FRONTLINE
 solvers
 Analytic Solver Optimization Analytic Solver Simulation User Guide

Copyright

Software copyright 1991-2021 by Frontline Systems, Inc.
User Guide copyright 2021 by Frontline Systems, Inc.
GRG/LSGRG Solver: Portions copyright 1989 by Optimal Methods, Inc. SOCP Barrier Solver: Portions copyright 2002 by Masakazu Muramatsu. LP/QP Solver: Portions copyright 2000-2010 by International Business Machines Corp. and others. Neither the Software nor this User Guide may be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without the express written consent of Frontline Systems, Inc., except as permitted by the Software License agreement below.

Trademarks

Frontline Solvers ${ }^{\circledR}$, XLMiner ${ }^{\circledR}$, Analytic Solver ${ }^{\circledR}$, Risk Solver ${ }^{\circledR}$, Premium Solver®, Solver SDK ${ }^{\circledR}$ and Rason ${ }^{\circledR}$ are trademarks of Frontline Systems, Inc. Windows and Excel are trademarks of Microsoft Corp. Gurobi is a trademark of Gurobi Optimization, Inc. Knitro is a trademark of Artelys. MOSEK is a trademark of MOSEK ApS. OptQuest is a trademark of OptTek Systems, Inc. Xpress ${ }^{\text {MP }}$ is a trademark of FICO, Inc. @RISK is a trademark of Palisade Corp.

Acknowledgements

Thanks to Dan Fylstra and the Frontline Systems development team for a 25 -year cumulative effort to build the best possible optimization and simulation software for Microsoft Excel. Thanks to Frontline's customers who have built many thousands of successful applications, and have given us many suggestions for improvements.
Earlier versions of Risk Solver Pro and Risk Solver Platform have benefited from reviews, critiques, and suggestions from several risk analysis experts:

- Sam Savage (Stanford Univ. and AnalyCorp Inc.) for Probability Management concepts including SIPs, SLURPs, DISTs, and Certified Distributions.
- Sam Sugiyama (EC Risk USA \& Europe LLC) for evaluation of advanced distributions, correlations, and alternate parameters for continuous distributions.
- Savvakis C. Savvides for global bounds, censor bounds, base case values, the Normal Skewed distribution and new risk measures.

How to Order

Contact Frontline Systems, Inc., P.O. Box 4288, Incline Village, NV 89450.
Tel (775) 831-0300 Fax (775) 831-0314 Email info@ solver.com Web http://www.solver.com

Contents

Start Here: V2021 Essentials 12
Getting the Most from This User Guide 12
License and Upgrade Options 12
Desktop and Cloud Versions 12
Installing the Software 12
Getting Help Quickly 12
Finding the Examples 13
Using Existing Models 13
Using Large-Scale Solver Engines 13
Getting Started with Tutorials 13
Getting and Interpreting Results 13
Mastering Optimization and Simulation Concepts 14
Using the Traditional Solver Parameters Dialog 14
Automating Your Model with VBA 14
Installation and Add-Ins 15
What You Need 15
Installing the Software 15
Installing Analytic Solver Cloud 15
Installing Analytic Solver Desktop 17
Logging in the First Time 21
Uninstalling the Software 21
Activating and Deactivating the Software 22
If Something Goes Wrong 23
Cloud Versions 24
Security and Privacy Considerations 24
Analytic Solver Cloud 24
Using Solver Server to Solve Models 25
Adding a Server 25
Solving Your Model on a Server. 29
Analytic Solver Overview 30
Analytic Solver Product Line 30
Desktop and Cloud versions 30
Analytic Solver Basic 31
Analytic Solver Upgrade 31
Analytic Solver Optimization 31
Analytic Solver Simulation 31
Analytic Solver Data Mining 32
Analytic Solver Comprehensive 32
Enhancements in Recent Years 32
2017: Power BI, Analytic Solver Basic, and More 33
2018: Tableau, Data Mining Workflows, and More 34
2019: Analytic Solver Cloud 35
Business Rules and DMN Decision Tables 36
2020: Simulation and Solver Engine Enhancements 36
Faster Solver Engines, Using Multiple Cores 36
Monte Carlo Simulation Enhancements 37
What's New in Analytic Solver V2020.5 37
Easily Deploy Your Model as a Cloud Service 37
More About RASON Decision Services 38
How You Can Use RASON 39
New Time Series Simulation Functions 40
New Optimization Result Functions 40
What's New in Analytic Solver V2021 41
Optimization and Resource Allocation 41
Simulation and Risk Analysis 42
Optimal Solutions for Models with Uncertainty 43
Automatic Model Transformation to RASON 43
Sensitivity Analysis and Model Parameters. 44
Multiple Optimizations and Simulations 44
Decision Trees on the Spreadsheet 45
Bringing Big Data into Excel using Apache Spark 45
Forecasting and Data Mining 45
Large-Scale Solver Engines 47
Automatic Mode and Solution Time. 47
Help, Guided Mode and Proactive Support 48
Help, Support, Licenses and Product Versions 49
Introduction 49
Working with Licenses in V2021 49
Licenses Tied to You, Not Your Computer 49
Analytic Solver Basic 50
Renamed Products Offering More 50
Getting Help 51
Accessing Resources 52
User Guides 52
Example Models 52
Knowledge Base 52
Operating Mode 53
Support Mode 53
Submit a Support Ticket 53
Solver Academy 54
Video Tutorials/Live Webinars 54
Learn more! 54
License Button 54
Product Selection Wizard 57
Using the Welcome Screen in Analytic Solver Desktop 59
License/Subscription in Analytic Solver Desktop 60
Context-Sensitive Help in Analytic Solver Desktop 61
Examples: Conventional Optimization 63
Introduction 63
A First Optimization Model 63
The Model in Algebraic and Spreadsheet Form 64
Defining and Solving the Optimization Model 65
Using the Classical Solver Parameters Dialog 69
Using Buttons on the Task Pane 70
Exporting Data to Microsoft's Power BI 72
Exporting Data to Tableau 75
Tablea Data Extract 76
Tableau Web Connector 77
Introducing the Standard Example Models 79
Opening the Examples 80
More Readable and Expandable Models 81
Models, Worksheets and Workbooks 81
Linear Programming Examples 82
Using the Output Tab and Creating Reports 82
A Model with No Feasible Solution 85
An 'Accidentally' Nonlinear Model 86
Nonlinear Optimization Examples 89
Portfolio Optimization: Quadratic Programming 89
Charts of the Objective and Constraints 90
A Model with IF Functions 94
A Model with Cone Constraints 96
Solving an Optimization Model using Excel Online or Google Sheets 99
Examples: Simulation and Risk Analysis 109
Introduction 109
A First Simulation Example 109
A Business Planning Example 110
A What-If Spreadsheet Model 111
Defining a Simulation Model 111
Selecting Uncertain Functions 116
Running a Simulation 117
Interactive Simulation in Desktop Solver 122
Viewing the Full Range of Profit Outcomes 123
Analyzing Factors Influencing Net Profit 125
Interactive Simulation with Charts and Graphs 127
Charts and Graphs for Presentations 128
Exporting Data to Microsoft's Power BI 129
Exporting Data to Tableau 132
Tableau Web Connector 134
An Airline Revenue Management Model 137
A Single Simulation 137
Multiple Parameterized Simulations 141
Simulation Optimization 144
Using a Compound Distribution 146
Discrete Distribution passed to $1^{\text {st }}$ Argument 148
Constant passed to $1^{\text {st }}$ Argument 150
Publishing a Simulation Model to Excel Online or Google Sheets 151
Examples: Stochastic Optimization 165
Introduction 165
A Project Selection Model 165
Solving with Simulation Optimization 167
Solving Automatically 168
A Model with Chance Constraints 170
Solving with Robust Optimization 172
A Model with Recourse Decisions 175
Solving with Robust Optimization 176
Deploying Your Model 180
Introduction 180
Create App Menu 180
Deployment Wizard 182
Create App Menu 183
Conversion Exceptions 183
Manage Models 184
Cloud Service: Rason or Excel 184
Cloud Service - Rason 184
Cloud Service - Excel 192
Conversion Exceptions 196
Problem Limits 196
Power BI: Managed Model or Embedded Model 197
Power BI Managed Model 197
PsiDataSrc() Arguments 198
Create App - Power BI - Embedded Model 204
Tableau: Managed Model or Embedded Model 209
Tableau: Managed Model 209
Tableau Embedded Model 214
SolverSDK: Rason or Excel Model 217
RASON Model 217
Excel Model 221
Quick Test: Web Page or Rason Model 223
Quick Test Web Page 223
Quick Test - Rason Model 226
Using Custom Functions 228
Introduction 228
LAMBDA Function Design 228
LAMBDA Example Models 229
Optimization Example 229
Simulation Example 230
Notes on the LAMBDA Function 231
Box Function Design 233
Execution of a Custom Function 235
Box Function Examples 236
Optimization Example 236
Simulation Example 240
Using Decision Tables 245
Introduction 245
Decision Table Structure 245
Decision Tables at Work 251
Optional Arguments 253
Additional Examples 254
Hit Policies 256
Merging Decision Table Results. 261
Using Cascading Decision Tables 263
Using Decision Tables in Optimization and Simulation 267
Optimization 267
Simulation 268
Using Decision Tables with Data Mining 269
Input Parameters 269
Loan Strategy 269
More Information on Decision Tables 273
Creating Power BI Custom Visuals 276
Installing Power BI 276
Creating a Custom Visual from an Optimization Model 277
PsiDataSrc() Arguments 285
Troop Rotation Optimization Example 297
Using Optimization Parameters in Power BI 304
Simulation Example Model 305
Advanced Settings 310
Creating a Custom Visual from a Large Model 312
Error Messages 312
Creating Custom Extensions in Tableau 313
Introduction 313
Installing Tableau 313
Solving Optimization Models in Tableau 313
PsiDataSrc() Arguments 315
Troop Rotation Optimization Example 333
Using Optimization Parameters in Tableau 341
Simulation Example Model 342
Error Messages 348
Examples: Parameters and Sensitivity Analysis 349
Introduction 349
Parameters and Results 349
Viewing Parameters in the Task Pane 349
Defining a Parameter 350
Automatic Parameter Identification 351
Defining Results 354
Sensitivity Analysis Reports and Charts 355
How Parameters are Varied. 355
Creating Sensitivity Reports 356
Creating Sensitivity Charts 357
Optimization and Simulation Reports and Charts 358
When Optimizations and Simulations are Run 358
Examples: Decision Trees and Discriminant Analysis 359
Introduction 359
Creating Decision Trees 360
Creating Trees in Analytic Solver Desktop 360
Create Trees in Analytic Solver Cloud 360
Creating and Editing Nodes 361
Creating and Editing Branches 362
Highlighting a Decision Strategy 364
Decision Trees in the Task Pane 365
Model Tab in Analytic Solver Desktop 365
Model Tab in Analytic Solver Cloud 366
Platform Tab 367
Multiple Discriminant Analysis 368
Discriminant Analysis Example 368
Getting Results: Optimization 372
Introduction 372
What Can Go Wrong, and What to Do About It 372
Review Messages in the Output Tab 373
Click the Solver Result Message for Help 374
Choose Available Optimization Reports 376
When Solving Takes a Long Time 376
When the Solution Seems Wrong 379
Problems with Poorly Scaled Models 379
The Integer Tolerance Option 380
When Things Go Right: Getting Further Results 381
Dual Values 381
Multiple Solutions 383
Multiple Parameterized Optimizations 384
Getting Results: Simulation 390
Introduction 390
What Can Go Wrong, and What to Do About It 390
Review Messages in the Output Tab 391
Click the Error Message for Help 391
Role of the Random Number Seed 392
When Simulation Takes a Long Time 393
When Simulation Results Seem Wrong 395
When Things Go Right: Getting Further Results 396
Using the Simulation Report 396
Using the Uncertain Function Dialog 397
Fitting a Distribution to Simulation Results 398
Fitting a Meta-Log Distribution 400
Charting Multiple Uncertain Functions 404
Multiple Parameterized Simulations 405
Time Series Forecasting 407
Time Series Simulation 411
Excel 2016 Forecast Functions 416
Getting Results: Stochastic Optimization 424
Introduction 424
What Can Go Wrong, and What to Do About It 424
Review Messages in the Output Tab 425
Click the Solver Result Message for Help 427
Choose Available Optimization Reports 428
When Solving Takes a Long Time 430
When the Solution Seems Wrong 431
When Things Go Right: Getting Further Results 432
Dimensional Modeling 434
Introduction 434
Dimensions and Cubes 435
An Example Dimensional Model 436
Using Dimensional Modeling in Optimization. 438
Defining a Dimension 438
Defining a Cube. 441
Cube Formulas: Operations and Dimensions 443
Defining Outputs in Dimensional Models 445
Building the Model 446
Solving the Model 447
Additional Functions 447
Parametric Dimensions with Optimization 449
Using Dimensional Modeling in Simulation 459
Defining a Dimension 459
Defining a Cube 459
Defining an Output 460
Parametric Dimensions 463
Using Dimensional Modeling with Pivot Tables 471
Using Sparse Cubes 474
Automating Optimization in VBA 480
Introduction 480
Why Use the Object-Oriented API? 480
Running Predefined Solver Models 481
Using the Macro Recorder 481
Adding a Reference in the VBA Editor 482
Analytic Solver Object Model 482
Using the VBA Object Browser 484
Programming the Object Model 484
Example VBA Code Using the Object Model 485
Evaluators Called During the Solution Process 485
Refinery.xls: Multiple Blocks of Variables and Functions 486
Adding New Variables and Constraints to a Model 487
CuttingStock.xls: Multiple Problems and Dynamically Generated Variables. 488
Automating Simulation in VBA 493
Introduction 493
Adding a Reference in the VBA Editor 493
Activating Interactive Simulation 493
Using VBA to Control Analytic Solver 494
Analytic Solver Object Model 495
Using the VBA Object Browser 495
Using Analytic Solver Objects 496
Using Variable and Function Objects 497
Controlling Simulation Parameters in VBA 498
Evaluators Called During the Simulation Process 499
Working with Trials and Simulations in VBA 500
Displaying Normal or Error Trials 500
Using Multiple Simulations 500
Creating Uncertain Variables and SLURPs in VBA 501
Mastering Conventional Optimization Concepts 503
Introduction 503
Elements of Solver Models 503
Decision Variables and Parameters 503
The Objective Function 504
Constraints 504
Solutions: Feasible, "Good" and Optimal 505
More About Constraints. 507
Functions of the Variables 510
Convex Functions 511
Linear Functions 512
Quadratic Functions 513
Nonlinear and Smooth Functions 514
Discontinuous and Non-Smooth Functions 515
Derivatives, Gradients, Jacobians, and Hessians 516
Optimization Problems and Solution Methods 518
Linear Programming 518
Quadratic Programming 519
Quadratically Constrained Programming 520
Second Order Cone Programming 520
Nonlinear Optimization 521
Global Optimization 522
Non-Smooth Optimization 524
Integer Programming 526
The Branch \& Bound Method 527
Cut Generation 527
The Alldifferent Constraint 528
Looking Ahead to Models with Uncertainty 528
Mastering Simulation and Risk Analysis Concepts 530
Introduction 530
What Happens During Monte Carlo Simulation 530
Random Number Generation and Sampling. 531
The PSI Interpreter and Simulation 533
Uncertain Functions, Statistics, and Risk Measures 534
Measures of Central Tendency 534
Measures of Variation 534
Risk Measures 535
Quantile Measures 535
Confidence Intervals 535
Uncertain Variables and Probability Distributions 536
Discrete Vs. Continuous Distributions 536
Bounded Vs. Unbounded Distributions 536
Analytic Vs. Custom Distributions 536
Creating your Own Distributions When Past Data is Available 537
When Past Data is Not Available 537
Using the Fit feature 538
More Hints and Warnings 541
Dependence and Correlation 542
Measuring Observed Correlation 542
Inducing Correlation Among Uncertain Variables 543
Modeling Correlation Using Copulas. 545
Archimedean Copulas 545
Elliptical Copulas 550
Correlation Fitting 552
Using the Correlations Dialog 556
Creating a Correlation Matrix 556
Managing Copulas 559
Removing a Correlation Matrix 561
Editing a Correlation Matrix 561
Making a Matrix Consistent 562
Probability Management Concepts 565
Analytic Distributions 565
Certified Distributions and Stochastic Libraries 566
Publishing and Using Certified Distributions 566
Stochastic Libraries: SIPs and SLURPs 567
Creating Stochastic Libraries 568
Using the DIST Feature 569
Creating and Using Certified Distributions 571
Publishing Distributions with PsiCertify 572
Using Distributions with PsiCertified 572
Packaging Analytic Distributions 574
Mastering Stochastic Optimization Concepts 575
Introduction 575
Certain and Uncertain Parameters 575
Decision-Dependent Uncertainties 576
Resolving Uncertainty and Recourse Decisions 576
Uncertainty and Conventional Optimization 577
Elements of Solver Models 577
Uncertain Variables 577
Decision Variables 578
Functions of the Variables and Uncertainties 578
The Objective Function 579
Constraints: Normal, Chance, Recourse 580
Solutions: Feasible, Optimal, Well-Hedged 581
More on Chance Constraints 582
Diagnosing Your Model's Use of Uncertainty 585
Problems and Solution Methods 585
Decision-Dependent Uncertainties 586
Resolving Uncertainty and Recourse Decisions 586
Classes of Problems Involving Uncertainty 587
One-Stage Problems 587
Two-Stage Problems 588
Advanced Topics 590
Bounds, Discretization, and Correlation 590
Uncertainty Sets and Norms 590
Best Practices for Building Large-Scale Models 594
Introduction 594
Designing Large Solver Models 594
Spreadsheet Modeling Hints 595
Optimization Modeling Hints 596
Using Multiple Worksheets and Data Sources 596
Quick Steps Towards Better Performance 597
Improving the Formulation of Your Model 598
Techniques Using Linear and Quadratic Functions 599
Techniques Using Linear Functions and Binary Integer Variables 600
Using Piecewise-Linear Functions 602
Organizing Your Model for Fast Solution 603
Fast Problem Setup 604
Using Array Formulas 605
Using the Add-in Functions. 606
References and Further Reading 610
Introduction 610
Textbooks Using Analytic Solver 610
Textbooks Using Solver or Premium Solver 611
Other Textbooks 611
Academic References 611

Start Here: V2021 Essentials

Getting the Most from This User Guide

License and Upgrade Options

Frontline Solvers V2021 feature a revised, simpler product line, based on Analytic Solver, that gives you access to all features, all the time for small models. It features a new licensing system, tied to you and usable on more than one computer. Read about this in the chapter "Help, Support, Licenses and Product Versions."

