefficients.  The QUADPRODUCT function 

computes values of exactly this form.  If we put the constant 5 in A1, 0 in B1, 2 

in A2, 4 in B2, 0 in A3 and 3 in B3, then we could write the above example as: 

=QUADPRODUCT(C1:C2,A1:B1,A2:B3) 

Common uses for quadratic functions are to compute the mean squared error in 

a curve-fitting application, or the variance or standard deviation of security 

returns in a portfolio optimization application. 

As explained below in the section “Derivatives, Gradients, Jacobians and 

Hessians,” the coefficients that multiply single variables in a quadratic function 

are the first partial derivatives of the function with respect to those variables; the 

coefficients that multiply the products of two variables are the second partial 

derivatives of the function, with respect to those two variables.  In a quadratic 

function, these first and second order derivatives are always constant, and higher 

order derivatives are zero.  The matrix Q of second partial derivatives is called 

the Hessian of the function. 
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Convex, Concave and Non-Convex Quadratics 

A quadratic function of at least two variables may be convex, concave, or non-

convex. The matrix Q in the general form xTQx has a closely related algebraic 

property of definiteness.  If the Q matrix is positive definite, the function is 

convex; if the Q matrix is negative definite, the function is concave.  You can 

picture the graph of these functions as having a “round bowl” shape with a 

single bottom (or top).  If the Q matrix is semi-definite, the function has a bowl 

shape with a “trough” where many points may have the same objective value, 

but it is still convex or concave.  If the Q matrix is indefinite, the function is 

non-convex:  It has a “saddle” shape, but its true minimum or maximum is not 

found in the “interior” of the function but on its boundaries with the constraints, 

where there may be many locally optimal points.  Below is a plot of an example 

non-convex quadratic x1
2 + 2x1x2 – ½ (x2

2 – 1): 

 

A problem with convex quadratic functions is easily solved to global optimality 

up to very large size, but a problem with non-convex quadratic functions is a 

difficult global optimization problem that, in general, will require solution time 

that grows exponentially with the number of variables.  The way that the Solver 

handles such functions is explained further below under “Quadratic 

Programming.” 

Nonlinear and Smooth Functions  

A nonlinear function is any function of the variables that is not linear, i.e. which 

cannot be written in the algebraic form: 

a1x1 + a2x2 + ... + anxn 

Examples, as before, are =1/C1, =LOG(C1), and =C1^2, where C1 is a decision 

variable.  All of these are called continuous functions, because their graphs are 

curved but contain no “breaks.”  =IF(C1>10,D1,2*D1) is also a nonlinear 

function, but it is “worse” (from the Solver’s viewpoint) because it is 

discontinuous:  Its graph contains a “break” at C1=10 where the function value 

jumps from D1 to 2*D1.  At this break, the rate of change (i.e. the derivative) of 

the function is undefined.  As explained below in the section “Derivatives, 

Gradients, Jacobians and Hessians,” most Solver algorithms rely on derivatives 

to seek improved solutions, so they may have trouble with a Solver model 

containing functions like =IF(C1>10,D1,2*D1).  The Interval Global Solver 

does not accept discontinuous functions at all. 

If the graph of the function’s derivative also contains no breaks, then the original 

function is called a smooth function.  If it does contain breaks, then the original 

function is non-smooth.  Every discontinuous function is also non-smooth.  An 

example of a continuous function that is non-smooth is =ABS(C1) – its graph is 



Frontline Solvers 2021 User Guide Page 515 

an unbroken “V” shape, but the graph of its derivative contains a break, jumping 

from –1 to +1 at C1=0.  Many nonlinear Solver algorithms rely on second order 

derivatives of at least the objective function to make faster progress, and to test 

whether the optimal solution has been found; they may have trouble with 

functions such as =ABS(C1).  The Interval Global Solver does not accept any 

non-smooth functions. 

As explained below in the section “Derivatives, Gradients, Jacobians and 

Hessians,” general nonlinear functions have first, second, and sometimes higher 

order derivatives that change depending on the point (i.e. values of the decision 

variables) at which the function is evaluated. 

Convex, Concave and Non-Convex Smooth Functions 

A general nonlinear function of even one variable may be convex, concave or 

non-convex.  A function can be convex but non-smooth:  =ABS(C1) with its V 

shape is an example.  A function can also be smooth but non-convex:  = 

SIN(C1) is an example.  But the “best” nonlinear functions, from the Solver’s 

point of view, are both smooth and convex (concave for the objective if you are 

maximizing). 

If a smooth function’s second derivative is always nonnegative, it is a convex 

function; if its second derivative is always nonpositive, it is a concave function.  

This property extends to any number of ‘dimensions’ or variables, where the 

second derivative becomes the Hessian and “nonnegative” becomes “positive 

semidefinite.”   

Discontinuous and Non-Smooth Functions 

Microsoft Excel provides a very rich formula language, including many 

functions that are discontinuous or non-smooth.  As noted above, discontinuous 

functions cause considerable difficulty, and non-smooth functions cause some 

difficulty for most nonlinear Solvers; such functions are not accepted by the 

Interval Global Solver.  Some models can only be expressed with the aid of 

these functions; in other cases, you have a degree of choice in how you model 

the real-world problem, and which functions you use.  Even when you have a 

“full arsenal” of Solver engines available, as you do with Analytic Solver 

Comprehensive and its subset products, you’ll get better results if you try to use 

the most “Solver-friendly” functions in your model. 

By far the most common discontinuous function in Excel is the IF function 

where the conditional test depends on the decision variables, as in the example 

=IF(C1>10,D1,2*D1).  Here is a short list of common discontinuous Excel 

functions: 

IF, CHOOSE 

LOOKUP, HLOOKUP, VLOOKUP 

COUNT 

INT, ROUND  

CEILING, FLOOR 

Here is a short list of common non-smooth Excel functions: 

ABS 

MIN, MAX 

Formulas involving relations such as <=, = and >= (on the worksheet, not in 

constraints) and logical functions such as AND, OR and NOT are discontinuous 

at their points of transition from FALSE to TRUE values.  Functions such as 
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SUMIF and the database functions are discontinuous if the criterion or 

conditional argument depends on the decision variables. 

If you aren’t sure about a particular function, try graphing it (by hand or in 

Microsoft Excel) over the expected range of the variables; this will usually 

reveal whether the function is discontinuous or non-smooth.  If using Analytic 

Solver, just create a model using the function, and use the Analyze button to 

automatically diagnose the model type. 

Analytic Solver Comprehensive, Analytic Solver Optimization, Analytic Solver 

Upgrade and Analytic Solver Basic can automatically transform a model that 

uses IF, AND, OR, NOT, ABS, MIN and MAX, and relations <, <=, >= and > to 

an equivalent model where these functions and relations are replaced by 

additional binary integer and continuous variables and additional constraints, 

that have the same effect – for the purpose of optimization – as the replaced 

functions.  This powerful facility may be able to transform your non-smooth 

model into a smooth or even linear model with integer variables.  An example is 

shown in the EXAMPLE5 worksheet of the StandardExamples.xls workbook, 

which is normally installed into C:\Program Files\Frontline Systems\Analytic 

Solver Platform\Examples. 

Derivatives, Gradients, Jacobians, and Hessians  

To find feasible and optimal solutions, most optimization algorithms rely 

heavily on derivatives of the problem functions (the objective and constraints) 

with respect to the decision variables.  First derivatives indicate the direction in 

which the function is increasing or decreasing, while second derivatives provide 

curvature information. 

The partial derivatives of a function f (x1,x2,...,xn) with respect to each variable 

are denoted ∂f/∂x1, ∂f/∂x2, …, ∂f/∂xn.  They give the rate of change of the 

function in each dimension.  For a linear function a1x1 + a2x2 + ... + anxn, the 

partial derivatives are the coefficients:  ∂f/∂x1 = a1, ∂f/∂x2 = a2, and so on. 

To recap the comments about derivatives made in the sections above: 

• Linear functions have constant first derivatives – the coefficients ai – and all 

higher order derivatives (second, third, etc.) are zero. 

• Quadratic functions have constant first and second derivatives, and all 

higher order (third, etc.) derivatives are zero. 

• Smooth nonlinear functions have first and second derivatives that are 

defined, but not constant – they change with the point at which the function 

is evaluated. 

• Non-smooth functions have second derivatives that are undefined at some 

points; discontinuous functions have first derivatives that are undefined at 

some points. 

The gradient of a function f (x1,x2,...,xn) is the vector of its partial derivatives: 

[ ∂f/∂x1, ∂f/∂x2, …, ∂f/∂xn ] 

This vector points in the direction (in n-dimensional space) along which the 

function increases most rapidly. Since a Solver model consists of an objective 

and constraints, all of which are functions of the variables x1,x2,...,xn, it is often 

useful to collect these gradients into a matrix, where each row is the gradient 

vector for one function: 
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∂f1/∂x1,  ∂f1/∂x2,  …,  

∂f1/∂xn 

∂f2/∂x1,  ∂f2/∂x2,  …,  

∂f2/∂xn 

…
 

∂fm/∂x1,  ∂fm/∂x2,  …,  

∂fm/∂xn 

This matrix is called the Jacobian matrix.  In a linear programming problem, 

this is the LP coefficient matrix, and all of its elements (the ais) are constant. 

The second partial derivatives of a function f (x1,x2,...,xn) with respect to each 

pair of variables xi and xj are denoted ∂2f / ∂xi∂xj.  There are n2 second partial 

derivatives, and they can be collected into an n x n matrix: 

∂2f/∂x1∂x1,  ∂2f/∂x1∂x2,  …,  

∂2f/∂x1∂xn 

∂2f/∂x2∂x1,  ∂2f/∂x2∂x2,  …,  

∂2f/∂x2∂xn 

…
 

∂2f/∂xn∂x1,  ∂2f/∂xn∂x2,  …,  

∂2f/∂xn∂xn 

This matrix is called the Hessian matrix.  It provides second order (curvature) 

information for a single problem function, such as the objective.  The Hessian of 

a linear function would have all zero elements; the Hessian of a quadratic 

function has all constant elements; and the Hessian of a general nonlinear 

function may change depending on the point (values of the decision variables) 

where it is evaluated. 

When reading the next section, “Optimization Problems and Solution Methods,” 

bear in mind that the different classes of Solver problems, and the computing 

time required to solve these problems, is directly related to the nature of the 

derivatives (constant, changing, or undefined) of their problem functions, as 

outlined above. 

For example, because the first derivatives of linear functions are constant, they 

need be computed only once – and second derivatives (which are zero) need not 

be computed at all.  For quadratic functions, the first and second derivatives can 

be computed only once, whereas for general nonlinear functions, these 

derivatives may have to be computed many times. 

A major difference between the Analytic Solver products versus Excel Solver, is 

the method used to compute derivatives.  The Polymorphic Spreadsheet 

Interpreter in Analytic Solver can supply fast, accurate derivatives to Solver 

engines via a process called automatic differentiation.   

What if your optimization problem requires the use of non-smooth or 

discontinuous functions?  With Analytic Solver, you have several choices.  First, 

for common non-smooth functions such as ABS, MAX and MIN, and even for 

some IF functions, the nonlinear GRG, Large-Scale GRG and Large-Scale SQP 

Solvers often yield acceptable results, though you may need to use multistart 

methods to improve the chances of finding the optimal solution.  Second, you 

can use the Evolutionary Solver (which does not require any derivative values) 

to find a “good” solution, though you’ll have to give up guarantees of finding an 

optimal solution, and it’s likely to take considerably more computing time to 

find a solution.  Third, you can use the automatic transformation feature to 

replace many of these functions with additional variables and linear constraints; 

if all discontinuous or non-smooth functions in the model are automatically 
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replaced, the problem should be solvable with the nonlinear Solvers, or even 

with the linear Solvers in some cases.  Fourth, you can manually reformulate 

your model with binary integer variables and associated constraints.  You can 

then use the nonlinear GRG Solver, or even the LP/Quadratic Solver, in 

combination with the Branch & Bound method, to find the true optimal solution 

to your problem.  These ideas are explored further in the chapter “Best Practices 

for Building Large-Scale Models.” 

Optimization Problems and Solution Methods 
A model in which the objective function and all of the constraints (other than 

integer constraints) are linear functions of the decision variables is called a 

linear programming (LP) problem.  (The term “programming” dates from the 

1940s and the discipline of “planning and programming” where these solution 

methods were first used; it has nothing to do with computer programming.)  As 

noted earlier, a linear programming problem is always convex. 

If the problem includes integer constraints, it is called an integer linear 

programming problem.  A linear programming problem with some “regular” 

(continuous) decision variables, and some variables that are constrained to 

integer values, is called a mixed-integer programming (MIP) problem.  Integer 

constraints are non-convex, and they make the problem far more difficult to 

solve; see below for details. 

A quadratic programming (QP) problem is a generalization of a linear 

programming problem.  Its objective is a convex quadratic function of the 

decision variables, and all of its constraints must be linear functions of the 

variables.  A problem with linear and convex quadratic constraints, and a linear 

or convex quadratic objective, is called a quadratically constrained (QCP) 

problem. 

A model in which the objective function and all of the constraints (other than 

integer constraints) are smooth nonlinear functions of the decision variables is 

called a nonlinear programming (NLP) or nonlinear optimization problem.  If 

the problem includes integer constraints, it is called an integer nonlinear 

programming problem.  A model in which the objective or any of the constraints 

are non-smooth functions of the variables is called a non-smooth optimization 

(NSP) problem. 

Linear Programming 

Linear programming (LP) problems are intrinsically easier to solve than 

nonlinear (NLP) problems.  First, they are convex, where a general nonlinear 

problem is often non-convex.  Second, since all constraints are linear, the 

globally optimal solution always lies at an “extreme point” or “corner point” 

where two or more constraints intersect.  (In some problems there may be 

multiple solutions with the same objective value, all lying on a line between two 

corner points.)  This means that an LP Solver needs to consider many fewer 

points than an NLP Solver, and it is always possible to determine (subject to the 

limitations of finite precision computer arithmetic) that an LP problem (i) has no 

feasible solution, (ii) has an unbounded objective, or (iii) has a globally optimal 

solution. 
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Problem Size and Numerical Stability 

Because of their structural simplicity, the main limitations on the size of LP 

problems that can be solved are time, memory, and the possibility of numerical 

“instabilities” which are the cumulative result of the small errors intrinsic to 

finite precision computer arithmetic.  The larger the model, the more likely it is 

that numerical instabilities will be encountered in solving it. 

Most large LP models are sparse in nature:  While they may include thousands 

of decision variables and constraints, the typical constraint will depend upon 

only a few of the variables.  This means that the Jacobian matrix of partial 

derivatives of the problem functions, described earlier, will have many elements 

that are zero.  Such sparsity can be exploited to save memory and gain speed in 

solving the problem. 

The Simplex Method 

LP problems are most often solved via the Simplex method.  The standard 

Microsoft Excel Solver uses a straightforward implementation of the Simplex 

method to solve LP problems, when the Assume Linear Model box is checked in 

the Solver Options dialog.  Analytic Solver Comprehensive, Analytic Solver 

Optimization, Analytic Solver Upgrade and Analytic Solver Basic use a far 

more sophisticated implementation of the Simplex method which exploits 

sparsity in the LP model and uses techniques such as presolving, matrix 

factorization using the LU decomposition , a fast, stable LU update, and 

dynamic Markowitz refactorization. 

The Large-Scale LP/QP Solver and MOSEK Solver engines use even more 

powerful implementations of the methods mentioned above.  They have been 

used to solve LP problems with millions of variables and constraints. 

The Large-Scale SQP Solver engine includes a powerful linear programming 

Solver that uses “active set” methods (closely related to the Simplex method).  It 

is practical for problems up to 100,000 variables and constraints.  This same 

Solver engine also handles large-scale QP and NLP problems very efficiently. 

The Gurobi Solver and XPRESS Solver engine are Frontline’s fastest and most 

powerful Solvers for linear programming and especially mixed-integer linear 

programming problems.  Their advanced primal and dual Simplex and Barrier 

methods, combined with state-of-the-art Branch and Cut methods for integer 

problems, yield solutions in record time. 

Quadratic Programming 

Quadratic programming problems are more complex than LP problems, but 

simpler than general NLP problems.  They have only one feasible region with 

“flat faces” on its surface (due to their linear constraints), but the optimal 

solution may be found anywhere within the region or on its surface.  Since a QP 

problem is a special case of an NLP problem, it can be solved with the standard 

nonlinear GRG Solver, but this may take considerably more time than solving 

an LP of the same size.  The LP/Quadratic Solver in Analytic Solver 

Comprehensive and Analytic Solver Optimization solves QP problems using a 

variant of the Simplex method to determine the feasible region, and special 

methods based on the properties of quadratic functions to find the optimal 

solution. 

Most quadratic programming algorithms are specialized to handle only positive 

definite (or negative definite) quadratics. The LP/Quadratic Solver, however, 

can also handle semi-definite quadratics; it will find one of the equivalent 
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(globally) optimal solutions – which one depends on the starting values of the 

decision variables.  When applied to an indefinite quadratic objective function, 

the LP/Quadratic Solver provides only the guarantees of a general nonlinear 

Solver:  It will converge to a locally optimal solution (either a saddle point in the 

interior, or a locally optimal solution on the constraint surface). 

The Large-Scale LP/QP Solver, Large-Scale GRG Solver, Large-Scale SQP 

Solver, Knitro Solver, Gurobi Solver, MOSEK Solver, and XPRESS Solver 

engines can all be used to efficiently solve large QP problems. 

Quadratically Constrained Programming 

A problem with linear and convex quadratic constraints, and a linear or convex 

quadratic objective, is called a quadratically constrained (QCP) problem.  Such 

a problem is more general than a QP or LP problem, but less general than a 

convex nonlinear problem.  The Simplex-based methods used in the 

LP/Quadratic Solver, the Large-Scale LP/QP Solver, and the XPRESS Solver 

Engine handle only quadratic objectives, not quadratic constraints.  But QCP 

problems – since they are convex – can be solved efficiently to global optimality 

with Barrier methods, also called Interior Point methods. 

The SOCP Barrier Solver uses a Barrier method to solve LP, QP, and QCP 

problems.  The MOSEK Solver Engine uses an even more powerful Barrier 

method to solve very large scale LP, QP, and QCP problems, as well as smooth 

convex nonlinear problems.  Both of these Solvers form a logarithmic “barrier 

function” of the constraints, combine this with the objective, and take a step 

towards a better point on each major iteration.  Unlike the Simplex method, 

which moves from one corner point to another on the boundary of the feasible 

region, a Barrier method follows a path – called the central path – that lies 

strictly within the feasible region. 

A Barrier method relies heavily on second derivative information, specifically 

the Hessian of the Lagrangian (combination of the constraints and objective) to 

determine its search direction on each major iteration.  The ability of the Poly-

morphic Spreadsheet Interpreter to efficiently compute this second derivative 

information is key to the performance of this method. 

Second Order Cone Programming 

Second order cone programming (SOCP) problems are a further generalization 

of LP, QP, and QCP problems.  An SOCP has a linear objective and one or more 

linear or second order cone (SOC) constraints.  As explained earlier, a second 

order cone constraint such as “A1:A5 = conic” specifies that the vector formed 

by the decision variables A1:A5 must lie within the second-order cone (also 

called the Lorentz cone) of dimension 5.  Algebraically, the constraint specifies 

that a1 ≥ ║a2:a5║2.  SOCPs are always convex; the SOCP Barrier Solver and the 

MOSEK Solver Engine are both designed to solve SOCP problems, efficiently 

to global optimality. 

Any convex quadratic constraint can be converted into an SOC constraint, with 

several steps of linear algebra.  A convex quadratic objective xTQx + cx can be 

handled by introducing a new variable t, making the objective minimize t, 

adding a constraint xTQx + cx <= t, and converting this constraint to SOC form.  

The SOCP Barrier Solver and the MOSEK Solver Engine both make these 

transformations automatically; in effect they solve all LP, QP, QCP and SOCP 

problems in the same way.  Second order cone programming can be viewed as 
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the natural generalization of linear programming, and is bound to become more 

popular in the future. 

You can also solve an SOCP with the GRG Nonlinear Solver or the Large-Scale 

GRG, Large-Scale SQP, or Knitro Solver engines.  Although these Solvers do 

not recognize SOC constraints directly, Analytic Solver products will compute 

values and derivatives for SOC constraints, based on their algebraic form shown 

above.  Hence, these general nonlinear Solvers handle SOC constraints like 

other general nonlinear constraints.  Using these Solvers, you can find optimal 

solutions for problems containing a mix of linear, general nonlinear, and SOC 

constraints – bearing in mind that such problems may be non-convex. 

Nonlinear Optimization 

As outlined above, nonlinear programming (NLP) problems are intrinsically 

more difficult to solve than LP, QP, QCP or SOCP problems.  They may be 

convex or non-convex, and since their second derivatives are not constant, an 

NLP Solver must compute or approximate the Hessians of the problem functions 

many times during the course of the optimization.  Since a non-convex NLP 

may have multiple feasible regions and multiple locally optimal points within 

such regions, there is no simple or fast way to determine with certainty that the 

problem is infeasible, that the objective function is unbounded, or that an 

optimal solution is the “global optimum” across all feasible regions.  But some 

NLP problems are convex, and many problems include linear or convex 

quadratic constraints in addition to general nonlinear constraints.  Frontline’s 

field-installable nonlinear Solver engines are each designed to take advantage of 

NLP problem structure in different ways, to improve performance. 

If you use the GRG Nonlinear Solver – the only choice for NLPs in the standard 

Excel Solver and Analytic Solver Upgrade – bear in mind that it applies the 

same method to all problems, even those that are really LPs or QPs.  If you 

don’t select another Solver engine from the Task Pane Engine tab dropdown list 

box (or, in the standard Microsoft Excel Solver, if you don’t check the Assume 

Linear Model box in the Solver Options dialog), this Solver will be used – and it 

may have difficulty with LP or QP problems that could have been solved easily 

with one of the other Solvers.  Analytic Solver Comprehensive can 

automatically determine the type of problem, and select only the “good” or 

“best” Solver engine(s) for that problem. 

The GRG Method 

Analytic Solver includes the enhanced GRG Solver while the Excel Solver uses 

the Generalized Reduced Gradient method as implemented in Lasdon and 

Waren’s GRG2 code.  The GRG method can be viewed as a nonlinear extension 

of the Simplex method, which selects a basis, determines a search direction, and 

performs a line search on each major iteration – solving systems of nonlinear 

equations at each step to maintain feasibility.  This method and specific 

implementation have been proven in use over many years as one of the most 

robust and reliable approaches to solving difficult NLP problems. 

As with the Simplex method, the GRG method in the standard Excel Solver uses 

a “dense” problem representation, and its memory and solution time increases 

with the number of variables times the number of constraints.  It is also subject 

to problems of numerical instability, which may be even more severe than for 

LP and QP problems.  The GRG Solver engine uses sparse storage methods and 

better numerical methods for nonlinear models, such as matrix condition testing 

and degeneracy handling, to solve much larger NLP problems. 
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The SQP Method 

The Large-Scale SQP Solver engine for Analytic Solver Comprehensive and 

Analytic Solver Optimization uses a Sequential Quadratic Programming (SQP) 

method to solve nonlinear optimization problems.  This method forms and 

solves a QP subproblem, with a quadratic merit function and linearized 

constraints, on each major iteration.  Because it includes a highly efficient QP 

solver, a powerful linear programming solver using “active set” methods, and 

sparsity-exploiting matrix factorization, updating and refactorization methods, 

the Large-Scale SQP Solver engine is very fast in solving all types of LP, QP 

and NLP problems.  However, the SQP method typically follows a path of 

infeasible trial points until it finds the solution that is both feasible and optimal.  

Hence, if you stop the Solver before it reports an optimal solution, the GRG 

method is far more likely than the SQP method to return a feasible solution as its 

“best point so far.” 

Interior Point and SLQP Methods 

The Knitro Solver engine for Analytic Solver Comprehensive and Analytic 

Solver Optimization uses a Barrier or Interior Point method, specialized for non-

convex problems, to solve general nonlinear optimization problems.  As with 

the SOCP Barrier and MOSEK Solvers, this method forms a logarithmic 

“barrier function” of the constraints, combines this with the objective, and takes 

a step towards a better point on each major iteration.  (The actual process of 

taking a step and the path followed are more complex, because Knitro assumes 

that the problem may be non-convex.)  The Knitro Solver uses the PSI 

Interpreter to efficiently compute second derivative information, but it also has 

options to work with only first derivative information. 

The Knitro Solver engine also includes a new, high performance Sequential 

Linear-Quadratic (SLQP) method, which is an “active set” method similar to the 

SQP method.  On highly constrained problems, notably those with equality 

constraints, this method typically outperforms the Interior Point method.  On 

loosely constrained or unconstrained problems, the Interior Point method can 

greatly outperform SQP and GRG methods, solving problems much larger than 

either of these methods.  Benchmark studies in the academic literature have 

demonstrated exceptionally good performance for the Knitro Solver, on a wide 

range of test problems.  

The GRG, SQP and Interior Point methods are all subject to the intrinsic 

limitations cited above for nonlinear optimization problems:  For smooth convex 

nonlinear problems, they will (subject to the limitations of finite precision 

computer arithmetic) find the globally optimal solution; but for non-convex 

problems, they can only guarantee a locally optimal solution.  To have a 

reasonable chance – let alone a guarantee – that you’ll find the globally optimal 

solution to a non-convex problem, you must use special methods for global 

optimization. 

Global Optimization 

Analytic Solver Comprehensive and its subset products include powerful tools 

to help you find the globally optimal solution for a smooth nonlinear non-

convex problem.  These tools include multistart methods, which can be used 

with the nonlinear GRG Solver, the Large-Scale GRG Solver, the Large-Scale 

SQP Solver, and the Knitro Solver; the Interval Global Solver offers powerful 

interval methods for global optimization in a commercial software product; and 
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the Evolutionary Solver, for global solutions of smooth and non-smooth 

problems. 

The Multistart Method 

The basic idea of the multistart method is to automatically run a nonlinear 

Solver from different starting points, reaching different locally optimal 

solutions, then select the best of these as the proposed globally optimal solution.  