Desktop and Cloud Versions

Analytic Solver V2021 comes in two versions: Analytic Solver Desktop - a traditional "COM add-in" that works only in Microsoft Excel for Windows PCs (desktops and laptops), and Analytic Solver Cloud - a modern "Office add-in" that works in Excel for Windows and Excel for Macintosh (desktops and laptops), and also in Excel for the Web using browsers such as Chrome, FireFox and Safari. Your license gives you access to both versions, and your Excel workbooks and optimization, simulation and data mining models work in both versions, no matter where you save them (though OneDrive is most convenient). To get the most value from both versions, we highly recommend an Office 365 subscription to make your work easier and faster.

Installing the Software

Read the chapter "Installation and Add-Ins" for complete information on installing Analytic Solver Cloud and (if you wish) Analytic Solver Desktop. This chapter also explains how the Cloud and Desktop versions interact when both are installed, and how to install and uninstall both versions.

In brief, to add Analytic Solver Cloud version to your copy of Excel, you use the Excel Ribbon option Insert - Get Add-ins - no Setup program download or installation is required. To install Analytic Solver Desktop on Windows PCs, visit Solver.com, login using the email and password you used to register, then click Download on the top menu bar, and follow the instructions to download and run the SolverSetup program.

Getting Help Quickly

Choose Help on the Ribbon. You'll see several options, starting with Help Help Center. Support Live Chat, Example Models, and User Guides are also available here. In Analytic Solver Desktop (only) you can also get quick online Help by clicking any underlined caption or message in the Task Pane.

Finding the Examples

Use Help - Examples on the Analytic Solver or Data Mining Ribbon to open a list of example optimization and simulation models, and example data sets for data mining, that you can open by clicking hyperlinks. See the chapter "Help, Support, Licenses and Product Subsets" for details. Some of these examples are used and described in the Examples chapters.

Using Existing Models

Open your existing workbook, developed in any previous version of Frontline Solvers or the standard Excel Solver. Your model should appear in the Task Pane; just click the Optimize or Simulate button. Read Automatic Mode and Solution Time in "Analytic Solver Overview" to understand how this mode can impact solution time.

Using Large-Scale Solver Engines

Read the Platform Solver Engines Guide to learn more about Frontline's eight large-scale Solver Engines for optimization, including their Solver Options and special Solver Result Messages. All Large-Scale Engines are pre-installed with both Analytic Solver Desktop and Analytic Solver Cloud; even if you don't yet have a paid license for one of them, you can use them in a "Test Run" as described in the chapter "Help, Support, Licenses and Product Versions."

Getting Started with Tutorials

To quickly gain a good grasp of Analytic Solver's optimization and simulation capabilities, work through the Examples chapters in this Guide. For Analytic Solver's data mining capabilities, see the Data Mining User Guide.

Getting and Interpreting Results

Learn how to interpret Analytic Solver's result messages, error messages, reports and charts, and how to run multiple parameterized optimizations and simulations in the Getting Results chapters.

Mastering Optimization and Simulation Concepts

This guide can give you a professional education in simulation/risk analysis, conventional optimization, and stochastic optimization (with uncertainty). Go from beginner to expert and learn how to fully exploit the software by reading the Mastering Concepts chapters, and the Frontline Solvers Reference Guide.

Using the Traditional Solver Parameters Dialog

If you've used the Solver in desktop Excel (which Frontline Systems developed for Microsoft) and you're familiar with its Solver Parameters dialog, you can still use it in Analytic Solver Desktop: Click Premium Solver on the Add-Ins tab to display a slightly enhanced Solver Parameters dialog.

You can go back and forth freely between the Solver Parameters dialog and the new, modeless Task Pane and Ribbon. Within a few minutes, most users find the Task Pane and Ribbon faster and easier to use. If you've used the basic Solver for Excel Online (free in the Office Store), you're already familiar with use of the Task Pane, which is enhanced in Analytic Solver Desktop and Cloud.

Automating Your Model with VBA

VBA (Visual Basic for Applications) is available only in desktop Excel; it is not available in Excel for the Web. If you have Excel workbooks that use macros from the Solver in desktop Excel (such as SolverOK and SolverSolve) you can use them in Analytic Solver Desktop (only), provided that you use Tools -References in the VBA Editor to set or change the reference to Analytic Solver 2021 Type Library. You can use the code examples in the chapters "Automating Optimization in VBA" and "Automating Simulation in VBA" but read about RASON in this Guide for a modern desktop + cloud approach.

Installation and Add-Ins

What You Need

You can use Analytic Solver Cloud in Excel for the Web through a browser (such as Edge, Chrome, Firefox or Safari), without installing anything else. This is the simplest and most flexible option, but it requires a constant Internet connection.

To use Analytic Solver Cloud in Excel Desktop on a PC or Mac, you must have a current version of Windows or iOS installed, and you will need the latest Excel version installed via your Office 365 subscription - older nonsubscription versions, even Excel 2019, do not have all the features and APIs needed for modern Office add-ins like Analytic Solver Cloud.

To use Analytic Solver Desktop (Windows PCs only), you must have first installed Microsoft Excel 2013, 2016, 2019, or the latest Office 365 version on Windows 10, Windows 8, Windows 7, or Windows Server 2019, 2016 or 2012. (Windows Vista or Windows Server 2008 may work but are no longer supported.). It's not essential to have the standard Excel Solver installed.

Installing the Software

Installing Analytic Solver Cloud

Analytic Solver V2021 includes our next-generation offering, Analytic Solver Cloud - usable in the latest versions of Excel for Windows and Macintosh, and in Excel for the Web. Analytic Solver Cloud is divided into two add-ins that work closely together (since an Office add-in currently can have only one Ribbon tab): the Analytic Solver add-in builds optimization, simulation and decision table models, and the Data Mining add-in builds data mining or forecasting models.

Both the Analytic Solver and Data Mining add-ins support existing models created in previous versions of Analytic Solver. Your license for Analytic Solver allows you to use Analytic Solver Desktop in desktop Excel or Analytic Solver Cloud in either desktop Excel (latest version) or Excel for the Web.

To use the Analytic Solver and Data Mining add-ins, you must first "insert" them for use in your copy of desktop Excel or Excel for the Web, while you are logged into your Office 365 account. Once you do this, the Analytic Solver and Data Mining tabs will appear on the Ribbon in each new workbook you use.

To insert the add-ins for the first time, open desktop Excel (latest version) or Excel for the Web, click the Insert tab on the Ribbon, then click the button Office Add-ins or (if you see it) the smaller button Get Add-ins.

In the dialog box that appears, click the Store tab and type "Analytic Solver" into the Search box. Once you find the Analytic Solver add-in, click Add. After a moment, you should see the Analytic Solver tab appear on the Ribbon, with a note about how to "Get started with the Solver add-in!", as shown below.

Repeat these steps to search for, locate and Add the Analytic Solver Data Mining add-in. After a moment, you should see the Data Mining tab appear on the Ribbon, with a similar "Get started" note.

After you perform these steps (one time) to insert the Analytic Solver and Analytic Solver Data Mining add-ins, they will appear under "My Add-ins". If you ever need to remove the add-ins, click the "..." symbol to the right of the add-in name, then click the Remove choice on the dropdown menu that appears.

Office Add-ins

MY ADD-INS | SHARED FOLDER | ADMIN MANAGED | STORE

Analytic Solver Data M... Frontline Systems Inc.

Single Sign On Functionality

Analytic Solver Cloud includes Single Sign On functionality which automatically logs in users to their Analytic Solver Cloud account using their Microsoft 365 credentials. This means that if you've signed in to your Microsoft 365 account using the same email address you used to register on www.solver.com, then you will not be asked to login to Analytic Solver Cloud. Once you insert Analytic Solver cloud, you will have immediate access to all the features and functionality of Analytic Solver. As long as you remain signed in to your Microsoft 365 account, you'll never have to login to Analytic Solver Cloud again!
If you log out of Analytic Solver or your Office 365 credentials do not match your Solver credentials, you'll see the following welcome screen in the Solver task pane. Just click the Get Started button or click License - Login/Logout on the ribbon to login.

Installing Analytic Solver Desktop

To install Analytic Solver Desktop to work with any of the supported versions of Microsoft Excel (see above), simply run the program SolverSetup.exe, which installs all of the Solver program, Help and example files. SolverSetup.exe checks your system, detects what version of Office you are running (32-bit or 64 -bit) and then downloads and runs the appropriate Setup program version.
Note that your copy of the Setup program will usually have a filename such as SolverSetup_12345.exe; the ' 12345 ' is your user account number on Solver.com.

When you run the Setup program, depending on your antivirus program or Windows security settings, you might be prompted with a message "[reason such as new/unknown program]. Are you sure you want to run this software?" You may safely click Run in response to this message.

You'll briefly see the standard Windows Installer dialog. Then a dialog box like the one shown below should appear:

棖 Frontline Excel Solvers V2	nstallShield Wizard
	Welcome to the InstallShield Wizard for Analytic Solver - desktop Excel version This Setup program installs everything you need to create, analyze and solve models for: - Optimization - Excel Solver upgrade - Monte Carlo simulation and decision trees - Stochastic optimization (with uncertainty) - Forecasting, data mining and text miing Analytic Solver Basic - your free trial - includes all these tools, for small models only,suitable for learning. With every upgrade below, you can keep using all of Analytic Solver Basic: Analytic Solver Optimization (Premium Solver) Analytic Solver Simulation (Risk Solver) Analytic Solver Data Mining (XLMiner) Analytic Solver Comprehensive (All the above) Large-Scale Solver Engines (multiple choices)
	< Back Next > Cancel

Read this, so you know the difference between Analytic Solver Basic and the upgrades to handle larger models and datasets. Then click Next to proceed you'll see a dialog like the one below.

Read this to learn how you can use Analytic Solver Cloud (our new Office addin version) - "Excel Online" is another name for "Excel for the Web".

Next, the Setup program will ask if you accept Frontline's software license agreement. You must click "I accept" and Next in order to be able to proceed.

License Agreement
Please read the following license agreement carefully.
This SOFTWARE LICENSE (the "License") constitutes a legally binding a
agreement between Frontline Systems, Inc. ("Frontline") and the
individual or organization ("Licensee") acquiring the right to use certain
computer program products offered by Frontline (the "Software"), in
exchange for Licensee's payment to Frontline (the "Fees"). This License
governs the Software as installed for 'desktop' Use on a personal
computer; and as installed on servers operated by Frontline for 'cloud'
Use, where portions of the Software may be executed on the server or
downloaded to a personal computer through a web browser or other
anolication (includina but not limited to deskton Excel). Unless replaced
I accept the terms in the license agreement
I do not accept the terms in the license agreement
InstallShield - Print

The Setup program then displays a dialog box like the one shown below, where you can select or confirm the folder to which files will be copied (normally C:\Program Files \backslash Frontline Systems\Analytic Solver Platform, or if you're installing Analytic Solver for 32-bit Excel on 64-bit Windows, C:\Program Files (x86)\Frontline Systems\Analytic Solver Platform). Click Next to proceed.

You'll see a dialog confirming that the preliminary steps are complete, and the installation is ready to begin.
1093 Frontline Excel Solvers V2021 - InstallShield Wizard
Ready to Install the Program
The wizard is ready to begin installation.
Click Install to begin the installation.
If you want to review or change any of your installation settings, click Back. Click Cancel to
exit the wizard.

After you click Install, the Analytic Solver files will be installed, and the program file RSPAddin.xll will be registered as a COM add-in (which may take some time). A progress dialog may appear; be patient, since this process could take longer than it has in previous Solver Platform releases.

When the installation is complete, you'll see a dialog box like the one below. Click Finish to exit the installation wizard.

The full Analytic Solver product family is now installed. With your trial and paid license, you can access every feature of the software, including forecasting and data mining, simulation and risk analysis, and conventional and stochastic optimization. Simply click "Finish" and Microsoft Excel will launch with a Welcome workbook containing information to help you get started quickly.


```
F% SOIVVErs Welcome to your Free Trial of Analytic Solver Basic - our tools for
Optimization, Simulation/Risk Analysis, and Data Mining. Here
are a few tips to help you get started:
    1. Look for the Add-Ins, Analytic Solver and Data Mining Tabs on the Ribbon above
                Add-ins Analytic Solver Data Mining Excel 2010/2013/2016/2019
    The Analytic Solver tab provides a new Ribbon for optimization, simulation, decision trees and sensitivity
    The Analytic Solver tab provides a new Ribbon for optimization, simulach, decision trees and sensitivity
    *)
    Ribbon for data visualization, time series forecasting, data mining and text mining.
    The Add-Ins tab contains a Premium Solver button which displays a Solver Parameters dialog similar to the
    hasic Excel Solver we developed for Microsoft. Changes you make here are reflected in the Analytic Solver Task
    Pane, and vice versa.
    2. Start with Analytic Solver Basic, which includes everything in optimization, simulation, and data mining.
    You can get complete model and solution information for small-size models (including all our examples). You
    can also do Test Runs of much larger models. Open the License Center (License button) to purchase a license
    for Analytic Solver Basic, Analytic Solver Upgrade, or our Optimization, Simulation, or Data Mining full versions
    pay for only what you need. Analytic Solver Comprehensive includes full versions of everything, and plug-in
    large-scale Solver Engines extend optimization to handle up to millions of variables. Click the Product Guide tab
    to run the Product Selection Wizard to help you decide which version is best for you.
3. When building your model, try the Distribution Wizard (for simulation, click the Distributions button) or Constraint Wizard (optimization).
            Analytic Solver Distributions 县 目 眡
```


Logging in the First Time

In Analytic Solver V2021，your license is associated with you，and may be used on more than one PC．For example，you can run SolverSetup to install the desktop software on your office PC，your company laptop，and your PC at home． But only you can use Analytic Solver，and only on one of these computers at a time．It is unlawful to＂share＂your license with another human user．

The first time you run Analytic Solver（Desktop or Cloud）after installing the software on a new computer，when you next start Excel and visit the Analytic Solver tab on the Ribbon，you will be prompted to login．Enter the email address and password that you used to register on Solver．com．Once you＇ve done this in Analytic Solver Desktop，your identity will be＂remembered，＂so you won＇t have to login every time you start Excel and go to one of the Analytic Solver tabs．In Analytic Solver Cloud，you may be asked to login more frequently．

You can login and logout at any time，by clicking License－Login／Logout in both Analytic Solver Desktop and Analytic Solver Cloud．If you share use of a single physical computer with other Analytic Solver users，be careful to login with your own email and password，and log out when you＇re done－if you don＇t，other users could access private files in your cloud account，or use up your allotted CPU time or storage．

When you move from one computer to another，you should log out on one and \log in on the other．As a convenience，if you \log in to Analytic Solver on a new computer when you haven＇t logged out on the old computer，Analytic Solver will let you know，and offer to automatically log you out on the other computer．

Uninstalling the Software

To uninstall Analytic Solver Desktop，just run the SolverSetup program as outlined above．You＇ll be asked to confirm that you want to remove the software．

You can also uninstall by choosing Control Panel from the Start menu，and double－clicking the Programs and Features or Add／Remove Programs applet． In the list box below＂Currently installed programs，＂scroll down if necessary until you reach the line，＂Frontline Excel Solvers 2021，＂and click the

Uninstall/Change or Add/Remove... button. Click OK in the confirming dialog box to uninstall the software.

Activating and Deactivating the Software

Analytic Solver Desktop's main program file RSPAddin.xll is a COM add-in, an XLL add-in, and a COM server. A reference to the add-in Solver.xla is needed if you wish to use the "traditional" VBA functions to control Analytic Solver, instead of its new VBA Object-Oriented API.

In modern versions of Excel, you can manage all types of add-ins from one dialog, reached by clicking File - Options -- Addins.

You can manage add-ins by selecting the type of add-in from the dropdown list at the bottom of this dialog. For example, if you select COM Add-ins from the dropdown list and clock the Go button, the dialog shown below appears.

If you uncheck the box next to "Analytic Solver Addin" and click OK, you will deactivate the Analytic Solver COM add-in, which will remove the Analytic Solver tab from the Ribbon in desktop Excel, and also remove the PSI functions for optimization from the Excel Function Wizard.

If Something Goes Wrong

Under certain circumstances, desktop Microsoft Excel can "crash" or shut down, so it must be restarted. This can happen for a variety of reasons, including bugs in Excel itself, in the Analytic Solver software, or in other add-ins.

When Excel restarts, you may see one of the following messages:

If you see these messages, you should usually click the No button. If you've experienced a problem while using Analytic Solver software, please contact Frontline Systems Technical Support as described below. If you click the Yes button, Excel will disable the Analytic Solver add-in, and the Analytic Solver and Data Mining tabs will no longer appear on the Ribbon. To re-enable Analytic Solver and restore these Ribbon tabs, see the preceding section "Activating and Deactivating the Software:" you should select File - Options, then Add-Ins, then Manage COM Add-ins, Go. Then check the box next to "Analytic Solver Addin" and click OK.

In rare circumstances, Analytic Solver users have reported the following error message appearing upon opening of Excel.

This is a generic error from Microsoft Excel that can occur if you have been running Excel for a long period of time without ever deleting Microsoft Excel's temp files. (Note: These temp files are not generated by Analytic Solver software; they are generated through Microsoft Excel.) To resolve this error, click OK on the error message, then using Windows Explorer browse to $\mathrm{C}: \backslash$ Users\<username>\AppData\Roaming \backslash MicrosoftlExcel and delete all files in this folder. Restart Excel. The issue should be resolved.

Frontline Systems Technical Support team may be contacted via phone (888-831-0333), email (support@solver.com) or Live Chat (Help - Support Live Chart on the Analytic Solver ribbon).

Cloud Versions

With your free trial or paid license, you can use Analytic Solver in desktop Excel, and its cloud-based counterpart, Analytic Solver Cloud.

Analytic Solver Cloud is a "modern Office add-in" that works in Excel for the Web, Excel for Windows and Excel for Mac (latest versions).

- All versions offer a Ribbon user interface featuring nearly-identical buttons and menus, and a Task Pane that summarizes models and provides access to Platform and Engine options.
- All versions use the same modeling languages (Excel formulas and our RASON® modeling language, handled by our PSI Interpreter), and both use the same algorithmic "engines" for mathematical optimization, Monte Carlo simulation and risk analysis, forecasting, data mining and text mining.
- All versions can create or open existing optimization, simulation and data mining models and datasets in Excel workbooks - and you can easily move such workbooks back and forth between desktop and cloud.

Security and Privacy Considerations

When you use Analytic Solver Desktop in Excel for Windows, your model is solved on the same computer, in the same memory and running process where Excel for Windows runs. You can save your workbook on your own computer, on Microsoft OneDrive "in the cloud", or elsewhere.

When you use Analytic Solver Cloud, your workbook is stored, at least temporarily, "in the cloud", and your model is solved "in the cloud", using Frontline's RASON servers on Microsoft Azure. While many steps are taken to ensure your security and privacy, you should understand and be comfortable with how the technology works:

When the browser running on your computer communicates with either Excel for the Web, all the information transmitted is encrypted using Transport Layer Security (TLS) 1.2, as is true for all "https" websites.

When you run or solve a data mining, optimization or simulation model, a copy of your Excel workbook is transmitted to Frontline's RASON servers, again using TLS 1.2. A copy of your workbook is stored temporarily on these Azurebased servers, but is always encrypted "at rest" and "in motion". After the model is run or solved, all copies of your workbook are deleted; only a log of filename, model size and time taken to solve remains on the RASON servers.

Analytic Solver Cloud

Analytic Solver Cloud can be used with Excel for the Web, Excel for Windows and Excel for Macintosh (latest versions). Excel for the Web works the same way as desktop Excel so there's no learning curve - you can use it right away.
It's easy to move files between Analytic Solver Desktop and Analytic Solver Cloud products by simply saving your existing files to your Microsoft OneDrive account. Files saved on OneDrive may be opened in Microsoft Online or
desktop Office. For Analytic Solver Cloud, you will need the latest version installed via your Office 365 subscription - older non-subscription versions, even Excel 2019, do not have all the features and APIs needed for modern Office add-ins like Analytic Solver Cloud.

Solver Home Tab Removed

The Solver Home tab was removed from Analytic Solver Desktop V2019 and V2021. You can use the License menu to Login and Logout, browse to www.solver.com, start a Live Chat, etc. See the section below for more information.

Using Solver Server to Solve Models

With Analytic Solver Desktop (only), you also have an option to solve your optimization model, or run your simulation model on a corporate server, that may be more powerful than your desktop or laptop computer. Results appear in your spreadsheet, just as if you had solved the model on your own PC instead of the server. To do this, you use a separate software tool called Solver Server.

Solver Server is shipped as part of our Solver SDK Platform product; a client for Solver Server is built into each copy of Analytic Solver software, and each copy of Solver SDK Platform or Pro. You can also create your own client programs, even on mobile devices, using JavaScript and/or PHP.

If you would like more information on this service, please contact us at sales@solver.com. Note that Solver Server is a separate offering from our cloud version Analytic Solver Cloud, and from the Analytic Solver "Create App" feature that translates your model into our RASON modeling language and may open it to be run at https://Rason.com.
Note: SolverServer is not used with, or applicable to Analytic Solver Cloud.

Adding a Server

To set up a connection to Solver Server from a client machine running Analytic Solver software, click the Options button on the Solver Ribbon, then click the General tab.

Next, click Add Server to display the following dialog. Enter information into this dialog as follows:

Name: Enter a convenient name for your server here. The name will appear as the name of this server in the Options dialog General tab display.
Address: Enter an IP address such as 10.1.1.3 or a public domain name such as SolverServer.cloud.net or a private domain or computer name such as FrontlinePCWMachine1.

Port: The TCP/IP port entered here must match the port entered in the Solver Server application (SAdmin.exe). Solver Server is "listening" on this port. The default is 2050.

A "pre-filled"field appears under the Register Certificate on the Server button. This field holds the Solver Server Certificate. When connecting to Solver Server, the certificate will be inspected and if the same certificate is found on Solver Server, permission to solve the model will be granted.

Once you've filled in the Name, Address and Port fields, click Test Connection to confirm a connection to the Server. If the connection is successful, click Register Certificate on the Server to display the following dialog. (If the test was not successful, please confirm that the Server Address and Port number are correct and that both machines (the client and server) are online.)

If registration was successful, you will see the dialog below. Click $O K$ to clear this dialog and $O K$ again to clear the Add Solver Server dialog.

You should now see the Server listed on the General tab with a check inside the checkbox, as shown on the next page. To disable the server, simply uncheck the checkbox. Click $O K$ to close the Options dialog and return to your spreadsheet.

Note that if you are not the administrator, you should send the contents of your Certificate field to the server administrator, who can manually add the certificate on the server. This must be done within 24 hours or the certificate will expire.

Solver Server includes tools for a server administrator to manage certificates for clients. But it's also possible for the administrator to manage certificates by "logging in" to the server from your Excel-based client software, using the dialog shown below.

Days Permitted: An integer value, or 0 for a "permanent" certificate.
Administrator Name: Used by your server administrator.
Administrator Password: Used by your server administrator.

Solving Your Model on a Server

To solve a model on a server that you've set up previously as shown above, simply open your workbook, click the down arrow under the Optimize icon, and select Run on a SolverServer from the menu.

The Task Pane Output tab will display the Solver results, and the final variable values will be placed in your variable cells.

Sending document to the server.
The document is in the server queue.
Automatic engine selection: LP/Quadratic
Parse time: 0.00 Seconds.
Engine: LP/Quadratic
Setup time: 0.00 Seconds.
Engine Solve time: 0.00 Seconds.
Server finished solving the document.
Downloading the results.
Finished!
Solver found a solution. All constraints and optimality conditions are satisfied.
For more information on Solver Server or if you are experiencing any problems with this service, please contact us at support@solver.com.

Analytic Solver Overview

Analytic Solver Product Line

This Guide shows you how to create and solve conventional optimization, Monte Carlo simulation, and stochastic optimization models using Analytic Solver - Frontline Systems' "secret weapon" for business analysts. The companion Data Mining User Guide shows you how to create and evaluate forecasting, data mining and machine learning models using Analytic Solver.
In Frontline Solvers V2021, every license starts with Analytic Solver Basic, which allows you to use every feature described in this User Guide, the companion Reference Guide, and the Data Mining User Guide, for learning purposes with small models. Upgrade versions enable you to 'scale up' and solve commercial-size models for optimization, simulation or data mining, paying for only what you need - but you keep access to all the features of Analytic Solver Basic.
Analytic Solver combines and integrates the features of Frontline's products for conventional optimization (formerly called Premium Solver Pro and Premium Solver Platform), Monte Carlo simulation and stochastic optimization (formerly Risk Solver Pro and Risk Solver Platform), and forecasting and data mining (formerly XLMiner Pro and XLMiner Platform), in a common user interface that's available both in Excel (Desktop) and in your browser (Cloud).
Analytic Solver's optimization features are fully compatible upgrades for the Solver bundled with Microsoft Excel, which was developed by Frontline Systems for Microsoft. Your Excel Solver models and macros will work without changes. In Analytic Solver Desktop, you can use either the classical Solver Parameters dialog, or a newer Task Pane user interface to define optimization models.

Desktop and Cloud versions

The release of Analytic Solver V2021 includes our latest offering, Analytic Solver Cloud - a "modern Office add-in" usable in both Excel for the Web and latest versions of desktop Excel, for Windows and Macintosh. Analytic Solver Cloud handles optimization and simulation models, and forecasting and data mining models, and is fully compatible with models created in previous versions of Analytic Solver. Your license for Analytic Solver will allow you to use Analytic Solver Desktop in desktop Excel or Analytic Solver Cloud in either
desktop Excel or Excel for the Web. For example, a license for Analytic Solver Optimization in desktop Excel will also grant you a license for Analytic Solver Optimization in Analytic Solver Cloud. The overwhelming majority of features in Analytic Solver Desktop are also included in Analytic Solver Cloud. However, there will be some small differences between the two versions.

Analytic Solver for desktop or cloud may be purchased in several different ways starting with the most basic version, Analytic Solver Basic, up to our most complete version, Analytic Solver Comprehensive. Continue reading to see which product will best meet your needs.

Analytic Solver Basic

As described above, Analytic Solver Basic allows you to use every feature of Frontline Solvers V2021, for learning purposes with small models. Its model size limits for optimization are identical to those of the Solver bundled with Microsoft Excel (200 decision variables and 100 constraints); it doesn't support plug-in large-scale Solver Engines. Its size limits for Monte Carlo simulation, data mining and text mining are sufficient to run all the examples that we install with the software.

Analytic Solver Upgrade

Analytic Solver Upgrade (formerly Premium Solver Pro) is Frontline's basic upgrade for the Excel Solver - enabling you to solve linear models 10 times larger (up to 2,000 variables), and nonlinear models 2.5 times larger (up to 500 variables). It includes faster versions of the LP/Quadratic, GRG Nonlinear, and Evolutionary Solvers), but it doesn't support plug-in large-scale Solver Engines. This product includes all the features of Analytic Solver Basic.

Analytic Solver Optimization

Analytic Solver Optimization (formerly Premium Solver Platform) is Frontline's most powerful product for conventional optimization. It includes the PSI Interpreter, five built-in Solvers (LP/Quadratic, SOCP Barrier, GRG Nonlinear, Interval Global, and Evolutionary), solves linear models up to 8,000 variables and nonlinear models up to 1,000 variables, and it supports plug-in large-scale Solver Engines to handle much larger models. When used with Analytic Solver Simulation, you can also solve models with uncertainty using simulation optimization, stochastic linear programming, and robust optimization. In addition, this product includes all the features of Analytic Solver Basic.

Analytic Solver Simulation

Analytic Solver Simulation (expanded from Risk Solver Pro) is Frontline's full-function product for Monte Carlo simulation and simulation optimization. It includes decision tree capabilities and the PSI Interpreter - which gives you the fastest Monte Carlo simulations available in any Excel-based products, unique interactive simulation capabilities, multiple parameterized simulations, and simulation optimization using the Evolutionary Solver. When used with Analytic Solver Optimization, you can also solve models with uncertainty using stochastic linear programming and robust optimization. In addition, this product includes all the features of Analytic Solver Basic.

Together, Analytic Solver Optimization and Analytic Solver Simulation provide all the capabilities of Frontline's former product Risk Solver Platform.

Analytic Solver Data Mining

Analytic Solver Data Mining (formerly XLMiner Platform) is Frontline's most powerful product for data mining, text mining, forecasting and predictive analytics. It includes data access and sampling, data exploration and visualization, text mining, data transformation, and feature selection capabilities; time series forecasting with ARIMA and exponential smoothing; and a wide range of data mining methods for classification, prediction and affinity analysis, from multiple regression to neural networks. This product includes all the features of Analytic Solver Basic.

Analytic Solver Comprehensive

Analytic Solver Comprehensive (formerly Analytic Solver Platform) combines the optimization capabilities of Analytic Solver Optimization, the simulation capabilities of Analytic Solver Simulation, and the data mining capabilities of Analytic Solver Data Mining. It includes the PSI Interpreter, five built-in Solvers (LP/Quadratic, SOCP Barrier, GRG Nonlinear, Interval Global, and Evolutionary) and it accepts a full range of plug-in large- scale Solver Engines. It supports optimization, Monte Carlo simulation, simulation optimization, stochastic programming and robust optimization, and large-scale data mining and forecasting capabilities.

Enhancements in Recent Years

Frontline Solver products have been rapidly and continually enhanced for more than two decades. Below is a brief summary of enhancements up to 2017.

- In our V10.x (2010) releases, we included faster algorithms, 64-bit versions, and new Windows HPC Server cluster computing capabilities.
- In our V11.x (2011) releases, we introduced tabu and scatter search methods in the Evolutionary Solver, Guided Mode in Premium Solver Pro, and the Distribution Wizard and Constraint Wizard.
- In our V12.0 (2012) release, we included Excel 2013 support, GPU support in the Evolutionary Solver, new stochastic decomposition, and solving on a corporate server with Solver Server.
- In V12.5 (2013) release, we introduced Analytic Solver Platform with data mining capabilities, new data visualization features for both data mining and Monte Carlo results, improved Guided Mode, and Support Live Chat integrated into Excel.
- In our V2014 release, we introduced a fundamental new way to build Excelbased optimization and simulation models: Dimensional Modeling, with concepts such as dimensions and cubes, and tools to build and solve larger scale, better structured, more maintainable models using these concepts.
- In our V2014-R2 release, we introduced a completely re-engineered, far more powerful data mining and forecasting capability named XLMiner Platform. New data mining algorithms were up to 100 times faster, constantly exploit multiple processor cores, and offer greater accuracy and numeric stability.
- Our V2015 release introduced a wide range of new features, including powerful text mining, ensemble methods for classification and prediction, feature selection, partitioning "on-the-fly," ROC/RROC curves, and enhanced linear and logistic regression; extensive chart enhancements, distribution fitting, and new Six Sigma functions in Monte Carlo simulation; and support for "publishing" optimization and simulation models to Excel Online and Google Sheets.
- Our V2015-R2 release made it easy to share analytic model results in popular Business Intelligence software, including Microsoft Power BI and Tableau, both popular interactive data visualization tools, and it linked your Excel workbook with Big Data in compute clusters running Apache Spark.
- Our V2016 release introduced a new Create App feature that translates your Excel optimization or simulation model into Frontline's new RASON modeling language - radically simplifying the path to create an application that can run in a web browser, or a mobile app for phones or tablets. New SQP-GS and Feasibility Pump methods greatly improved the performance of the Evolutionary Solver on challenging non-smooth models.
- Our V2016-R2 release added support for compound distributions and correlation using copulas (Gaussian, Student and Archimedean forms), in Monte Carlo simulation; new "GA methods' for integer variables in the Evolutionary Solver, speed and memory improvements in Dimensional Modeling, and support for the Web Data Connector in Tableau 9.1.

2017: Power BI, Analytic Solver Basic, and More

In Frontline Solvers V2017, we introduced users to AnalyticSolver.com, a new (at the time) cloud-based platform for both predictive and prescriptive analytics models that you could use via a web browser - including all the optimization, simulation, and data mining power found in the desktop version. The AnalyticSolver.com user interface worked just like our Excel user interface, with a Ribbon and Task Pane. In 2020, AnalyticSolver.com was superseded by Excel for the Web and our Analytic Solver Cloud version.
V2017 also uses a new licensing system that offers you more flexible ways to use the software, both desktop and cloud. Your license is associated with you, and may be used on more than one PC. For example, you can install the software on your office PC, your company laptop, and your PC at home. But only you can use Analytic Solver, and only on one of these computers at a time.

V2017 introduced Analytic Solver Basic, as described above, to give you access to all Analytic Solver features, all the time, for learning purposes using small models. It also includes a new License/Subscription Manager and a Product Selection Wizard that makes it much easier to upgrade or change your license subscription on a self-service basis, and a new Test Run/Summary feature that lets you see exactly how your model will run with an Analytic Solver upgrade, even a plug-in large-scale Solver Engine, before you purchase the upgrade - and do this any time, not just during a 15-day free trial.

Feature Enhancements in V2017

V2017 introduced major enhancements to data mining: Automatic support for categorical variables in many classification and prediction algorithms that 'normally' require continuous variables; ensembles that combine nearly any type of algorithm as a 'weak learner', not just (for example) classification and
regression trees; general-purpose Rescaling as a new Data Transformation method that can also be applied 'on-the-fly' when training a model; greatly enhanced multilayer neural networks; ability to export models in PMML; and many report and chart enhancements.

The V2017 Evolutionary Solver includes another set of major enhancements in its handling of non-smooth models with integer variables - enough so that most such models will solve significantly faster.
And there's support for the Tableau Web Data Connector 2.0, and a new SolverSetup program that automatically installs the correct 32-bit or 64-bit version of the software.

Feature Enhancements in V2017-R2

V2017-R2 introduced major enhancements to Monte Carlo simulation/risk analysis and optimization. It's now possible to fit copula parameters to historical data - a complement to distribution fitting that is sometimes called "correlation fitting." You can use a new family of probability distributions, called the Metalog distributions, even more general than the Pearson distributions - members of the family can be chosen based directly on historical data (even just a few observations), without a distribution fitting process.

The V2017-R2 PSI Interpreter includes major speed enhancements for large linear and nonlinear optimization models - users with large models are likely to see a dramatic speedup in "Setting Up Problem..." Also part of this release were new, higher performance versions of the Gurobi Solver Engine (based on Gurobi 7.5), the Xpress Solver Engine (based on Xpress 30.1), and the Knitro Solver Engine (based on Knitro 10.3).

Creating Power BI Custom Visuals

The most exciting new feature of V2017-R2 is the ability to turn your Excelbased optimization or simulation model into a Microsoft Power BI Custom Visual, with just a few mouse clicks! Where others must learn JavaScript (or TypeScript) programming and a whole set of Web development tools to even begin to create a Custom Visual, you'll be able to create one right away.

You simply select rows or columns of data to serve as changeable parameters, then choose Create App - Power BI, and save the file created by V2017-R2. You click the Load Custom Visual icon in Power BI, and select the file you just saved. What you get isn't just a chart - it's your full optimization or simulation model, ready to accept Power BI data, run on demand on the web, and display visual results in Power BI! You simply need to drag and drop appropriate Power BI datasets into the "well" of inputs to match your model parameters.
How does that work? The secret is that V2017-R2 translates your Excel model into RASON® (RESTful Analytic Solver Object Notation, embedded in JSON), then "wraps" a JavaScript-based Custom Visual around the RASON model. See the chapter "Creating Your Own Application" for full details!

2018: Tableau, Data Mining Workflows, and More

Analytic Solver V2018 extended our forecasting and data mining features with a new capability called data mining workflows that can save a lot of time and eliminate repetitive steps. You can combine nearly any of Analytic Solver's
data retrieval, data transformation, forecasting and data mining methods into a single, all-inclusive workflow, or pipeline.
Using the new Workflow tab in the Task Pane, you can either "drag and drop" icons onto a "canvas" to create a workflow diagram, or you can simply turn on a workflow recorder, carry out the steps as you've always done by choosing menu options and dialog selections, and the workflow diagram will be created automatically. Once the diagram or pipeline is created, you can "run" it in one step - each data mining method in the workflow will be executed in sequence.
In previous releases, you could use the trained model from a single data mining method (such as a Classification Tree or Neural Network) to "score" new data, by mapping features (columns) between the training set and new data set. In V2018, you can apply an entire workflow - including data transformations, partitioning, model training, and more - to a new dataset, by mapping features (columns) between the dataset used to create the workflow, and a new dataset.