Both clustering and topographic search multistart methods are included in 

Analytic Solver and its subset products. 

The multistart method operates by generating candidate starting points for the 

nonlinear Solver (with randomly selected values between the bounds you 

specify for the variables).  These points are then grouped into “clusters” – 

through a method called multi-level single linkage – that are likely to lead to the 

same locally optimal solution, if used as starting points for the Solver.  The 

nonlinear Solver is then run repeatedly, once from (a representative starting 

point in) each cluster.  The process continues with successively smaller clusters 

that are increasingly likely to capture each possible locally optimal solution.  A 

Bayesian test is used to determine whether the process should continue or stop. 

For many smooth nonlinear problems, the multistart method has a limited 

guarantee that it will “converge in probability” to a globally optimal solution.  

This means that as the number of runs of the nonlinear Solver increases, the 

probability that the globally optimal solution has been found also increases 

towards 100%.  (To attain convergence for constrained problems, an exact 

penalty function is used in the process of “clustering” the starting points.)  For 

most nonlinear problems, this method will at least yield very good solutions.  As 

discussed below, the multistart method, like the Evolutionary Solver, is a 

nondeterministic method, which by default may yield different solutions on 

different runs.  (To obtain the same solution on each run, you can set a Random 

Seed option for either of these solution algorithms, as discussed in the chapter 

“Solver Engine Option Reference” in the Frontline Solvers Reference Guide.) 

As discussed below, the Evolutionary Solver has been enhanced with “filtered 

local search” methods that offer many of the benefits of multistart methods – 

making the Evolutionary Solver even more effective for global optimization 

problems. 

The multistart method can be used on smooth nonlinear problems that also 

contain integer variables and/or “alldifferent” constraints.  But this can take a 

great deal of solution time, since the multistart method is used for each 

subproblem generated by the Branch & Bound method for integer problems, and 

it can also impact the Solver’s ability to find feasible integer solutions.  If you 

have many integer variables, or alldifferent constraints, try the Evolutionary 

Solver as an alternative to the multistart method. 

The Interval Branch & Bound Method 

In contrast to the multistart methods and the Evolutionary Solver’s methods, 

which are nondeterministic methods for global optimization that offer no firm 

guarantees of finding the globally optimal solution, the Interval Global Solver in 

uses a deterministic method:  An Interval Branch & Bound algorithm that will 

find the globally optimal solution – given enough time, and subject to some 

limitations related to roundoff error, as discussed in the Frontline Solvers 

Reference Guide. 

The Interval Branch & Bound algorithm processes a list of “boxes” that consist 

of bounded intervals for each decision variable, starting with a single box 
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determined by the bounds that you specify.  On each iteration, it seeks lower and 

upper bounds for the objective and the constraints in a given box that will allow 

it to discard all or a portion of the box (narrowing the intervals for some of the 

variables), by proving that the box can contain no feasible solutions, or that it 

can contain no objective function values better than a known best bound on the 

globally optimal objective.  Boxes that cannot be discarded are subdivided into 

smaller boxes, and the process is repeated.  Eventually, the boxes that remain 

each enclose a locally optimal solution, and the best of these is chosen as the 

globally optimal solution. 

Several methods are used to obtain good bounds on the values of the objective 

and constraints within a box or region.  Classic interval methods rely on the 

ability of the PSI Interpreter to evaluate Excel functions over intervals and 

interval gradients.  Local constraint propagation methods (also known as hull 

consistency methods) are used to narrow intervals at each stage of evaluation of 

the problem functions.  Second-order methods rely on the Interpreter’s ability to 

compute interval Hessians of Excel functions, and use a variant of the Interval 

Newton method to rapidly minimize function values within a region.  Innovative 

linear enclosure methods – implemented for the first time in the Interval Global 

Solver – bound each problem function with a linear approximation that can be 

used in a Simplex method-based test for feasibility and local optimality. 

The Interval Global Solver also has a unique ability to find all real solutions for 

a system of nonlinear equations – which can be listed in the Solutions Report.  It 

can also find an “inner solution” for a system of nonlinear inequalities – a region 

or “box” (bounds on the variables) within which all points satisfy the 

inequalities.  These capabilities are summarized in the chapter “Getting Results: 

Optimization.” 

Non-Smooth Optimization 

The most difficult type of optimization problem to solve is a non-smooth 

problem (NSP).  Such a problem may not only have multiple feasible regions 

and multiple locally optimal points within each region – because some of the 

functions are non-smooth or even discontinuous, derivative or gradient 

information generally cannot be used to determine the direction in which the 

function is increasing (or decreasing).  In other words, the situation at one 

possible solution gives very little information about where to look for a better 

solution. 

In all but the simplest problems, it is impractical to exhaustively enumerate all 

of the possible solutions and pick the best one, even on a fast computer.  Hence, 

most methods rely on some sort of controlled random search, or sampling of 

possible solutions – combined with deterministic (non-random) methods for 

exploring the search space.  The Evolutionary Solver, based on genetic 

algorithms, relies fairly heavily on controlled random search, whereas the 

OptQuest Solver Engine, based on tabu search and scatter search, relies more 

heavily on deterministic search methods. 

A drawback of these methods is that a solution is “better” only in comparison to 

other, presently known solutions; both the Evolutionary and OptQuest Solvers 

normally have no way to test whether a solution is optimal.  This also means that 

these methods must use heuristic rules to decide when to stop, or else stop after a 

length of time, or number of iterations or candidate solutions, that you specify. 
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Genetic and Evolutionary Algorithms 

A non-smooth optimization problem can be attacked – though not often solved 

to optimality – using a genetic or evolutionary algorithm.  (In a genetic 

algorithm the problem is encoded in a series of bit strings that are manipulated 

by the algorithm; in an “evolutionary algorithm,” the decision variables and 

problem functions are used directly.  Most commercial Solver products are 

based on evolutionary algorithms.) 

An evolutionary algorithm for optimization is different from “classical” 

optimization methods in several ways.  First, it relies in part on random 

sampling.  This makes it a nondeterministic method, which may yield different 

solutions on different runs. (To obtain the same solution on each run, you can set 

a Random Seed option for the Evolutionary Solver.) 

Second, where most classical optimization methods maintain a single best 

solution found so far, an evolutionary algorithm maintains a population of 

candidate solutions.  Only one (or a few, with equivalent objectives) of these is 

“best,” but the other members of the population are “sample points” in other 

regions of the search space, where a better solution may later be found.  The use 

of a population of solutions helps the evolutionary algorithm avoid becoming 

“trapped” at a local optimum, when an even better optimum may be found 

outside the vicinity of the current solution. 

Third – inspired by the role of mutation of an organism’s DNA in natural 

evolution – an evolutionary algorithm periodically makes random changes or 

mutations in one or more members of the current population, yielding a new 

candidate solution (which may be better or worse than existing population 

members).  There are many possible ways to perform a “mutation,” and the 

Evolutionary Solver actually employs five different mutation strategies.  The 

result of a mutation may be an infeasible solution, and the Evolutionary Solver 

attempts to “repair” such a solution to make it feasible; this is sometimes, but 

not always, successful. 

Fourth – inspired by the role of sexual reproduction in the evolution of living 

things – an evolutionary algorithm attempts to combine elements of existing 

solutions in order to create a new solution, with some of the features of each 

“parent.”  The elements (e.g. decision variable values) of existing solutions are 

combined in a crossover operation, inspired by the crossover of DNA strands 

that occurs in reproduction of biological organisms.  As with mutation, there are 

many possible ways to perform a “crossover” operation – some much better than 

others – and the Evolutionary Solver actually employs multiple variations of 

four different crossover strategies. 

Fifth – inspired by the role of natural selection in evolution – an evolutionary 

algorithm performs a selection process in which the “most fit” members of the 

population survive, and the “least fit” members are eliminated.  In a constrained 

optimization problem, the notion of “fitness” depends partly on whether a 

solution is feasible (i.e. whether it satisfies all of the constraints), and partly on 

its objective function value.  The selection process is the step that guides the 

evolutionary algorithm towards ever-better solutions. 

Hybrid Evolutionary and Other Algorithms 

You might imagine that better results could be obtained by combining the 

strategies used by an evolutionary algorithm with the “classical” optimization 

methods used by the nonlinear GRG and LP/Quadratic Solver.  Frontline 

Systems has done just that. 
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The Evolutionary Solver operates as described above, but it also employs 

classical methods in two situations:  First, when the evolutionary algorithm 

generates a new best point, a local search is conducted to try to improve that 

point.  This step can use a “random local search” method, a gradient-free, 

deterministic direct search method, a gradient-based quasi-Newton method, or a 

“linearized local gradient” method.  Second, when the evolutionary algorithm 

generates an infeasible point, the Solver can use “repair methods”, a quasi-

Newton method, or even a specialized Simplex method (for subsets of the 

constraints that are linear) to transform the infeasible point into a feasible one. 

The Evolutionary Solver takes advantage of the diagnostic information available 

from the PSI Interpreter:  It automatically applies genetic algorithm methods to 

non-smooth variable occurrences (where classical methods cannot be used) and 

classical methods to smooth and linear variable occurrences.  In the local search 

phase, it can either fix non-smooth variables, or allow them to vary.  And it can 

automatically select the most appropriate local search method, based on linearity 

and smoothness of the problem functions. 

The Evolutionary Solver uses a “distance filter” and a “merit filter” to determine 

whether to carry out a local search when the genetic algorithm methods find an 

improved starting point.  The “distance filter” plays a role similar to “clustering” 

in the multistart methods described earlier; both filters contribute to the 

excellent performance of the Evolutionary Solver on global optimization 

problems.     

The “Achilles’ heel” of most evolutionary algorithms is their handling of 

constraints – they are typically unable to handle more than a few inequalities, or 

any equality constraints at all.  In contrast, the hybrid Evolutionary Solver has 

been able to find good solutions to non-smooth problems with many – even 

hundreds – of constraints. 

Tabu Search and Scatter Search 

The OptQuest Solver Engine for Analytic Solver Comprehensive and Analytic 

Solver Optimization is based on the principles of tabu search and scatter search.  

These methods have strong analogies with – and actually predate – genetic 

algorithm methods, but they rely less heavily on random choice.  They work 

with a population of solutions, which are modified and combined in different 

ways, then subjected to a selection process.  Scatter search methods can sample 

the space of possible solutions, avoid becoming “trapped” in regions close to 

local optima, and adaptively diversify or intensify the search.  Tabu search uses 

memory of past search steps to avoid repeated steps and improve future 

searches.  Use of the OptQuest Solver is described in more depth in the 

Frontline Solvers Engine User Guide. 

Integer Programming 
When a Solver model includes integer constraints (for example A1:A10 = 

integer, A1:A10 = binary, A1:A10 = semicontinuous, or A1:A10 = alldifferent), 

it is called an integer programming problem.  Integer constraints make a model 

non-convex, and finding the optimal solution to an integer programming 

problem is equivalent to solving a global optimization problem.  Such problems 

may require far more computing time than the same problem without the integer 

constraints.   

The standard Microsoft Excel Solver uses a basic Branch & Bound method, in 

conjunction with the linear LP/Quadratic or nonlinear GRG Solver, to find 



Frontline Solvers 2021 User Guide Page 527 

optimal solutions to problems involving general integer or binary integer 

variables.  Analytic Solver Upgrade and Analytic Solver Basic use a much more 

sophisticated Branch & Bound method that is extended to handle alldifferent 

constraints, and that often greatly speeds up the solution process for problems 

with integer variables.  In Analytic Solver Comprehensive and Analytic Solver 

Optimization, the LP/Quadratic Solver uses improved pseudocost-based branch 

and variable selection, reduced cost fixing, primal heuristics, cut generation, 

Dual Simplex and preprocessing and probing methods to greatly speed up the 

solution of integer linear programming problems. 

The Evolutionary Solver handles integer constraints, in the same form as the 

other Solver engines (including alldifferent constraints), but it does not make use 

of the Branch & Bound method; instead, it generates many trial points and uses 

“constraint repair” methods to satisfy the integer constraints.  (The constraint 

repair methods include classical methods, genetic algorithm methods, and 

integer heuristics from the local search literature.)  The Evolutionary Solver can 

often find good solutions to problems with integer constraints, but where the 

Branch & Bound algorithm can guarantee that a solution is optimal or is within 

a given percentage of the optimal solution, the Evolutionary Solver cannot offer 

such guarantees. 

The Branch & Bound Method 

The Branch & Bound method begins by finding the optimal solution to the 

“relaxation” of the integer problem, ignoring the integer constraints.  If it 

happens that in this solution, the decision variables with integer constraints 

already have integer values, then no further work is required.  If one or more 

integer variables have non-integral solutions, the Branch & Bound method 

chooses one such variable and “branches,” creating two new subproblems where 

the value of that variable is more tightly constrained.  For example, if integer 

variable A1 has the value 3.45 at the solution, then one subproblem will have the 

additional constraint A1 <= 3 and the other subproblem will add the constraint 

A1 >= 4.  These subproblems are solved and the process is repeated, 

“branching” as needed on each of the integer decision variables, until a solution 

is found where all of the integer variables have integer values (to within a small 

tolerance). 

Hence, the Branch & Bound method may solve many subproblems, each one a 

“regular” Solver problem.  The number of subproblems may grow exponentially.  

The “bounding” part of the Branch & Bound method is designed to eliminate 

sets of subproblems that do not need to be explored because the resulting 

solutions cannot be better than the solutions already obtained. 

Cut Generation 

The LP/Quadratic Solver, the Large-Scale LP/QP Solver, Large-Scale SQP 

Solver, MOSEK Solver, Gurobi Solver, and XPRESS Solver all make use of 

“cut generation” methods to improve performance on integer linear program-

ming problems.  Cut generation derives from so-called “cutting plane” methods 

that were among the earliest methods applied to integer programming problems, 

but they combine the advantages of these methods with the Branch & Bound 

method to yield a highly effective approach, often referred to as a “Branch & 

Cut” algorithm. 

A cut is an automatically generated linear constraint for the problem, in addition 

to the constraints that you specify.  This constraint is constructed so that it “cuts 

off” some portion of the feasible region of an LP subproblem, without 
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eliminating any possible integer solutions.  Many cuts may be added to a given 

LP subproblem, and there are many different methods for generating cuts.  For 

example, Gomory cuts are generated by examining the reduced costs at an LP 

solution, while knapsack cuts, also known as lifted cover inequalities, are 

generated from constraints involving subsets of the 0-1 integer variables.  Cuts 

add to the work that the LP solver must perform on each subproblem (and hence 

they do not always improve solution time), but on many problems, cut 

generation enables the overall Branch & Cut algorithm to more quickly discover 

integer solutions, and eliminate branches that cannot lead to better solutions than 

the best one already known. 

The Alldifferent Constraint 

In Analytic Solver Comprehensive and its subset products, a constraint such as 

A1:A5 = alldifferent specifies that the variables A1:A5 must be integers in the 

range 1 to 5, with each variable different from all the others at the solution.  

Hence, A1:A5 will contain a permutation of the integers from 1 to 5, such as 

1,2,3,4,5 or 1,3,5,2,4. 

To solve problems involving alldifferent constraints, Analytic Solver employs 

an extended Branch & Bound method that handles these constraints as a native 

type.  Whenever variables in an “alldifferent group” have non-integral solution 

values, or integral values that are not all different, the Branch & Bound method 

chooses one such variable and “branches,” creating two new subproblems where 

the value of that variable is more tightly constrained. 

The nonlinear GRG Solver, Large-Scale GRG Solver, Large-Scale SQP Solver, 

and Knitro Solver engines use this extended Branch & Bound method to solve 

problems with integer and alldifferent constraints. 

The Large-Scale LP/QP Solver, MOSEK Solver, Gurobi Solver, and XPRESS 

Solver use their own Branch & Cut methods.  They transform alldifferent 

constraints into equivalent sets of binary integer variables and additional linear 

constraints, then apply their preprocessing, probing and cut generation methods 

to these variables and constraints. 

The Evolutionary Solver uses methods from the genetic algorithm literature to 

handle alldifferent constraints as permutations, including several mutation 

operators that preserve the “alldifferent property,” and several crossover 

operators that generate a “child” permutation from “parents” that are also 

permutations. 

Since Solver engines use quite different methods to handle the alldifferent 

constraint, you’ll want to try a variety of Solver engines to see which one 

performs best on your model.  This is especially true if your model uses smooth 

nonlinear or – even better – linear functions aside from the alldifferent 

constraint. 

Looking Ahead to Models with Uncertainty 
If you’ve read through this chapter, congratulations – you’ve learned a great 

deal about the nature of optimization problems, and how they are solved!  But as 

we said in “Elements of Solver Models” at this chapter’s beginning, we’ve 

assumed that all parameters of the model are certain. The chapter “Mastering 

Stochastic Optimization Concepts” will cover situations where the parameter 

values are uncertain – and the problems are called stochastic optimization 
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problems.  In these problems, it’s more important than ever to know how the 

objective and constraints depend on the decision variables.  

We’ll see that stochastic linear programming problems can be transformed 

and solved to optimality far more easily and quickly than stochastic nonlinear, 

non-convex problems.  We’ll also see that certain ways of summarizing the 

uncertainty involved in the model, in chance constraints and expected-value 

and risk-measure objectives, allow us to form a convex optimization model, that 

can be solved quickly and ‘scaled up’ to large size.  We’ll see that even one 

decision-dependent uncertainty usually makes a model non-convex and non-

smooth, and far more difficult to solve – but we can still find good solutions for 

such a model, using high-speed simulation optimization in Analytic Solver. 

We explained in this chapter that it’s usually a mistake to apply a general-

purpose Solver to a problem that has a simpler structure – for example, applying 

the GRG Solver or Evolutionary Solver to a linear programming problem:  

Solution times are much longer than necessary, solutions are less reliable, and 

the problem typically cannot be scaled up to large size and still solved by these 

methods. 

In a similar way, we’ll see that it’s usually a mistake to apply a general-purpose 

stochastic optimization method to a problem that has a simpler structure – for 

example, applying simulation optimization (which requires a general-purpose 

Solver) to a stochastic linear programming problem.  Again solution times will 

be much longer than necessary, solutions are much less reliable, and the problem 

typically cannot be scaled up to large size and still solved by these methods.  
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Mastering Simulation and Risk 
Analysis Concepts 

Introduction 
To build a Monte Carlo simulation model in Excel, you begin with a 

conventional spreadsheet model, designed for ‘what-if’ analysis.  Next, you 

identify the inputs to your model that are uncertain, and use PSI Distribution 

functions to describe the uncertainty.  Then, you identify the outputs of special 

interest (such as Net Profit), and use PSI Statistics functions to examine or 

summarize how they behave in light of the uncertainty. 

This User Guide assumes you have some experience building conventional 

spreadsheet models, and you almost certainly have experience using such 

models to ask ‘what if’ questions, by manually changing input values on the 

spreadsheet.  The key step in risk analysis is to think in terms, not of just one 

‘what if’ scenario at a time, but of a range of scenarios, considered at once.  

Think of your spreadsheet cells as representing not just single numbers, that you 

change once in a while to explore alternatives, but arrays of numbers that cover 

the range of possibilities. 

Although you can usually visualize the range of values for one input value at a 

time, it is very difficult to foresee – without computer assistance – the range of 

outcomes for an output value that depends on several interacting inputs, each 

one subject to uncertainty.  But Analytic Solver Comprehensive, Analytic Solver 

Simulation and Analytic Solver  Basic (in both the Desktop and Cloud apps) 

automatically compute the full range of outcomes for every cell in your 

spreadsheet model, and enables you to quickly see statistics such as the mean, 

standard deviation, or 10th and 90th percentiles of the range of outcomes. 

What Happens During Monte Carlo Simulation 
You’ll find it easier to understand simulation results if you have a good grasp of 

the Monte Carlo simulation process.  At its heart, this process is very simple.  It 

consists of the following steps: 

1. Generate a random sample for the uncertain variables in your model.  If 

you specify (say) 1,000 Monte Carlo trials per simulation, then 1,000 

randomly chosen values will be generated for each uncertain variable. 

2. For each of 1,000 Monte Carlo trials, recalculate your model, with the right 

sample values in each uncertain variable cell.  When Excel is used to 

recalculate, the PSI Distribution function in each uncertain variable cell 

returns the correct sample value for that trial.  When the PSI Interpreter is 

used (as is always the case in Analytic Solver Cloud), this is done internally 

(much faster) by Analytic Solver. 

3. On each Monte Carlo trial, monitor and save the calculated value of each 

uncertain function in your model.  (Recall that any formula cell containing 

a call to PsiOutput(), or referenced in the first argument of PsiOutput() or a 
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PSI Statistics function, is monitored as an uncertain function cell.)  For 

1,000 trials, there will be 1,000 saved values for each uncertain function. 

When the simulation process is complete, Analytic Solver Simulation uses the 

1,000 saved values of each uncertain function to calculate statistics and 

percentiles, draw frequency distributions, scatter plots and other charts, and 

compute values for each PSI Statistic function call in your model. 

Random Number Generation and Sampling 

On each Monte Carlo trial, sample values are drawn from the probability 

distributions represented by the PSI Distribution functions in your model.  

Sample values are computed by first drawing a “random number” between 0 and 

1, then transforming this uniform random sample value into a sample value that: 

• Constrains the samples drawn to obtain better coverage of the sample space, 

where each PSI Distribution function is a ‘dimension’ of that space 

• Ensures that the frequency distribution of samples drawn properly reflects 

the shape and parameters of the PSI Distribution function 

• Ensures that the samples drawn for multiple PSI Distribution functions 

properly reflect the correlation of distributions with each other 

Random Number Generator   

Analytic Solver Simulation includes an advanced set of random number 

generation capabilities.  In common applications, any good random number 

generator is sufficient – but for challenging applications (for example in 

financial engineering) that involve many uncertain variables and many 

thousands of trials, the advanced features of Analytic Solver Simulation can 

make a real difference. 

Computer-generated numbers are never truly “random,” since they are always 

computed by an algorithm – they are called pseudorandom numbers.  A random 

number generator is designed to quickly generate sequences of numbers that are 

as close to statistically independent as possible.  Eventually, an algorithm will 

generate the same number seen sometime earlier in the sequence, and at this 

point the sequence will begin to repeat.  The period of the random number 

generator is the number of values it can generate before repeating. 

A long period is desirable, but there is a tradeoff between the length of the 

period and the degree of statistical independence achieved within the period.  

Hence Analytic Solver Simulation offers a choice of four random number 

generators: 

• Park-Miller “Minimal” Generator with Bayes-Durham shuffle and 

safeguards.  This generator has a period of 231-2.  Its properties are good, 

but the following choices are usually better. 

• Combined Multiple Recursive Generator (CMRG) of L’Ecuyer.  This 

generator has a period of 2191, and excellent statistical independence of 

samples within the period. 

• Well Equidistributed Long-period Linear (WELL1024) generator of 

Panneton, L’Ecuyer and Matsumoto.  This very new generator combines a 

long period of 21024 with very good statistical independence. 
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• Mersenne Twister generator of Matsumoto and Nishimura.  This generator 

has the longest period of 219937-1, but the samples are not as “equidistrib-

uted” as for the WELL1024 and CMRG generators. 

Random Number Seeds 

As explained in the chapter “Getting Results: Simulation,” the seed, or initial 

value, of the random number generator determines whether your results are 

exactly reproducible when you re-run a simulation, or whether your results are 

similar but not identical because a different random sample was drawn. 

You can set a seed for the entire simulation run using the Sim. Random Seed 

option – the first option on the Task Pane Engine tab when you select Risk 

Solver Engine (the simulation engine) from the dropdown list.  Any positive 

integer sets a specific seed; 0 means the seed will be different on every run. 

 

You can also set a seed for any specific uncertain variable, using the Seed option 

in the Uncertain Variable dialog, or by supplying a PsiSeed() property function 

as an argument to the PSI Distribution function call.  This means the uncertain 

variable will have its own independent stream of random numbers starting from 

the given seed, whether or not you’ve set a seed for the whole simulation run. 

Sampling Method 

In standard Monte Carlo sampling, numbers generated by the chosen random 

number generator are used directly to obtain sample values for the uncertain 

variables (PSI Distribution functions) in the model.  With this method, the 

variance or estimation error in computed samples for uncertain functions is 

inversely proportional to the square root of the number of trials; hence to cut the 

error in half, four times as many trials are required. 

Analytic Solver Simulation provides two other sampling methods than can 

significantly improve the ‘coverage’ of the sample space, and thus reduce the 

variance in computed samples for output functions.  This means that you can 

achieve a given level of accuracy (low variance or error) with fewer trials.  You 

choose this via the Sampling Method option on the Engine tab, shown above. 

Latin Hypercube Sampling.  Latin Hypercube sampling begins with a 

stratified sample in each dimension (one for each uncertain variable), which 

constrains the random numbers drawn to lie in a set of subintervals from 0 to 1.  

Then these one-dimensional samples are combined and randomly permuted so 

that they ‘cover’ a unit hypercube in a stratified manner.  This often reduces the 

variance of uncertain functions. 

Sobol numbers (Randomized QMC).  Sobol numbers are an example of so-

called  “Quasi Monte Carlo” or “low-discrepancy numbers,” which are 

generated with a goal of coverage of the sample space rather than “randomness” 
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and statistical independence.  Analytic Solver adds a “random shift” to Sobol 

numbers, which improves their statistical independence.  Sobol numbers are 

frequently used in quantitative finance applications, where they are often 

effective at reducing variance. 

Random Number Streams 

Most Monte Carlo simulation tools generate a single sequence of random 

numbers, taking values consecutively from this sequence to obtain samples for 

each of the distributions in a model.  This introduces a subtle dependence 

between the samples for all distributions in one trial.  Analytic Solver 

Comprehensive and Analytic Solver Simulation allow you to specify that an 

independent random number sequence (stream) should be used for each 

distribution in the model – using the Random Number Streams option on the 

Engine tab, as shown on the previous page.  This capability works for Monte 

Carlo sampling and Latin Hypercube sampling; it does not apply to Sobol 

numbers. 