Creating Tableau Dashboard Extensions

Another exciting new feature of V2018 is the ability to turn your Excel-based optimization or simulation model into a Tableau Dashboard Extension, with just a few mouse clicks! This is quite similar to the ability to create Power BI Custom Visuals introduced in Analytic Solver V2017-R2. It works (only) with Tableau version 2018.2 or later.

You simply select rows or columns of data to serve as changeable parameters, then choose Create App - Tableau, and save the file created by V2018. In Tableau, drag the Extensions object onto your dashboard, and choose the file you just saved. You'll be prompted to match the parameters your model needs with data in Tableau. What you get isn't just a chart - it's your full optimization or simulation model, ready to accept Tableau data, run on demand (using our RASON server), and display visual results in Tableau!

2019: Analytic Solver Cloud

In Frontline Solvers V2019, we introduced Analytic Solver Cloud - a nextgeneration product that's the result of five years of development using new cloud technologies, that we can now bring to you - since Microsoft has released a complete set of JavaScript APIs for new Excel features, such as functions like PsiNormal() and PsiMean() used in simulation and risk analysis.

In our first V2019 release, we focused on a consistent user experience between Analytic Solver Desktop and Analytic Solver Cloud. In a few cases, this has involved modifications to Analytic Solver Desktop. For example, older versions of Analytic Solver Desktop used "cascading submenus" to select probability distributions, and results in Monte Carlo simulations. Since an Office add-in cannot define or use cascading submenus, we have modified Analytic Solver Desktop and Analytic Solver Cloud so that the Distributions button on the Ribbon displays a dialog, rather than a cascading submenu, where you can select an appropriate probability distribution. Yet the order and layout of probability distributions remains the same as in previous Analytic Solver versions.

Business Rules and DMN Decision Tables

In Frontline Solvers V2019-R2, we introduced another completely new capability to Analytic Solver: Making it easy to capture rule-based decisions in the form of decision tables, with multiple columns for inputs, and multiple rows that express business rules. See the new chapter "Using Decision Tables".

While Business Rule Management Systems (BRMS) have been around for 15 years, with the increasing use of predictive and prescriptive analytics (like those found in Analytic Solver), these systems have begun to give way to Decision Management Systems that support a mix of rules and analytics. Where older BRMS systems used proprietary rules languages, the new trend embraces an open standard called DMN (Decision Model and Notation), with a language called FEEL (Friendly Enough Expression Language) for business rules.
Analytic Solver V2019-R2 and V2020 make it easy for you to create and test DMN 1.2-compatible decision tables with business rules expressed in FEEL. And it's equally easy to use Analytic Solver's forecasting, machine learning, simulation and optimization capabilities to create analytic inputs for decision tables, or use to decision table results in simulation and optimization models.

2020: Simulation and Solver Engine Enhancements

With each new release, Analytic Solver gives you more! Our January 2020 enhancements apply to both Analytic Solver Desktop and Cloud versions.

Faster Solver Engines, Using Multiple Cores

In V2020, the LP/Quadratic Solver - probably the most-used Solver Engine in Analytic Solver - features significantly improved performance on linear mixedinteger models. Prior versions of this Solver would use only one processor core at a time, but V2020 will use multiple processor cores to speed your solution.
The plug-in large-scale Solver Engines in Analytic Solver V2020 also feature significantly improved performance (they continue to utilize multiple processor
cores). These include the Gurobi Solver V9.0, with a new ability to solve nonconvex quadratic models; the Xpress Solver V35, with a new Solution Refiner, and the Artelys Knitro Solver V12.1, with SOCP and MIP speedups.

Monte Carlo Simulation Enhancements

Analytic Solver V2020 includes 12 new probability distribution functions, enhanced property functions for the PSI Distribution functions, new property functions for the PSI Statistics functions, and new "theoretical" functions that return analytic moments of distributions. Full details are in the Frontline Solvers Reference Guide, but here's a partial list of new/enhanced functions:

PsiBurr	PsiLevyAlt	PsiTheoMin
PsiDagum	PsiHypSecantAlt	PsiTheoMax
PsiDblTriang	PsiCumulD	PsiTheoVariance
PsiFatigue	PsiLaplace	PsiTheoStdDev
PsiFdist	PsiCauchy	PsiTheoSkewness
PsiFrechet	PsiTruncate	PsiTheoKurtosis
PsiHypSecant	PsiCensor	PsiTheoRange
PsiJohnsonSB	PsiLock	PsiTheoPercentile
PsiJohnsonUB	PsiOutput	PsiTheoPercentileD
PsiKumaraswamy	PsiTheoMean	PsiTheoTarget
PsiReciprocal	PsiTheoMedian	PsiTheoTargetD
PsiLevy	PsiTheoMode	PsiCategory

These functions make it even easier to adapt risk analysis models developed with other popular Excel add-ins, such as Palisade's @RISK, to work with Analytic Solver. A simple Find and Replace of the function name prefix with 'Psi' is often all you need. And unlike those other Excel add-ins, with Analytic Solver you can easily run your model in the cloud with Excel for the Web, translate your model to RASON, and use it in Power BI, Tableau, or your own web or mobile application!

What's New in Analytic Solver V2020.5

Analytic Solver V2020.5 includes significant enhancements to both Monte Carlo simulation and optimization - but the most exciting new feature is a greatly expanded Create App facility that makes it easy to deploy your Excel analytic model as a cloud service (thanks to RASON), usable from nearly any corporate, web or mobile application. What's more, you can manage, monitor and update your own cloud services, without ever leaving Excel!

Easily Deploy Your Model as a Cloud Service

We've realized for many years that developing and testing your analytic model in Excel is often just the first step: To gain the real business value from the decisions that can be made with your model, it's often necessary to get the model into the hands of other people in the business - in a form where they can easily ensure that it has up-to-date data, re-run the model's optimization,
simulation, or data mining process, and either view the results, or plug them into another software application or process.

In our 2017 and 2018 Analytic Solver releases, we took the steps that were possible at that time, enabling users to get their models into the hands of Power BI and Tableau users. And we built a facility to translate simpler Excel models into the RASON modeling language, enabling them to be solved in our cloud platform (RASON is an acronym for RESTful Analytic Solver Object Notation). But up to this point, a typical Excel user would still need help from a web developer, or would need learn JavaScript and other web development skills, to make truly effective use of this facility.

Now in our V2020.5 release of both Analytic Solver and RASON, we've gone much further to simplify the process of deploying an Excel model as a cloud service, and connecting it to databases and cloud data sources. The RASON cloud service will now accept and run Excel workbook models "on a par" with models written in the RASON modeling language. With the Create App menu option, you can turn your Excel model into a cloud service in seconds.

As an Analytic Solver user, you can now create and test models, deploy them "to the cloud" - point and click - as full-fledged RESTful decision services, and even get reports of recent runs of your decision services, all without leaving Excel. Using our web portal at https://rason.com, you can go further -even embed your Excel workbook in a multi-stage "decision flow" that can combine SQL, RASON, Excel, and DMN models, passing results from stage to stage.
We start you out with a RASON "basic" license, so you can try out these new capabilities without purchasing anything else! (Of course, you may need an upgraded RASON license to deploy your model to many users, and re-solve it hundreds or thousands of times on our cloud servers.)

More About RASON Decision Services

RASON is an Azure-hosted cloud service that enables your company to easily embed 'intelligent decisions' in a custom application, manual or automated business process, applying the full range of analytics methods - from simple calculations and business rules to data mining and machine learning, simulation and risk analysis, and conventional and risk-based optimization.

RASON Decision Services can be used from nearly any application, via a series of simple REST API requests to https://rason.net. To express the full
range of analytic models, RASON includes a high-level, declarative modeling language, syntactically embedded in JSON (JavaScript Object Notation), the popular structured format almost universally used in web and mobile apps. RASON results appear in JSON, or as more structured OData JSON endpoints.

RASON Decision Services also includes comprehensive data access support for Excel, SQL Server on Azure, Power BI, Power Apps, Power Automate (aka Microsoft Flow) and Dynamics 365. And it includes powerful model management tools, such as tracking model versions including "champions and challengers", monitoring model results, and automated scheduling of runs for both models and multi-stage decision flows.

How You Can Use RASON

You can use RASON to quickly and easily create and solve optimization, simulation/risk analysis, data mining, decision table, and decision flow models instantly deployed as cloud services. You can learn RASON, create models, supply data and solve them, and even manage model versions and cloud data connections, "point and click" using https://rason.com, our "web portal" to the underlying REST API service.

If you've used another modeling language to build an analytic model, you'll find the RASON language to be simple but powerful and expressive - and integrating RASON models into a larger application, especially a web or mobile app, is much easier than with other modeling languages. Excel users will find that RASON includes virtually the entire Excel formula language as a subset. If you've used tools based on the DMN (Decision Model and Notation) standard, you'll find that RASON - and Analytic Solver, as shown in the chapter "Building Decision Tables" - fully support DMN and FEEL Level 2.

Unlike existing "heavyweight" Business Rule Management Systems, with yearlong implementation schedules, six-figure budgets and limited analytics power,

RASON Decision Services enables you to get results in just weeks to months, from building and testing models, to deploying them across an organization. With RASON, you can build successful POCs (Proofs of Concept) without any IT or professional developer support - yet RASON is very "IT and developer friendly" when you're ready to deploy your POC across your company.

New Time Series Simulation Functions

Analytic Solver V2020.5 includes another new set of PSI Distribution functions and related PSI property functions, focused around time series simulation. Earlier Analytic Solver versions supported time series simulation using functions such as PsiForecast() and PsiPredict(), and models fitted via Analytic Solver Data Mining - but V2020.5 goes further, to support time series functions found in other popular Excel add-ins, such as Palisade's @RISK. Full details are in the Frontline Solvers Reference Guide, but here's a partial list of new/enhanced functions:

PsiAR1	PsiBMMR	PsiAPARCH11
PsiAR2	PsiGBMJD	PsiTSTransform
PsiMA1	PsiARCH1	PsiTSIntegrate
PsiMA2	PsiGARCH11	PsiTSSeasonality
PsiARMA11	PsiEGARCH11	PsiTSSync

With these functions, virtually any risk analysis model developed with other popular Excel add-ins, such as Palisade's @RISK, can be easily made to work with Analytic Solver. An appendix in the Frontline Solvers Reference Guide, "@Risk to Analytic Solver Psi Function Conversion Table", explains the details. And with Analytic Solver, you can easily deploy your risk analysis model as a cloud service - usable from Tableau, Power BI, Power Apps, Power Automate, or virtually any corporate, web or mobile application!

New Optimization Result Functions

In every version of Analytic Solver (and its precedessors, such as Premium Solver and the Excel Solver), you could obtain all the properties of an optimal solution - such as initial and final values, dual values, and ranges for decision variables and constraints - via the Answer Report and Sensitivity Report, which are inserted into your Excel workbook as new worksheets. But what if you want only select subsets of these values - and you'd like to have them on the same worksheet as your model? That's now possible in Analytic Solver V2020.5. Just type these new functions into cells, or use the Function Wizard in Excel.

PsiInitialValue	PsiDualValue	PsiCalcValue
PsiFinalValue	PsiDualLower	PsiOptStatus
PsiSlackValue	PsiDualUpper	PsiModelDesc

These new functions have another purpose in V2020.5, when you use Analytic Solver's enhanced Create App facility to deploy your model as a cloud service: You can use them to determine a select subset of values from the solution that you want to return from your cloud service to a calling application.

What's New in Analytic Solver V2021

Analytic Solver V2021, our latest release, features faster startup and better support for 4 K monitors in Analytic Solver Desktop, improved support for decision trees "on the spreadsheet" in Analytic Solver Cloud, and a new, faster version of the Xpress Solver (V37.1.3) - but the most exciting new features in this release give you new ways to define your own custom functions, in a way that works in both Excel Desktop and Excel for the Web, as well as our cloud platform RASON.

In years past, Excel-savvy analysts used VBA (Visual Basic for Applications) to define their own custom functions. While this still works in Excel Desktop using COM (28-year-old Component Object Model), VBA functions are not supported in Excel for the Web - and according to Microsoft, VBA and COM will never move to the cloud. If you want your custom functions to work in both desktop and cloud, your options have been limited - until now:

- Microsoft has introduced new Excel functions LAMBDA and LET. These are very special because you can use them in Excel formulas to define your own custom functions. The Excel community has expressed much excitement over these new functions, since they effectively make Excel a "complete programming language". (In Q1 2021, these functions are being rolled out across the different Office update channels.)
- On another front, there's the open standard known as DMN (Decision Model and Notation) - a business user-friendly "formula language" used to define business rules and decision tables, supported in "decision management" platforms from various vendors, and in Analytic Solver and RASON since 2019. DMN - now in version 1.3 - offers a way to define your own custom functions, known as "Box functions".

Analytic Solver V2021 includes support for both Excel's LAMBDA and LET functions, and for DMN-compatible Box functions. You'll find a new chapter in this User Guide, "Using Custom Functions", that explains how to use both approaches. Even better, LAMBDA and LET, and DMN Box functions enjoy full support from our PSI Interpreter - which means that our full range of Solver Engines, and our high-speed Monte Carlo simulation engine "understand" and take full advantage of custom functions that you define this way. This can yield better results than you've ever had with VBA-based functions that are embedded in an optimization or simulation model.

Optimization and Resource Allocation

Analytic Solver includes five bundled Solver Engines to find solutions for the full spectrum of optimization problems, up to certain size limits:

The nonlinear GRG Solver in Analytic Solver Comprehensive, Analytic Solver Optimization, Analytic Solver Upgrade, and Analytic Solver Basic handles large-scale smooth nonlinear (NLP) problems and includes Multistart or "clustering" methods for global optimization that can utilize multiple processor cores. In Analytic Solver Basic, this engine can solve NLP problems with up to 200 decision variables and 100 constraints, plus bounds on the variables.
In Analytic Solver Upgrade, this engine is an upgraded version of the nonlinear GRG engine included in the Microsoft Excel Solver, and can solve NLP problems with up to 500 variables and 250 constraints, plus bounds on the variables. In Analytic Solver Comprehensive and Analytic Solver Optimization,
this engine can handle NLP problems with up to 1,000 decision variables and 1,000 constraints, plus bounds on the variables.

The LP/Quadratic Solver in Analytic Solver Comprehensive, Analytic Solver Optimization, Analytic Solver Upgrade and Analytic Solver Basic handles both linear programming (LP) and quadratic programming (QP) problems. In Analytic Solver Comprehensive and Analytic Solver Optimization, this engine can handle models with up to 8,000 decision variables and 8,000 constraints four times the size of Analytic Solver Upgrade, and 40 times the size of Excel Solver. In Analytic Solver Upgrade, this engine can solve LPs and QPs with up to 2,000 variables and 8,000 constraints and in Analytic Solver Basic LPs and QPs with up to 200 variables and 100 constraints. Advanced methods for LP/MIP problems yield solutions as much as hundreds of times faster than the Excel Solver, and 5 to 20 times faster than Analytic Solver Upgrade.
The Evolutionary Solver (in all products with optimization capabilities) uses a combination of genetic and evolutionary algorithms, tabu and scatter search methods, and classical optimization methods. In Analytic Solver Basic, it handles non-smooth (NSP) problems of up to 200 variables and 100 constraints, plus bounds on the variables. In Analytic Solver Upgrade, it handles nonsmooth problems of up to 500 decision variables and 250 constraints, plus bounds on the variables. In Analytic Solver Comprehensive and Analytic Solver Optimization, an enhanced version of this Solver handles up to 1,000 variables and 1,000 constraints, exploits multiple processor cores in many of its algorithms, and exploits GPU processors in its local search.

The Interval Global Solver in (in all products with optimization capabilities) uses state-of-the-art interval methods to find the globally optimal solution to a nonlinear optimization problem, all real solutions to a system of nonlinear equations, or an "inner solution" to a system of nonlinear inequalities. In Analytic Solver Basic and Analytic Solver Upgrade, this engine handles smooth nonlinear (NLP) problems of up to 200 decision variables and 100 constraints, plus bounds on the variables. In Analytic Solver Comprehensive and Analytic Solver Optimization, it handles smooth nonlinear problems of up to 500 decision variables and 250 constraints, plus bounds on the variables.
The SOCP Barrier Solver in (in all products with optimization capabilities) uses an interior point method to solve linear (LP), quadratic (QP), quadratically constrained (QCP), and second order cone programming (SOCP) problems - the natural generalization of linear and quadratic programming - with up to 2,000 variables and 8,000 constraints in Analytic Solver Comprehensive and Analytic Solver Optimization. In Analytic Solver Upgrade and Analytic Solver Basic this engine has limits fo 200 variables and 100 constraints. In Analytic Solver Comprehensive and Analytic Solver Optimization with Analytic Solver Simulation, the SOCP Barrier Solver can be used to solve linear programming models with uncertainty via robust optimization with the L2 norm.

Simulation and Risk Analysis

Analytic Solver includes a full-featured Monte Carlo simulation capability. Unlike other Excel-based simulation products, this feature enables you to play 'what if' with uncertain values as easily as you do with ordinary numbers. Each time you run a simulation, thousands of trials are executed, and a full range of simulation results and statistics will be displayed on the spreadsheet. It uses Frontline's Polymorphic Spreadsheet Interpreter technology to achieve breakthrough simulation speeds - up to $\mathbf{1 0 0}$ times faster than normal Excelbased Monte Carlo simulation.

Analytic Solver supports nearly 80 analytic and custom distributions (continuous and discrete), and nearly 80 statistics, risk measures, Six Sigma functions, rank order correlation, distribution fitting, multiple random number generators and sampling methods with variance reduction, and powerful capabilities for multiple parameterized simulations.

In addition, Analytic Solver's graphics help you assess uncertainty, including charts of probability distributions, output frequency charts, sensitivity ("Tornado") charts, scatter plots, and Overlay, Trend, and Box-Whisker charts, in two or three dimensions. You can customize chart colors, titles, legends, grid lines, and markers, resize and rotate charts, and print charts or use them in PowerPoint presentations.