In many applications, the difference between a single stream and multiple strams 

is very small – but in some cases, found in financial engineering and other 

demanding applications, better results are obtained if independent random 

number sequences (streams) are used. 

The PSI Interpreter and Simulation 

Analytic Solver Desktop can use either Excel, or its own Polymorphic 

Spreadsheet Interpreter (PSI Technology) to perform Monte Carlo simulation 

trials at high speed – often 100 times faster or more than performing the trials by 

allowing Microsoft Excel to recalculate the spreadsheet.  (Analytic Solver Cloud 

always uses PSI Technology.)  Normally, you’ll want to use the PSI Interpreter 

for simulation trials, since it is designed to compute the same values as Excel 

does, but much faster than the Excel Interpreter. 

However, there are a few features of Excel formulas and functions that the PSI 

Interpreter does not handle; if you use these features in your model, you’ll see 

an error message when you try to run a simulation.  If your model requires the 

use of Excel features that are not supported by the PSI Interpreter, you may have 

to use the Excel Interpreter instead.  To do this, change the Task Pane Platform 

tab Simulation Model group Interpreter option, as shown below.   

 

Note:  Functions not supported by the PSI Interpreter are:  Call(), Cell(), 

CubeX(), EuroConvert(), GetPivotData(), HyperLink(), Info(), RegisterID(), and 

SqlRequest().   
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More About the PSI Interpreter 

So, how does the PSI Interpreter work, and how can it be so much faster than 

Excel alone for simulation?  To answer this, we must look at how Excel itself 

computes values for your formulas. 

Microsoft Excel is an interpreter for spreadsheet formulas.  When you enter a 

formula such as =A1+A2*(A3-4) in cell B1, Excel first scans and parses the 

formula, storing the results in a coded internal form.  It also maintains storage 

for A1, A2, A3 and thousands of other cells.  When you change a number and 

recalculate, Excel refers to the coded internal form, looks up the values of A1, 

A2 and A3 and fetches the constant 4, performs the arithmetic, and saves the 

result in storage reserved for B1.  Only a small part of the time is spent on the 

actual arithmetic – most of the time goes into processing the encoded formula, 

and looking up and saving cell values. 

PSI stands for Polymorphic Spreadsheet Interpreter.  PSI is also an interpreter 

for spreadsheet formulas, that accepts the same formula syntax and built-in 

functions as Microsoft Excel.  But where Excel evaluates formulas only for one 

datatype – single numbers, PSI can evaluate formulas for many different 

datatypes.  (The word “polymorphic” comes from object-oriented programming, 

where it has essentially the same meaning.) 

One of the special PSI datatypes is Monte Carlo trials, where each number is 

replaced by a vector of 1,000 or more trial values.  The heart of PSI speed comes 

from the fact that it processes the encoded formula once, fetches 1,000 data 

values at once, and performs the arithmetic for all 1,000 values at once.  Hence, 

the “overhead” of the interpreter is incurred once rather than 1,000 times; most 

of the time is spent doing the actual arithmetic.  PSI is so fast because it is 

specialized for simulation (and optimization). 

Uncertain Functions, Statistics, and Risk Measures 
Once a Monte Carlo simulation is complete, what statistics should you use to 

evaluate the outputs of special interest in your model?  The answer depends on 

your application, but some general guidelines can be given. 

Descriptive statistics are usually classified into measures of central tendency, 

and measures of variation or dispersion.  You should look at both kinds of 

measures, and at some kind of quantile measure, to assess almost any output in 

your model. 

Measures of Central Tendency 

Analytic Solver provides several measures of central tendency: 

• PsiMean, the average of all the values 

• PsiPercentile for the median or 50th percentile 

• PsiMode, the most frequently occurring single value 

Measures of Variation 

Analytic Solver provides several standard measures of variation: 

• PsiVariance, which describes the spread of the distribution of values 

• PsiStdDev for standard deviation, the square root of variance 
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• PsiSkewness, which describes the asymmetry of the distribution of values 

• PsiKurtosis, which describes the peakedness of the distribution of values 

• PsiMin, PsiMax, and PsiRange for the minimum and maximum values, 

and the difference between them 

Risk Measures 

Analytic Solver also provides several risk measure functions that are most often 

used in quantitative finance applications, but may be used in any model. 

• PsiAbsDev for ‘MAD’, which measures absolute deviations from the mean 

• PsiSemiVar for semivariance or lower partial moment, which measures and 

weights negative deviations from the mean 

• PsiSemiDev for semideviation, the square root of semivariance (qth root for 

the lower partial moment) 

PsiSemiVar and PsiSemiDev are useful in situations where ‘upward’ variation – 

for example, higher stock prices or increased profits – is desirable, but ‘down-

ward’ variation – lower prices or losses – is undesirable. 

Quantile Measures 

To get a complete grasp of the range of outcomes, it’s essential to look at 

quantile measures, such as percentiles and Value at Risk, in addition to 

measures of central tendency and variation.  Quantile measures allow you to 

answer questions such as ‘How much money might we lose, with 5% or 10% 

probability?” or “What is the probability that we’ll make at least $100,000?” 

based on your simulation model.  Analytic Solver provides: 

• PsiPercentile, which provides percentile values from 1% to 99% 

• PsiTarget, which returns the proportion of values less than or equal to a 

target value 

• PsiBVaR, which measures standard (‘Basel’) Value at Risk 

• PsiCVaR, which measures Conditional Value at Risk 

Confidence Intervals 

Every Monte Carlo simulation uses a sample of the possible values of your 

uncertain variables; hence any statistic resulting from the simulation involves 

some degree of sampling error.  For the mean and standard deviation of an 

output value, Analytic Solver Simulation provides functions that help you assess 

this error, and estimate the range or interval in which you can be confident that 

the true mean or standard deviation lies, at a confidence level that you specify: 

• PsiMeanCI, which returns a confidence interval for the mean 

• PsiStdDevCI, which returns a confidence interval for the standard 

deviation 

• PsiCITrials, which returns the number of simulation trials needed to obtain 

a confidence interval of a given size, at a given confidence level 
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Uncertain Variables and Probability Distributions 
For experienced spreadsheet modelers, the most challenging task in creating a 

Monte Carlo simulation model is usually not identifying the key inputs and 

outputs, but selecting an appropriate probability distribution and parameters to 

model the uncertainty of each input variable. 

Analytic Solver provides over 40 analytic probability distributions – which one 

should you use?  Again the answer depends on your application, but some 

general guidelines can be given. 

If a Certified Distribution (see below under “Probability Management 

Concepts”) is available for an uncertain variable – for example, your company’s 

estimate of the range and probabilities for prices of certain chemical feedstocks, 

or a service provider’s estimate of the range and probabilities for stock or bond 

prices – you can simply use the Certified Distribution. 

Discrete Vs. Continuous Distributions 

If you must choose or create your own distribution, the first step is to determine 

whether to use a discrete or continuous form.  If there are a small number of 

possible values for the uncertain variable, you may be able to use a discrete 

analytic distribution, or construct a discrete custom distribution.  If the under-

lying physical process involves discrete, countable entities – such as the number 

of customers arriving at a service window – you can use a discrete distribution.  

If the possible values are highly divisible – such as most prices, volumes, 

interest rates, exchange rates, weights, distances, etc. – you will likely use a 

continuous distribution.  In some cases, you may use a continuous distribution to 

approximate a discrete distribution. 

Bounded Vs. Unbounded Distributions 

Another characteristic that distinguishes input distributions is the range of 

sample values they can generate.  Some distributions are intrinsically bounded – 

samples are guaranteed to lie between a known minimum and maximum value.  

Examples are the Uniform, Triangular, Beta, and Binomial distributions.  Other 

analytic distributions are unbounded – sample values may cluster around the 

distribution’s mean, but may sometimes have extreme negative or positive 

values.  Examples are the Normal, Logistic, and Extreme Value distributions.  

Still other distributions are partially bounded, with a known minimum such as 

zero, but no maximum value.  Examples are the Exponential, Poisson, and 

Weibull distributions. 

At times, you may find that the most appropriate distribution (say the Normal) is 

unbounded, but you know that the realistic values of the physical process are 

bounded, or your model is designed to handle values only up to some realistic 

limit.  You can impose bounds on any distribution using Analytic Solver 

Simulation’s Uncertain Variable dialog.  For information about “cutoff bounds” 

and “censor bounds” (both may be used), consult the Frontline Solvers 

Reference Guide. 

Analytic Vs. Custom Distributions 

A third characteristic of input distributions is whether they are analytic (also 

called parametric) or custom (sometimes called non-parametric) distributions.  

An analytic distribution has a form derived from certain theoretical assumptions 
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about the problem.  For example, a Poisson distribution is derived from an 

assumption that events are independent and occur at a known average rate, and 

an Exponential distribution is derived from an assumption of a constant rate of 

decay in some process.  A custom distribution has a form dictated by either past 

data or expert opinion about the range and frequency of sample values.  Analytic 

Solver offers five general-purpose functions – PsiCumul, PsiDiscrete, 

PsiDisUniform, PsiGeneral and PsiHistogram – to help you model custom 

distributions.  Generally speaking, you should choose an analytic distribution if 

– and only if – the theoretical assumptions truly apply in your situation. 

Creating your Own Distributions When Past 
Data is Available 

If you have, or you can collect data on the past performance of the uncertain 

variable – and if you believe that ‘past performance’ is likely to be 

representative of future performance – you have three options: 

• If you can fit the data (past observations) to a specific type of analytic 

distribution and its parameters, and if there is reason to believe that the 

underlying process that the uncertain variable is measuring is consistent 

with the assumptions from which the analytic distribution is derived, you 

can use this distribution (for example PsiNormal, PsiWeibull, etc.) for the 

variable. See “Using the Fit Feature” section below.  Note:  Data used in 

fitting a distribution should be independent. 

• If you have a reasonably large number of observations of past performance 

of the variable, compared to the number of simulation trials you want to 

run, you can use the past data itself for simulation trials, in the form of a 

SIP (Stochastic Information Packet) or a DIST (Distribution String), and 

use the PsiSip() or PsiSlurp() distribution function for the uncertain 

variable.  See “Probability Management Concepts” and, for DISTs, 

“Stochastic Libraries: SIPs and SLURPs” below. 

• If – as is often the case – you have a relatively small number of 

observations of past performance compared to the number of trials you want 

to run, you may be better off resampling the past performance data.  To do 

this, store the past data in a cell range or SIP, and use the PsiDisUniform() 

function (single values) or the PsiResample() function (multiple values).  

The difference is that, instead of using all of the past observations (one per 

simulation trial), you randomly sample the past observations on each trial. 

You can use the Analytic Solver GUI to find the best-fitting analytic 

distribution.  Both discrete and continuous distributions can be fitted to data; 29 

common distributions (out of the 40+ available) are used for fitting.  You can 

also call the Distribution object Fit and AutoFit methods in your VBA code, as 

described in the chapter “VBA Object Model Reference” within the Frontline 

Solvers Reference Guide. 

When Past Data is Not Available 

If you don’t have, and you cannot easily collect data on the past performance of 

the uncertain variable – or if past performance is not likely to be representative 

of future performance – you must tackle the problem in a different way: 

• Consult the literature for your industry, if available, to find examples of 

applications like yours where simulation models were built.  Find out – by 
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contacting the authors if necessary – what kinds of distributions were used 

for the uncertain variables, and the rationale for choosing them. 

• If you cannot find reports on industry-specific applications like yours, 

consult the publications of professional societies like INFORMS, where 

simulation applications are reported.  One rich source is the past 

proceedings of the Winter Simulation Conference (www.wintersim.org).  

• In the chapter PSI Function Reference, read the descriptions of the 

different PSI Distribution functions, which include brief comments on the 

types of applications where each distribution has been used in the past.  See 

the books listed at the beginning of that chapter for further information.  

You are well-advised to keep it simple!  Many physical, social and biological 

phenomena are well described by the Normal distribution, or – if the possible 

values are equally likely to occur, as in a coin flip or single die – the Uniform 

distribution.  Bear in mind that when any set of distributions are summed, the 

result (quickly) tends towards the Normal distribution. 

Applications that involve queuing – customers arriving or departing, parts 

awaiting assembly, etc. – have been well studied, so you can often find 

appropriate distributions in the literature.  Applications that use the Project 

Evaluation and Review Technique (PERT) can often use the PsiPert() function 

to model uncertainty. 

Using the Fit feature 

To fit a series of data using the Fit tool in Analytic Solver follow the following 

steps: 

1. Select the range of data you want to fit. In this example, we’ve selected data 

in Column M. 

 

 

2. Select the “Fit” icon on the Ribbon in Analytic Solver Desktop, 
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       In Analytic Solver Cloud, select Fit on the Tools ribbon. 

 

 

3. Make any changes to the default settings on the Fit Options dialog.   

 

For the Type, select Continuous if the uncertain variable’s values are highly 

divisible – such as most prices, volumes, interest rates, exchange rates, weights, 

and distances – or Discrete if the underlying physical process involves discrete, 

countable entities. 

The checkbox Allow Shifted Distributions allows Analytic Solver to shift the 

center of analytic distribution (equivalent to using the PsiShift() property 

function) to better fit the sample data; sometimes this is not desirable, so the box 

may be unchecked. 

When fitting a sample to a distribution, it is important that the trial values are 

not in any way correlated with each other.  In other words it is important that 

each trial is independent.  If the checkbox Run Sample Independence Test is 

checked, the Psi Interpreter will run an independence test and will report an 

error if the trial values are found to be dependent.  

Note:  This option is not included in Analytic Solver Cloud.  In the Cloud app, 

this feature is always on.   
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For Continuous data, you can choose to rank the fitted distributions by 

AIC/BIC, Chi Square, Kolmogorov-Smirnoff, or Anderson-Darling 

statistics.  For Discrete data, only the Chi Square statistic is meaningful (and 

may be selected).  For more information on these options, see the Analytic 

Solver Reference Guide. 

Analytic Solver computes and displays a ranked list of candidate fitted 

distributions, as shown below.  Initially, the distribution with the best fit statistic 

(selected in the above dialog) is shown in a chart that overlays the sample data. 

4. Review and accept or modify the results 

 

On the left of the dialog is a list of fit choices shown in order of 

decreasing Goodness of Fit based on the test you chose. You can select 

multiple choices to see how they compare and choose the one you are 

most happy with. See the example shown on the next page. 

 

You can also click on the P-P, Q-Q, CDF Differences tabs to get 

additional perspective on which distribution best fits. 

Tip: Once you have accepted the distribution you can open it back up 

and modify the lower and upper bounds, shift, etc. 

5. In Desktop Analytic Solver, place the resulting distribution by clicking 

“X” at the top right of the menu, clicking on “Yes” in the resulting 

dialog to accept, and choosing where you want to place it in Excel. 
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In Analytic Solver Cloud, you'll be asked for the cell address.  Simply 

type the cell address and then click OK.   

You can see the new distribution where you placed it by clicking the 

cell. It will show up in the formula bar and if you leave the mouse over 

that cell a pop-up will show your distribution. 

 

 

More Hints and Warnings 

Using a Triangular Distribution 

If you have only estimates of the minimum, maximum, and most likely values of 

an uncertain variable – and no other past data or literature references – you can 

create a PsiTriangular distribution from these three numbers.  This is unlikely 

to be a highly accurate representation of the uncertainty, but it will allow you to 

get started, and it is far better than a single average value.  If your ‘minimum’ 

and ‘maximum’ values are really low- and high-percentile estimates rather than 

the absolute lowest and highest values that can occur, consider using the 

PsiTriangGen distribution instead. 

Define Each Uncertain Variable Only Once 

Often, you’ll need to use the same uncertain variable in several different 

formulas in your model.  A very common error is to enter the same distribution 

function, with the same parameters (say PsiNormal(100, 10)), several times in a 

model – in a belief that these instances will yield the same results on each trial.  

This is incorrect – by doing this, you’ve actually defined several independent 

uncertain variables that may well sample different values on each trial.  You 

should instead enter =PsiNormal(100, 10) in a cell such as A1, and use A1 in 

each cell formula where the variable is needed. 
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Compute Statistics Only on Final Outputs 

Another common error is to use formulas in your model to compute a statistic 

across two or more uncertain variables, and then use this statistic in further 

calculations that are part of the same simulation model. 

For example, suppose you have two uncertain variables, =PsiUniform(0,10) in 

cell A1 and  =PsiUniform(0,20) in B1.  You want to know the mean or average 

value of these two variables, across the trials of the simulation.  The wrong way 

to do this is to put = (A1+B1)/2 or =AVERAGE(A1,B1) in cell C1.  This takes 

the average of A1 and B1 on each trial – the result will be a distribution that 

tends to the Normal, with a different (larger) mean than you probably intended.  

The right way to do this is to put =PsiDisUniform(A1,B1) in cell C1.  Now the 

distribution of cell C1 is “flat:” On each trial only one of A1 or B1 is selected. 

David Vose, principal of Vose Consulting, offers his cardinal rule of risk 

analysis modeling:  “Every trial of a risk analysis model must be a scenario that 

could actually occur.”  To ensure that this is true, you may need to specify 

correlations between your uncertain variables, as described in the next section. 

Dependence and Correlation 
Unless you specify otherwise, Monte Carlo simulation assumes that each of your 

uncertain variables is independent of all the other uncertain variables.  When 

two variables are independent, the value of one variable on a given trial conveys 

no information about the value of the other variable.  When two variables are 

dependent, there is a statistical relationship between them:  On average, the 

value of one variable on a given trial does convey information about the value of 

the other variable on that trial. 

Measuring Observed Correlation 

Correlation is a statistical measure of the degree to which one variable is related 

to another.  When we observe that two variables are correlated, it may be that 

one variable is dependent on the other, or that both variables are dependent on a 

third variable, or that the correlation appeared by chance and there is no real 

dependence of one variable on the other. 

The most common parametric measure of correlation is the Pearson product 

moment correlation coefficient.  You can use the PsiCorrelation function to 

compute this correlation coefficient, across the trials of a simulation, for any pair 

of uncertain functions or variables in your model.  The value of a product 

moment correlation coefficient can range from -1 to +1. 

A correlation coefficient captures a simple linear relationship between two 

variables; it cannot capture all of the ways one variable may depend on another.  

A low or zero correlation coefficient between two uncertain variables or func-

tions does not necessarily mean that the variables or functions are independent – 

the two variables or functions might have a strong relationship, but one that 

cannot be captured by a single correlation coefficient. 

The figure below is a scatter plot of two variables X and Y.  There is an obvious 

relationship between these two variables – when X is 1, Y is about 2, when X is 

5, Y is about 15, when X is 9, Y is about 2, and so on – yet the Pearson product 

moment correlation coefficient between X and Y is zero.  
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More complex relationships among variables can be expressed in several ways 

including newly supported copulas or a very general way using SLURPs 

(Stochastic Library Units, Relationships Preserved). For more information on 

copulas, see below. For more information SLURPs, see below under 

“Probability Management Concepts.” 

Inducing Correlation Among Uncertain Variables 

If you can compute a value for A1 with a formula based on an uncertain variable 

B1, then certainly A1 is dependent on B1.  But in many modeling situations, 

both A1 and B1 are uncertain variables, you have no way to directly compute 

one from the other, yet A1 may statistically depend on B1.  For example, 

mortgage interest rates depend on bond market interest rates (since mortgages 

are pooled and sold as securities in the bond market), and both rates depend on 

inflation expectations, but it is quite difficult to specify a formula that relates 

these variables. 

In cases like these, you’ll need to specify the statistical dependence between 

uncertain variables using PSI Property functions, supplied as arguments to PSI 

Distribution functions.  This is called inducing correlation between uncertain 

variables, that would otherwise be considered independent.  For example, you 

can write =PsiNormal (100, 10, PsiCorrIndep("MyCorr")) in cell B1 and 

write =PsiUniform( 0, 100, PsiCorrDepen("MyCorr", 0.9)) in cell A1 to 

specify that A1 depends heavily on B1.  "MyCorr" is an arbitrary string name. 

The number 0.9 in the example above is a Spearman rank order correlation 

coefficient.  This is a nonparametric measure of correlation that is computed 

from a rank ordering of the trial values drawn for both variables.  It can be used 

to induce correlations between any two uncertain variables, whether they have 

the same or different analytic distributions, or even custom distributions.  Like 

the product moment correlation coefficient, its value can range from -1 to +1. 

Meaning of Rank Correlation Coefficients 

• A correlation coefficient of +1 forces the sampled values of the uncertain 

variables to be exactly positively correlated, meaning that the pth  percentile 

value from one distribution will be sampled on the same trial as the pth 

percentile value from the other distribution.  Coefficients from 0 to +1 will 

produce varying degrees of positive correlation. 

• A correlation coefficient of -1 forces the sampled values of the uncertain 

variables to be exactly negatively correlated, meaning that the pth  percentile 
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value from one distribution will be sampled on the same trial as the (100-

pth) percentile value from the other distribution.  Coefficients from 0 to -1 

will produce varying degrees of negative correlation. 

• A correlation coefficient of 0 means there is no induced relationship 

between the variables.  In practice, one usually uses coefficients less than 

+1 or -1, and uses 0 only in a correlation matrix that defines relationships 

among several variables (see below). 

Computing Rank Correlations from Sample Data 

If you have sufficient data on the past performance of two uncertain variables 

where the observations occurred at the same time for each variable, you can 

compute the Spearman rank correlation coefficient r as follows, where ΔR is the 

difference between the ranks of corresponding observations of the two variables: 
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You can easily compute this value on a spreadsheet, using Excel’s RANK 

function, which returns the rank of a given cell value within a range of values.  

Suppose that A1:A100 contains trial values for uncertain variable A, and 

B1:B100 contains trial values for uncertain variable B.  In C1 enter the formula 

=RANK(A1, $A$1:$A$100,1), in D1 enter =RANK(B1,$B$1:$B$100,1), and in 

E1 enter the formula =(C1-D1)^2.  Then copy C1:E1 down to row 100.  Then 

the rank order correlation coefficient is =1-(6*SUM(E1:E100)/(100*(100^2-1)). 

If you don’t have data on past performance of the uncertain variables, you will 

have to use judgment to estimate rank correlation coefficients. 

Using a Rank Correlation Matrix for Several Variables 

What if you have three, four, or more uncertain variables that should all be 

correlated with each other?  You can create a small table or matrix of rank 

correlation coefficients in a cell range on the worksheet, and use this cell range 

in the PSI Property function PsiCorrMatrix.  Below is an example of a 3x3 

correlation matrix: 

 

You pass PsiCorrMatrix (matrix cell range, position) as an argument to the PSI 

Distribution function, for example =PsiNormal (10,5,PsiCorrMatrix(A1:C3,1)) 

for the first uncertain variable covered by the correlation matrix.  You’d pass 

PsiCorrMatrix(A1:C3,2) to the PSI Distribution function for the second variable, 

and PsiCorrMatrix(A1:C3,3) for the third.  This specifies that the first variable 
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has a rank correlation coefficient of 0.8 with the second variable, and 0.5 with 

the third variable.  The second and third variables are correlated with each other, 

with a rank correlation coefficient of 0.2. 

Note that a correlation matrix must always have 1’s on the diagonal, because an 

uncertain variable is always perfectly correlated with itself.  Also, the matrix 

must be symmetric:  If row 2, column 1 contains 0.8, then row 1, column 2 must 

also contain 0.8.  Finally, the correlation coefficients must be consistent with 

each other:  For example, if uncertain variable 1 is strongly positively correlated 

with variable 2, and variable 2 is strongly positively correlated with variable 3, 

then variable 1 cannot be negatively correlated with variable 3.  Formally, the 

matrix must be positive semidefinite – it cannot have any negative eigenvalues.  

Analytic Solver tests for this condition, and displays #N/A in the PSI 

Distribution cells for the uncertain variables that refer to an inconsistent 

correlation matrix. 

To learn more about rank correlation and its uses in Monte Carlo simulation, 

consult the book Risk Analysis: A Quantitative Guide by David Vose, mentioned 

in the Introduction. 

Modeling Correlation Using Copulas 

Analytic Solver includes copulas to improve the method of defining the 

correlation or dependence between two or more uncertain variables.  Copulas 

offer more flexibility over the rank order correlation method, and are able to 

capture complex correlations between multiple uncertain variables. In recent 

years, the popularity of copulas in finance and insurance risk models has 

skyrocketed.   

An n – dimensional copula C is a multi-variate probability distribution where the 

marginal probability distribution of each variable follows the Uniform(0,1) 

distribution.  A major benefit of copulas is that they allow two or more uncertain 

variables to be correlated without changing the shape of the original uncertain 

variable distributions.   

For some copula C, a multi-variate distribution F with distributions of F1, F2, … 

Fn can be written as:  

F(x1, …, xn) = C(F1 (x1), F2 (x2), …, Fn (xn)) 

Analytic Solver Desktop supports five types of copulas: three Archimedean 

copulas (clayton, frank, and gumbel) and two elliptical copulas (Gauss and 

Student).  Analytic Solver Cloud supports one type:  Gaussian.   

Each of these copulas may be bi-variate (correlating only two uncertain 

variables), or multi-variate (correlating more than two uncertain variables).  

Each copula type has its own parameter domain and method of calculation.  The 

signatures for each copula are the same, except that multi-variate Archimedean 

copulas lack the "reflection" argument.  For details regarding Archimedian 

copulas, see the following sections.  For a complete discussion of the theory 

behind all five copula types, see the section Psi Property Functions in the 

Frontline Solvers Reference Guide.   

Archimedean Copulas 

Archimedean copulas can be bi-variate (correlating two uncertain variables) or 

multi-variate (correlating more than two uncertain variables).  A bi-variate 

copula has a density function associated with it, which is similar to the 
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probability density of a bi-variate distribution.  Archimedean Copulas are not 

supported in Analytic Solver Cloud. 

To create a bi-variate Archimedean copula, enter two uncertain variable 

distributions into two Excel cells, and then use the PsiCopula property as an 

argument to both.  See the screenshot below for an example.   

 

Cell A1 contains an uncertain variable that follows the PsiNormal distribution 

with mean = 0 and standard deviation = 1.  Cell A2 contains an uncertain 

variable following the PsiBeta distribution with shape parameters equal to 3 and 

4.  The PsiCopula property is passed as the third argument to each uncertain 

variable.  All three Archimedean copulas use the same signature. 

PsiCopula(type, param, [reflection], [instance]) 

Type:  As previously mentioned, Analytic Solver supports three types of 

Archimedean copulas:  clayton, frank, and gumbel.   The copula type should be 

passed in quotes as, "clayton", "frank", or "gumbel".  In this example, "clayton" 

is passed.  The two elliptical copulas have their own Psi property names:  

PsiCopulaGauss and PsiCopulaStudent.  See the example below for their 

signatures.   

Param:  The parameter of a copula determines the strength of the correlation. In 

this example, a parameter equal to 10 is passed.  See the following parameter 

restrictions for each Archimedean copula type.    

Clayton:   

• Bi-variate:  param >= -1, param ≠ 0. 

• Muilti-variate:  param > 0 

Gumbrel 

• Bi-variate or Multi-variate:  param >= 1 

Frank 

• Bi-variate:  param ≠ 0. 

• Muilti-variate:  param > 0 

Note:  Param = 0 for a multi-variate Archimedean copula is supported, but 

indicates no correlation between the uncertain variables.   

Reflection:  (Optional) Analytic Solver allows you to control the direction 

of a bi-variate Archimedean copula using an optional reflection parameter.  This 

argument may take on values of 0, 1, 2, or 3, which control the reflection of no 

variables using the value of 0, the first variable using the value of 1, the second 

variable using the value of 2 or both variables using the value of 3.  By default, 

the reflection option is set to 0, which indicates no reflection.  In this example, a 

0 is passed for the reflection argument to illustrate how this parameter should be 

passed.  In practice, a value of 0 need not be present.   

The scatter plots below illustrate the four different positions of a clayton copula 

correlating two uncertain variables with distributions PsiNormal(0,1) and 

PsiBeta(3,4).   
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Reflection = 0   Reflection = 1 

  

 Reflection = 2   Reflection = 3 

The scatter plots below illustrate the four different positions of a type gumbel 

copula correlating two uncertain variables with distributions PsiNormal(0,1) and 

PsiBeta(3,4).   

 

Reflection = 0   Reflection  = 1 

 

Reflection = 2   Reflection = 3 

The scatter plots below illustrate the four different positions of a type frank 

copula correlating two uncertain variables with distributions PsiNormal(0,1) and 
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PsiBeta(3,4).  Note:  Since the Frank copula is symmetric, this type of copula 

has only one reflection. 

 

Reflection = 0   Reflection = 1

 

Reflection = 2   Reflection = 3 

Instance: (Optional) Instance is the string name given to the copula.  An 

Archimedean copula is explicitly identified by the Instance argument, and 

implicitly identified by its argument values.  When multiple copulas are present 

in the same workbook, it is considered "best practice" to use this argument.    

In this example, we correlate the two uncertain variables using the PsiCopula 

property, =PsiCopula("clayton", 10, 0).  Since the Instance property is missing, 

the copula is identified implicitly by its unique set of arguments, in this case 

"clayton" and "10".  When not passing the Instance property, the PsiCopula 

property within each uncertain variable signature, MUST use the same 

arguments.  Otherwise, the correlation between the uncertain variables will not 

be invoked.   

Note:  PsiCopula("clayton", 10) and PsiCopula("clayton", 10, 0) is considered as 

the same copula since 0 is the default for Reflection argument.   

To correlate a new group of uncertain variables using a second copula, such as 

PsiCopula("clayton", 12) or PsiCopula("frank", 10), the Instance argument is 

still not required since either copula is identified by its unique parameters of 

"clayton" and "12" or "frank" and "10".  However, if correlating this same new 

group of uncertain variables with a copula using the same arguments of 

"clayton" and "10", we MUST pass a unique name to the Instance argument, for 

example, "copula2".    

Finally, to view the output of the copula, we must make each uncertain variable 

an uncertain function.  We can easily do so by clicking cell A1, then Results – 

Output -- Referred on the Analytic Solver ribbon.  Next, select an empty Excel 

cell, say C1.  The formula, =PsiOutput(A1), is inserted into this cell.  Perform 

similar steps to make cell A2 an output function. (See the screenshot below for 

an example.)  
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Double-click cell A1 to open the Uncertain Variable dialog, then click the Show 

Results icon. 

 

When Analytic Solver Simulation prompts you to perform a simulation, click 

Yes.   

 

Instantly, a simulation with 1,000 trial values is executed.  Excel cells A1 and 

A2 return 1,000 trial values from the sampled distribution, generating the pattern 

of correlation defined by the copula.   

Click the Scatter Plots tab to view the results of the copula.  In this example, a 

copula of type "clayton" is created correlating two uncertain variables with 

distributions of PsiNormal(0,1) and PsiBeta(3, 4).  The distribution generated 

for the first uncertain variable will still follow the Normal(0,1) distribution, and 

the distribution generated for the second variable will still follow the Beta(3,4) 

distribution.  The scatter plot below displays the copula correlating the two 

uncertain variables using a parameter of 10.   

Note:  If the copula is multi-variate, the associated scatter plots will be 2-D 

projections.   

 



Frontline Solvers 2021 User Guide Page 550 

    

 

 

Elliptical Copulas 

Analytic Solver Comprehensive supports two elliptical copulas that can be either 

bi-variate or multi-variate:  Gaussian and Student. Each elliptical copula has its 

own signature. Student copulas are not supported in Analytic Solver Coud. 

To create a multi-variate Student copula, enter three or more uncertain variable 

distributions into three (or more) different Excel cells, and then use the 

PsiCopulaStudent() property as an argument to each.  See the screenshot below 

for an example.   

 

Cells A1 and A3 contain an uncertain variable that follows the PsiNormal 

distribution with mean equal 0 and standard deviation = 1.  Cell A2 contains an 

uncertain variable following the PsiBeta distribution with shape parameters 

equal to 3 and 4.  The PsiStudentCopula property is passed as the third argument 

to each uncertain variable.  The PsiCopulaStudent property uses the following 

signature. Note:  The signature for PsiCopulaGauss() is the same minus the "df" 

argument.        

PsiCopulaStudent(number_range, position, df, 

[instance]) 

Number range:    If bi-variate, a number between -1 and 1; if multi-variate, 

the Excel cell range where the correlation matrix is located in the Excel 

spreadsheet.  In this instance, the copula is multi-variate, so the correlation 

matrix in cells N2:P4 is passed.   
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Position:  Specifies the uncertain variable index in the correlation matrix.  

For example, the "2" passed in the formula, =PsiBeta(3, 4, 

PsiCopulaStudent(N2:P4, 2, 1, "mycop") specifies that the correlation 

coefficients in the second column of the correlation matrix in cells N2:P4 will be 

applied to the PsiBeta() uncertain variable.   

df:  Enter an integer greater than 1.  This parameter specifies the degrees of 

freedom for the PsiCopulaStudent function.    In this example, 1 degree of 

freedom is used.  (Note: The formula for PsiCopulaGauss() does not include this 

argument.) 

Instance: (Optional) Instance is the string name given to the copula.  An 

elliptical copula is explicitly identified by the Instance argument and implicitly 

identified by the location of the correlation matrix.  PsiCopulaStudent and 

PsiCopulaGauss support multiple copulas using the same correlation matrix.  If 

passing the same type of elliptical copula using the same correlation matrix 

within the same workbook, this argument must be present.  If the workbook 

contains multiple copulas of different types, then this argument may be omitted.  

When multiple copulas are present in the same workbook, it is considered "best 

practice" to use this argument.     

In this example, we correlate the three uncertain variables using the 

PsiCopulaStudent property, =PsiCopulaStudent(N2:P4, 1, 1, "mycop").  Since 

the Instance property is present, the copula is identified explicitly by the name 

given in the last argument, "mycop".  When not passing the Instance property, 

the PsiCopulaStudent property within each uncertain variable signature, MUST 

use the same correlation matrix.  Otherwise, the correlation between the 

uncertain variables will not be invoked.   

To view the output of the copula, we must make each uncertain variable an 

uncertain function.  We can easily do so by clicking cell A1, and then Results – 

Output -- Referred on the Analytic Solver ribbon.  Next, select an empty Excel 

cell, say C1.  The formula, =PsiOutput(A1), is inserted into this cell.  Perform 

similar steps to make cells A2 and A3 output functions.  (See the screenshot 

below for an example.)   

 

On the Analytic Solver ribbon, click the down arrow under Simulate, then select 

Run Once from the menu.  Instantly, a simulation with 1000 trial values is 

executed.  The result is a correlated uncertain function following the 

Uniform(0,1) distribution.  Excel cells A1, A2 and A3 return 1000 trial values 

from the sampled distribution generating the pattern of correlation defined by 

the copula.   

In this example, a copula of type "student" is created correlating three uncertain 

variables with distributions of PsiNormal(0,1) and PsiBeta(3, 4).  The 
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distributions generated for the first and third uncertain variables will still follow 

the Normal(0,1) distribution and the distribution generated for the second 

variable will still follow the Beta(3,4) distribution.  The scatter plots below show 

plots from the PsiNormal(0,1) distribution, the PsiBeta(3,4) distribution and the 

copula correlating the three uncertain variables.     

 

    

 

 

Correlation Fitting 

The previous chapter, "Getting Results: Simulation”, discussed how to fit a 

distribution to simulation results.  Recall that, in this chapter, the simulation 

results from the BusinessForecast(Sim).xlsx model were fit to the Min-Extreme 

uncertain variable distribution.  Analytic Solver calculated the parameters of 

several distributions from the data within the example model and listed the 

distributions with the best fit, with Min-Extreme at the top of the list.     

Similarly, the goal of correlation fitting is to find the parameters of the 

correlation function that match the existing (but unknown) correlation between 

two or more samples of historical data.  Each sample is assumed to come from 

an independent uncertain variable.  Analytic Solver offers correlation fitting 

using 6 correlation types:  rank, clayton, gumbel, frank, gauss and student.  It is 

up to the user to determine which correlation type results in the best fit to the 

data.  Note:  Rank is not a copula correlation, but rather a stand-alone type of 

correlation.   
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For example, if a scatter plot is drawn from two independent samples 

resembling a tilted ellipse, one can assume that the correlation will be a “Gauss” 

correlation.  If the correlation is fit, using the Gauss fitting algorithm, one rank-

correlation coefficient will be returned.  If more than 2 samples are drawn, the 

fitting algorithm will return a correlation matrix of size n.   

Analytic Solver users can fit a correlation using the Copula Fit dialog which can 

be opened from the Analytic Solver ribbon by clicking the down arrow beneath 

the Correlations icon and selecting Fitting.   

 

Two or more Excel cell ranges containing independent samples can be added to 

the Copula Fit dialog by clicking Add Range.  Data may exist in row form, 

column form, or in a matrix.  For example, if you had two independent samples 

located in cells A1:A100 and B1:B100 you would select Column Data, then 

click Add Range on the Copula Fit dialog. 

If the data were contained by row, then you would select Row data and if data 

were contained in, say, a 10 x 10 matrix in cells A1:J10, then you would select 

Range data.   

 

Then either select or enter A1:100 on the Select Data Range dialog.   
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After you click OK, the data range will appear under Data Ranges and a scatter 

plot will appear on the right of the dialog.   

 

To enter the 2nd range, keep Column Data selected, then click Add Range again, 

enter the Excel range, B1:B100, then click OK to add the data range to the 

Copula Fit dialog.   

  
Notice that the scatter plot that has been drawn for the two ranges resembles an 

ellipse.  From this scatter plot, we can assume that the copula correlation type 

for fitting is “Gauss”.  A shape resembling a star points to a Student copula for 

Correlation Type and a shape resembling a funnel would indicate a Clayton 

copula.  Although a complete discussion of the definition of copulas is beyond 

the scope of this guide, see the previous section, “Modeling Correlation Using 
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Copulas” for a brief introduction of each type of copula defined in the 

Correlation Type drop down menu.   

 

Select Gauss as Correlation Type… 

 

 

…then click Fit at the bottom of the Copula Fit dialog to fit the correlation.   

The Fit Results Parameters dialog opens to display the Correlation Type (Gauss) 

and the Probability and Sigma fitting parameters.  Select a blank cell, say D1, to 

save the fitting parameters to the worksheet, then click Save.   

Note:  The cell entered for “Save to” on the Fit Results dialog will become the 

top left corner of the data range on the Excel sheet.  Any value or text contained 

in this cell or in any cell used to save the Fit Results Parameters, will be 

overwritten.    

 

Then click Done to close the Copula Fit dialog and return to the worksheet.  

Notice that the information from the Fit Results dialog has been saved to the 

Excel range, D1:E3.  The size of this range will vary depending on the 

Correlation Type and number of Data Ranges present in the Copula Fit dialog.   
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Using the Correlations Dialog 
The Correlation dialog offers an easy way to create, edit, and remove correlation 

matrices in your model.  It appears when you click the Correlations button on 

the Ribbon. 

You use a correlation matrix to induce a statistical correlation among two or 

more uncertain variables.  When you do this, the trial values of these variables in 

a Monte Carlo simulation will tend to be drawn from related percentiles of their 

distributions on each trial.  Starting with V2016-R2, the numbers in a correlation 

matrix may be Spearman rank order correlation coefficients or specifying an 

Archimedean or Elliptical copula.  For more information on correlation 

matrices, see “Inducing Correlation Among Uncertain Variables” in the 

Dependence and Correlation section above. 

A correlation matrix is stored in a contiguous cell range, with an equal number 

of columns and rows.  To correlate N variables together, you need a matrix of N 

columns and N rows.  Here’s an example of a 3x3 correlation matrix: 

 

You can type in values for a correlation matrix directly on the Excel worksheet, 

and then reference this matrix in the PsiCorrMatrix() property function, passed 

as an argument to PSI Distribution functions for each of the correlated variables.  

But it is easier to use the Correlation Dialog to create the matrix for you. 

Creating a Correlation Matrix 

When you first click the Correlations button on the Ribbon, the Correlation 

dialog appears with an empty matrix area, and a left pane (similar to the Task 

Pane displayed by the Model button) that lists the uncertain variables in the 

model: 
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You can either choose the specific cells for the uncertain variables you want to 

correlate (press Ctrl or Shift and click for more than one) and then click the “>” 

button to include them in the matrix, or you can click the “>>” button to include 

all of them. The initial matrix with correlation values set to zero will display 

similar to the example below: 

 

The preview for the correlation Matrix has three parts: 

1. Black numerical values for each correlation in the top right of the matrix. In 

this case we have three values initially set with a zero correlation which you 

can edit. Since correlation matrices have to be symmetrical (the correlation 

between A1 and A2 must be the same as the correlation between A2 and 

A1) we only show one value. Note:  Both values are shown in Analytic 

Solver Cloud.   
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2. Green graphical representations of each distribution diagonally from top left 

to bottom right. In this example, we used a Normal distribution in our 

worksheet in cell A1 (show here in the top left part of the matrix), a 

Triangular distribution in cell A2, and a LogNormal distribution in cell A3.  

Note:  Graphical representations are not currently available in Analytic 

Solver Cloud.   

3. Blue scatterplots reflecting the current correlations between the 

distributions. When you edit the values of each correlation, these will 

automatically update giving you a visual representation of the updated 

correlation. Note, you can click on any scatterplot here and a dialog will 

come up where you can more clearly see the scatterplot and how the 

scatterplot changes as you adjust the correlation (see below). In the example 

on the left the correlation is set to zero while on the right we have adjusted 

it (either directly typing in 0.75 into the Correlation field or adjusting the 

slider.  Note:  Scatterplots are not currently available in Analytic Solver 

Cloud.   

           

Once you click “Accept” you are taken back to the initial dialog and it shows the 

updated correlation matrix. 

At this point you can name your correlation matrix and then choose the location 

you want to place it in your worksheet. While optional, naming your matrix is 

recommended, and is important if you want to use the same matrix several 

times. To place your matrix, simply click your cursor in the location field and 

click where you want to place the matrix on your worksheet.   
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        Analytic Solver Desktop  

 

         Analytic Solver Cloud  

 

Managing Copulas 

Analytic Solver includes the ability to correlate uncertain variables using 

Gaussian, Student or Archimedean Copulas.  To correlate the three uncertain 

variables in cells A1, A2, and A3 using an Archimedian Copula, select 

Archimedian Copula from the Correlation/Copula drop down menu.  Note:  

Only Rank Order and Gaussian Copulas are supported in Analytic Solver Cloud.   
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Once the Copula type is selected, three more fields will be enabled, Type, 

Parameter, and Reflection.  Using these three parameters you may choose the 

type of Archimedean copula (Clayton, Frank, or Gumbel), specify the copula 

parameter, and choose a Reflection type.  If Gaussian Copula is selected, no 

additional parameters are required.  If Student Copula is selected, one additional 

parameter is required, Degrees of Freedom.  For more information on copulas 

and copula parameters, see “Inducing Correlation Among Uncertain Variables” 

in the Dependence and Correlation section above. 

Lastly, click “Save” to complete the process. Your new correlation matrix will 

then be saved and placed on your worksheet (in this case in cell B6) and the 

Manage Correlation Matrices Dialog will show in place of the Create New 

Correlation Matrix dialog. This dialog lists all the matrices you have set up on 

the left side of the dialog, and when you double-click on a particular matrix it 

will show on the right side. 

 

As the matrix is created, Analytic Solver Simulation also edits the PSI 

Distribution function formulas for the uncertain variables (at A1, A2, & A3 in 

the example above) to include the property function PsiCorrMatrix(C7:E9, n), 

where n is 1 for A1, 2 for A2, and 3 for A3.  During a Monte Carlo simulation, 

when trial values are drawn for the uncertain variables A1, A2 and A3, Analytic 

Solver will use the correlation matrix at C7:E9 to adjust the ‘draws’ so that the 

values are properly correlated across all the simulation trials.  

The matrix C7:E9 now appears in the left pane of the Manage Correlation 

Matrices dialog.  If you close and later reopen the Correlation dialog, this matrix 
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will reappear in the lower left pane.  If you create a correlation matrix ‘by hand’ 

on the Excel worksheet, and insert the PsiCorrMatrix() calls yourself into the 

PSI Distribution function calls for the variables, the matrix you create will also 

appear in this left pane the next time you open the Correlation dialog.  You can 

double-click on each matrix to display and edit that matrix. 

Removing a Correlation Matrix 

To remove a correlation matrix from your model, in the Manage Correlation 

Matrices dialog click on the matrix you want to remove and then click on the 

“Delete” icon in the dialog’s ribbon menu. The matrix will disappear from the 

Correlations dialog, and the PsiCorrMatrix() property function formula 

referencing this matrix will be removed from the PSI Distribution function calls 

for the corresponding uncertain variables.  However, the cell range on the 

worksheet where the matrix elements were written is left undisturbed – you can 

either delete them in Excel worksheet mode, or re-use them later.   

To remove a correlation matrix in Analytic Solver Cloud, simply select the 

matrix in the Model task pane, then click the red X to delete.   

Editing a Correlation Matrix 

As shown in the both the Create Correlations and Manage Correlations dialogs, 

the value of each correlation is numerically shown in the top right portion of the 

matrix. To edit the value of a correlation you can simply click on the correlation 

you wish to edit and enter a new value from -1 (exactly negatively correlated) to 

+1 (exactly positively correlated). The default value of 0 means the two 

variables have zero correlation. 

When you are finished, click the “X” button in the top right of the dialog to 

close it and your change(s) will be saved. Importantly, we will automatically 

check to make sure your matrices are valid (Positive Semi-Definite; see 

“Making a Matrix Consistent” below) and if they are not will offer help to 

correct them. 

Alternatively, you can click on the Edit button on the Manage Correlations 

Ribbon to go to the Edit Matrix Dialog.  The Edit Matrix dialog (see below) will 

appear, which looks very similar to the Create Matrix dialog. At this point you 

can change the name and location of the matrix, add or remove uncertain 

variables, and change correlation values. When done, simply hit Save. 

In Analytic Solver Cloud, double click the correlation matrix in the Model task 

pane to edit.  Click save when finished.   
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Making a Matrix Consistent 

A correlation matrix must be not just symmetrical, but consistent.  This means 

for example that if variable A has a high positive correlation with variable B, 

and B has a positive correlation with C, then variable A cannot have a high 

negative correlation with C.  In mathematical terms, the correlation matrix must 

be positive semidefinite.  This property depends on all of the elements of the 

matrix.  If the matrix you create by hand does not satisfy this property (the 

example matrix above does not), Analytic Solver can automatically adjust the 

matrix elements so that the matrix is positive semidefinite. 

To check whether the matrix you’ve entered is positive semidefinite, in the 

Manage Correlations dialog simply click the Validate icon in the dialog’s ribbon 

menu: 

 

In our example, the matrix is valid so the following message is displayed and no 

action is needed: 

 

If, for example, we set all our correlations to be -1, we would have a matrix 

which could not be valid and you will see the following message instead: 
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If you click No, the matrix remains as-is.  If you click Yes, a new dialog 

appears: 

 

In this dialog, we can simply click the Update Matrix button to allow Analytic 

Solver to adjust the matrix to be consistent (positive semidefinite).  This may 

involve changing all of the elements of the matrix, by various amounts.  But 

Analytic Solver can do more than this. 

In many applications, you can determine ‘good’ values for correlations between 

certain pairs of variables, but for other pairs you have no special information.  

Analytic Solver Simulation can adjust the matrix to make it positive 

semidefinite while minimizing changes to the matrix elements you care about, 

and making greater changes in the elements you don’t care about. 

In the example above, let’s say we feel very confident there is a strong negative 

correlation between A1 and A2 but are less sure about A1 and A3 and very 

uncertain about any correlation between A2 and A3. We can click first on the 

radio button on the left relating to the amount of change we are comfortable with 

and then click on the cell(s) we want changed by that general amount. 

Using the information above we would click on the “Moderate Change” radio 

button and then click on the correlation for A1 and A3 and then click on the 

“Largest Change” radio button followed by clicking on the correlation for A2 

and A3. Our Matrix will now look like the following: 
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At this point we just click the “Update Matrix” button and our matrix is updated 

to be consistent (Positive Semi-Definite) with new correlation values as shown 

below: 

 

We can now accept the update or undo the changes. We can of course further 

refine our correlation values if/as we wish. 

In Analytic Solver Cloud, each time the Save button is clicked on the 

Correlations dialog, the matrix is checked for consistency (positive semi-

definite).  If the matrix is not consistent, you will be asked if you would like 

Analytic Solver to modify the matrix.  Click yes, to accept Analytic Solver's 

modifications.  Click No to save the matrix without any modifications.  Click 

Cancel to go back to the matrix.   
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Probability Management Concepts 
In the February and April 2006 issues of the publication OR/MS Today, Dr. Sam 

Savage and coauthors Stefan Scholtes (University of Cambridge) and Daniel 

Zweidler (Shell Global Exploration) advance a series of ideas called  

“Probability Management.”  They argue for much broader use of risk analysis 

methods in planning and management, especially in large enterprises, based on 

three ideas: 

• Interactive Simulation 

• Stochastic Libraries 

• Certification Authority 

Probability Management calls for an up-front investment in the creation of 

standardized Certified Distributions, created or reviewed by an expert authority, 

and distributed to simulation modelers, often in the form of Stochastic Libraries.  

The payoffs of Probability Management include: 

• Much easier creation of new simulation models 

• Ability to capture complex dependencies – beyond what’s possible with 

correlation coefficients 

• ‘Apples-to-apples’ comparison of simulation model results 

• Valid ‘roll-ups’ of simulation models from different groups 

Analytic Solver Comprehensive is the first product designed to support the 

concepts of Probability Management.  In addition to best-in-class support for 

Interactive Simulation, it provides direct support for creating, ‘publishing’ and 

using Certified Distributions and Stochastic Libraries, as discussed in this 

chapter. 

Analytic Distributions 

As described above, and documented in the Reference Guide, Analytic Solver 

provides a wide range of analytic probability distributions – more than 40 

distributions are available, from PsiBernoulli() to PsiWeibull().  Given 

knowledge and experience, you can choose and use these distributions in your 

simulation models.  But as discussed above, this is often the most challenging 
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part of creating a Monte Carlo simulation model, especially for users with 

spreadsheet modeling expertise, but limited math and statistics background. 

Moreover, when different end user modelers choose their own analytic 

distributions and parameters, they will often create models that cannot be 

compared or combined (‘rolled up’), because the relationships between 

uncertain variables and functions would not be preserved.  In large firms 

especially, where different business units must take into account common 

uncertainties, a better approach is needed. 

Certified Distributions and Stochastic Libraries 

A Certified Distribution is a custom probability distribution, created and/or 

reviewed by an expert, that is made available to end user modelers as a 

‘prepackaged unit.’  These modelers need only the name of the Certified 

Distribution; they need not choose, or even be aware of, its analytic form, 

parameters or correlations. 

An analytic Certified Distribution can be given its own random number seed, 

which overrides a user-specified seed for the model.  This ensures that end user 

modelers employing the Certified Distribution will use the same samples 

(sequence of Monte Carlo trials) each time they run a simulation – as long as 

they use the same simulation software package and version.  

Given the capacity of modern computers and networks, an even better idea is to 

create and distribute Certified Distributions in the form of Stochastic Libraries.  

Such libraries contain pre-generated trial data for a group of (potentially 

statistically dependent) distributions.  The sequence of trials is predetermined, so 

that if two or more end users develop and run simulation models using the same 

Stochastic Library, their model results can be compared and combined, on a 

trial-by-trial basis if necessary. 

Analytic Solver Desktop supports the use of both analytic distributions and 

Stochastic Libraries as Certified Distributions.  But since they contain pre-

generated trial data, the use of Stochastic Libraries can guarantee that models 

will be run with exactly the trial data intended, regardless of the software (or 

version thereof) installed on end user modelers’ PCs – as long as it accepts 

Stochastic Libraries.  This functionality is not currently supported in Analytic 

Solver Cloud.   

Publishing and Using Certified Distributions 

Certified Distributions can be prepared and tested using a variety of tools.  One 

of these tools is Analytic Solver Desktop itself, as illustrated below.  When 

creating a Stochastic Library, any good Monte Carlo simulation software 

package can be used, inside or outside of Excel, as long as it offers a way to 

save all the Monte Carlo trials.  Once prepared, Certified Distributions should be 

approved and ‘published’ in a form where they can be made available to end 

user modelers. 