Optimal Solutions for Models with Uncertainty

Analytic Solver Comprehensive, Analytic Solver Upgrade, Analytic Solver Basic and Analytic Solver Optimization with Analytic Solver Simulation support several powerful methods for finding robust solutions to optimization problems with uncertainty:

- High-speed simulation optimization methods for more general (nonlinear, non-smooth or non-convex) problems, where uncertainties may depend on the first-stage decisions. Normal and chance constraints may be used, and a wide range of statistical aggregates can be used to summarize uncertainty in the objective and constraints. A simulation is performed on each major iteration of the optimization. This method is very general, but computationally very expensive, and usually not scalable to large size problems.
- Robust optimization (RO) methods for linear programming problems with uncertainties affecting the objective and constraints. Chance constraints specify a probability of satisfaction, which is converted to a 'budget of uncertainty.' Monte Carlo simulation is used to obtain bound and shape information for the uncertainties. This information is used to automatically create a robust counterpart problem, which is then solved. This method is scalable to large size models.
- Robust optimization methods and stochastic programming (SP) methods for two-stage stochastic linear programming problems with recourse ("wait and see") decisions. Scenarios are automatically created via built-in Monte Carlo simulation, or they may be drawn from user-defined cell ranges of sample values on the spreadsheet. With the benefit of second stage or recourse decisions, solutions are typically 'well-hedged' but not overly conservative. The RO and SP methods are relatively scalable to large size. A state-of-the-art implementation of stochastic decomposition, the most powerful and scalable method known for solving two-stage stochastic linear programming problems, is also included. Note: Stochastic decomposition is supported only in Analytic Solver Desktop.

Automatic Model Transformation to RASON

All Analytic Solver products include facilities for automatic transformation of an existing model into the RASON modeling language.

RASON (which stands for Restful Analytic Solver Object Notation) is Frontline Systems modeling language embedded in JSON and a REST API that makes it easy to create, test and deploy analytic models using optimization, simulation, and data mining, in web and mobile applications.

Users of Frontline's Excel Solvers will find that converting an existing Solver model in Excel to RASON is as easy as clicking a button. But we didn't stop there, in V2016, we created the ability to create an entire custom web application in seconds! Months of development work have been reduced to a single click of your mouse.

Web Application Developers who are familiar with AJAX and the use of REST API's, can immediately see first-hand how exceptionally easy it is to embed RASON models as JSON by viewing the automatically generated code. In just a few seconds, you can see how to solve the models using Frontline's RASON server, which exposes a simple REST API that's scalable to handle very large, compute-intensive analytic models.

Sensitivity Analysis and Model Parameters

All Analytic Solver products include facilities for sensitivity analysis of your Excel model, that can be used before even starting an optimization or simulation model. It is especially easy to identify the model parameters with the most impact on your computed results - you can simply select any formula cell and choose Parameters - Identify from the Ribbon to quickly find the input cells with the greatest impact on this formula, ranked and shown in a Tornado chart.

You can choose some of these input cells to serve as Sensitivity Parameters, and then produce reports and charts that show the impact on computed results of varying these parameters over a range you specify. You can also turn these parameters into (or define other cells as) Simulation Parameters or Optimization Parameters and produce reports and charts of simulation and optimization results as your parameters are automatically varied.

Multiple Optimizations and Simulations

All Analytic Solver Products (except Analytic Solver Data Mining or Data Mining Cloud) have powerful capabilities to perform multiple optimizations or simulations, automatically varying the values of parameters you specify, and collecting both optimization and simulation results, which may be displayed on the spreadsheet, or summarized in a variety of built-in reports and charts. Many operations that would require a programming language in other systems, or VBA in the Excel Solver, can be easily performed without programming.

The Dimensional Modeling capability available in the Analytic Solver Desktop products greatly enriches the scope of multiple parameterized optimizations and simulations. You can define multiple dimensions and multiple parameters indexed over each dimension, run an optimization or simulation for various combinations of these parameter values, and create tabular reports, Pivot Tables, and charts of the results. This functionality is not supported in Analytic Solver Cloud products.

Decision Trees on the Spreadsheet

All Analytic Solver Products (except Analytic Solver Data Mining and the Data Mining Cloud app) also include a facility to create decision trees on your Excel spreadsheet. Using the Ribbon, you can easily create decision nodes and branches, event nodes and branches, and terminal nodes. The tree is drawn in graphic form on the spreadsheet; standard Excel worksheet formulas compute 'rollback' values at each node, and the best-choice value at the root node, based on either expected value or utility function (certainty equivalent) criteria. With a Ribbon choice, you can graphically highlight the optimal path through the tree.
Since all computations for decision trees are performed via standard Excel worksheet formulas, you can use decision trees in your simulation and optimization models. You must make discrete choices for decisions, and define discrete alternatives for events, but you can, for example, define distributions for event outcomes and/or costs incurred for decisions, and view the composite distribution of outcomes at the root node.

Bringing Big Data into Excel using Apache Spark

All Analytic Solver products include the ability to compute summary measures (sum, average, standard deviation, minimum or maximum) for variables in a dataset with up to billions of rows, stored across many hard disks in an external compute cluster running Apache Spark (https://spark.apache.org/), by clicking the Get Data icon. The results, which can be obtained immediately upon completion or at a later time, will include the number of variables included in the dataset and their names along with data counts for categorical variables. This kind of summary data is often what you need as input parameters to an optimization or simulation model. See the Analytic Solver Data Mining User Guide for more help on this new feature.

Forecasting and Data Mining

Analytic Solver Comprehensive, Analytic Solver Data Mining and the Data Mining Cloud app include powerful features for data visualization, forecasting and data mining. You can explore these features using Analytic Solver Basic just click the Data Mining tab on the Excel Ribbon, and consult the Analytic Solver Data Mining User Guide:

Data Mining Cloud

- Click the Model button to display the Solver Task Pane. This new feature (added in V2016) allows you to quickly navigate through datasets and worksheets containing Analytic Solver Data Mining results.
- Click the Get Data button to draw a random sample of data, or summarize data from a (i) an Excel worksheet, (ii) the PowerPivot "spreadsheet data model" which can hold 10 to 100 million rows of data in Excel, (iii) an external SQL database such as Oracle, DB2 or SQL Server, or (iv) a dataset with up to billions of rows, stored across many hard disks in an external Big Data compute cluster running Apache Spark (https://spark.apache.org/).
- You can use the Data Analysis group of buttons to explore your data, both visually and through methods like cluster analysis, transform your data with methods like Principal Components, Missing Value imputation, Binning continuous data, and Transforming categorical data, or use the Text Mining feature to extract information from text documents.
- Use the Time Series group of buttons for time series forecasting, using both Exponential Smoothing (including Holt-Winters) and ARIMA (AutoRegressive Integrated Moving Average) models, the two most popular time series forecasting methods from classical statistics. These methods forecast a single data series forward in time.
- The Data Mining group of buttons give you access to a broad range of methods for prediction, classification and affinity analysis, from both classical statistics and data mining. These methods use multiple input variables to predict an outcome variable or classify the outcome into one of several categories. Introduced in V2015, Analytic Solver Data Mining and now the Data Mining Cloud app, offer Ensemble Methods for use with Classification Trees, Regression Trees, and Neural Networks.
- Use the Predict button to build prediction models using Multiple Linear Regression (with variable subset selection and diagnostics), k -Nearest Neighbors, Regression Trees, and Neural Networks. Use Ensemble Methods with Regression Trees and Neural Networks to create more accurate prediction models.
- Use the Classify button to build classification models with Discriminant Analysis, Logistic Regression, k-Nearest Neighbors, Classification Trees, Naïve Bayes, and Neural Networks. Use Ensemble Methods with Classification Trees and Neural Networks to create more accurate classification models.
- Use the Associate button to perform affinity analysis ("what goes with what" or market basket analysis) using Association Rules.
- Use the Score button to score new data using a fitted forecasting, classification or prediction model.

If forecasting and data mining are new for you, don't worry - you can learn a lot about them by consulting our extensive in-product Help. Click Help - Help Text on the Data Mining tab, or click Help - Help Text - Forecasting/Data Mining on the Analytic Solver tab (these open the same Help file).

If you'd like to learn more and get started as a 'data scientist,' consult the excellent book Data Mining for Business Intelligence, which was written by the original Data Mining (formally known as XLMiner) designers and early academic users. You'll be able to run all the Data Mining examples and exercises in Analytic Solver.

Analytic Solver Data Mining, along with the Data Mining Cloud app, can be purchased as a stand-alone product. A stand-alone license for Analytic Solver Data Mining includes all of the data analysis, time series data capabilities, classification and prediction features available in Analytic Solver Comprehensive but does not support optimization or simulation. See the Analytic Solver Data Mining User Guide Data Specifications for each product.

Large-Scale Solver Engines

Frontline's Analytic Solver Comprehensive and Analytic Solver Optimization (in both Desktop and Cloud apps) support multiple optional, plug-in Solver engines, in addition to their "bundled" Solver engines. Such Solver engines are licensed as separate products; they provide additional power and capacity to solve problems much larger and/or more difficult than the problems handled by the bundled Solver engines. Unlike most other optimization software, a license for one of Frontline's Solver engines enables you to use that Solver in desktop Excel or Excel Online. In addition, if using Solver SDK Platform, you may call the engine through C/C++, C\#, Visual Basic, VB.NET, as MATLAB, Java, PHP, JavaScript and other languages.

These Solver engines are seamlessly integrated - to use one, you simply select the Solver engine by name in the dropdown list that appears in the Task Pane Engine tab. They produce reports as Excel worksheets, like the bundled Solver engines; their options can be set in the Task Pane, or, if using Analytic Solver Desktop, in Solver Options dialogs; and they can be controlled by VBA code in your custom applications. The Solver engines are also seamlessly integrated into the Solver Platform SDK. Trial licenses for these Solver engines are available, allowing you to evaluate how well they perform on a challenging Solver model that you've developed.
The large-scale Solver Engines are more valuable than ever in our Analytic Solver products, where you can create large, structured models more easily with Dimensional Modeling, and transform linear programming models with uncertainty into larger, conventional linear programming or second order cone programming models, using stochastic programming and robust optimization. Note: Dimensional Modeling is not supported in Analytic Solver Cloud.

Automatic Mode and Solution Time

Analytic Solver has many performance enhancements, ranging from faster startup and faster switching among workbooks to faster Solver engines, and a deeply parallelized design that exploits multi-core processors. But its Automatic mode can sometimes increase solution time.

If using Analytic Solver Desktop, Automatic mode refers to the Automatic choice available for several Platform options, which formerly required some thought and manual setting by the user. (Since Analytic Solver Cloud always uses Automatic mode, this option is not applicable in Analytic Solver Cloud.)

In the desktop products, Automatic is the default choice for these options in newly created models. The options (found on the Task Pane Platform tab) include:

Optimization Model Interpreter
Solve Uncertain Models
Nonsmooth Model Transformation
Stochastic Transformation

Simulation Model Interpreter
Supply Engine With
Automatically Select Engine (on the Task Pane Engine tab)

Each Automatic choice means that Analytic Solver can analyze your model and automatically choose the best setting for these options. This normally results in better solutions and faster times; however, the process of analyzing your model and trying certain alternatives can take extra time, especially for large models.

To improve solution time when you re-run your model, you can inspect the solution \log in the Task Pane Output tab to see what choices were made automatically, manually set the Platform options to these same choices, and save your workbook. This will save time when you next run the model.

The desktop version of Analytic Solver Upgrade includes Automatic Mode for analyzing the model and selecting the best available engine. However, this product does not include the ability to automatically transform models.

Help, Guided Mode and Proactive Support

Frontline's Solvers include User Guides, Reference Guides and over a hundred example models - but we've gone much further to provide help. If using a desktop product, the in-product help will open whenever you click any hyperlinked element in the Task Pane or Help icon in the Ribbon

Our Wizards can help you with the hardest parts of defining a simulation model (probability distributions) or an optimization model (constraints). Guided Mode helps you step-by-step with optimization solutions, when you're first getting started. Auto-Help Mode, the default setting, is something you can use all the time, since it displays explanatory dialogs only when you encounter a problem!
Support Live Chat enables you to connect instantly to Frontline's technical support personnel from inside Excel, send your last error message, model diagnosis and other information, and get help from a live person, and Proactive Support, which automatically creates a support ticket in our Help Desk when you're struggling with repeated error messages or modeling problems.

Help, Support, Licenses and Product Versions

This chapter summarizes the Frontline Solvers V2021 product line, explains the licensing system in V2021 and how it benefits you, and describes how to use the newly introduced Cloud apps and the new License and Help Centers.

Working with Licenses in V2021

A license is a grant of rights, from Frontline Systems to you, to use our software in specified ways. As we learned in the last chapter, when you run the SolverSetup program to install Analytic Solver Desktop, software for the full Analytic Solver product family is installed. However, the product features you see in Analytic Solver Desktop, Analytic Solver Cloud and AnalyticSolver.com, and the size of models you can solve, depends on the license you have. Frontline Solvers V2021 uses a licensing system, developed in V2017-R2, that offers you more flexible ways to use the software, both desktop and cloud.

Licenses Tied to You, Not Your Computer

Information about a license, including the features and size limits it enables and its expiration date, is maintained on Frontline's cloud servers, associated with your user account ID, email address and password on Solver.com and AnalyticSolver.com. When you're using Analytic Solver on your desktop, license information is periodically downloaded or 'refreshed' from the cloud servers, but is stored on your PC for short periods, to enable you to run even when not connected to the Internet.

In Analytic Solver V2021, your license is associated with you, and may be used on more than one PC. For example, you can run SolverSetup to install the software on your office PC, your company laptop, and your PC at home. But only you can use Analytic Solver, and only on one of these computers at a time.

Using Your License: Login and Logout

When you first use Analytic Solver either in the cloud or on a new computer, you will be prompted to login. Enter the email address and password that you used to register on Solver.com or AnalyticSolver.com. Once you've done this in Analytic Solver Desktop, your identity will be "remembered," so you won't have to login every time you start Excel, and go to one of the Analytic Solver tabs. If you are using Analytic Solver Cloud or AnalyticSolver.com, you will need to login at the beginning of each session.

You can login and logout at any time, using Login/Logout on the License menu. If you share use of a single physical computer with other Analytic Solver users, be careful to login with your own email and password, and \log out when
you're done - if you don't, other users could access private files in your cloud account, or use up your allotted CPU time or storage.

When you move from one computer to another, you should \log out on one and \log in on the other. As a convenience, if you log in to Analytic Solver on a new computer when you haven't logged out on the old computer, Analytic Solver will let you know, and offer to automatically log you out on the other computer.

Upgrading from Earlier Desktop Versions

A new license will not be required for V2021 if you're upgrading from Frontline Solvers V2017/V2018. Old license codes for V2016 and earlier have no negative effect in 2018. If they exist in the obsolete Solver.lic file (located at C:\ProgramData\Frontline Systems), they will be ignored. A new license will be issued at the time of purchase.

Analytic Solver Basic

In previous Frontline Solvers releases, SolverSetup installed a family of integrated products, where Analytic Solver Platform was the 'superset' product that included all features of 'subset' products' such as Premium Solver Platform or Premium Solver Pro. After a free trial, most licenses would allow you to use only a subset of features, for example features related to optimization.

In Frontline Solvers V2018, we changed this, to give you more: A free trial gives you a license for a product called Analytic Solver Basic. This product is closely related to Analytic Solver Platform for Education, the leading software used in MBA education - but it's available to everyone, not just to students.
With a trial or paid license for Analytic Solver Basic, you can access every feature of the software either on the Cloud or in desktop Excel, including forecasting and data mining, simulation and risk analysis, and conventional and stochastic optimization - but only for small models and datasets. A license for Analytic Solver Upgrade, Analytic Solver Optimization, Analytic Solver Simulation, or Analytic Solver Data Mining (see below) enables you to solve much larger models, and also enables speed and memory use features to efficiently handle these larger models.

Renamed Products Offering More

In Frontline Solvers V2017-R2, we simplified the names of products that are subsets of full Analytic Solver Platform, which is now called Analytic Solver Comprehensive:

- Analytic Solver Upgrade - Formerly Premium Solver Pro, our basic 'Excel Solver Upgrade'
- Analytic Solver Optimization - Formerly Premium Solver Platform, fullsize conventional optimization
- Analytic Solver Simulation - Full size Monte Carlo simulation, risk analysis and decision trees, plus simulation optimization (only)
- Analytic Solver Data Mining - Formerly XLMiner Platform, with major enhancements in this release
- Analytic Solver Comprehensive - Formerly Analytic Solver Platform
- Analytic Solver Large-Scale - A special bundle of Analytic Solver Comprehensive, Large-Scale LP/QP Solver, and Large-Scale GRG Solver

Every product above also includes all the features of Analytic Solver Basic.
This means, for example, that when you upgrade to Analytic Solver Upgrade or Analytic Solver Optimization, you still have access to all of Analytic Solver's simulation and data mining features, for small models and datasets.

Getting Help

Should you run into any problems downloading or installing any of our products, we're happy to help. Call us at 775-831-0300 or email us at support@solver.com.

Click Support Live Chat, in the bottom right hand corner, to open a Live Chat window. If you run into any issues when using the software, the best way to get help is to start a Live Chat with our support specialists This will start a Live Chat during our business hours (or send us a message at other hours), just as if you were to start a Live Chat on www.solver.com - but it saves you and our tech support rep a lot of time - because the software reports your latest error message, model diagnosis, license issue or other problem, without you having to type anything or explain verbally what's happened. You'll see a dialog like this:

Since the software automatically sends diagnostic information to Tech Support, we can usually identify and resolve the problem faster. (Note: No contents from your actual spreadsheet model is sent, only information such as the number of variables and constraints, last error message, and Excel and Windows version.)
Note: If Support Live Chat is disabled, click the down arrow beneath Help and select Support Mode - Active Support.

Accessing Resources

To open Analytic Solver Help, simply click the Help icon on the Analytic Solver ribbon in either App to gain access to video demos, User Guides, online Help, example models, and Website support pages to learn how to use our software tools, and how to build an effective model.

User Guides

Click the User Guides menu choice to open PDF files of the Analytic Solver Optimization and Simulation User and Reference Guides, Analytic Solver Data Mining User or Reference Guides, or our Quick Start Guides.

Example Models

Clicking this menu item will open a browser pointing to the workbook, Frontline Example Models Overview.xlsx, located at C:\Program Files $\$ Frontline Systems \backslash Analytic Solver Platform\Examples. See the table below for a description of each example dataset.
By going to Help - Welcome Screen you can easily access a range of support and training resources.

Knowledge Base

Click Knowledge Base to peruse a multitude of online articles related to support and installation issues or to locate articles that will help you to quickly build accurate, efficient optimization, simulation, and data mining models.

Operating Mode

Click Operating Mode to switch between three different levels of help. The Excel formulas and functions you use in your model have a huge impact on how fast it runs and how well it solves. If you learn more about this, you can get better results, but if you don't, your results will be limited. Guided Mode can help you learn.