Analytic Solver Simulation provides a property function PsiCertify() that you 

can use to name and “certify” a distribution as ready for publication.  It also 

provides a distribution function PsiCertified() that end user modelers can use to 

access the Certified Distribution using only its name. 

Certified Distributions can be physically distributed or made accessible in a 

variety of ways:  On CDs or DVDs, via a network file share, or via email or 
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Web download.  The data for Monte Carlo trials may be easily stored in a 

relational database or a multidimensional data warehouse. 

Analytic Solver Simulation, with its Interactive Simulation facilities, is the ideal 

‘client’ tool for end user modelers using Certified Distributions.  It provides an 

easy way to access Certified Distributions by name, using Microsoft Excel as a 

“universal data access client” to access distributions and Stochastic Libraries. 

Analytic Solver Simulation makes it easy for an expert or CPO to create an 

Excel workbook, separate from any end user’s simulation model workbook, 

where Certified Distributions are defined.  This may be a standard workbook 

or an Excel add-in workbook; the latter provides certain advantages, since it is 

normally hidden from display and loaded automatically when Excel starts. 

For example, it is straightforward to create an Excel add-in workbook that 

defines a Certified Distribution that draws its trial data from a Stochastic Library 

(see below) that is actually stored in a relational database or data warehouse.  

When the add-in workbook is (automatically) opened, either Excel data access 

functions or VBA code can be used to query the database for the trial data. 

Stochastic Libraries:  SIPs and SLURPs 
As described by Dr. Savage in OR/MS Today, the simplest element of a coherent 

Stochastic Library is a Stochastic Information Packet or SIP, which is just a list 

of trial values for a single uncertain variable.  An example might be 1,000 

sample values, in a specific sequence, for the future price of oil at some point or 

interval of time.  In a Monte Carlo simulation, trials will be drawn from the SIP 

in the order in which they were generated. 

If the SIPs for several different uncertain variables are generated as a group, in a 

manner that preserves the statistical dependence between them, they may be 

combined into a Stochastic Library Unit, Relationships Preserved, or SLURP.  A 

SLURP is a table of trial values, where each column represents a specific uncer-

tain variable, and each row represents a distinct trial.  The SLURP’s uncertain 

variables may be dependent in ways not measured by traditional correlation.  

But if a Monte Carlo simulation draws trials in the specific order given by the 

SLURP, this dependence will be reflected in the simulation model results. 

On an Excel spreadsheet, a SIP is naturally represented by a column of cell 

values, and a SLURP is most easily represented by a two-dimensional table of 

cell values.  As noted above, the data for this table of cell values may be easily 

drawn from a relational database or multidimensional data warehouse, or it may 

be created and maintained directly in Excel. 

Analytic Solver provides two PSI Distribution functions, PsiSip() and 

PsiSlurp(), that make it easy to define distributions using SIPs and SLURPs.  

PsiSip() takes one argument: a cell range (normally a column) containing the 

trial values for one uncertain variable.  PsiSlurp() takes two arguments: a two-

dimensional cell range containing the SLURP data, and a column index (starting 

from 1) for the uncertain variable whose trials should be returned by the 

PsiSlurp() function.  You’ll want to ensure that the number of rows in the first 

argument range is at least as large as the number of simulation trials to be run. 

PsiSip() and PsiSlurp(), like other PSI Distribution functions, can be used 

directly in simulation models to return sample values from a SIP or SLURP.  

But they are especially powerful when you name and publish a Certified 

Distribution based on them.  Doing this is as simple as including a PsiCertify() 
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function call as an argument to PsiSip() or PsiSlurp() – as described below in the 

section “Creating and Using Certified Distributions.”  

Creating Stochastic Libraries 

Of course, a Stochastic Library must first be created before it can be used.  In 

some cases, you may have a data source from which you can draw SLURP data 

directly.  For example, if you are working with demographic data such as age, 

family size, income, and taxes paid, you might be able to use a representative 

sample directly as a SLURP.  But in many cases, an expert (perhaps like you) 

will have to select appropriate analytic probability distributions and their 

parameters, determine whether and how they should be correlated, and then 

generate the trial data through a Monte Carlo process. 

Analytic Solver is a great tool for creating Stochastic Libraries, as well as using 

them.  It supports a wide range of analytic distributions, shifting and truncation 

of distributions, and rank order correlation of different distributions.  When you 

run a simulation, the trial data is generated, and with the PsiData() function, you 

can easily save the trial data in a column on the spreadsheet – this will create a 

SIP.  Several PsiData() functions in adjacent spreadsheet columns will create a 

SLURP.  To see an example, open the simulation example workbook Creating 

aSlurp(Sim).xls (normally installed into C:\Program Files\Frontline 

Systems\Analytic Solver Platform\Examples), pictured below. 

 

In this workbook, we generate SLURP data for the BusinessPlanPsi.xls model 

(also included as an example workbook).  This model has three uncertain 

variables:  Sales in units, Price per unit, and Unit cost.  In cells E14 and E15 we 

have PsiUniform() and PsiTriangular() functions, and in cells H15, I15 and 

J15 we generate trial data as we did in the BusinessPlanPsi.xls model.  For 

example, H15 contains the formula =IF(E14>0.5,100000,50000). 



Frontline Solvers 2021 User Guide Page 569 

In the cell range B18:B1017, we’ve array-entered the formula {=PsiData(H15)}.  

This will cause 1,000 trial values for H15 – a SIP for Sales in units – to be 

inserted in this cell range, each time a simulation is performed.  Similarly, 

C18:C1017 contains {=PsiData(I15)}, and D18:D1017 contains 

{=PsiData(J15)}.   

To create and save the SLURP, simply run a simulation, by pressing the 

Simulate button on the Analytic Solver ribbon.  The SLURP data will appear 

starting at cells B18, C18 and D18.  Also note that cell range B18:B1017 has the 

defined name ‘Sales’, B18:B1017 is named ‘Price’, and C18:C1017 is named 

‘UnitCost’.  BusinessPlanSLURP.xls should then be saved.  We’ve generated 

1,000 trials for each uncertain variable, enough to match the number of trials in 

our simulation. 

Then select cells B18:D1017, press CTRL + C to copy, then select cell H18 and 

press CTRL + V to paste the contents of cells B18:D1017 to the cell range 

H18:J1017. 

Using the DIST Feature 

Another way to use historical data is to use the DIST feature.  This tool allows 

you to encode your specific historical data as a distribution and then use the 

PsiSip function to sample that data during the simulation trials. 

1. Select your data just as you did for the Fit process above. 

 

 

2. Click on the Dist button on the Analytic Solver Desktop ribbon. 
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Or select Dist from the Analytic Solver Cloud Tools menu.  

 

3. You will see a “Generate DIST from Data” Dialog. Click “OK”. 

 

 

4. The next dialog will allow you to choose where to place the DIST after it is 

generated as well as add information to it such as a name, comments on 

where the data came from, as well as the type of encoding. 
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Tip” The default encoding choice is “Double”. If you have 0-10,000 data 

points you can use this setting. If you have 10,001 to 20,000 data points you 

should use “Single”. If you have more than 20,000 data points you should 

use the Fit feature. 

5. You can see the results after you hit “OK” below. 

 

 

 

Note: In this case we chose cell L4 to place the data. You will see the DIST 

in the formula bar (only part of the DIST is visible above). The more data 

points you have the longer the DIST string will be. 

Tip: The DIST you’ve created can now be copied and used in any 

spreadsheet. The data that created it no longer needs to be kept for it to 

work.  

6. Use the PsiSip function to add the DIST to your model. 

 

 

To use this DIST we enter “=PsiSip(L4)” in cell J7. Now our simulation 

model will use the DIST we just created. 

Tip: When you run a simulation using a DIST you won’t see the value in 

the cell containing it change as it will always show the first data point in 

your distribution and is working correctly. 

Creating and Using Certified Distributions 
As described above, Analytic Solver supports the use of both analytic 

distributions and Stochastic Libraries as Certified Distributions.  It provides a 

property function PsiCertify() that you can use to name and certify a 

distribution as ready for publication.  It also provides a distribution function 

PsiCertified() that end user modelers can use to access the Certified 

Distribution via its name.   
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Certified Distributions may be defined in an Excel workbook different from the 

end user modeler’s workbook.  This may be a standard workbook or an Excel 

add-in workbook; the latter provides certain advantages, since it is normally 

hidden from display and may be loaded automatically when Excel starts up. 

Note:  The workbook that defines Certified Distributions must be a ‘complete 

model’ on its own:  It must define at least one output by using a PSI Statistics 

function (PsiMean(), PsiOutput(), etc.) in a formula. 

Publishing Distributions with PsiCertify 

To name and certify an analytic distribution, you simply include the PsiCertify() 

property function in the formula that defines the distribution.  For example: 

=PsiNormal(0.1, 1, PsiTruncate(-2,2), PsiSeed(3), PsiCertify("MyDist",0.1)) 

will define a Certified Distribution named “MyDist” based on a Normal 

distribution with mean 0.1 and standard deviation 1, truncated so that its samples 

lie in the interval -2 to 2, and generated using a random number seed of 3 (this 

overrides any random seed specified in the end user’s model).  To use this 

distribution, the end user modeler enters =PsiCertified(“MyDist”) in his or her 

own workbook.  When no simulation has been performed, the cell containing the 

PsiCertified() call will display the default value 0.1. 

To name and certify a distribution based on trial data in a Stochastic Library, 

you also use the PsiCertify() property function in the formula defining the 

distribution.  For example: 

=PsiSip(A1:A1000, PsiCertify("MyDist",100)) 

will define a Certified Distribution named “MyDist” whose trials are drawn 

sequentially from the range A1:A1000, with default value 100 to be displayed 

when no simulation has been performed. 

When (as is often the case) the SIPs for several different uncertain variables are 

generated as a group, in a manner that preserves the statistical dependence 

between them, they should be combined into a SLURP, i.e. a table of trial values 

where each column represents an uncertain variable, and each row represents a 

Monte Carlo trial.  Analytic Solver allows you to place a character string name 

for each column (uncertain variable) in the first row of the SLURP data.  You 

can then name and certify the entire SLURP, for example: 

=PsiSlurp(A10:C1010, PsiCertify("MyPlan")) 

where range A10:C10 contains labels such as “Sales”, “Price” and “UnitCost”, 

and A11:C1010 contains the SLURP trial data. 

Now the end user modeler can write =PsiCertified(“MyPlan”, “Sales”) to 

define an uncertain variable in a model whose samples will be sales figures. 

The PsiCertify() function allows you to define more properties of the Certified 

Distribution than just its name.  It is good practice to document the name, 

description, author, history of creation, and other relevant information about a 

Certified Distribution using PsiCertify().  The full set of arguments is: 

=PsiCertify( name, default value, short description, full description, version, 

author, copyright, trademark, history) 

Using Distributions with PsiCertified 

To use a Certified Distribution, the end user modeler simply enters: 
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=PsiCertified(name)  or  =PsiCertified(slurp,sip) 

in his or her own workbook, where name or slurp and sip are quoted strings.  

The user needs no knowledge of the form or parameters of the distribution, or of 

the name or folder path of the workbook that defines the distribution. 

Analytic Solver scans the open workbooks (including regular workbooks and 

add-in workbooks) for distributions that include the PsiCertify() function, and 

adds the names found in PsiCertify() calls to the Certified dropdown gallery. 

Certified Distributions may also be used with Risk Solver Engine, when the 

Analytic Solver GUI is not available.  The PSI Interpreter matches calls to 

=PsiCertified() to the known Certified Distributions.  If a named distribution is 

not found, the PsiCertified() call will return the error value #NAME? 

To see an example of publishing and using Certified Distributions, open the 

simulation example workbook BusinessForecastingCertified(Sim).xls 

(normally installed into C:\Program Files\Frontline Systems\Analytic Solver 

Platform\Examples), shown on the next page.  This example uses a regular 

workbook, rather than an add-in.  Look for "Creating and Using a Certified 

Distribution" in the Cloud app.  Click the Certified Distributions tab.   

 

 

 

This worksheet contains the function call 

=PsiSlurp(H17:J1017,PsiCertify(“ForecastDist”)) in cell D13.  This cell (D13) 

displays #VALUE! since there are labels rather than numbers in the first row of 

the SLURP range, but this doesn’t affect use of the Certified Distribution. 

To use the certified distribution, simply insert a function call 

=PsiCertified(“ForecastDist”) into the currently selected cell.  That’s all there is 

to it. 

To see how this set of Certified Distributions can be used, click the Forecast 

using Certified Dist tab, shown on the next page. 
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This model uses =PsiCertified (“ForecastDist”, “Sales Volume”) in cell D13, 

=PsiCertified (“ForecastDist”, “Sales Price”) in C14, and =PsiCertified 

(“ForecastDist”, “Unit Cost”) in C15.  It no longer requires an Excel ‘external 

reference’ to a specific folder path, workbook filename, or cell range.  In fact, 

there might not exist a single cell range containing fixed trial data – the trials 

might be loaded from an external database, or generated dynamically from one 

or more analytic distributions – as illustrated below. 

Packaging Analytic Distributions 

As described above, you can use PsiCertify() to name and publish an analytic 

distribution, with a specific form and parameters and a pre-specified random 

number seed, as a Certified Distribution.  Further, you can “package” several 

analytic distributions that are correlated through a rank correlation matrix in the 

form of Certified Distributions.  You can place these definitions in a standard 

workbook, or in an add-in workbook that is automatically loaded when Excel 

starts, hiding a good deal of complexity from end users who simply need to use 

these Certified Distributions. 
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Mastering Stochastic 
Optimization Concepts 

Introduction 
Analytic Solver offers you one unified framework for modeling and solving 

optimization problems, with or without uncertainty.  Models may include 

‘normal’ decision variables, constraints and an objective, plus uncertainties, 

recourse decision variables, chance constraints, and recourse constraints.  This 

chapter seeks to explain this framework, starting from the basics of Solver 

models.  It assumes only a limited knowledge of optimization – but if you’ve 

first read the chapter “Mastering Conventional Optimization Concepts,” you’ll 

gain a much deeper understanding from reading this chapter. 

Our goal is to find a solution – values for the decision variables in our model – 

that satisfies the constraints and that maximizes or minimizes the objective.  In 

computing the objective and constraints, we use parameters of the model – for 

example quantities, distances, shipping costs, interest rates, etc. 

Certain and Uncertain Parameters 

In conventional optimization, all the parameters are assumed to be numbers 

known with certainty.  If estimation of a parameter involves uncertainty or 

noise, an average or other ‘nominal’ value is used.  This is a simplification and 

idealization of the real world situation:  In almost all business and engineering 

problems, there is at least some uncertainty in the values of the parameters. 

In some models, the uncertainty or variation in the parameters may be small 

enough to be ignored.  But in many models, it is large enough to be of concern.  

And in some models, the uncertainty is so large that it is a major feature of the 

problem, and much effort is (or should be) invested in modeling the uncertainty. 

In the discussion to follow, by uncertain parameter we mean a parameter of 

your optimization model, such as an objective coefficient or constraint right 

hand side, that is subject to uncertainty.  Such parameters might be computed 

from a “primitive uncertainty,” such as a future interest rate or rainfall amount; 

we will call this an uncertain variable, and in Analytic Solver, we’ll use the 

Uncertain Variable dialog to define and quantify this primitive uncertainty. 

Realizations of Uncertain Parameters 

Where a certain parameter has a single, known value, we can think of an 

uncertain parameter as having many possible values.  We call each such value a 

realization of the uncertainty.  Below, we’ve pictured one certain and three 

uncertain parameters. 
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An uncertain parameter might have an infinite number of possible realizations, 

but – as discussed near the end of this chapter – normally we can work with a 

finite sample of possible realizations.  We just don’t know which one of the 

sample values is the ‘true’ value, or closest to this true value. 

Decision-Dependent Uncertainties 

In many real-world problems, the uncertainties being modeled are independent 

of the decision variables.  For example, in a crop planning model where the 

acres to plant of different crops are decision variables, and the rainfall in a future 

period is an uncertainty, the uncertainty is almost surely independent of the 

decisions. 

In other real-world problems, the uncertain parameters being modeled are 

dependent on the decision variables – they change if the decisions change.  For 

example, in a market response model that includes competitor actions in a future 

period, where your product prices are decision variables, and your competitors’ 

product prices are uncertainties, it is quite likely that the uncertainties will 

depend on the decisions. 

In portfolio models where one is investing in publicly traded, large capitalization 

stocks, a decision to purchase some number of shares is unlikely to affect the 

uncertain future returns on those stocks. On the other hand, a large institution 

investing in thinly traded small-capitalization stocks may find that decisions to 

purchase a large number of shares may move the market price and impact the 

uncertain future returns.  So both types of problems arise in practice.  As we’ll 

see later, the presence of decision-dependent uncertainties has a huge impact 

on how, and even whether, our model can be solved. 

Resolving Uncertainty and Recourse Decisions 

In some real-world problems, we are uncertain about the value of a parameter 

today, and we will remain uncertain about its value in the future; we have to 

make decisions in the presence of this uncertainty.  This often arises in 

engineering design models, where there is uncertainty about the exact strength 

of a steel girder or the exact resistance or capacitance of an electronic 

component.  The uncertainty may be irreducible – perhaps inherent in nature – 

or it may be reducible through better data collection, measurement or calibration 

– but these steps may be impractical for us. 

In other real-world problems, we are uncertain about the value of a parameter 

today, but we will know its value with certainty at some point in the future.  

This often arises in marketing and finance models, where a competitor’s price or 

next year’s commodity prices or interest rates are uncertain today, but will 

become known at some future date.  We say that the uncertainty will be resolved 

at the future date; its many possible values will be reduced to a single value, and 

the uncertain parameter will become certain. 

If we are dealing with uncertainty that will not be resolved, we must find values 

of the decision variables that yield feasible (or nearly feasible) solutions for 

many possible realizations of the uncertainty.  On the other hand, if we are 

dealing with uncertainty that will be resolved at a future date, we can ask what 

decisions we must make ‘here and now,’ before the uncertainty becomes known, 

and what decisions we can make on a ‘wait and see’ basis, after the uncertainty 

is known.  This leads to the concept of recourse decisions, described below – 

and it has a huge impact on how our model should be formulated and solved. 
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Uncertainty and Conventional Optimization 

The impact of uncertainty is magnified by conventional optimization.  By its 

nature, optimization drives the decision variables to values that just satisfy 

certain constraints, while maximizing or minimizing the objective function.  In 

doing so, optimization exploits any ‘noise’ or error, as well as the ‘true value,’ 

captured in the fixed numbers used in the model for uncertain parameters. 

This effect is very evident in investment portfolio optimization, where the 

parameters of the model are estimated returns, variances, and covariances 

between securities.  Practitioners often describe portfolio allocations from an 

optimizer as “unrealistic,” and such allocations often do not perform well in 

practice. When the actual security returns, variances and covariances in future 

periods vary from the parameters used in the optimization, even by small 

amounts, the ‘optimized’ portfolio return often suffers by large amounts. 

As shown by Ben-Tal and Nemirovski in a 2000 study of the NETLIB linear 

programming problems, “In real-world applications of linear programming, one 

cannot ignore the possibility that a small uncertainty in the data can make the 

usual optimal solution completely meaningless from practical viewpoint.”  

Summarizing the effects of conventional investment portfolio optimization, 

Michaud wrote in a 1998 book “The result is that optimized portfolios are ‘error 

maximized’ and often have little, if any, investment value.”  Conventional 

optimization is not enough! 

Elements of Solver Models 
We’ll now describe all the elements of a Solver model with uncertainty.  Again 

our goal is to find a solution – values for the decision variables in our model – 

that satisfies the constraints and that maximizes or minimizes the objective.  In 

computing the objective and constraints, we may use many parameters – some 

of which are computed from primitive uncertain variables.  In Excel, the 

decision variables and parameters are represented by worksheet cells; the 

objective and constraints are computed by formulas in other worksheet cells. 

Uncertain Variables 

A certain parameter is easy to model, in a worksheet cell containing a number.  

A primitive uncertainty requires a way to specify the range and ‘shape’ of the 

values it can assume.  In Analytic Solver, we model primitive uncertainties as 

uncertain variables in worksheet cells that contain special add-in functions.  

For example: 

=PsiUniform(0,1) – a uniform distribution ranging from 0 to 1 

=PsiNormal(2,1.5) – a Normal distribution with mean 2, standard deviation 1.5 

=PsiBeta(A1,B1) – a Beta distribution with shape parameters A1 and B1 

=PsiSip(A1:A1000) – a ‘Stochastic Information Packet’ containing a range of 

user-supplied sample values, or realizations, for this uncertainty 

Any of the 40-odd PSI Distribution functions that you can use for Monte Carlo 

simulation may also be used as uncertain variables for stochastic optimization. 

You can think of the cell for an uncertain variable, containing a formula such as 

=PsiUniform(0,1), as holding an array of sample values, each one selected at 

random from the range 0 to 1 inclusive.  Each value is one possible realization 
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of the uncertainty.  Analytic Solver can generate such an array of sample values 

automatically, using Monte Carlo simulation ‘behind the scenes’. 

Looking ahead to the section “Functions of the Variables and Uncertainties,” 

note that any formula cell that depends on an uncertain variable cell must also 

compute an array of sample values.  Each value corresponds to one possible 

realization of all the uncertain variables on which the formula depends. 

In the example PsiBeta(A1,B1), it is important to know whether A1 or B1 is 

dependent on the decision variables.  A model that includes such a decision-

dependent uncertainty is much harder to solve, and will require the methods of 

simulation optimization.  Analytic Solver can automatically diagnose your 

model and determine whether any uncertain variables depend – possibly through 

a chain of formula cells – on the decision variables. 

Decision Variables 

Conventional optimization deals with only one type of decision variable, which 

represents a decision that must be made ‘here and now,’ irrespective of any 

uncertainty in the model.  We call this a normal or first-stage variable. 

If we are dealing with uncertainty that will be resolved in the future, then at 

some point the array of sample values for the uncertainty is effectively replaced 

by a single value, the realization of the uncertainty as it actually occurs. 

If the situation we are modeling allows us to make certain decisions after the 

uncertainty becomes known, on a ‘wait and see’ basis, we can model these 

decisions with recourse variables, also called second-stage variables.  (At the 

‘second stage,’ the uncertainty has become known.) 

Normal or First-Stage Variables 

A normal variable for a ‘here and now’ decision is represented by a worksheet 

cell – say A1 – containing a number; the Solver will replace this number with an 

optimal value, when the problem is solved.  (The term ‘normal’ here is unrelated 

to a Normal distribution, which is one way to define an uncertain variable.) 

Recourse or Second-Stage Variables 

A recourse variable for a ‘wait and see’ decision is also represented by a 

worksheet cell – say A2 – containing a number.  But at the time the optimization 

is performed, a single recourse variable effectively represents an array of 

solution values, one for each realization of the uncertainties in the model. 

Functions of the Variables and Uncertainties 

Any formula that participates (in the objective and constraints, see below) in 

your model will normally depend on the decision variables and the parameters. 

As a simple example, the objective of the Product Mix model EXAMPLE1in the 

Examples.xls workbook, is SUMPRODUCT(D17:F17,D9:F9) which can also 

be written as D17*D9 +  E17*E9 + F17*F9.  Here, D17:F17 are parameters (the 

selling prices of the three products), and D9:F9 are decision variables (the 

amounts of each product to build).  In this model, the parameters are assumed to 

be certain. 

An objective or constraint might be computed, from the parameters and the 

decision variables, through a chain of several formula cells.  For example, in the 

Gas Company Chance and Recourse models in StochasticExamples.xls, 
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illustrated in the chapter “Examples: Stochastic Optimization,” the constraint at 

cell C23 is D15+D18-C8 >= 0, where D15 and D18 are decision variables 

(amounts of gas to purchase), C8 = 100+80*D5 (estimated demand next year), 

and D5 is an uncertain variable in the model. 

Model Uncertainty and Optimization Methods 

Recall that an uncertain variable effectively holds an array of sample values. 

For example, D5 =PsiUniform(0,1) represents an array of realizations of the 

uncertainty, each one selected at random from the range 0 to 1.  If your objective 

or constraint (say C8 = 100+80*D5) depends on D5, it must also compute an 

array of sample values.  Each value corresponds to one possible realization of 

all the uncertainties on which the formula depends. 

Traditional Solver Engines cannot handle an objective or constraints that depend 

on uncertainty, and hence represent an array of sample values.  To solve a 

problem with such an objective and constraints, we must choose one of three 

possible approaches: 

1. Use the ‘Stochastic Decomposition Engine’ that can handle constraints 

that depend on uncertainty.  Note:  This engine is not supported in 

Analytic Solver Cloud.   

2. Transform a model whose objective and/or constraints depend on 

uncertainty into a ‘deterministic equivalent’ or ‘robust counterpart’ 

model that may be much larger, but whose objective and constraints no 

longer depend on uncertainty.  Then we can solve the transformed 

model using a traditional Solver Engine, and translate the results into a 

solution for the original model.  To be transformed successfully, the 

original model must have only uncertainties that are independent of the 

decisions, and have an objective and constraints that are linear (or 

certain other) functions of the decision variables. 

3. Ensure that all ‘top-level’ formula cells computing the objective and 

constraints represent only single values – statistical summaries of the 

arrays of sample values.  We can do this manually, with formulas in 

top-level cells that call PSI Statistics functions such as PsiMean(), 

PsiVariance() or PsiPercentile() – or Analytic Solver can do this 

automatically and implicitly, when we define our objective and 

constraints as described in the next two sections. This choice is flexible, 

but it requires that we use simulation optimization – the most general, 

but also the slowest and least scalable optimization method. 

In all these approaches, we must specify what it means to maximize or minimize 

an objective, or to satisfy a constraint that depends on uncertainty – implicitly or 

explicitly reducing an array of sample values to a single value.  The next two 

sections explain how we can do this. 

The Objective Function 

The quantity you want to maximize or minimize is called the objective function.  

In Excel, the objective is calculated by a formula cell – say A1 – listed in the 

Task Pane Model tab or the Solver Parameters dialog, in the outline list box 

under Objective.  This could be a calculated value for projected profits (to be 

maximized), or costs, risk, or error values (to be minimized). 

If the objective function depends on uncertainties, we must specify how we want 

to ‘optimize’ this function.  The most common practice is to maximize or 

minimize the expected value (informally, the mean value) of the objective, over 
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all realizations of the uncertainties.  In Analytic Solver, you do this by selecting 

the objective in the Task Pane Model tab, and in the lower Properties area, 

selecting Expected from the Type dropdown list in the Stochastic group. 

Instead of maximizing or minimizing the expected value of a function of the 

decision variables and uncertainties, you can maximize or minimize a measure 

of the uncertainty in a function.  Analytic Solver converts the objective to the 

form max t or min t, where t is a new variable, and the model includes a chance 

constraint A1 >= t or A1 <= t with the measure of uncertainty that you specify. 

Implicit and Explicit Forms for the Objective 

When you select Expected from the Type dropdown list in the Stochastic group, 

Analytic Solver treats the objective cell as implicitly containing E[objective], or 

using sample realizations of the uncertainty PsiMean(objective).  To make this 

explicit on the worksheet, you can direct Analytic Solver to automatically create 

a PsiObj() function call with an "Expected" argument – using either the “Use 

Psi Functions to Define Model” option, or the Save Model button.  You can also 

manually enter a PsiMean() function call in the objective cell.  Similar options 

apply to the constraints, as discussed below. 

Constraints:  Normal, Chance, Recourse 

Constraints are relations such as f(x1 , x2 …, ,xn) <= b, where x1 , x2 …, ,xn are 

decision variables.  In Excel, each xi corresponds to a cell, f(x1 , x2 …, ,xn)  is 

computed by a formula in another cell (say A1), the constant b is in another cell 

(say B1), and we enter A1 <= B1 via the Ribbon or Task Pane.  A constraint is 

satisfied when the relation it specifies is true within a small tolerance. 

When your model includes uncertainty, we must examine how each constraint 

depends on the uncertainties and the decision variables: 

• If a constraint depends only on certain parameters and normal decision 

variables, it is ‘deterministic’ and is handled in the usual way by the Solver.  

We call this a normal constraint. 

• If a constraint depends on uncertain variables and normal decision 

variables, we must specify what it means for the constraint to be satisfied.  

There are many possible realizations for the uncertain variables, but only 

single values for the decision variables.  The Solver must find values for the 

decision variables that cause the constraint to be satisfied for all, or perhaps 

most but not all, realizations of the uncertainties.  We call this a chance 

constraint.  For example, we might specify that the constraint must be 

satisfied 95% or 99% of the time; it can be violated 5% or 1% of the time.  

For 95%, we denote such a constraint as VaR 0.95 A1 <= B1.  But this form 

may not be your best choice – alternatives called CVaR and USet are 

discussed in the section “More on Chance Constraints.” 

• If a constraint depends on uncertain variables and recourse decision 

variables, then the Solver will find an array of values for each of the 

recourse variables, corresponding to the realizations of the uncertain 

variables.  Recourse decisions give the Solver flexibility to satisfy 

constraints that involve uncertainty; but in effect, each such constraint has 

many realizations – one for each realization of the uncertainties.  We call 

this a recourse constraint. 

• A constraint may also depend on recourse decision variables, and possibly 

normal decision variables, but not depend on any uncertain variables.  This 

is also a recourse constraint, with many realizations.  The Solver must find 
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values for the recourse variables that satisfy all the constraints where they 

appear – some with uncertainties, and some without. 

Implicit and Explicit Forms for Constraints 

When you select VaR from the dropdown list in the Constraint dialog and enter 

a Chance of 0.95, Analytic Solver treats the constraint cell as implicitly 

containing VaR 0.95 [constraint], or using sample realizations of the uncertainty 

PsiPercentile(constraint, 0.95) where constraint is the left hand side.  To make 

this explicit on the worksheet, you can direct Analytic Solver to automatically 

create a PsiCon() function call with a "VaR" argument – using either the “Use 

Psi Functions to Define Model” option, or the Save Model button.  You can also 

manually enter a PsiPercentile() function in the constraint left hand side cell.  

For more information on the PsiObj() and PsiCon() functions, see the chapter 

“Psi Function Reference” within Frontline Solvers Reference Guide. 

Multiple Uncertainties May Offset Each Other 

What happens when a constraint depends on several different uncertainties?  Is 

such a constraint harder or easier to satisfy than a constraint that depends on just 

one uncertainty? 

In the simplest case, suppose we have a linear constraint, with coefficients ai 

and decision variables xi: 

a1x1 + a2x2 + ... + anxn    b   

Suppose that each coefficient ai is uncertain (and independent of all the others), 

with sample values drawn randomly from PsiUniform (ai – 0.5, ai + 0.5). 

The average or nominal value of each coefficient is ai.  The ‘worst’ that can 

happen is that a sample is drawn where every coefficient is ai + 0.5 – this makes 

the left hand side (LHS) as large as possible, so it is very likely to violate the 

condition LHS    b.  But this case is very unlikely to occur. 

In most realizations of the uncertainties, some coefficients (randomly drawn 

from the range ai – 0.5 to ai + 0.5) will be less than ai, and some will be greater 

than ai.  The more uncertainties are involved, the greater the chance that some of 

them will draw samples less than ai. 

If we use a chance constraint to specify that the relation must be satisfied (say) 

95% or 99% of the time, we actually have a better chance of satisfying this 

constraint when it depends on many uncertainties than when it depends on just 

one – as long as the uncertainties are independent, or at least not highly corre-

lated with each other. 

Solutions:  Feasible, Optimal, Well-Hedged 

A solution (set of values for the normal and recourse variables) for which all of 

the constraints in the Solver model are satisfied is called a feasible solution.  For 

constraints that depend on uncertainties, this means that chance and recourse 

constraints meet their criteria for satisfaction over all the realizations of the 

uncertainties considered in the optimization. 

An optimal solution is a feasible solution where the objective function reaches 

its maximum (or minimum) value – for example, the most profit or the least 

cost.  When the objective function depends on uncertainties, this normally 

means that the expected value of the objective reaches a maximum (minimum) – 

but you can also use max t or min t with a chance constraint A1 >= t or A1 <= t, 

as described earlier. 
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The optimal solution to a problem with uncertainty (the ‘stochastic solution’) 

will never have an objective value that is better than one could obtain ‘with 

20/20 hindsight,’ by solving a conventional optimization problem where the 

uncertainties are known.  The difference between the objective value obtained 

‘in hindsight’ and the optimal value obtained ‘in foresight’ is called the expected 

value of perfect information (EVPI). 

The stochastic solution will often be (quite) different from the optimal solution 

to a problem where all uncertain variables are replaced with their nominal or 

average values.  The latter optimization will exploit the ‘point values’ of the 

parameters, with no consideration for their variability; this will often yield a 

better objective value for the nominal problem, but the solution may not be 

feasible, let alone optimal, for many different realizations of the uncertain 

variables.  Compared to the ‘nominal’ solution, the stochastic solution is more 

robust or ‘well-hedged’ against possible variations in the uncertain variables. 

Solving for Recourse Variables 

If we are dealing with uncertainty that will be resolved in the future, then at that 

future date, each uncertain variable will be replaced by a single value, the 

realization of the uncertainty that actually occurs.   In Analytic Solver, you can 

enter these single values for uncertain variables in the Lock value field in the 

Uncertain Variable dialog, then choose to solve for single values of the recourse 

variables, given known single values for both the normal variables (determined 

by an earlier optimization) and for the uncertainties. 

When Analytic Solver solves a problem by transforming the model, using the 

Deterministic Equivalent or the Robust Counterpart transformation, it computes 

an array of values for the recourse variables, one for each realization of the 

uncertainties considered during the optimization.  Using the left and right Trial # 

arrows on the Ribbon, you can display on the worksheet the different sample 

values of the uncertain variable cells, and the corresponding values of the 

recourse variable cells – the ‘wait and see’ decisions in many possible scenarios.  

Now, the actual values of the uncertainties, once they become known, might be 

different from any one of these scenarios – so it is still useful to solve for single 

values of the recourse variables as described above. 

More on Chance Constraints 

As explained above, if a constraint depends on uncertain variables and normal 

decision variables, we can seek solution values for the variables that cause the 

constraints to be satisfied for all, or perhaps most but not all, realizations of the 

uncertainties.  If we insist that the constraints are satisfied for all realizations, 

we may not be able to find values for the decision variables that meet this 

requirement – and if we do, we will very likely ‘pay for this’ via worse values 

for the objective function. 

Instead, we can seek solution values for the variables that cause the constraints 

to be satisfied for most, but not necessarily all, realizations of the uncertainties.  

We might specify that the constraint must be satisfied (it must not exceed a 

given limit) 95% or 99% of the time; it can be violated 5% or 1% of the time. 

This is depicted in the chart below, where 95% of the area under the curve is to 

the left of the bar (i.e. the constraint right hand side value), and 5% is to its right. 



Frontline Solvers 2021 User Guide Page 583 

 

This is one form of a chance constraint; the criterion that it must be satisfied for 

all realizations of the uncertainties up to a given percentile (say 95%) makes it a 

VaR (Value at Risk) constraint.  We write this constraint as VaR 0.95 A1 <= B1.  

Analytic Solver supports two other criteria besides VaR that may be better 

choices for many models. 

A chance constraint includes: 

• A left hand side that depends on decision variables and uncertainties. 

• A relation that must be either <= or >=.  (A chance constraint can’t be an 

equality.  Note however that a recourse constraint can be an equality.) 

• A right hand side that should be constant in the problem (if the RHS 

depends on decision variables or uncertainties, Analytic Solver converts 

LHS <= RHS into the form LHS – RHS <= 0). 

• A criterion that may be VaR (Value at Risk), CVaR (Conditional Value at 

Risk), or USet (Uncertainty Set).  These criteria are discussed below. 

• A measure that may be a percentile 0.01 – 0.99 for VaR or CVaR, or a 

‘budget of uncertainty’ (any positive value) for USet. 

Value at Risk Measure 

Chance constraints defined by a percentile or VaR (Value at Risk) measure have 

been used since the early 1960s.  Such constraints offer a good deal of modeling 

flexibility, and they are easy to understand in terms of the probability that the 

constraint will be satisfied.  Value at Risk is used in the banking and securities 

industries, and its use is mandated by the international Basel II accords.  But 

chance constraints in this form have several drawbacks: 

• A VaR constraint with probability 95% requires only that the constraint be 

satisfied – not violated – 95% of the time; it says nothing about the 

magnitude of the violation that may occur the other 5% of the time.  For 

example, a portfolio of securities that is VaR-constrained to lose no more 

than $100,000 95% of the time could still lose $1 million+ at other times. 

• As a measure of risk, the VaR criterion is not subadditive, a property 

expected of any ‘coherent risk measure.’  For example, if two portfolios A 

and B are VaR-constrained to not lose money 95% of the time, it is 

reasonable to expect that a combined portfolio A+B should have a 95% or 

better chance of not losing money – but this is not guaranteed by the two 

portfolio VaR constraints. 

• A VaR constraint is not necessarily convex; hence, using such a constraint 

in an otherwise convex model (for example, any linear programming or 

convex quadratic model) will radically affect its ‘solvability’ – it means that 
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a globally optimal solution cannot be guaranteed, and solution time may 

rise exponentially with model size. 

Further, when Analytic Solver uses robust optimization methods to 

automatically transform a model with VaR constraints into a larger but 

deterministic ‘robust counterpart’ model, it first approximates the non-convex 

VaR constraint with a convex CVaR constraint, and then transforms the CVaR 

constraint.  Since CVaR is always more conservative than VaR as a risk 

measure, the robust counterpart solution will ‘pay a price’ in conservativeness, 

with a worse objective value.  Users are often better off using CVaR directly. 

Note:  VaR 0.95 A1 <= B1 specifies that the 95th percentile of the realizations of 

A1 must be less than or equal to B1.  Since VaR only describes the left side of 

the graph, not the right or “tail”, VaR 0.95 A1 >= B1 specifies that the 5th 

percentile of the realizations of A1 must be less than or equal to B1.   

Conditional Value at Risk Measure 

To deal with the problems of Value at Risk cited above, an alternative risk 

measure called Conditional Value at Risk or CVaR (also called Expected Tail 

Loss or ETL) was developed in the late 1990s.  VaR 0.95 A1 <= B1 specifies that 

the 95th percentile of the realizations of A1 must be less than or equal to B1; 

realizations beyond the 95th percentile may be greater than B1 by any amount.  

In contrast, CVaR 0.95 A1 <= B1 specifies that the expected value of all the 

realizations of A1 up to the 95th percentile must be less than or equal to B1. 

Below is a chart that compares VaR and CVaR.  VaR is the value (42,900) that 

lies at the 95th percentile of the realizations of the constraint left hand side; 5% 

of the realizations are greater than 42,900 and lie in the graph to the right of this 

point.  CVaR (54,000) is the expected value (i.e. the mean or average value) of 

all the realizations that lie in the ‘tail’ to the right of the VaR (Note that, if 

CVaR 0.05 A1 <= B1 is satisfied for some B1, then VaR 0.05 A1 <= B1 is also 

(more than) satisfied. 

 

As a risk measure, Conditional Value at Risk has several advantages over VaR: 

• Unlike VaR, a CVaR constraint at 95% places a bound on the average 

magnitude of the violations that may occur  95% of the time. 

• CVaR is a ‘coherent risk measure.’  It is subadditive, so if two portfolios A 

and B are CVaR-constrained to not lose money 95% of the time, then a 

combined portfolio A+B has the same or better chance of not losing money. 

• A CVaR constraint is always convex.  Models consisting of all convex 

functions can be solved to global optimality, and solved to very large size 

using modern interior point optimization methods. 



Frontline Solvers 2021 User Guide Page 585 

Uncertainty Set Measure 

Analytic Solver supports a third criterion for uncertainty in a chance constraint, 

which reflects the approach taken in most of the literature on robust optimization 

methods.  This criterion, called USet (for uncertainty set), is applicable only to 

linear constraints, with coefficients ai and variables xi: 

a1x1 + a2x2 + ... + anxn    b 

where some or all of the coefficients ai may depend on the uncertainties.  It is 

useful to think of the vector [a1 a2 ... an] as having a nominal or expected value, 

and a variation from this value for each realization of the uncertainties. 

A constraint of the form USetΩ A1 <= B1, where a1x1 + a2x2 + ... + anxn is in A1, 

and b is in B1, specifies that A1 <= B1 must be satisfied for all variations from 

the nominal value of [a1 a2 ... an] that do not exceed a bound Ω, measured by a 

norm.  The bound Ω is often called the budget of uncertainty for the constraint.  

A very large Ω says that the constraint must be satisfied for practically all 

variations of the coefficients from nominal; a Ω of 0 effectively ignores uncer-

tainty, requiring only that A1 <= B1 for the nominal value of [a1 a2 ... an], and 

saying nothing about departures from this value. 

Analytic Solver allows you to choose among four different norms to measure 

variation from the nominal value:  The L1, L2, L-Infinity and D norms – as 

described in “Uncertainty Sets and Norms” later in this chapter. 

Diagnosing Your Model’s Use of Uncertainty 

When you create a large model, or modify a large conventional optimization 

model to include many uncertainties and many constraints, you may or may not 

realize exactly how the model depends on the uncertainties.  Just as you might 

accidentally use a formula that creates a nonlinear dependence on a decision 

variable, when you intended to create a linear programming model, you might 

introduce a dependence on uncertainty in a constraint that you intended to be 

deterministic.  Analytic Solver can diagnose the use of uncertainty in your 

model, comparing it to an ‘intended’ use of uncertainty that you specify in the 

Task Pane Platform tab Diagnosis group Intended Use of Uncertainty option.  

After clicking the Analyze button, you can select Reports – Optimization – 

Uncertainty for a report of exceptions to your intended use of uncertainty. 

Problems and Solution Methods 
Previous sections of this chapter have described how you can create models 

that involve uncertainty in Analytic Solver, using certain and uncertain 

parameters, normal and recourse decision variables, normal and chance 

constraints, and your objective function.  You create your models in the same 

way, regardless of the model transformation or solution method that will be used 

to solve the problem. 

As outlined in the Introduction chapter, Analytic Solver is designed to find good 

solutions – given enough time – to models involving uncertainty in their most 

general form.  But Analytic Solver is also designed to automatically recognize 

common special cases such as stochastic linear programming models, and find 

proven optimal solutions at much faster speeds.  As with conventional LPs, the 

modeling assumptions of stochastic LPs are somewhat restrictive, but in a wide 

range of real-world applications, these assumptions can be satisfied.  The great 
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advantage of a stochastic LP is its potential scalability to tens of thousands of 

variables and constraints or more. 

Before we can discuss classes of problems and how they are solved using 

Analytic Solver, we must explain how two key concepts – decision-dependent 

uncertainties and recourse decisions – affect the use of two key solution methods 

– stochastic programming and simulation optimization. 

Decision-Dependent Uncertainties 

As described in the Introduction section, in many real-world problems, the 

uncertain variables being modeled are independent of the decision variables.  In 

other real-world problems, the uncertainties are dependent on the decision 

variables – they change when the decision variables change. 

The methods of stochastic programming (SP) were created, more than fifty 

years ago, to deal with problems where the uncertainties are independent of the 

decisions.  Much more recently, methods of robust optimization (RO) were 

created, also to deal with problems where uncertainties are independent of the 

decisions.  Most methods in the SP and RO literature cannot be applied to 

problems where the uncertainties are dependent on decision variables.  But 

where they can be applied, these methods are scalable to large models, and they 

generally yield optimal solutions. 

The methods of simulation optimization were created, also more than fifty years 

ago, to deal with problems where the uncertainties may be dependent on the 

decisions.  This dependence makes the problem much harder to solve.  Where 

SP and RO methods often are based on linear programming and conic 

optimization, simulation optimization is usually based on methods such as 

genetic and evolutionary algorithms, and tabu and scatter search.  These 

methods are more flexible and general – but they require far more solution time, 

are generally not scalable to large models, and yield only ‘improved’ solutions, 

not optimal solutions. 

In Microsoft Excel, you can create models where the uncertainties are either 

independent of, or dependent on the (normal or ‘first stage’) decision variables.  

Analytic Solver can detect decision-dependent uncertainties and report this 

when you choose Optimize – Analyze Original Problem or click the Analyze 

button in the Task Pane: 

 

To solve SIM NonCvx (non-convex) problems using simulation optimization, 

you can use the built-in Evolutionary Solver (based on genetic algorithms) or the 

plug-in OptQuest Solver (which uses tabu and scatter search).  You can also use 

built-in or plug-in nonlinear Solver Engines, in conjunction with Analytic 

Solver’s multistart methods, to solve many such problems. 

Resolving Uncertainty and Recourse Decisions 

The methods of simulation optimization were developed to solve problems 

where the uncertainty will not be resolved over the horizon of interest.  Hence, 

these solution methods find optimal values only for normal or ‘here and now’ 

decision variables; virtually all simulation optimization methods in the literature 

have no concept of recourse decisions. 



Frontline Solvers 2021 User Guide Page 587 

Unfortunately, simulation optimization has often been misapplied to problems 

where the uncertainty will be resolved over the horizon of interest.  Users may 

believe that their simulation optimization model will find the best possible 

decision in the presence of uncertainty.  But this is very unlikely to be true, if 

it’s possible to make certain decisions on a ‘wait and see’ basis.  Recourse 

decisions create flexibility for the optimizer, making it easier to satisfy the 

constraints and attain a better objective. 

The methods of stochastic programming were developed to solve problems 

where the uncertainty will be resolved over the horizon of interest.  Recourse 

decisions – the ability to make certain decisions on a ‘wait and see’ basis – have 

been extensively studied in the SP literature, and many high-performance 

solution methods for two-stage SP problems with recourse have been developed. 

Classes of Problems Involving Uncertainty 
An optimization problem that includes uncertain variables is usually called a 

stochastic optimization or stochastic programming problem. 

Below, we’ll classify such problems based on the following factors: 

• How the objective and constraints depend on the decision variables 

• Whether the uncertain variables depend on the decision variables  

• Whether the problem includes recourse decisions (i.e. whether it is one-

stage with only normal variables, or two-stage with recourse variables) 

• Whether the problem includes chance constraints 

We’ll also briefly describe how the three solution methods currently supported 

by Analytic Solver – robust optimization, stochastic programming, and 

simulation optimization – can be applied to these problems. 

One-Stage Problems 

One-Stage Linear Programming Problems 

The simplest case is a one-stage stochastic linear programming problem: 

• The objective and constraints depend linearly on the decision variables. 

• The uncertain variables are independent of the decision variables. 

• The problem includes no recourse decisions. 

• The problem includes chance constraints to deal with the uncertainty. 

This kind of problem arises if you start with a conventional, deterministic linear 

programming model (where all coefficients are certain), you add uncertain 

variables using functions such as =PsiUniform(0,1) or =PsiNormal(2,1.5) in 

cells, and you add formulas to compute the objective or certain constraints based 

on these cells, so that the LP coefficients are now uncertain. 

Since no recourse decisions are available, the Solver must find values for the 

(normal or first-stage) decision variables that satisfy the constraints (normal and 

chance constraints) and maximize or minimize the objective. 

We could solve this problem with simulation optimization methods.  But since 

it is linear, this problem is especially well suited for robust optimization 

methods.  With RO methods we can solve much larger models, hundreds of 
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times faster than with simulation optimization.  In the Task Pane Platform tab, 

we set the Optimization Model group option Solve Uncertain Models to 

Stochastic Transformation, and we set the Transformation group option 

Stochastic Transformation to Robust Counterpart.  When we click Optimize, 

the transformed model is created and solved. 

One-Stage Quadratic Programming Problems 

A slightly more complex case is a one-stage stochastic problem with a quadratic 

objective and all linear constraints: 

• The objective is a deterministic, convex quadratic function of the decision 

variables – it doesn’t depend on the uncertainties. 

• The uncertain variables are independent of the decision variables. 

• The problem includes no recourse decisions. 

• The problem includes chance constraints to deal with the uncertainty. 

The situation here is basically the same as for one-stage stochastic linear 

programming problems.  We can apply simulation optimization methods, but 

we can also apply more scalable robust optimization methods, as long as the 

objective doesn’t depend on the uncertainties. 

One-Stage Nonlinear Optimization Problems 

The situation changes if we have a one-stage stochastic nonlinear problem: 

• The objective or the constraints are general nonlinear, convex or non-

convex functions of the decision variables. 

• The uncertain variables may be dependent on the decision variables. 

• The problem includes no recourse decisions. 

• The problem includes chance constraints to deal with the uncertainty. 

We cannot use Analytic Solver’s robust optimization methods or stochastic 

programming methods on problems with general nonlinear, possibly non-convex 

functions.  Our only option is to use simulation optimization; this is feasible 

since the problem does not include any recourse decisions.  Given that we are 

using simulation optimization, we can allow the uncertainties to be dependent on 

the decisions, although some speed gains are possible if they are not. 

Two-Stage Problems 

Two-Stage Linear Programming Problems 

A very common case is a two-stage stochastic linear programming problem: 

• The objective and constraints depend linearly on the decision variables. 

• The uncertain variables are independent of the decision variables. 

• The problem includes both normal decisions and recourse decisions. 

• The problem may or may not include chance constraints. 

The presence of recourse decisions in the problem implies that at least some 

(and usually all) of the uncertainty will be resolved over the horizon of interest.  

Hence the problem is called ‘two-stage,’ where the normal decisions are made at 

the first stage – before the uncertainties are resolved – and the recourse 
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decisions are made at the second stage – after they are resolved.  The Solver 

must find single values for the normal variables, and multiple values for the 

recourse variables (for each realization of the uncertainties) that satisfy the 

constraints and optimize the objective. 

We cannot solve this problem with conventional simulation optimization 

methods, because these methods have no concept of recourse decisions.  But 

since the problem is linear, we can use either stochastic programming or 

robust optimization methods – and with these methods we can solve much 

larger models, hundreds of times faster than with simulation optimization.  In 

the Task Pane Platform tab, we set the Optimization Model group option Solve 

Uncertain Models to Stochastic Transformation, and we set the Transformation 

group option Stochastic Transformation to either Deterministic Equivalent or 

Robust Counterpart.  When we click Optimize, the transformed model is created 

and solved. 

If we choose the ‘Determ Equivalent,’ we can place integer constraints on the 

normal and recourse variables (though this may make the model more difficult 

to solve).  But the model cannot include chance constraints, and the transformed 

model may become quite large (its size depends on the product of the number of 

recourse variables and constraints, and the number of simulation trials). 

If we choose the ‘Robust Counterpart’, the model can include chance 

constraints, and the transformed model will be significantly smaller and solve 

faster than if we choose ‘Determ Equivalent.’ But we cannot place integer 

constraints on the recourse variables, and the solution may be more conservative 

than with ‘Determ Equivalent.’ 

Two-Stage Quadratic Programming Problems 

A slightly more complex case than the one above is a two-stage stochastic 

problem with a quadratic objective and all linear constraints: 

• The objective is a deterministic, convex quadratic function of the decision 

variables – it doesn’t depend on the uncertainties or the recourse variables. 

• The uncertain variables are independent of the decision variables. 

• The problem includes both normal decisions and recourse decisions. 

• The problem includes no chance constraints. 

Again the presence of recourse decisions in the problem implies that at least 

some (and usually all) of the uncertainty will be resolved over the horizon of 

interest.  We cannot solve this problem with conventional simulation 

optimization methods, because these methods have no concept of recourse 

decisions.  But we can use stochastic programming methods – and these 

methods are far more scalable than simulation optimization methods would be.  

In the Task Pane Platform tab, we set the Optimization Model group option 

Solve Uncertain Models to Stochastic Transformation, and we set the 

Transformation group option Stochastic Transformation to either 

Deterministic Equivalent.  When we click Optimize, the transformed model is 

created and solved. 