- Guided Mode prompts you step-by-step when solving, with dialogs.
- Auto-Help Mode shows dialogs or Help only when there's a problem or error condition.
- Expert Mode provides only messages in the Task Pane Output tab. (This mode not supported when using a trial license.)

Support Mode

Click Support Mode to switch between three different levels of support. No information (cell contents etc.) from your Excel model is ever reported automatically to Frontline Systems, in any of these Support Modes. Only events in Frontline's software, such as menu selections, Solver Result messages, or error messages are reported.

- Active Support automatically reports events, errors and problems to Frontline Support, receives and displays messages to you from Support, and allows you to start a Live Chat with Support while working in Excel (Recommended).Auto-Help Mode shows dialogs or Help only when there's a problem or error condition.
- Standard Support automatically reports events, errors and problems anonymously (not associated with you) to Frontline Support, but does not provide a means to receive messages or start a Live Chat with Support.
- Basic Support provides no automatic connection to Frontline Support. You will have to contact Frontline Support manually via email, website or phone if you need help.

Submit a Support Ticket

If you're having installation, technical, or modeling issues, submit a Support Ticket to open an online support request form. Submit your email address and a short, concise description of the issue that you are experiencing. You'll receive a reply from one of Frontline's highly trained Support Specialists within 24 hours, and generally much sooner.

Our technical support service is designed to supplement your own efforts: Getting you over stumbling blocks, pointing out relevant sections of our User Guides or example models, helping you fix a modeling error, or -- in rare cases -- working around an issue with our software (always at our expense).

Solver Academy

Solver Academy is Frontline Systems' own learning platform. It's the place where business analysts can gain expertise in advanced analytics: forecasting, data mining, text mining, mathematical optimization, simulation and risk analysis, and stochastic optimization.

Video Tutorials/Live Webinars

Click Video Tutorials to be directed to Frontline's You Tube Channel. Browse videos on how to create an optimization or simulation model or construct a data mining or prediction model using Analytic Solver.
Click Live Webinars to be redirected to www.solver.com to join a live or prerecorded webinar. Topics include Using Analytic Solver Data Mining to Gain Insights from your Excel Data, Overview of Monte Carlo Simulation Applications, Applications of Optimization in Excel, etc.

Learn more!

Click any of the three Learn More buttons to learn more about how you can solve large-scale optimization, simulation, and data mining models, reduce costs, quantify and mitigate risk, and create forecasting, data mining and text mining models using Analytic Solver.

License Button

Click the License button to open the License Manager where you can manage your current licenses and accounts, open our Product Selection Wizard, connect to Live Chat or peruse through a list of FAQs.

Click License - Manage License/Manage Account to open the Licensing Center.
The "MyLicenses" tab displays your current license and license type, along with the expiration date.

Click About Analytic Solver to open the following dialog containing information on this release.

Click the Account tab to view your account on www.solver.com. Click Edit Profile to edit the information. Click Live Chat to open a Live Chat window or Log Out to log out of the product.

Click the Product Guide tab to view a list of products and pricing information. Click Product Selection Wizard to open the Product Selection Wizard. See the next section for information on this feature.

Click the Questions tab to review a list of FAQs, submit a support ticket or start a live chat.

Message from Add-in: Analytic Solver	\times
Analytic Solver Licensing Center	
My Licenses Account Product Guide	Questions
How does the Analytic Solver Trial Work?	\checkmark
How do I install Analytic Solver on another computer?	\checkmark
How does Test Run Summary work?	\checkmark
How does the Multi User License work?	\checkmark
Where can I find a comprehensive matrix of all limits in Analytic Solver product lines?	\checkmark
How do I determine if I need an engine, and how do I know which is the right one to use?	\checkmark
I received a notification that my model exceeds the limits of my license. What does that mean?	\checkmark
Didn't see your question? Submit a Ticket	Support Live Chat

Product Selection Wizard

Select Product Selection Wizard from the Product Guide tab in the Licensing Center to open a series of dialogs that will help you determine which product will best meet your needs based on your recent pattern of use.

Select the Product that you'd like to purchase and then click Next. Click the Optimization Choices link to learn more about Analytic Solver products that can solve optimization models and to find more information on speed, memory, and the use of plug-in Solver Engines.

On this screen, the Product Selection Wizard will recommend a product or products based on your answers on the previous screens. Click Upgrade to purchase the recommended product. Click the Optimization Choices link to learn more about Analytic Solver products that can solve optimization models. If at any time you'd like to chat with a member of our Technical Support staff, click Live Chat. Or if you'd like to amend your answers on a previous dialog, click Back.

When you run a simulation or optimization model that contains too many decision variables/uncertain variables or constraints/uncertain functions for the selected engine, the Product Wizard will automatically appear and recommend a product that can solve your model.

When you click "Test Run", the Product Wizard will immediately run the optimization or simulation model using the recommended product. (Only summary information will be available.) At this point, you can purchase the recommended product(s), or close the dialog.
This same behavior will also occur when solving smaller models, if you select a specific external engine, from the Engine drop down menu on the Engine tab of
the Solver Task Pane, for which you do not have a license. The Product Wizard will recommend the selected engine, and allow you to solve your model using this engine. Once Solver has finished solving, you will have the option to purchase the product.

```
You selected the Gurobi Solver Engine on the Task Pane Engine tab while running Analytic Solver Comprehensive. This is 
beyond what you can do with your current license: You need a license for the Gurobi Solver Engine as shown below.
        Gurobi Engine LP/QP/SOCP/MIP
The Gurobi Optimizer is a state-of-the-art linear, quadratic, and mixed integer solver, built from the ground up to exploit
    modern multi-core processors.Click here for more information.
        $ $10,775 first year.
        Upgrade Order Form Get Quote Test Run
You can try a "Test Run" of your current model right now, using the product(s) recommended above, before you order a
upgrade to the "real thing.".Youll get only some summary information about the run, not all the results, but youll be able
Your upgrade price could be LOWER than this, since youll get credit for the time remaining on your currenticense. O
the Upgrade Order Form button to see the exact amount, or click Get Quote to produce a quote in PDF form
```


Using the Welcome Screen in Analytic Solver Desktop

When using Analytic Solver Desktop, the first time you click the Analytic Solver tab on the Ribbon, you'll see the Welcome Screen, pictured on the next page. You can display the Welcome Screen manually by choosing Help Welcome Screen from the Ribbon. And if you don't want to see it, you can control whether the screen appears automatically by selecting or clearing the check box in the lower left corner, "Show this dialog on startup."

The Welcome Screen was considerably enhanced in V2017-R2. As in earlier releases, it reports the status of your license, and provides links to Tutorial Videos, User Guides, Example Models, and Live Chat with tech support (also available from the Help drop-down menu on the Ribbon). The blue button below License Status takes you directly to the License / Subscription Manager
(also available from the Options drop-down menu). The Local License button to the right opens Frontline Solvers License Manager. And the green button displays an explanation of Analytic Solver Basic, your free trial, and upgrade options - much like this section.

There's more: Click the News, Blog and Videos tabs at the top of the dialog to see the latest application news and case studies, Frontline Systems blog posts, and videos from Solver.com. And from time to time, you'll see a Messages tab at the top of this dialog, with individual messages for you from Frontline's Tech Support and Customer Success teams.

License/Subscription in Analytic Solver Desktop

Since Frontline Solvers V2015, our products have been offered on an annual subscription basis, including the software license and Annual Support (technical support and software upgrades). But in order to renew your subscription, or upgrade or change the product you were using, you had to talk to someone in Frontline Systems sales or customer service, who would make the change, and email you a new license code that you'd copy and paste into a dialog box.

With Frontline Solvers V2018, all those steps have been automated: You can review your subscription status, renew, upgrade or downgrade your subscription, or add plug-in Solver Engines, all 'self-service' using the License / Subscription Manager - accessible via the blue button in the Welcome Screen, or Options License / Subscription on the Analytic Solver Ribbon. The next page shows a example of the License / Subscription Manager dialog.

The Products tab in the License / Subscription Manager dialog shows you a list of the products that are 'upgrade options' for your current subscription. You can click the hyperlinks for more information about the products on Solver.com, or click the buttons to go step-by-step through the upgrade process.

Context-Sensitive Help in Analytic Solver Desktop

Analytic Solver Desktop 2021 has a significant amount of context-sensitive Help. You can quickly access Help on any Solver Result message that appears in the Task Pane Output tab, any option that appears on the Engine tab or Platform tab, or any element of your model that appears on the Model tab.
Solver Result messages appear as underlined links - you can simply click them. For example, here's the Help that appears when you click the Solver Results message for the Gas Company Chance example in StochasticExamples.xls:

To access Help on any Platform option, Engine option, or Model element, click the underlined link in the brief explanation that appears at the bottom of the Task Pane. For example, here's the Help that appears when you click the Type field link for a chance constraint in your model:

To access help in Analytic Solver Cloud, click Help - Help Center or Help - Analytic Solver Help in AnalyticSolver.com.

Examples: Conventional Optimization

Introduction

This chapter introduces conventional optimization (with no uncertainty) in both the Desktop and Cloud apps using Analytic Solver Comprehensive, Analytic Solver Optimization, Analytic Solver Upgrade, and Analytic Solver Basic with a series of examples. Except as noted in specific sections, all of these examples can be used in any of the above product subsets.

- "A First Optimization Model" takes you step-by-step through the process of creating an optimization model from scratch. It illustrates use of the Ribbon and Task Pane, and its relationship to the Excel Solver Parameters dialog.
- "Introducing the Standard Examples," "Linear Programming Examples" and "Nonlinear Optimization Examples" takes you through the workbook StandardExamples.xls, with seven examples that illustrate a number of Analytic Solver features.

A First Optimization Model

This section is meant for you if you're familiar with optimization, but you've never used Excel Solver or Analytic Solver Basic. It shows how you can translate from the algebraic statement of an optimization problem to a spreadsheet Solver model. If optimization is new to you, consult the chapter "Mastering Conventional Optimization Concepts."
Note: This first step-by-step example is a 'quick and dirty' approach that can be used to solve the example problem, but is not well documented or easy to maintain. If using Analytic Solver Desktop or Cloud you'll have access to Microsoft Excel's many features that can help you organize and display the structure of your model, through tools such as defined names, formatting and outlining. The models in the StandardExamples.xls workbook illustrate some of these features. This workbook is normally installed into C:\Program Files \backslash Frontline Systems \backslash Analytic Solver Platform\Examples. As models become larger, the problems of managing data for constraints, coefficients, and so on become more significant, and a properly organized spreadsheet model can help manage this complexity.

Setting Up a Model

To set up an optimization model in a spreadsheet either in Microsoft Excel, Excel Online or in AnalyticSolver.com, you will follow these essential steps:

1. Reserve a cell to hold the value of each decision variable. We'll use A1:A3 in the example below.
2. Pick a cell to represent the objective function, and enter a formula that calculates the objective function value in this cell. We'll use A4 in the example below.
3. Pick other cells and use them to enter the formulas that calculate the left hand sides of the constraints. We'll use B1:B5 in the example below.
4. The constraint right hand sides can be entered as numbers in other cells, or entered directly in the Solver's Add Constraint dialog. We'll use C1:C5 for this purpose in the example below.

Within this overall framework, you have a great deal of flexibility in choosing cells to use, and calculating the objective and constraints. For example, the objective function will ultimately depend on the decision variable cells, but you don't have to calculate the entire function in one formula cell. You can use any number of formula cells to compute intermediate results, and use these to calculate the objective function or the constraints.

In desktop Excel and Excel Online, you can write a linear expression easily with Excel's SUMPRODUCT function, or you can use + and * operators, as shown below. You can use Excel's array formulas, and Excel functions that return vector and matrix results. And you can use Excel's rich facilities to access data in external text files, Web pages, and relational and multidimensional databases to 'populate' your model.

The Model in Algebraic and Spreadsheet Form

Consider the following problem. Our factory is building three products: TV sets, stereos and speakers. Each product is assembled from parts in inventory, and there are five types of parts: chassis, picture tubes, speaker cones, power supplies and electronics units. Our goal is to produce the mix of products that will maximize profits, given the inventory of parts on hand. This is a simple linear programming problem, also used to illustrate other ideas later in "Linear Programming Examples."

The Algebraic Form

The problem can be described in algebraic form as follows. The decision variables are the number of products of each type to build: x_{1} for TV sets, x_{2} for stereos and x_{s} for speakers. There is a fixed profit per unit for each product, so the objective function (the quantity we want to maximize) is:

Maximize $75 x_{1}+50 x_{2}+35 x_{3}$ (Profit)
Building each product requires a certain number of parts of each type. For example, TV sets and stereos each require one chassis, but speakers don't use one. The number of parts used depends on the mix of products built (the left hand side of each constraint), and we have a limited number of parts of each type on hand (the corresponding constraint right hand side):

```
Subject to 1 1 x + 1 x x + 0 x < < 400 (Chassis)
    1 x
    2 x
    1 x ( + 1 x 2 + 0 x < < < 400 (Power supplies)
    2 x
```

Since the number of products built must be nonnegative, we also have the constraints $x_{1}, x_{2}, x_{3}>=0$. Note that terms like $0 x_{3}$ are included purely to show the structure of the model - they can be either omitted or included when entering formulas in Excel.

The Spreadsheet Formulas

The fastest (though not necessarily the best) way to lay out this problem on the spreadsheet is to pick (for example) cell A1 for x_{1}, cell A2 for x_{2} and cell A3 for x_{3}. Then the objective can be entered in cell A4, much like the algebraic form above:

A4: $=75^{*} \mathrm{~A} 1+50^{*} \mathrm{~A} 2+35^{*} \mathrm{~A} 3$
We can go on to enter a formula in (say) cell B1 for the first constraint left hand side (Chassis) as $=1 * \mathrm{~A} 1+1 * \mathrm{~A} 2+0 * \mathrm{~A} 3$, or the simpler form:

$\mathrm{B} 1:=\mathrm{A} 1+\mathrm{A} 2$

Similarly, we can use cell B2 for the formula =A1 (Picture tubes), B3 for the formula $=2 * \mathrm{~A} 1+2 * \mathrm{~A} 2+\mathrm{A} 3$ (Speaker cones), B 4 for the formula $=\mathrm{A} 1+\mathrm{A} 2$ (Power supplies), and B 5 for the formula $=2 * \mathrm{~A} 1+\mathrm{A} 2+\mathrm{A} 3$ (Electronics):

```
B2: =A1
B3: =2*A1+2*A2+A3
B4: =A1+A2
B5: =2*A1+A2+A3
```

Finally, we'll enter the constraint right hand side values in cells $\mathrm{C} 1: \mathrm{C} 5$:
C1: 400
C2: 200
C3: 800
C4: 400
C5: 600
We now have a simple spreadsheet model that we can use to play 'what if.' For any values we enter for the decision variables in cells A1, A2 and A3, the objective (Total Profit) and the corresponding values of the constraint left hand sides (the numbers of parts used) will be calculated.

We want to turn this 'what if' spreadsheet model into an optimization model, where the Solver will automatically find optimal values for the cells A1:A3, so that the objective function at A4 is maximized, and the constraints are satisfied.

Defining and Solving the Optimization Model

To begin, click the Analytic Solver tab on the Ribbon. Your worksheet with an empty Task Pane ("Solver Options and Model Specifications") Model tab should appear, as shown on the next page.
To define the optimization problem, we'll use the Ribbon to point out to the Solver (i) the cells that we've reserved for the decision variables, (ii) the cell that calculates the value of the objective function, and (iii) the cells that calculate the constraint left hand sides. We'll also enter values for the constraint right hand sides, and non-negativity constraints on the variables. We can perform these steps in any order.

Defining Decision Variables

To define the decision variables, use your mouse to select the range $\mathrm{A} 1: \mathrm{A} 3$ on the worksheet. Then click the Decisions button to open the dropdown gallery (shown below), and click Normal to define A1:A3 as normal decision variables or, if using Analytic Solver Desktop or AnalyticSolver.com, simply click the Decisions button to define A1:A3 as normal decision variables.

Defining the Objective

To define the objective, use your mouse to select cell A4 on the worksheet. In Analytic Solver Desktop and AnalyticSolver.com, click the down arrow under Objective, then select Max and Normal from the menu to define A4 as a normal objective to be maximized - as shown on the next page. Alternatively, you can click the Objective button to open the Add Objective dialog. Click OK to accept the defaults and to define A4 as a normal objective to be maximized.

In Analytic Solver Cloud, click the down arrow under Objective and select Add/Change Objective. Click OK to accept the defaults and to define A4 as a normal objective to be maximized.

Defining Constraints

To define the constraints, use your mouse to select the range B1:B5 on the worksheet. Then, if using Analytic Solver Desktop or AnalyticSolver.com, click the Constraints button to open the Add Constraint dialog.
Alternatively, you could also click the down arrow under Constraints, then click Normal Constraint and $<=$ to define B1:B5 as the left hand sides of five $<=$ constraints.

If using Analytic Solver Cloud, click the down arrow under Constraints, then click Add Constraint to open the Add Constraint dialog.

Within this dialog, you can enter the right hand side(s) as a constant number, a cell range, or a defined name. Click in the Constraint edit box, or click the range selector icon to its right, and use your mouse to select the cell range $\mathrm{C} 1: \mathrm{C} 5$ for the right hand sides:

Then click OK. This will define five constraints: B1 $<=\mathrm{C} 1, \mathrm{~B} 2<=\mathrm{C} 2, \mathrm{~B} 3<=$ $\mathrm{C} 3, \mathrm{~B} 4<=\mathrm{C} 4$, and B5 $<=\mathrm{C} 5$.

The Task Pane Model tab now shows all the elements of the optimization model you've just defined in outline form.

You can solve the model immediately by clicking the Optimize button on the Ribbon, or by clicking the green arrow at the top right of the Task Pane.

The optimal values of the decision variables at A1:A3, the objective at A4, and the constraints at B1:B5 appear on the worksheet, and a Solver Result message ("Solver found a solution. All constraints and optimality conditions are satisfied") appears in green at the bottom of the Task Pane.

You can view a log of solution messages on the Task Pane Output tab in Analytic Solver Desktop, and you can produce optimization reports by selecting Reports - Optimization from the Ribbon. For more information about these features, keep reading!

Using the Classical Solver Parameters Dialog

When using Analytic Solver Desktop, you can also view - and create or edit this model through the classical Solver Parameters dialog (as used in the standard Excel Solver). To do so simply click Premium Solver on the Add-Ins tab on the Ribbon to display the Solver Parameters dialog. Note: This dialog is not supported in Analytic Solver Cloud or AnalyticSolver.com.