Two-Stage Nonlinear Optimization Problems 

If we have a two-stage stochastic nonlinear problem: 

• The objective or the constraints are general nonlinear, convex or non-

convex functions of the decision variables. 



Frontline Solvers 2021 User Guide Page 590 

• The uncertain variables may be dependent on the decision variables. 

• The problem includes recourse decisions. 

• The problem may or may not include chance constraints. 

We cannot use Analytic Solver’s robust optimization methods or stochastic 

programming methods on problems with general nonlinear functions, and we 

cannot use conventional simulation optimization methods either, because these 

methods have no concept of recourse decisions.  But future Frontline Systems 

products may be able to solve such problems; contact us for more information. 

Advanced Topics 

Bounds, Discretization, and Correlation 

An uncertainty specified via a probability distribution such as PsiUniform(0,1) 

has finite bounds of 0 and 1, but it has a practically infinite set of possible values 

between 0 and 1; we can only consider a sample of the possible values during an 

optimization.  An uncertainty specified via PsiNormal(0,1) has infinite bounds, 

as well as an infinite set of possible values.  In practice, however, most of the 

probability mass of the Normal distribution lies within three standard deviations 

on either side of the mean, and a reasonable sample of values from the Uniform 

and Normal distributions can be used for computations. 

Analytic Solver uses Monte Carlo simulation to generate samples of 

uncertainties, based on the probability distributions specified by the user.  It uses 

the minimum and maximum values for each distribution obtained during the 

simulation as ‘effective’ lower and upper bounds, which are used in constructing 

the robust counterpart to an uncertain model. 

When Analytic Solver solves a stochastic LP (as explained above) by forming 

the ‘deterministic equivalent’ problem, the Monte Carlo trials are used as 

‘scenarios’ in constructing this problem; hence they serve as a discretization of 

any continuous probability distributions specified by the user. 

The impacts of uncertainties on each coefficient of the objective and the 

constraints may be correlated – either because multiple coefficients depend on 

the same primitive uncertainty, or because correlation was deliberately induced 

among several uncertain variables.  When Analytic Solver solves a stochastic LP 

by forming the ‘deterministic equivalent’ problem, the correlations are reflected 

in the Monte Carlo trials used to construct the problem.  When it solves a 

stochastic LP using robust optimization methods, the robust transformation takes 

into account the observed correlations in the sample. 

Uncertainty Sets and Norms 

As described in the earlier section “More on Chance Constraints,” if a chance 

constraint is linear in the decision variables, you can use the USet (uncertainty 

set) criterion, in lieu of the VaR or CVaR criterion.  The advantage of using this 

criterion is that the robust counterpart model more accurately reflects the degree 

to which you want the chance constraint to be satisfied, which can lead to less 

conservative solutions, with better objective values.  Consider a constraint: 

a1x1 + a2x2 + ... + anxn    b 
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where  =a1x1 + a2x2 + ... + anxn is in A1, b is in B, and some or all of the coeffi-

cients ai may depend on uncertain variables z1, z2, ...  It is useful to think of the 

vector [a1 a2 ... an] as having a nominal or expected value, and a variation from 

this value for each realization of the uncertain variables. 

A constraint of the form USetΩ A1 <= B1 specifies that A1 <= B1 must be 

satisfied for all variations from the nominal value of [a1 a2 ... an] that do not 

exceed a bound Ω, measured by a norm.  The uncertainty set includes all the 

points formed by adding a vector of allowed variations to the vector of nominal 

values; the bound Ω is often called the budget of uncertainty for the constraint. 

Analytic Solver allows you to choose among four different norms to measure 

variation from the nominal value:  The L1, L2, L Inf (Infinity) and D norms.  

(One choice of norm applies to all chance constraints.)  The graphs shown on 

the following pages may help you visualize the shape of the uncertainty set 

(based on two uncertain variables z1, z2) for each of the norms. 

The D norm represents the intersection of the L1 norm and the L-Inf norm; thus 

it can define a ‘tighter’ uncertainty set than either of these norms alone.  For the 

D norm, Ω can be interpreted as a bound on the number of coefficients [a1 a2 ... 

an] that depart from nominal values.  When the D norm is used, the robust 

counterpart of a stochastic LP problem is a (larger, conventional) LP problem; 

when the L2 norm is used, the robust counterpart is an SOCP problem. 

L1 Norm 
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L2 Norm 

 

L Inf Norm 
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D Norm 
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Best Practices for Building 
Large-Scale Models 

Introduction 
It’s a maxim that a successful Solver model will grow in size over time.  When 

the initial results from an optimization model demonstrate ways to achieve 

significant cost savings, improved schedules, higher quality or increased profits, 

management is naturally interested in applying these methods to bigger 

problems.  This might involve extending the model to include more plants, 

warehouses, assembly lines, or personnel; to bring in other divisions or 

geographic regions; or to cover more time periods, more detailed process steps, 

or more specific parts or products.  The result is an increase in the number of 

decision variables, constraints, and cells in your model. 

When your model grows in size, it becomes more challenging to design and 

maintain, and also more challenging to solve.  Good modeling practices – 

touched upon in the chapter “Examples: Conventional Optimization” – become 

far more important, so your model remains comprehensible to other Excel users, 

auditable for errors, and easy to modify.  Issues such as your model type (LP, 

QP, QCP, SOCP, NLP or NSP), sparsity, and scaling also become far more 

important, since they strongly influence the time it takes to solve your model, 

and the reliability of the solutions you obtain. 

This chapter can only briefly survey good modeling practices – entire books 

have been devoted to this subject (we will recommend some).  It focuses on 

steps you can take to obtain faster and more reliable solutions for large models 

using the Analytic Solver including: 

• Steps towards better performance that are easy to apply in most situations 

• Steps you can take – with more design and modeling effort – to improve the 

formulation of your model, by replacing non-smooth or nonlinear 

constraints with linear (or integer linear) constraints 

• Steps you can take to enable Analytic Solver to analyze your model more 

efficiently 

Designing Large Solver Models 
A large Solver model in Microsoft Excel is both a large spreadsheet workbook 

and a large optimization model.  If you plan to build such a model, you’ll be 

well advised to learn about good spreadsheet modeling practices, and about 

good optimization modeling techniques. 

We highly recommend the textbook Management Science: The Art of Modeling 

with Spreadsheets by Stephen G. Powell and Kenneth R. Baker, published by 

John Wiley & Sons, listed in the following chapter “References and Further 

Reading.”  Unlike other management science textbooks, this book teaches you 

“best practices” in modeling and spreadsheet engineering, as well as techniques 

of linear and nonlinear optimization using Excel.   
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Other books on good spreadsheet design are hard to find, but through resources 

like the Amazon.com Marketplace, you may be able to locate a copy of John 

Nevison’s book Microsoft Excel Spreadsheet Design (Prentice-Hall, 1990), or 

his earlier works 1-2-3 Spreadsheet Design (1989) or The Elements of 

Spreadsheet Style (1987), both of which are still useful in designing modern 

spreadsheets.  A relatively new (2003) book, Excel Best Practices for Business 

by Loren Abdulezer, includes chapters on spreadsheet construction techniques, 

“makeovers” of spreadsheets developed by others, and spreadsheet auditing. 

Training courses in Microsoft Excel often cover at least some elements of good 

spreadsheet design.  They are offered in many venues, from universities and 

community colleges to public seminars, in-house corporate training, and classes 

sponsored by computer dealers.  Check the course outline or syllabus to see if it 

features spreadsheet design and good modeling practices, and other topics most 

relevant to you. 

A readily available book on optimization modeling techniques is H. Paul 

William’s Model Building in Mathematical Programming, 4th Edition (John 

Wiley, 1999), listed at the end of the chapter “Introduction.” Focusing on 

modeling for linear and integer programming problems, it includes a treatment 

of large-scale model structure and decomposition methods that is hard to find 

elsewhere. 

Spreadsheet Modeling Hints 

Below is a brief set of suggestions for planning, designing and constructing 

large Solver models: 

Start with a Plan.  Plunging in and entering numbers and formulas immediately 

will quickly lead to problems when constructing a large spreadsheet.  Write 

down your objectives and sketch out a design before you begin working on the 

real spreadsheet. 

Build a Prototype.  Plan in advance to build a prototype, throw it away, and 

then build the real spreadsheet model.  What you learn from building and 

solving the prototype will probably save you time in the long run. 

Create a Table of Contents.  In the upper left corner of your first worksheet, 

include comments that point readers to the major areas or sections of the 

spreadsheet. 

Separate Data and Formulas.  Avoid using constants in formulas, unless they 

are intrinsic to the mathematical definition of the function you are using.  

Instead, place constants in cells, and refer to those cells in formulas.  Create 

separate areas on the spreadsheet for input data and for calculations, and identify 

these with distinct colors, borders or shading. 

Document Assumptions, Parameters and Methods.  As John Nevison 

suggested, seek to “surface and label every assumption” in your model.  Use 

labels or cell comments to document key formulas and complex calculations. 

Use defined names.  Use Excel’s Insert Name Define and Insert Name Create 

commands to assign meaningful names to individual cells and cell ranges.  This 

will help make your formulas clearer and more flexible. 

Use and Separate Two-Dimensional Tables.  Many elements of your model 

will lend themselves to a row-column table representation.  Create separate table 

areas, with distinct colors, borders and shading.  Collect non-table data (such as 

individual parameters) into a separate area. 
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Use Excel Tools to View and Audit Your Spreadsheet.  Use the slider to 

zoom in Excel 2013/2016 to get a high-level view of your spreadsheet’s 

structure.  Select ‘Show Formulas’ on the Formulas tab in Excel 2013/2016 to 

display formulas instead of values, and scan them for consistency.  Learn to use 

Excel’s auditing functions to trace precedents and dependents of your formulas. 

Use a Spreadsheet Auditing Tool.  Several auditing tools are available, 

including SpACE from the UK Customs and Excise Audit unit, OAK from 

Operis Ltd. in the UK, and the Spreadsheet Detective from Southern Cross 

Software in Australia. 

Optimization Modeling Hints 

Identify Your Model’s Index Sets.  Your decision variables, constraints, and 

many intermediate calculations will fall into groups that are indexed by elements 

such as products (A, B, …), regions (North, South, …), time periods (January, 

February, …) and similar factors.  Identify and write down these index sets and 

their members.  Then organize the columns and rows of your table areas using 

these index sets.  Use the top row and left column of each table area for index 

set member names as labels. 

Identify Your Decision Variables.  Once you’ve identified the quantities that 

will be decision variables, and how they are indexed (for example, units made 

by product A, B,… or shipments by region North, South,…), it’s usually easier 

to determine the constraints and their indexing. 

Determine the Data You’ll Need.  In building large optimization models, you 

will frequently spend a good part of your time figuring out what data you need, 

how you will get it (and keep it up to date), and how you’ll have to summarize 

or transform it for the purposes of the model.  This may involve getting help 

from your IT department or from other groups that create or maintain the data. 

Define Balance Constraints.  It is easy to overlook “balance” or “continuity” 

constraints that arise from the physical or logical structure of your model.  For 

example, in a multi-period inventory model, the ending inventory at time t must 

equal the beginning inventory at time t+1.  At each node of a network model 

(such as a warehouse), the beginning item quantity plus incoming deliveries 

minus outgoing shipments must equal the ending item quantity (“what goes in 

must come out”). 

Learn to Use Binary Integer Variables.  Many relationships that you might 

find difficult to model at all, and many where you might otherwise use IF, 

CHOOSE or other non-smooth or discontinuous functions, can be effectively 

modeled with binary integer variables.  The section below “Improving the 

Formulation of Your Model” describes many situations where you can use such 

variables to organize your model. 

Using Multiple Worksheets and Data Sources 

Large Solver models and their data are often organized into multiple worksheets 

of a single workbook.  Some large models reference data found in other 

workbooks.  Given the large number of data elements, the sources from which 

you are getting the data, and the procedures you use to keep the data up to date, 

multiple worksheets are often necessary or at least useful for organizing your 

data. 

Analytic Solver Pro, Risk/Premium Solver Pro and Premium Solver Pro require 

that cells containing decision variables and constraint left hand sides are on the 
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active worksheet.  But Analytic Solver allows you to define decision variables 

and constraint left hand sides on any worksheet of a workbook.  For this and 

many other reasons, you are well advised to upgrade to one of these products if 

your model grows in size.  With either product, the formulas in your objective 

and constraint cells can refer to cells on other worksheets, and those cells on 

other worksheets can contain formulas that depend, directly or indirectly, on 

decision variable cells.  For more information, see the Frontline Solvers 

Reference Guide. 

Several commentators on good spreadsheet modeling practice feel that models 

defined on a single worksheet are easier to understand and maintain.  In Excel 

2013 and beyond, a single worksheet can have up to 16,384 columns and 

1,048,576 rows.  So you may want to keep the core of your Solver model – the 

formulas (i) that are used to compute your objective and constraints and (ii) that 

depend on the decision variables – on a single worksheet.  If you find that you 

can better structure your model by placing decision variables and constraints on 

different worksheets, it’s highly recommended that you adopt a consistent 

scheme for choosing blocks of variable and constraint (and other formula) cells, 

and referencing these cells across worksheets. 

Some of the data you need may be available in relational databases, OLAP 

databases or data warehouses.  Microsoft Excel provides rich facilities, such as 

external data ranges and PivotTables, to bring such data into an Excel 

worksheet.  The raw data, even if partially summarized from database records or 

transactional data, often needs to be further transformed and summarized on 

your worksheet(s).  This is usually easy to do with Excel formulas.  But for 

clarity in your model, we recommend that you use separate worksheet areas, 

with distinct colors, borders or shading, for formulas that simply massage the 

data and do not participate in the solution process (i.e. do not depend on the 

variables).  The Solver can determine which formulas depend on the variables, 

but you or your colleagues may find it difficult to do so if the formulas are 

intermixed. 

Quick Steps Towards Better Performance 
The rest of this chapter focuses on steps you can take to obtain faster and more 

reliable solutions for large models from Analytic Solver.   This section describes 

steps that are easy to apply in most situations. 

For users of Analytic Solver Basic and Analytic Solver Upgrade, the best 

recommendation we can make to improve performance is to upgrade to Analytic 

Solver Comprehensive, Analytic Solver Optimization or Analytic Solver 

Simulation. This is more than just a “sales pitch” – every step you take costs 

something, either in terms of money or your effort.  For most professionals, the 

cost of upgrading will be repaid if it saves just a few hours of time.  And you 

can find out at no cost whether the upgrade will be worthwhile.   

For users of Analytic Solver Comprehensive or Analytic Solver Optimization,  

we highly recommend that you try solving your model with our field-installable 

Solver Engines – especially the Large-Scale SQP Solver, Knitro Solver, 

MOSEK Solver Engine, and XPRESS Solver Engine.  While the difference in 

cost may be greater, the same rationale applies:  If you can solve your model 

more quickly or more reliably by upgrading the software, this is almost always 

cheaper (and yields results sooner) than spending many hours or days of 

valuable professional time. 
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Ensure that You Have Enough Memory 

If the Solver seems unusually slow and you are using Analytic Solver Desktop, 

check whether the hard disk activity LED (present on most PCs) is flickering 

during the solution process.  If it is, memory demands may be causing Windows 

to swap data between main memory and disk, which greatly slows down the 

Solver.  If you’re investing money and, especially, hours of your time to develop 

an optimization model, consider that RAM is very cheap, and relatively easy to 

install.  We recommend at least 1 GB RAM if you are working with large 

Solver models – 2 GB or more is certainly desirable.  However, the best solution 

is simply to run your simulation model using Analytic Solver Cloud.  Since the 

Cloud app runs on Microsoft's Azure App Service, memory is not an issue in the 

cloud!     

Analyze Your Model for Scaling Problems 

Poorly scaled calculations are a frequent cause of long solution times and 

unreliable solution results, for both linear and nonlinear problems.  For a further 

discussion, see “Problems with Poorly Scaled Models” in the chapter “Getting 

Results: Conventional Optimization.” 

Add Constraints to Your Model 

Frequently, you can improve solution time by adding constraints to your model 

which may not be essential in defining the problem, but which do further 

constrain the search space that the Solver must explore.  It’s true that the Solver 

must do more work to handle the additional constraints, but this extra work 

usually has an excellent payoff if the constraints are “binding” (i.e. satisfied with 

equality) at some point during the solution process. 

The greatest payoff often comes from additional constraints that are simple 

bounds on the decision variables.  This is because (i) it’s usually easier for you 

to determine realistic lower and upper bounds on the variables than to formulate 

new general constraints, (ii) it’s easy to enter bounds on the variables via the 

Ribbon Constraints choice, and (iii) each of the Solver engines is able to handle 

bounds on the variables more efficiently than general constraints. 

Users often omit upper bounds on their decision variables, and sometimes omit 

lower bounds as well.  A first step towards improving performance is to enter 

the tightest bounds on the variables that you can, without eliminating possible 

good solutions. 

Since bounds on the variables are especially important for the performance of 

the Evolutionary Solver and for multistart methods for global optimization used 

with the nonlinear Solver engines, the Engine tab options for these Solver 

engines include an option Require Bounds on Variables, which is True by 

default.  When this box is checked, the Solver will stop with an error message if 

some variables do not have lower or upper bounds at the time you click Solve.  

If you are using the Interval Global Solver or the OptQuest Solver, bounds on all 

variables are required – the Solver will always stop with an error message if 

bounds on the variables are missing. 

Improving the Formulation of Your Model 
The type of problem you are trying to solve, and the solution method or Solver 

engine that must be used, has a major impact on solution time: 

• Linear programming problems can be solved most quickly. 
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• Quadratic programming problems take somewhat more time. 

• Nonlinear optimization problems take considerably more time. 

• Non-smooth problems take by far the greatest amount of time. 

This section discusses techniques you can use to replace nonlinear functions, 

and even non-smooth functions, with equivalent (or nearly equivalent) linear or 

quadratic functions, or with linear functions and binary integer variables.  As 

explained in the chapter “Mastering Conventional Optimization Concepts,” a 

problem with integer variables can take much longer to solve than a problem 

without such variables.  However, an integer linear problem formulated using 

the techniques described in this section may still take significantly less time to 

solve than the equivalent nonlinear or non-smooth problem.  Moreover, if your 

problem is integer linear, you can find a guaranteed optimal solution, or a 

solution that is guaranteed to be within at least x% of optimal, whereas with a 

nonlinear or non-smooth problem you will have no such guarantees.  As a rough 

guide, non-smooth models with more than 1,000 variables may be difficult or 

impossible to solve in a reasonable amount of time – but equivalent models 

formulated with linear functions and binary integer variables can often be solved 

efficiently with the LP/Quadratic Solver.  And with the Large-Scale LP/QP 

Solver, MOSEK Solver or XPRESS Solver, you can often solve linear integer 

problems of 10,000, 100,000 or more variables in a reasonable amount of time. 

A caveat:  If you currently have a model with many nonlinear or non-smooth 

functions, and you decide to implement some of these techniques to speed up 

solution of your model, bear in mind that you can use the LP/Quadratic Solver, 

Large-Scale LP/QP Solver, or XPRESS Solver only for models where all of the 

problem functions are linear (except for the objective function, which may be 

quadratic).  If you create a model with a mix of nonlinear or non-smooth 

functions and linear functions using binary integer variables, it may still take a 

long time to solve. 

Techniques Using Linear and Quadratic 
Functions 

Below are three common situations where you might at first expect that a 

nonlinear function is required to express the desired relationship – but with a 

simple transformation or approximation, you can use a linear or quadratic 

function instead.  

Ratio Constraints 

You may want to express a relationship that seems to require dividing one or 

more variables by other variables.  Suppose that you have a portfolio of 1-

month, 3-month and 6-month CDs, with the amounts of each CD in cells C1, D1 

and E1, and you wish to limit the average maturity to 3 months.  You might 

write a constraint such as: 

(1*C1 + 3*D1 + 6*E1) / (C1 + D1 + E1)  <=  3 

This constraint left hand side is a nonlinear function of the variables, so you 

would have to use the GRG Solver to find a solution.  However, the same 

constraint can be rewritten (multiplying both sides by the denominator, then 

collecting terms) as: 

(1*C1 + 3*D1 + 6*E1)  <=  3*(C1 + D1 + E1),  i.e.  -2*C1 + 3*E1 <= 0 
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This constraint is a linear function of the variables, so you would be able to use 

the much faster LP/Quadratic Solver to find a solution.  (This transformation 

above relies on the fact that C1 + D1 + E1 >= 0.) 

Mini-Max and Maxi-Min 

You may want to minimize the maximum of a group of cells such as C1:C5 (or 

maximize the minimum of a group of cells).  It is tempting to use an objective 

function such as MAX(C1:C5)– but as explained in the chapter “Mastering 

Conventional Optimization Concepts,” MAX (and MIN) are non-smooth 

functions, so you’d need to use at least the GRG Solver, and perhaps the 

Evolutionary Solver to find a solution.  Instead, you can introduce another 

variable D1, make D1 the objective to be minimized, and add the constraint: 

C1:C5 <= D1 

The effect of this constraint is to make D1 equal to the maximum of C1:C5 at 

the optimal solution.  And if the rest of your model is linear, you can use the 

much faster LP/Quadratic Solver to find a solution.  

Quadratic Approximations 

If you cannot represent the entire problem using linear functions of the 

variables, try to formulate it as a quadratic (QP) or quadratically constrained 

(QCP) problem, with a quadratic objective and/or constraints.  You may be able 

to use a local, quadratic approximation to a smooth nonlinear function f near a 

point a: 

f (x)    f (a) + f ´(a)(x - a) + ½ f ´´(a)(x - a)2 

where f ´(a) denotes the first derivative, and f ´´(a) denotes the second derivative 

of the function f at the point a.  Several Solver engines offer excellent 

performance on QP problems, and the SOCP Barrier Solver and the MOSEK 

Solver offer good to excellent performance on QCP problems. 

Even if you cannot eliminate nonlinear functions from your problem altogether, 

you can improve solution time by making an effort to ensure that as many 

variables as possible occur linearly in the objective and all of the constraints.  If 

you’re using the GRG Solver, you can set its Engine tab option Recognize 

Linear Variables to True, to save time during the solution process.  And the 

Large-Scale GRG Solver and Large-Scale SQP Solver engines also recognize 

both linearly occurring variables and linear constraints automatically, for still 

faster solutions.  The Large-Scale SQP Solver is particularly effective when 

used with Analytic Solver Comprehensive or Analytic Solver Optimization 

because it uses the Interpreter’s Structure analysis to break down each function 

into linear and nonlinear terms, which it handles as efficiently as possible. 

You can use the Ribbon choice Optimize – Analyze Original Problem or the 

Task Pane Analyze button to easily determine the number of linear variables, 

functions, and occurrences of variables in functions, as illustrated in the chapter 

“Examples: Conventional Optimization.” 

Techniques Using Linear Functions and Binary 
Integer Variables 

Below are three common situations where you might at first expect that a non-

smooth function such as IF is required to express the desired relationship – but 

you can instead use a binary integer variable and one or two linear functions to 

define an equivalent relationship.  The techniques described here are similar to 
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those used when Analytic Solver automatically transforms your model, but you 

can apply these techniques yourself to handle situations where the automatic 

transformation is not available. 

Fixed-Charge Constraints 

You may have a quantity x in your model that must “jump” from zero to some 

(fixed or variable) non-zero value, under certain conditions.  For example, a 

machine on a production line may have a fixed setup time or cost if it is used at 

all, plus a time or cost per unit produced.  You can avoid creating a non-smooth 

function for x by introducing a binary integer variable y (which is 1 if x is used 

and 0 if it isn’t), and adding a constraint x <= My, where M is a constant that is 

larger than any possible value for x. 

For example, suppose you have a machine that has a setup time of 10 minutes, 

but once set up will process a widget every 30 seconds.  Let cell C1 hold the 

number of widgets you are producing on this machine, and use cell E1 for a 

binary integer variable y that is 1 if you produce any widgets on this machine.  

Then the total production time can be computed as =0.5*C1+10*E1.  Assuming 

that C1 can be at most 10,000, let M1 = 10000 and add a constraint: 

C1 <= M1*E1   (or C1 – M1*E1 <= 0) 

If variable C1 is nonnegative (C1 >= 0) and variable E1 is binary integer (E1 = 

binary), then C1 is forced to be 0 whenever E1 is 0, or equivalently E1 is forced 

to be 1 whenever C1 is greater than 0.  Since the production time calculation and 

the constraint are both linear functions, you can solve the problem with the 

LP/Quadratic Solver and the Branch & Bound method.  This is called a fixed-

charge constraint. 

You can sometimes use a semi-continuous variable to model this kind of 

situation, instead of a binary variable, continuous variable, and “Big M” 

constraint.  At the optimal solution, a semi-continuous variable must either be 

zero, or must lie within a specified continuous range.  This is usually even more 

efficient than using a fixed-charge constraint as outlined above. 

Either-Or Constraints 

Constraints in an optimization problem are implicitly connected by the logical 

operator AND – all of them must be satisfied.  Sometimes, however, your model 

may call for either one constraint (say f(x) <= F) or another constraint (say g(x) 

<= G) to be satisfied.  You might consider using the OR function in Excel, but 

as noted in the chapter “Mastering Conventional Optimization Concepts,” this 

function is non-smooth.  Instead, you can introduce a binary integer variable y 

and a constant M, where M is greater than any possible value for f(x) or g(x), and 

add the constraints f(x) – F <= My and g(x) – G <= M(1-y).  Now, when y=0, 

g(x) is unrestricted and f(x) <= F; when y=1, f(x) is unrestricted and g(x) <= G. 

For example, imagine you want to allocate your purchases among several 

suppliers in different geographic regions, each of whom has imposed certain 

conditions on their price bids.  Suppose that one supplier’s bid requires that you 

either purchase at least 400 units from their Chicago warehouse or else purchase 

at least 600 units from their Phoenix warehouse, in order to obtain their most 

favorable pricing.  Let cell C1 hold the number of units you would purchase 

from Chicago, and cell D1 hold the number of units you would purchase from 

Phoenix.  Assume that cell M1 contains 10,000 which is more than the 

maximum number of units you intend to purchase.  You can model the 

supplier’s either-or requirement with a binary integer variable in cell E1 and the 

following constraints: 
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400 – C1 <= M1*E1 

600 – D1 <= M1*(1-E1) 

Notice that we have reversed the sense of the constraint left hand sides to reflect 

the “at least” (>=) requirement.  If E1=0, then C1 (units purchased from 

Chicago) must be at least 400, and the second constraint has no effect.  If E1=1, 

then D1 (units purchased from Phoenix) must be at least 600, and the first 

constraint has no effect. 