Comparing the Task Pane and Solver Parameters Dialog

As you can see, the Task Pane Model tab and the Solver Parameters dialog contain the same information. But where the Solver Parameters dialog is modal (moving the mouse outside the dialog displays a wait cursor - you must close the dialog to do anything else), the Task Pane is modeless: You can move the mouse outside the pane, edit formulas on the worksheet, or use other commands.

The Task Pane is initially docked to the right side of the Excel window, but you can select its title bar with your mouse, drag it to another position, and resize it, as shown on the next page. To "re-dock" the Task Pane, select its title bar with the mouse, drag to a position just beyond the right edge of the Excel window, then release the mouse.

Use the Model tab to view your model in outline form, and optionally edit model elements in-place. Use the Platform tab to view or change Platform options, such as the number of optimizations or simulations to run, or default bounds on decision variables or uncertain variables. Use the Engine tab to select a Solver Engine and view or change its options. Use the Output tab to view a log of solution messages, or a chart of the objective values.

Using Buttons on the Task Pane

Use the buttons at the top of the Model tab to add or remove model elements (you can also use the Ribbon options to do this, as shown earlier), refresh the model outline when you've made unusual changes to the worksheet, analyze the structure of your model, or solve (run) the optimization or simulation model:

AnalyticSolver.com

Use the buttons at the top of the Output tab to pause or stop the Solver, restore the original values of the decision variables, copy the solution message \log to the Windows Clipboard (so you can paste the text into another application Analytic Solver Desktop only), erase the solution log, analyze/solve the model and upload your results to Microsoft's Power BI or Tableau (see step by step instructions below - Analytic Solver Desktop only).

Analytic Solver Desktop

d

Exporting Data to Microsoft's Power BI

Microsoft's POWER BI, for use with Office 365, is a cloud-based service that works with Excel to help you visualize your data using various charts and reports. Analytic Solver Desktop includes the ability to export a fixed set of data from your optimization model, including final variable values, final constraint values, final objective function values, variable shadow prices or constraint reduced costs, etc., directly into a dataset in Power BI.

Note: Exporting your model to Power BI via the Output Pane on the Solver Task Pane is not supported in Analytic Solver Cloud or AnalyticSolver.com. However, it is possible to upload your model to Power BI using the Create App menu. See the chapter, Creating Power BI Custom Visuals, that appears later on in this guide for more information.

Once Solver has stopped with a final result message (even if a solution was not
found), click the
icon on the Output tab to upload the model to the Power BI dashboard. If this is the first time that the icon has been clicked within the current Excel instance, you will be asked to \log in to Power BI.

| Sign in to your account | |
| :---: | :---: | :---: |
| Sign in | |
| Email or phone Back | |
| No account? Create one! | |
| Can't access your account? | Next |

Once logged in, you will be asked to either update an existing dataset or create a new dataset.

| Your DataSets
 Select an existing dataset to update....
 Name ID |
| :--- | :--- | :--- |

In the screenshot above, we have created a new dataset, ProductMix, which will contain the objective, variable and constraint final values, shadow prices, dual values, etc from our optimization model. Once the upload is complete, the following message will appear.

Analytic Solver V2020 (20.0.0.0)	\times
Export succeeded!	
	OK

Logon to Power BI (http://powerbi.microsoft.com/). The newly created dataset will be listed under Datasets.

Select ProductMix, then determine the components to be included in the graph. In the screenshot below we have created a pie chart displaying the final variable values by clicking the $\|\|\|$ icon to the right of the graph.

Use the icon to pin this graph to the Dashboard.

Now, each time the model is solved, the results may be uploaded to your Power BI dashboard. Click back to Excel and change the number of Speaker Cones in inventory from 800 to 825 , then resolve either by clicking the green arrow on the Model tab in the Solver Task Pane or by clicking the Optimize icon on the Analytic Solver ribbon. Once Solver stops with the final result message, "Solver found a solution. All constraints and optimality conditions are
satisfied.", click results. (Note: We are not asked to \log in to the Power BI site a second time since we are using the same instance of Excel.) Click back to Power BI in your browser and refresh, the chart will update automatically with the new final variable values, as shown below.

Number of Products to Produce

 BY ADDRESS

Exporting Data to Tableau

Tableau is a popular interactive software package that allows you to visually explore and analyze your data. Tableau can import data from a wide range of sources, including Excel workbooks, and it is often used in conjunction with Excel. Because Tableau is designed to import data in table form, it hasn't been easy to import the results of an optimization model (such as final values of the decision variables, constraints and objective) into Tableau, unless those model elements occur in table form by themselves in your spreadsheet (which usually isn't the case).

Analytic Solver simplifies this process considerably. With a single click, you can convert the results of your optimization model into a set of Tableau Data Extract (.tde) files or HTML files using the Tableau Web Connector, open them directly in Tableau, and visualize them with a few clicks.
Note: Exporting your model to Tableau via the Output Pane on the Solver Task Pane is not supported in Analytic Solver Cloud or AnalyticSolver.com. However, it is possible to upload your model to Tableau using the Create App menu. See the chapter, Creating Custom Extensions in Tableau, that appears later on in this guide for more information.

Click the green arrow on the Output Tab to solve your optimization model.
Once Solver has stopped with a final result message, click the ${ }^{+\frac{++}{+}+}$ icon on the Task Pane Output tab to save the values for the objective function, constraints and variables to *.tde files or HTML files. You will be prompted to select a folder where the Tableau files will be saved along with the type of Tableau export desired: Tableau Data Extract or Tableau Web Connector.
Note: If exporting to an existing .tde file, data will be appended rather than overwritten. As a result, when exporting to an existing .tde file, all data must be of the same structure as when the .tde file was first created.

Tablea Data Extract

If Tableau Data Extract is selected, static data is exported to three files: Constraints.tde, Objective.tde and Variables.tde. (Although .tde files are designed to hold multiple tables, currently Tableau's software allows only one table per file.) When you import this data into Tableau, Variables.tde will have one row for each decision variable, Constraints.tde will have one row for each constraint and Objective.tde will have just one row for the objective.

- Each row of Variables.tde will contain the Excel cell address, the values of the variables at the time of extraction, the lower and upper bound of each variable, the optimization index and sensitivity information such as the reduced cost and allowable increase/decrease.
- Each row of Constraints.tde will contain the Excel cell address where the constraint is located, the value of each constraint at time of extraction, the constraint lower and upper bounds, and information that would appear on a sensitivity report such as the shadow price, slack value, a 1 or 0 to indicate if the constraint was binding (1) or not (0), and the allowable increase/decrease.
- Objective.tde will contain the Excel cell address where the objective is located, the value of the objective function at the time of extraction, and the optimization index.
Note: If exporting to an existing .tde file, data will be appended rather than overwritten. As a result, when exporting to an existing .tde file, all data must be of the same structure as when the .tde file was first created.

Once you select a folder, the *.tde files will be created, and the following message will appear.

Analytic Solver V2020 (20.0.0.0)	
Tableau Data Extract files have been successfully created.	
	OK

To open the files in Tableau, either double click each file (if using Desktop Tableau) or click Other Files under Connect and open the desired file(s).

Tableau Web Connector

The Tableau Web Connector offers much more flexibility over Tableau Data Extract by allowing you to refresh your data dynamically inside of Tableau.

If Tableau Web Connector is selected, you will be prompted to select a folder in which to save OptimizationResults.html. This file will hold all contents described above for Constraints.tde, Objective.tde and Variables.tde. The following message will appear.
Note: If exporting to an existing .tde file, data will be appended rather than overwritten. As a result, when exporting to an existing tde file, all data must be of the same structure as when the .tde file was first created.

To open the files in Tableau, open a new workbook in Tableau and click Connect to Data.

On the connect menu, select More Servers - Web Data Connector on the Connect menu.

On the Web Data Connector dialog, enter the location displayed on the dialog shown above (i.e., http://localhost:8080/) and press Enter.

Web Data Connector

© ๑ http://localhost:8080/

When the following dialog appears, click Constraints.html.
Note: The error highlighted in red is a simple warning that the URL is not pointing to a Tableau Web Data Connector file. If we had entered a file name, such as http://localhost:8080/Constraints.html, the results would have immediately been uploaded to Tableau.

To add more data, click Data - New Data Source on the Tableau ribbon, then repeat the actions described above.

If your Solver results have changed, you'll need to refresh the results within the Tableau Web Connector HTML files. To do so:

1. In ASP, re-run your model
2. Click the Tableau icon on the Output tab in the Solver Task Pane.
3. Select Tableau Web Connector and the folder where the files should be saved.
4. Click OK.
5. In Tableau, click Data - Refresh All Extracts to update your data.

For more information on using Tableau, please refer to the Tableau documentation found at http://www.tableau.com/.

Introducing the Standard Example Models

The approach outlined above in "From Algebra to Spreadsheets" is a 'quick and dirty' way to translate from a model in algebraic form to an equivalent
spreadsheet model, ready for optimization. However, that approach will soon prove to be short-sighted when you wish to change the data (for example unit profits or parts on hand), expand the model to include more products or parts, or show the model to someone unfamiliar with the problem or uncomfortable with algebraic notation.

Opening the Examples

To see a better approach to defining this model, click Help - Examples on the Ribbon, which opens the workbook, Frontline Example Models Overview.xls. Click Optimization on the Overview tab.

Then click the link StandardExamples.xls to open the workbook, showing the first worksheet EXAMPLE1.

An optimization model - like the one we created 'from scratch' in the previous section - is already defined on this worksheet, and appears in the Task Pane Model tab, as shown below. We could immediately solve this model by clicking the green arrow on the Model tab of the Solver Task pane.

How did this optimization model appear pre-defined in the workbook, you ask? We simply used the Ribbon (or the Solver Parameters dialog) to select the decision variables, objective and constraints, and the Solver engine (and any options or settings it requires). Then we saved the workbook, in the usual way, with Excel's Save command. Models created in the standard Excel Solver, or an earlier version of Analytic Solver, Premium Solver, or Risk Solver can also be saved this way, and opened and immediately solved in Analytic Solver.

More Readable and Expandable Models

Worksheet EXAMPLE1 models the same problem we described in the previous section "From Algebra to Spreadsheets," but the model is organized and laid out for easier readability and expandability.

The decision variables (A1:A3 in the previous section) are in cells D9:F9, and nearby labels show their meaning. The left hand sides of the constraints (B1:B5 in the previous section) are in cells C11:C15, and the right hand sides are in cells B11:B15 - since these constant values can be in any position on the worksheet.
Instead of using constants such as 75,50 and 35 directly in the formula for the objective - as we did in the previous section - we've put these numbers in cells D17:F17. The formula for the objective is =SUMPRODUCT(D17:F17,D9:F9) in cell D18. This makes it easier to change product selling prices, or to obtain this data from an external data source, such as a database or accounting data file.

Similarly, we've placed the coefficients of the constraints in cells D11:F15. These are exactly the constant values we saw in the algebraic statement of the problem in the previous section:

$$
\begin{array}{lll}
\text { Subject to } & 1 x_{1}+1 x_{2}+0 x_{3}<=450 & \text { (Chassis) } \\
& 1 x_{1}+0 x_{2}+0 x_{3}<=250 & \text { (Picture tubes) } \\
2 x_{1}+2 x_{2}+1 x_{3}<=800 & \text { (Speaker cones) } \\
1 x_{1}+1 x_{2}+0 x_{3}<=450 & \text { (Power supplies) } \\
& 2 x_{1}+1 x_{2}+1 x_{3}<=600 & \text { (Electronics) }
\end{array}
$$

In EXAMPLE1, the formula at cell C11 - the left hand side of the first constraint - is $=$ SUMPRODUCT(D11:F11,\$D\$9:\$F\$9). The formulas at C12:C15 were created by copying C11 downward.

To enhance readability, borders and labels have been used to draw attention to the decision variables, the constraints, and the objective function. If you haven't used these Excel features before, select one or more cells, then choose the Home tab in Excel to see how to do this.

EXAMPLE1 is also much easier to maintain and expand than a model constructed with 'hardwired' formulas, as in the previous section. You can add products by inserting new columns, and add more parts by inserting rows, and copying any one of the existing left hand side formulas to the new rows; Excel will automatically adjust the formula cell references.

In the next section, we'll solve EXAMPLE1, and create and examine the Answer Report and Sensitivity Report for this model.

Models, Worksheets and Workbooks

There are several worksheets (EXAMPLE1, EXAMPLE2, etc.) in the StandardExamples.xls workbook. As we proceed through this chapter, you'll see that we can simply click a worksheet tab to display a new and different
model in the Task Pane on that worksheet. Each of these models was created in the same way, and all of them are saved when you save the Excel workbook.

In StandardExamples.xls, each model is entirely contained on one worksheet. But this is not required - one model can include cells from many different worksheets in the same workbook, and it can refer to constant information in other workbooks. By default, models have the same names as the worksheets on which they are created, but you can give your own names to models, and create as many of them as you like. This is described in the Frontline Solvers Reference Guide.

Linear Programming Examples

This section takes you on a quick tour of Analytic Solver features for linear programming (LP) problems. We highly recommend that you 'follow along' by opening and actually solving the examples in this section.

The first three examples are variants of the Product Mix model introduced earlier in this chapter. Our factory is building three products: TV sets, stereos and speakers. Each product is assembled from parts in inventory, and there are five types of parts: chassis, picture tubes, speaker cones, power supplies and electronics units. Our goal is to produce the mix of products that will maximize profits, given the inventory of parts on hand. Be sure to read "Introducing the Standard Example Models" above.

Using the Output Tab and Creating Reports

Click the tab to display the EXAMPLE1 worksheet. To solve this linear programming problem;

- In Analytic Solver Desktop, click the Optimize button on the Ribbon or click the green arrow at the top right of the Task Pane.
- In Analytic Solver Cloud, click the Model button to open the task pane, then click the green arrow at the top right of the Task Pane or click the down arrow beneath Optimize on the Ribbon and select Solve Complete Problem.
- In AnalyticSolver.com, click the Optimize button on the Ribbon or click the green arrow at the top right of the Task Pane.

Almost immediately, the solution values appear in the decision variable cells:

Part Name			TVset	Stereo	Speaker
	Numberto Build, $>$		200	200	0
	Inventory	No. Used			
Chassis	450	400	1	1	0
Picture Tube	250	200	1	0	0
Speaker Cone	800	800	2	2	1
Power Supply	450	400	1	1	0
Electronics	600	600	2	1	1
Profils:					
		By Product	\$75	\$50	\$35
		Total	\$25,000		

To maximize profit, we should make 200 TV sets, 200 stereos and 0 speakers.
The Solver Results message "Solver found a solution. All constraints and optimality conditions are satisfied" appears in green at the bottom of the Task Pane. Don't ignore this message, because it provides critical information about
what happened during the solution process, and what you can and cannot assume about the solution on the worksheet!

If using Analytic Solver Desktop, click the Output tab at the top of the Task Pane to learn more about the solution process. The solution log in the upper part of this pane reports what happened during the solution process. If you are puzzled by the Solver Result message, simply click the underlined message in the log to open online Help to a full explanation of that message.

If solving takes more than a few seconds, the Output tab automatically appears, and current best objective and other information, plus a running chart of the objective value, appears in the bottom part of the Task Pane.

If using Analytic Solver Cloud or AnalyticSolver.com, the output pane will display the status of the model on the Solver Server as shown below.

| Model | Platform | Engine |
| :--- | :--- | :--- | | Poutput |
| :--- |
| Diagnosis Completed |
| Posting model to RASON service ... |
| Solver found a solution. All constraints and optimality |
| conditions are satisfied. |

After solving, you can produce reports (such as the Answer Report and Sensitivity Report) by selecting Reports - Optimization from the Ribbon.

Unlike the standard Solver, you don't have to choose reports immediately in the Solver Results dialog - you can select them later (until you perform another operation that creates new reports).

The Answer and Sensitivity Reports appear as new worksheets, inserted into the workbook just to the left of the EXAMPLE worksheet, as shown on the next page. The Sensitivity Report, which provides dual values (shadow prices and reduced costs) and associated ranges, is described in the Frontline Solvers Reference Guide.

The Answer Report shows the message from the Task Pane Output tab, the Solver engine used, and statistics about the solution process. It shows the beginning and ending values of the objective function and the decision variables. For the constraints, it shows the final cell value and formula, a status (whether the constraint was "binding" - satisfied with equality - at the solution, and a "slack value" for non-binding constraints.

If using Analytic Solver Desktop, you can ask for outlined reports by clicking the "Reports are not outlined" choice on the Ribbon to change it to "Reports are outlined," as shown above. In this case, each block of decision variables and constraints appears in its own outline group. Click the + symbol at the left edge of the report worksheet to show or hide each group in the outline. Any comments that you enter when defining decision variables or constraints appear for each group in the report. These features help you quickly find the information you want in a report created for a large model.

Analytic Solver Desktop

4	A B	C	D	E	F	G
1	Microsoft Excel 14.0 Answer Report					
2	Worksheet: [StandardExamples.xis]EXAMPLE1					
3	Report Created: 4/29/2014 12:58:45 PM					
4	Result: Solver found a solution. All constraints and optimality conditions are satisfied.					
5	Engine: Standard LP/Quadratic					
6	Solution Time: 00 Seconds					
7	Iterations: 0					
8	Subproblems: 0					
9	Incumbent Solutions: 0					
10						
11						
12	Objective Cell (Max)					
13	Cell Name		Original Value	Final Value		
14	\$D\$18 Total Profits:		1600025000			
15						
16	Decision Variable Cells					
17						
18	Cell	Name	Original Value	Final Value	Type	
19	\$D\$9	Number to Build-> TV set	100	200 Normal		
20	\$E\$9	Number to Build-> Stereo	100	200 Normal		
21	\$F\$9	Number to Build-> Speaker	100	0 Normal		
22						
23	Constraints					
24	Cell	Name	Cell Value	Formula	Status	Slack
25	\$C\$11 Chassis No. Used			\$C\$11<=\$B\$11	Not Binding	50
26	\$C\$12 Picture Tube No. Used			\$C\$12<=\$B\$12	Not Binding	50
27	\$C\$13 Speaker Cone No. Used			\$C\$13<=\$B\$13	Binding	0
28	\$C\$14 Power Supply No. Used			\$C\$14<=\$B\$14	Not Binding	50
29	\$C\$15 Electronics No. Used			\$C\$15<=\$B\$15	Binding	0
30	\$D\$9 Number to Build-> TV set			\$D\$9>=0	Not Binding	200
31	\$E\$9	Number to Build-> Stereo	200	\$E\$9>=0	Not Binding	200
32	\$F\$9	Number to Build-> Speaker		\$F\$9>=0	Binding	0

Analytic Solver Cloud

A Model with No Feasible Solution

What does it mean when the Solver can find no feasible solution - no
combination of values for the decision variables that satisfies all the constraints? It may be that the underlying business problem has no feasible solution - if so,
you'd like to focus on the 'hardest-to-satisfy' constraints, to see if you can do anything about them. Or you might have just made a mistake setting up the model - for example choosing $<=$ when you meant to choose $>=$.