IF Functions 

In the chapter “Mastering Conventional Optimization Concepts,” we used 

=IF(C1>10,D1,2*D1), where C1 depends on the decision variables, as an 

example of a non-smooth function:  Its value “jumps” from D1 to 2*D1 at 

C1=10.  If you use this IF function directly in your model, you’ll either have to 

try the Task Pane Platform tab Nonsmooth Model Transformation option, or 

solve the model with the Evolutionary Solver.  Instead, you can avoid the IF 

function and solve the problem with the nonlinear GRG Solver – or even the 

LP/Quadratic Solver – by introducing a binary integer variable (say E1) that is 1 

if the conditional argument of the IF is TRUE, and 0 otherwise.  Add the 

constraints: 

C1 – 10 <= M1*E1 

10 – C1 <= M1*(1–E1) 

When E1 is 0, the first constraint forces C1 <= 10, and the second constraint has 

no effect.  When E1 is 1, the first constraint has no effect, and the second 

constraint forces C1 >= 10.  (If C1=10 exactly, this formulation allows either 

E1=0 or E1=1, whichever one yields the better objective.)  The value of the IF 

function can then be calculated as D1*E1 + 2*D1*(1-E1), which simplifies to 

D1*(2-E1) in this example.  If D1 is constant in the problem, this is a linear 

function; if D1 depends linearly on the variables, it is a quadratic; otherwise, it is 

smooth nonlinear.  In all cases, the non-smooth behavior has been eliminated. 

Depending on how you use the result of the IF function in the rest of your 

model, you may be able to take this strategy further.  Suppose, for example, that 

if f(x) >= F then you want to impose the constraint g(x) <= G; if f(x) < F then 

you don’t need this constraint.  You can then use a binary variable y (cell E1 in 

the example above), and impose constraints like the pair above plus an 

additional constraint on g(x): 

f(x) – F <= My 

F – f(x) <= M(1-y) 

g(x) – G <= M(1-y) 

If y is 0, f(x) <= F is enforced, and the second and third constraints have no 

effect.  If y is 1, f(x) >= F and g(x) <= G are enforced, and the first constraint 

has no effect.  If f(x) and g(x) are linear functions of the variables, the 

constraints involving y remain linear, and the problem can be solved with 

Branch & Bound and the LP/Quadratic Solver. 

Using Piecewise-Linear Functions 

Many problems involve “stepped” price schedules or quantity discounts, where 

you might at first expect that a non-smooth function such as CHOOSE or 

LOOKUP is required to express the relationship.  You might be surprised to 

learn that you can instead use linear functions and binary integer variables to 

express the relationship. 
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For example, you might be purchasing parts from a vendor who offers discounts 

at various quantity levels.  The graph on the next page represents such a 

discount schedule, with three prices and three “breakpoints.”  You have a 

decision variable x representing the quantity to order. 

 

The three prices (slopes of the line segments) are c1, c2 and c3.  V1 represents a 

fixed initial cost; V2 and V3 are also constant in the problem and can be computed 

from: 

V2  = V1  +  c1*B1 - c2*B1 

V3  = V2  +  c2*B2 - c3*B2 

In the model, the variable x is replaced by three variables x1, x2 and x3, 

representing the quantity ordered or shipped at each possible price.  Also 

included are three 0-1 or binary integer variables y1, y2 and y3.  Since you want to 

minimize costs, the objective and constraints are: 

Minimize  V1*y1  +  V2*y2  +  V3*y3  +  c1*x1  +   c2*x2  +   c3*x3 

Subject to  x1    B1*y1,   x2    B2*y2,   x3    B3*y3 

If the cost curve is concave as shown above, this is sufficient; but if the function 

is non-concave (it may vary up and down), additional “fill constraints” are 

needed: 

y1  + y2  + y3    1 

x1    B1*y2 

x2    B2*y3 

This approach is called a “piecewise-linear” function.  It can be used in place of 

a CHOOSE or LOOKUP function, and it results in a linear integer model instead 

of a difficult-to-solve non-smooth model.  Piecewise-linear functions can also be 

used to approximate a smooth nonlinear function, by using line segments with 

slopes matching the gradient of the nonlinear function at various intermediate 

points. 

Organizing Your Model for Fast Solution 
This section describes ways you can organize your model so that Analytic 

Solver can analyze it more efficiently.  Most of this section is devoted to an in-

depth discussion of “fast problem setup” for linear and quadratic models 

(possibly with integer variables); it is not applicable to nonlinear and non-

smooth models.  Because the Polymorphic Spreadsheet Interpreter in Analytic 

Solver has largely superseded this form of fast problem setup, this section is 
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relevant primarily for very large LP models (100,000 variables or more), where 

memory required for the Interpreter may be greater than available RAM and 

cause swapping to disk. 

Fast Problem Setup 

If your model is linear or quadratic, you may find that the Solver spends most of 

its time with “Setting Up Problem...” on the Excel status bar, then speeds 

through the “Trial Solutions” very quickly.  The setup time is required to extract 

the LP coefficients of the problem functions by recalculating the worksheet.  

(The LP coefficients are the first partial derivatives of the problem functions 

with respect to the variables, and they are obtained by the method of finite 

differencing, which requires n + 1 recalculations if there are n decision 

variables.)    

Although the time taken to extract the LP coefficients was drastically decreased 

in V2017-R2, even more of this setup time can be avoided if you write the 

formulas for the objective function and all of the constraint left hand sides using 

the functions recognized for fast problem setup:  SUM, SUMPRODUCT, 

DOTPRODUCT, QUADPRODUCT and MMULT.  This may require some 

work on your part to revise a model you have already constructed, but you’ll be 

rewarded with a 5- to 100-fold speed improvement in setup time, compared to 

the time taken by the Excel Solver or the Excel Interpreter. 

You can always express a linear or quadratic programming problem using these 

functions for the objective and all of the constraints, although you may need to 

introduce new sets of cells to hold the calculated coefficients so that these cells 

can be referenced by one of the fast problem setup functions. 

The PSI Interpreter in Analytic Solver uses the techniques of automatic 

differentiation to obtain the LP coefficients faster and more accurately than they 

can be obtained via finite differencing.  Because the Interpreter handles almost 

every kind of Excel formula and built-in function, you don’t have to do the work 

of designing your model – or revising an existing model – to use only the small 

set of functions recognized for fast problem setup. 

Fast problem setup is still available in Analytic Solver as a specialized method 

of extracting the constant Jacobian matrix (the LP coefficients) of a linear or 

quadratic problem, and the constant Hessian matrix (the QP coefficients) of a 

quadratic objective function – but it is used only if you set the Task Pane 

Platform tab Optimization group Interpreter option to Excel Interpreter.  If 

your LP or QP model is very large, defining it in fast problem setup format may 

still save time compared to use of the PSI Interpreter – but the advantage is not 

nearly as great as the 5- to 100-fold speed improvement mentioned above. 

The following subsections describe the functions supported for fast problem 

setup, and the form of the function arguments that you must use to ensure that 

they are recognized for fast setup purposes.  

The SUM Function 

The simplest case of a function recognized for fast problem setup is a formula 

such as =SUM(C1:C10) where C1 through C10 are decision variables.  An 

example of the use of SUM to define constraints can be found in the “Shipping 

Routes” sheet in the SOLVSAMP.XLS workbook included with Microsoft 

Excel.  Note that a SUM of decision variables is a linear function where all of 

the coefficients are 1.  To be recognized in fast problem setup, your formula 

must consist only of =SUM(cells) (with no constants) where every cell 
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referenced is a decision variable.  You may use absolute or relative references or 

defined names in the arguments to SUM. 

The SUMPRODUCT Function 

The SUMPRODUCT function is documented in Microsoft Excel online Help.  It 

returns the sum of the products of corresponding elements in its two arguments, 

which is exactly the form of a linear function: 

a1x1 + a2x2 + ... + anxn 

SUMPRODUCT requires that its two arguments refer to the same number of 

cells in the same orientation (either a row, a column or a rectangular area of 

cells).  Only single selections, not multiple selections, are permitted in the 

arguments.  If SUMPRODUCT is used in an array formula (see below), it will 

return the same value in every resulting array element, which is usually not the 

result you want.  (The DOTPRODUCT function, described below, has more 

flexible arguments and is far more useful in array formulas.)  To be recognized 

in fast problem setup, your formula must consist only of =SUMPRODUCT(cell 

range, cell range) where one of the cell ranges consists entirely of decision 

variables, and the other cell range consists entirely of cells that are constant in 

the Solver problem.  You may list the arguments in either order, using absolute 

or relative references or defined names. 

Other Functions for Fast Problem Setup 

Use of the MMULT function is illustrated below under “Using Array 

Formulas.”  To be recognized in fast problem setup, your formula must follow 

the same rules as for SUMPRODUCT:  It must consist only of =MMULT(cell 

range, cell range) where one cell range specifies the decision variables, and the 

other cell range specifies the corresponding coefficients. 

The DOTPRODUCT and QUADPRODUCT functions are described in their 

own sections below.  To be recognized in fast problem setup, your usage of 

these two functions must follow the same rules as for SUMPRODUCT. 

To qualify as a quadratic programming (QP) problem – which can be solved 

efficiently by the LP/Quadratic Solver engine – only the objective function (not 

any of the constraints) may use QUADPRODUCT, or any other quadratic form. 

Using Array Formulas 

Optimization models in algebraic form can often be expressed more compactly 

using indexing and summation notation.  For example, the five constraints in 

EXAMPLE1 could be written as: 

 3 

 aij xj, i=1,...,5 
j=1 

The SUMPRODUCT function corresponds to the summation expression above 

for one constraint.  The entire set of five constraint formulas could be defined 

with the array form of the DOTPRODUCT function (described in detail later in 

this section).  In EXAMPLE1, you would select cells C11 to C15 and “array-

enter” the following formula: 

{=DOTPRODUCT(D9:F9,D11:F15)} 

The braces above are not typed, but they appear when you “array-enter” the 

formula by pressing CTRL-SHIFT-ENTER instead of just ENTER.  If you 
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aren’t familiar with array formulas in Microsoft Excel, you can read about them 

in Excel’s online Help.  They are one of the most useful features of Microsoft 

Excel. 

If your LP model is “dense” and regular in form rather than “sparse,” you may 

wish to consider use of Microsoft Excel’s matrix built-in functions, such as 

MMULT which (when array-entered into a group of cells) yields the matrix 

product of its two operands.  For example, the five constraints in EXAMPLE1 

(normally installed into C:\Program Files\Frontline Systems\Analytic Solver 

Platform\Examples\StandardExamples.xls could be written in vector-matrix 

form as: 

Ax <= b 

where A is the matrix of coefficients, x is the vector of decision variables and b 

is the vector of constraint right hand sides.  In the Microsoft Excel formula 

language, the left hand side of this expression could be written as: 

{=MMULT(_A,TRANSPOSE(_X))} 

(The TRANSPOSE function is needed only to “match up” the orientation of the 

matrix _A with the row vector _X.)  In worksheet EXAMPLE1, if you insert 

defined names _A for the coefficients D11:F15 and _X for the variables D9:F9, 

then select cells C11:C15 and array-enter the above formula, it will compute the 

values of all five constraints. 

The PSI Interpreter in Analytic Solver recognizes most kinds of array formulas 

supported by Microsoft Excel.  But (for rather technical reasons) the use of array 

formulas actually involves a speed disadvantage in the PSI Interpreter when the 

coefficients are extracted via automatic differentiation. 

If you’re using Analytic Solver, we recommend that you use array formulas 

where they make sense, and focus on making your model simple and easy to 

maintain.  In a large model, you’ll probably find that you want or need to use 

multiple tabular areas for the formulas that define your constraints, and it may 

be inconvenient or impractical to define entire constraint left hand sides with 

functions like MMULT and TRANSPOSE. 

Using the Add-in Functions 

Analytic Solver products define two special Excel functions:  DOTPRODUCT 

and QUADPRODUCT.  These functions behave just like Excel built-in 

functions:  You can use them in formulas in any spreadsheet (not only in Solver 

models).  When you use the Insert Function… menu option, these functions will 

appear in the “Select a Function” or “Paste Function” list (classified as Math & 

Trig functions), and you’ll be prompted with named edit fields for their 

arguments. 

In addition, DOTPRODUCT and QUADPRODUCT are recognized for 

purposes of fast problem setup as described earlier in this chapter.  They are also 

recognized by the PSI Interpreter. 

Using DOTPRODUCT 

DOTPRODUCT is a generalized version of the Excel function SUMPRODUCT, 

and it is very useful for defining the objective function and constraints of linear 

programming problems.  DOTPRODUCT is also recognized for fast problem 

setup as described above, provided that you follow the rules outlined earlier:  

Your formula must consist only of =DOTPRODUCT(cell reference, cell 

reference) where all of the cells in one of the cell references are decision 
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variables, and all of the cells in the other cell reference are constant in the Solver 

problem.  Each cell reference must be either an individual selection or a defined 

name, but the cell ranges specified by the two arguments need not have the same 

“shape” (row, column, or rectangular area).  

For use in Excel and for purposes of fast problem setup, DOTPRODUCT will 

accept defined names that specify multiple selections for either of its arguments.  

For example, if you had designed a model where the decision variables 

consisted of several rectangular cell selections, you could still calculate the 

objective function for your model with one call to DOTPRODUCT. 

DOTPRODUCT always processes its arguments in column, row, area order – in 

an individual selection it reads cells across columns, wrapping around to 

subsequent rows, and in a multiple selection it reads the individual cell 

selections in the order in which they are listed.  For example, the formula: 

=DOTPRODUCT(A1:C2,D1:D6) 

will calculate as =A1*D1+B1*D2+C1*D3+A2*D4+B2*D5+C2*D6. 

The Array Form of DOTPRODUCT 

If SUMPRODUCT is used in an array formula, it returns a scalar (single 

number) result, which is returned in every cell of the array.  However, if 

DOTPRODUCT is used (with the proper arguments) in an array formula, it 

returns an array result.  You can use this capability to calculate the left hand 

sides of several constraints with a single array formula.  In a sparse model where 

you’d like to use the built-in function MMULT to compute the constraint values, 

but the variables and constraints aren’t laid out in a single matrix, you can use 

the array form of DOTPRODUCT instead. 

Further, when you use the array form of DOTPRODUCT, Analytic Solver will 

recognize this form and use it to process many constraints at once in problem 

setup.  (The array form is recognized for fast problem setup, and it’s also 

recognized by the PSI Interpreter.)  If you can’t use the array form, even the 

simple form of DOTPRODUCT will save time in problem setup. 

DOTPRODUCT will return an array value when the number of cells in one of 

its arguments is an even multiple of the number of cells in its other argument.  

As an example, consider the calculation of parts used in the LP model 

EXAMPLE1.  The decision variables are in cells D9 to F9 (3 cells), and the 

coefficients of the constraint left hand sides – the number of parts used for each 

product – are in cells D11 to F15 (15= 3*5 cells).  We want to calculate the left 

hand sides of the constraints in cells C11 to C15.  To do this, we would first 

select the group of five cells C11:C15 with the mouse.  Then we would type: 

=DOTPRODUCT(D9:F9,D11:F15) 

completing the entry with CTRL+SHIFT+ENTER instead of just ENTER.  The 

formula will display as {=DOTPRODUCT(D9:F9,D11:F15)} – the braces are 

added by Microsoft Excel when the formula is array-entered.  With the cell 

values shown in EXAMPLE1 prior to solution (e.g. 100 for each of the decision 

variables), this array formula will calculate 200 in C11, 100 in C12, 500 in C13, 

200 in C14 and 400 in C15.  Hence, it will compute the same set of values as the 

array expression shown earlier: {=MMULT(_A, TRANSPOSE(_X))}. 

Whether it is used in the simple form or the array form, DOTPRODUCT always 

processes its arguments in column, row, area order.  In the array form, when the 

cells in the “shorter” argument have all been processed and cells remain to be 

processed in the “longer” argument, DOTPRODUCT “wraps around” to the 

beginning of the “shorter” argument.  In the example above, cell C11 calculates 
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the value =D9*D11+E9*E11+F9*F11; cell C12 computes 

=D9*D12+E9*E12+F9*F12; and so on.  Keep this rule in mind when you use 

the array form of DOTPRODUCT, and keep your spreadsheet layouts as simple 

as possible! 

Using QUADPRODUCT 

The QUADPRODUCT function can be used to define the objective for 

quadratic programming problems in a single function call, as required for fast 

problem setup. 

As explained in “Quadratic Functions” in the chapter “Mastering Conventional 

Optimization Concepts,” a quadratic function is a sum of terms, where each term 

is a (positive or negative) constant (called a coefficient) multiplied by a single 

variable or the product of two variables.  This means that in order to represent 

the most general quadratic function, we might have a coefficient for each 

instance of a single variable, and a coefficient for each possible pair of two 

variables.  The QUADPRODUCT function is designed to supply coefficients for 

each single variable and each pair of variables, in a manner similar to 

SUMPRODUCT and DOTPRODUCT. 

You supply the arguments of QUADPRODUCT as shown below: 

=QUADPRODUCT(variable cells, single coefficients, pair coefficients) 

The first argument must consist entirely of decision variable cells.  The second 

and third arguments must consist entirely of cells whose values are constant in 

the optimization problem; if these cells contain formulas, those formulas must 

not refer to any of the decision variables.  The second argument supplies the 

coefficients to be multiplied by each single variable in the first argument, using 

an element-by-element correspondence.  The third argument supplies the 

coefficients to be multiplied by each pair of variables drawn from the first 

argument.  Hence, if there are n cells in the first argument, there must be n2 cells 

in the third argument.  If the variables are represented by x1,x2,...,xn, the single 

coefficients by a1,a2,...,an, and the pair coefficients by c1,c2,...,cN where N = n2, 

QUADPRODUCT computes the function: 

 n  n  n 

  cn(i-1)+j xi xj  +  aj xj 
i=1 j=1 j=1 

The pairs are enumerated starting with the first cell paired with itself, then the 

first cell paired with the second cell, and so on.  For example, if the first 

argument consisted of the cells A1:A3, there should be nine cells in the third 

argument, and the values in those cells will be multiplied by the following pairs 

in order:  A1*A1, A1*A2, A1*A3, A2*A1, A2*A2, A2*A3, A3*A1, A3*A2, 

and A3*A3.  The value returned by QUADPRODUCT is the sum of all of the 

coefficients multiplied by their corresponding single variables or pairs of 

variables. 

Multiple selections can be used for each argument of QUADPRODUCT, subject 

to the same considerations outlined above for DOTPRODUCT:  You can use the 

general syntax for multiple selections in Microsoft Excel, but defined names are 

needed for purposes of fast problem setup, and multiple selections are not 

accepted by the PSI Interpreter. 

A common application of quadratic programming is to find an “efficient 

portfolio” of securities – often called portfolio optimization.  Worksheet 

EXAMPLE4 in the StandardExamples.xls workbook, used in the chapter 

“Examples: Conventional Optimization,” illustrates portfolio optimization using 
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the Markowitz method.  This model uses the QUADPRODUCT function to 

compute the variance of a portfolio of five securities, and uses this quantity as 

the objective to be minimized, subject to a constraint that gives a lower limit on 

the portfolio return.  Because the objective is a quadratic function, and the 

constraints (including the bound on return) are all linear functions, this Solver 

model is a quadratic programming (QP) problem which can be handled by the 

LP/Quadratic Solver in Analytic Solver Comprehensive and Analytic Solver 

Optimization. 
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References and Further Reading 

Introduction 
Although this Guide provides many valuable hints for making effective use of 

Analytic Solver, it does not attempt to teach you everything about optimization, 

Monte Carlo simulation, and stochastic optimization.  We strongly recommend 

that you consult one of the books cited below, or discuss your problem with a 

knowledgeable consultant at Frontline Systems, at a nearby university, or at a 

firm specializing in optimization and simulation methods.  There’s a vast 

literature on problems of various types and for various industries and business 

situations that have been solved successfully with the methods available in the 

Solver.  Don’t reinvent the wheel – find out how others have solved problems 

similar to yours! 

You may also want to attend a training seminar on risk analysis and 

simulation, optimization, and other advanced techniques in Excel, presented by 

Frontline Systems instructors or consultants who work closely with us.  For 

current information on training seminars, visit www.solver.com or contact us at 

info@solver.com. 

Textbooks Using Analytic Solver  

Management Science: The Art of Modeling with Spreadsheets, 4th  Edition by 

Stephen G. Powell and Kenneth R. Baker, published by John Wiley & Sons, 

ISBN 978-1118582695. 

Management Science, written by faculty members at Dartmouth’s Tuck School 

of Business, helps business professionals gain the essential skills needed to 

develop real expertise in business modeling.  The 4th Edition uses Analytic 

Solver Platform throughout the text, and describes how to use most of its 

features. Overall, this book teaches you "best practices" in modeling and 

spreadsheet engineering, methods for data visualization, analysis and data 

mining, and techniques of linear and nonlinear optimization, Monte Carlo 

simulation, and stochastic optimization using Excel. Additional open-ended case 

studies that are less structured are included, along with new exercises. 

 

Spreadsheet Modeling and Decision Analysis:  A Practical Introduction to 

Management Science, 7th Edition by Cliff T. Ragsdale, published by Cengage 

Publishing, ISBN 978-1285418681. 

Cliff Ragsdale's book was first to base all of its optimization examples on the 

Microsoft Excel Solver, and it has become the best-selling MBA textbook for 

management science. You'll find a discussion of linear, nonlinear and integer 

programming; an explanation of sensitivity analysis and how to use the Solver's 

reports; topics like goal programming and multiobjective optimization; and 

additional coverage of regression, time series analysis, queuing, project 

management, decision analysis, and other topics. The 7th Edition uses Analytic 

Solver Platform for its examples. 
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Essentials of Business Analytics,  1st Edition by Jeffrey D. Camm, James J. 

Cochran, Michael J. Fry, Jeffrey W. Ohlmann  and David R. Anderson, 

published by Cengage Publishing, ISBN 978-1285187273. 

This book provides coverage over the full range of descriptive analytics 

(classical statistics), predictive analytics (data mining), and prescriptive 

analytics (optimization and simulation), integrating several important analytics 

topics not covered by any other single book. It includes step-by-step instructions 

to help students learn how to use Excel and Analytic Solver Platform.  Practical, 

relevant problems at a variety of difficulty levels help students learn the 

material. Applications are drawn from all functional business areas: finance, 

marketing, operations, etc. Data sets are available for most exercises and cases. 

 

Business Analytics,  1st Edition by James Evans, published by Pearson 

Publishing, ISBN 978-0132950619. 

This book provides readers with the fundamental concepts and tools needed to 

understand the emerging role of business analytics in organizations, how to 

apply basic business analytics tools in Excel, and how to communicate with 

analytics professionals to effectively use and interpret analytic models and 

results for making better business decisions. The 1st Edition (which appeared 

before Analytic Solver Platform was released) teaches both forecasting and data 

mining methods using XLMiner, and optimization, simulation and other topics 

using Risk Solver Platform. 

Textbooks Using Solver or Premium Solver 

VBA for Modelers - Developing Decision Support Systems Using Microsoft 

Excel, 4th Edition by S. Christian Albright, published by Cengage Publishing. 

This unique book will prove invaluable to anyone seeking to use VBA (Visual 

Basic Application Edition) to programmatically control Microsoft Excel and 

build custom applications.  It includes a basic introduction to VBA and the 

Excel object model, and 16 example applications developed in depth with VBA 

source code, many of them calling the Solver’s VBA functions.  The 

applications include blending, product mix, production scheduling and similar 

models, plus capital budgeting, stock trading, option pricing and portfolio 

optimization. 

Other Textbooks 

Model Building in Mathematical Programming, 5th Edition by H.P. Williams, 

published by John Wiley, ISBN 978-1118443330.  Though it doesn’t cover 

spreadsheet optimization, this book is still valuable for its explanation of model-

building approaches, especially if you are building large-scale optimization 

models. It provides an in-depth treatment of modeling for linear and integer 

programming problems.  It mentions nonlinear models only briefly, but it offers 

a unique treatment of large-scale model structure and decomposition methods. It 

also includes a complete discussion of 24 models drawn from various industries. 

Academic References 

The following academic journal articles, written by the developers of the Excel 

Solver, Premium Solver Pro, Analytic Solver Pro, Premium Solver Platform, 
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Risk Solver Platform and Analytic Solver Platform, describe many of the 

algorithms and technical methods used in these products.  The first article 

describes the design of the original Excel Solver.  You can download PDF 

versions of the first three articles at http://www.solver.com/academic.htm: 

D. Fylstra, L. Lasdon, J. Watson and A. Waren.  Design and Use of the 

Microsoft Excel Solver.  INFORMS Interfaces 28:5 (Sept-Oct 1998), pp. 29-55. 

I. Nenov and D. Fylstra.  Interval Methods for Accelerated Global Search in the 

Microsoft Excel Solver.  Reliable Computing 9 (2003): pp. 143–159. 

D. Fylstra, “Introducing Convex and Conic Optimization for the Quantitative 

Finance Professional,” Wilmott Magazine (March 2005), pp. 18-22. 

For a technical description of the nonlinear GRG solver included with the 

standard Microsoft Excel Solver and the Premium Solver, please consult the 

following: 

L.S. Lasdon, A. Waren, A. Jain and M. Ratner.  Design and Testing of a 

Generalized Reduced Gradient Code for Nonlinear Programming.  ACM 

Transactions on Mathematical Software 4:1 (1978), pp. 34-50. 

L.S. Lasdon and S. Smith.  Solving Sparse Nonlinear Programs Using GRG.  

INFORMS Journal on Computing 4:1 (1992), pp. 2-15. 