But in a large model, with thousands of constraints, how do you find your mistake, or focus on the 'hardest-to-satisfy' constraints? Analytic Solver can help, by producing a Feasibility Report.

Click the tab to display the EXAMPLE2 worksheet. This is the same Product Mix model as in EXAMPLE1, but the supply of Chassis parts at B11 has been changed from 450 to -1. Click the Optimize button in Analytic Solver Desktop or Optimize then Solve Complete Problem in Analytic Solver Cloud. The message "Solver could not find a feasible solution" appears in red at the bottom of the Task Pane.

Still TBD Click Reports - Optimization - Feasibility on the Ribbon. A Feasibility Report worksheet is inserted into the workbook, immediately to the left of EXAMPLE2 - with the contents shown on the next page.

4	A	B	C	D	E	F	G
1	Microsoft Excel 14.0 Feasibility Report						
2	Worksheet: [StandardExamples.xIs]EXAMPLE2						
3	Report Created: 4/29/2014 1:02:06 PM						
4	Engine: Standard LP/Quadratic						
5							
6	Constraints that Make the Problem Infeasible						
7		Cell	Name	Cell Value	Formula	Status	Slack
8		\$C\$1	Chassis No. Used		\$C\$11<=\$B\$11	Binding	0
9		\$D\$9	Number to Build-> TV set		\$D\$9>=0	Binding	0
10		\$E\$9	Number to Build-> Stereo		\$E\$9>=0	Violated	-1

Notice that the report highlights the constraint on Chassis parts used, and the non-negativity constraints on products that are built from Chassis parts. To satisfy the constraint $\mathrm{C} 11<=\mathrm{B} 11$ where B 11 is -1 , we'd have to build a negative number of stereos (or TV sets). In a large model with thousands of constraints with no feasible solution, this report can focus your attention on the "trouble spots" - the constraints that make the problem infeasible. The set of constraints shown is called an IIS or Irreducibly Infeasible Subset of all the constraints. For more information, please see the Frontline Solvers Reference Guide.

An 'Accidentally' Nonlinear Model

What if you intended to build a linear programming model, but you made a mistake and introduced a nonlinear function into the model? Even if you understand the requirements of linear functions (explained in the chapter "Mastering Conventional Optimization Concepts"), in a large model with thousands of variables and constraints, where each constraint is computed by a chain of formulas, an accidentally introduced nonlinearity may be difficult to find. Sometimes, a first-generation LP model is modified to make a previously fixed parameter into a decision variable - and this leads to an accidental multiplication of two variables.
Click the tab to display the EXAMPLE3 worksheet. This is the same Product Mix model as in EXAMPLE1, but the constraint left hand side formula for Chassis parts at C11 has been changed to read
$=$ SUMPRODUCT(D11:F11,D9:F9)^0.9. (The power function clearly makes the constraint nonlinear.) Click the Optimize button, or the down arrow beneath Optimize then Solve Complete Problem. The message "The linearity conditions required by this Solver Engine are not satisfied" appears in red at the
bottom of the Task Pane. (Note that we're solving this model with the LP/Quadratic Solver.)

If you are using Analytic Solver Desktop, click Reports - Optimization Linearity on the Ribbon. A Linearity Report worksheet is inserted into the workbook, immediately to the left of EXAMPLE3 - with the contents shown on the next page. Note: The Linearity Report is not supported in Analytic Solver Cloud or AnalyticSolver.com.
The report highlights the constraint at C 11 as a nonlinear function, and variables D9 and E9 that participate in calculation of this function. (F9 does not appear, because its coefficient at F11 is zero.) In a large model, this report can help you quickly find the source of an unintended nonlinearity.

4	A	A B	C	D	E	F
1	Microsoft Excel 14.0 Linearity Rep					
2	Worksheet: [StandardExamples.xIs]EXAMPLE3					
3	Report Created: 4/29/2014 1:05:41 PM					
4	Engine: Standard LP/Quadratic					
5						
6	Objective Cell (Max)					
7		Cell	Name	Original Value	Final Value	Linear Function
8	\$D\$18 Total Profits:			\$16,000 \$16,000		Yes
9	9					
10						
11	Decision Variable Cells					
12	Cell		Name	Original Value	Final Value	Occurs Linearly
13		\$D\$9	Number to Build-> TV set	100	100 No	
14		\$E\$9	Number to Build-> Stereo	100	100 No	
15		\$F\$9	Number to Build-> Speaker	100	100 Yes	
16	Constraints					
17						
18	Cell		Name	Cell Value	Formula	Linear Function
19			Chassis No. Used	118 \$C\$11<=\$B\$11		No
20		\$C\$12	Picture Tube No. Used	100 \$C\$12<=\$B\$12 Yes		
21		\$C\$13	Speaker Cone No. Used	500 \$C\$13<=\$B\$13 Yes		
22		\$C\$14	Power Supply No. Used	200 \$C\$14<=\$B\$14 Yes		
23		\$C\$15	Electronics No. Used	400 \$C\$15<=\$B\$15 Yes		

The Linearity Report, which is available in all of the Analytic Solver Desktop subsets that perform optimization, is very useful, but it does have two drawbacks: (i) It highlights only a constraint that behaves nonlinearly - but if this constraint is calculated through a chain of formulas, it may not highlight the exact cell formula where the nonlinearity first occurs. (ii) It is based on a numerical test for linear or nonlinear behavior - a test that can be 'fooled' by a poorly scaled model. (A 'poorly scaled model' is one that computes values of the objective, constraints, or intermediate results that differ by many orders of magnitude, which can lead to inaccuracy in computer arithmetic.)

Using the PSI Interpreter to Check for Linearity

If you have Analytic Solver Comprehensive, Analytic Solver Optimization, Analytic Solver Upgrade or Analytic Solver Basic in Analytic Solver Desktop or Cloud, you can use the Polymorphic Spreadsheet Interpreter to perform a symbolic test for linearity that cannot be 'fooled' by scaling problems. (This functionality is not supported in AnalyticSolver.com.) Click the tab to display the EXAMPLE3 worksheet. On the Task Pane Platform tab, in the Diagnosis group of options, and ensure that the Intended Model Type is set to Linear:

Now click the Analyze button in the Task Pane, or select the dropdown choice Analyze Original Problem below the Optimize button on the Ribbon. The Model Diagnosis portion of the Task Pane will pop up, showing the Model Type and related statistics, as shown on the next page.

Notice that the Model Type is "NLP NonCvx". If you're not sure about the meaning of any of the elements shown here, and you are using Analytic Solver Desktop, click the underlined link at the bottom of the Task Pane to display Help on that model element.

\square Model Diagnosis			$\stackrel{\oplus}{\oplus}=-\bar{A} \downarrow$
Model Type	NLP N	Cvx	
\square Variables - Functions - Dependencies			
	Vars	Fcns	Dpns
All	3	6	14
Smooth	3	6	14
Linear	1	5	12
Recourse	0	0	0
Uncertain	0	0	0
\square Other Model Elements			
Bounds	5		
Integers	0		
Chance Constraints	0		
Sparsity	77.78		
(3) Model Type If Unknown, press the 'Analyze without Solving' button to diagnose the model.			

Now click Reports - Optimization - Structure on the Ribbon. A Structure Report is inserted into the workbook, just to the left of EXAMPLE3. This report highlights the formula cells in your worksheet that violate the requirements of your Intended Model Type (in this case Linear). In other words, this report shows the formulas that make your model nonlinear.

For EXAMPLE3, this report again highlights the constraint at C11 and the two variables D9 and E9 (E9 in columns I and J, not shown to save space). But
when a constraint or objective is calculated through a chain of formulas, this report normally finds the formula cell that first introduces a nonlinear relationship (such as a power operator, a function such as LOG, or multiplication of two cells that both depend on decision variables). EXAMPLE3!\$C\$11 in this report can be clicked to jump directly to that cell, so you can quickly inspect its formula.
Note: The Structure Report in Analytic Solver does not include the Name or Cell Value columns.

Nonlinear Optimization Examples

This section takes you on a quick tour of Analytic Solver features for nonlinear programming (NLP) and non-smooth optimization (NSP) problems, using the SOCP Barrier Solver, GRG Nonlinear Solver, and Evolutionary Solver. We highly recommend that you 'follow along' by opening and actually solving the examples in this section.

Portfolio Optimization: Quadratic Programming

The simplest kind of nonlinear optimization model is a quadratic programming (QP) model, with a quadratic objective and all linear constraints. Such a problem can be solved with a quadratic extension to the linear programming Simplex method - as in the LP/Quadratic Solver in Analytic Solver Comprehensive or Analytic Solver Optimization - or with the GRG Nonlinear Solver included in Analytic Solver Upgrade and Analytic Solver Basic.

A classic example of this kind of model, shown in EXAMPLE4 in StandardExamples.xls, is a Markowitz-style portfolio optimization problem. In this model, we want to choose the mix of stocks to form an 'efficient portfolio' with the lowest possible risk (measured by portfolio variance) for a specified target rate of return. Click the EXAMPLE4 tab to display the model.

	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Total
Portfolio \%	20.00\%	20.00\%	20.00\%	20.00\%	20.00\%	100.00\%
Expected Return	7.00\%	8.00\%	9.50\%	6.50\%	14.00\%	
Linear QP Terms	0	0	0	0	0	

Variance/Covariance Matrix							
	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5		
Stock 1	2.50\%	0.10\%	1.00\%	-0.50\%	1.00\%		
Stock 2	0.10\%	4.00\%	-0.10\%	1.20\%	-0.85\%		
Stock 3	1.00\%	-0.10\%	1.20\%	0.65\%	0.75\%	Variance	1.25\%
Stock 4	-0.50\%	1.20\%	0.65\%	8.00\%	1.00\%	Std. Dev.	11.17\%
Stock 5	1.00\%	-0.85\%	0.75\%	1.00\%	7.00\%	Return	9.00\%

This model uses Excel defined names for certain cell ranges: The objective cell I17 has the name Portfolio_Variance, which appears to the left of the formula bar when I17 is selected. Cell I19 has the name Portfolio_Return. The decision variables - the percentage of funds to invest in each of five stocks - are cells B9:F9, and this cell range has the name Allocations. Cell H9 has the name Total_Portfolio. These defined names appear in the Task Pane Model tab, as shown on the next page.

Model P－Platf．．．Engine Outp．．．Work．．．			
	－\times 認	园	＞
＋${ }^{\text {ex }}$ Sensitivity			
¢習 Optimization			
Objective			
L®Portfolio＿Variance（Min）			
\square Variables			
† Normal			
－四 Allocations			
\square Recourse			
Constraints			
D Normal			
－－Portfolio＿Return＞＝ 0.095			
－四 Total＿Portfolio＝ 1			
－Chance			
－Recourse			
－Bound			
－Conic			
－Integers			

We can see immediately that this model will find values for the stock allocations that minimize portfolio variance，subject to constraints that（i）all funds are used （the sum of the stock allocations is 100% or 1.0 ）and（ii）the portfolio return is at least 9.5% ．

Cell I17 computes the portfolio variance using a special function QUADPRODUCT，which is defined by Analytic Solver．This function can be used to compute any＇quadratic form＇such as $x^{T} Q x+c x$ ．In EXAMPLE4，the elements of the matrix Q are the covariances of returns of pairs of stocks，and the elements of the vector c（at B11：F11）are all zero．You could instead compute portfolio variance using a series of Excel formulas using multiplication and addition，but it＇s more convenient to use QUADPRODUCT．

Charts of the Objective and Constraints

Analytic Solver can help you visualize the shape of your problem functions（the objective and constraints）．If you haven＇t been sure of the difference between a linear，quadratic，smooth nonlinear，and non－smooth function，you can use Analytic Solver to plot it．

As an example，select cell I19（the Portfolio Return）on the worksheet，and choose Decisions－Plot from the Ribbon．This will plot I19（whose formula is ＝SUMPRODUCT（Allocations，Stock＿Returns））as a function of the decision variables for Stock 1 through Stock 5，as shown on the next page．

The SUMPRODUCT function is a linear function, so unsurprisingly, Portfolio Return plots as a straight. In contrast, select cell I17 (Portfolio Variance, the QUADPRODUCT function), and choose Decisions - Plot from the Ribbon. This function plots as a parabola - as expected for a quadratic function showing only the positive values, since the decision variables are non-negative.

Both of these plots are actually projections of a function in five dimensions (Stock 1 through Stock 5) onto two dimensions, along a vector from Point A to Point B, shown in the side panel. You have many choices for Points A and B.

To find an optimal allocation of funds to stocks, just click the Optimize button. In an instant, the message "Solver found a solution. All constraints and optimality conditions are satisfied" appears in green at the bottom of the Task Pane, the Portfolio Variance is 0.85% and the Portfolio return is 9.5%, and the decision variables contain:

	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5
	1.41%	24.01%	65.80%	0.00%	8.79%
Portfolio \%	7.00%	8.00%	9.50%	6.50%	14.00%

Solving with the GRG Nonlinear Solver yields the same values (to two decimal places) for the decision variables. If you have Analytic Solver Comprehensive, Analytic Solver Optimization, Analytic Solver Upgrade or Analytic Solver Basic, you can also use the Standard SOCP Barrier Solver - just select it from the dropdown list at the top of the Task Pane Engine tab and click the Optimize button again. This yields nearly the same values for the decision variables, Portfolio Return at I19, and Portfolio Variance at I17.

We can also "turn this problem around" and seek to maximize Portfolio Return, subject to a constraint that Portfolio Variance is (say) no more than 1%. To do this in Analytic Solver Desktop, we can edit the optimization model directly in the Task Pane:

1. Select "Portfolio_Variance (Min)" under Objective in the outline.
2. In the Objective Properties area below the outline, click the Address property and type or select cell I19 (or type "Portfolio_Return"). Change the Sense dropdown choice from Minimize to Maximize.

\square Objective		
Address	Portfolio_P	
Sense	Maximize	\checkmark
Value Of	Maximize	
Comment	Minimize	
Monitor Value	Value of	

3. Select "Portfolio_Return $>=0.095$ " under Constraints in the outline.
4. In the Normal Constraint Properties area below the outline, click the Address property and type or select cell I17 (or type
"Portfolio_Variance"), change the Relation dropdown choice to $<=$, and type 0.01 as the Right Hand Side) value.

\square Normal Constraint		
Left Hand Side	Port	
Relation	<=	\checkmark
Right Hand Side	<=	
Comment	$=$	
Monitor Value	>=	

Since the Task Pane is not editable in neither Analytic Solver Cloud nor AnalyticSolver.com, we must perform a few different steps to edit the model when using either of these products.

1. Double click Portfolio_Variance (Min) under Objective, change Set Cell to I19 and set the "sense" of the objective to Max, then click OK.

2. Double click Portfolio_Return $>=0.095$ under Constraints, change Cell Reference to I17, change the constraint sense to <= and type 0.01 as the Right Hand Side Constraint value. Then click OK.

The Task Pane Model tab should now appear similar to the one shown below.

This problem now has a linear objective and a quadratic constraint; it is called a quadratically constrained or QCP problem. It can no longer be solved by the methods used in the LP/Quadratic Solver (a quadratic extension of the Simplex method), but it can be solved by the GRG Nonlinear Solver, or (more efficiently) by the SOCP Barrier Solver.

Solving with the SOCP Barrier Solver yields a Portfolio Return of 10.2\%, a Portfolio Variance of 1% as expected, and the following values for the decision variables:

	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5
Portfolio \%	0.00%	19.33%	58.67%	0.00%	22.00%
Expected Return	7.00%	8.00%	9.50%	6.50%	14.00%

In "Multiple Parameterized Optimizations" in the chapter "Getting Results: Optimization," we return to EXAMPLE4 and show how to automatically vary the Portfolio Return threshold, solve multiple instances of this portfolio optimization model, and create a chart of the efficient frontier.

The original EXAMPLE4 QP model can be 'scaled up' to portfolios of many thousands of stocks, and solved quickly to optimality by the Large-Scale LP/QP Solver, the XPRESS Solver and the MOSEK Solver. The modified QCP model can also be scaled up to portfolios of thousands of stocks, and solved quickly to optimality by the MOSEK Solver.

A Model with IF Functions

EXAMPLE5 in the StandardExamples.xls workbook was adapted from an actual user model, and illustrates a common situation seen by Frontline Systems in technical support. This model was meant to be a linear mixed-integer (LP/MIP) model, but the user calculated the objective function based on several IF functions. IF functions are certainly not linear functions - in fact they aren't even smooth nonlinear functions!

One of the remarkable things about Analytic Solver is that, in Automatic mode, it will transform this model to a linear mixed-integer model, and solve it to optimality in seconds, without any user intervention. But in this Guide, we'll first see how Analytic Solver behaves without Automatic mode. Click the EXAMPLE5 tab to display the model.

The model has 9 decision variables, all constrained to be integer. The general constraints are linear functions of the decision variables. But the objective depends on I14, J14 and K14, each of which is a sum of three IF functions.

To turn off Automatic mode, in the Task Pane Platform tab Transformation group of options, set the Nonsmooth Model Transformation option to Never.

If we now click the Optimize button with the LP/Quadratic Solver selected, the message "The linearity conditions required by this Solver engine are not satisfied" appears in red at the bottom of the Task Pane.

If we click the Analyze button in the Task Pane, or select the dropdown choice Analyze Original Problem below the Optimize button on the Ribbon, Analytic Solver reports that the model is nonsmooth with integers (NSP/MIP), as shown on the next page.

${ }^{\square}$ Model Diagnosis			
Model Type	NSP/MIP		
${ }^{\text {® }}$ Variables - Functions - Dependencies			
	Vars	Fcns	Dpns
All	9	13	36
Smooth	0	12	27
Linear	0	12	27
Recourse	0	0	0
Uncertain	0	0	0
${ }^{\text {® }}$ Other Model Elements			
Bounds	18		
Integers	9		
Chance Constraints	0		
Sparsity	30.77		

This type of model commonly arises, but is difficult to solve with the standard Excel Solver, or with Analytic Solver Upgrade. But Analytic Solver Comprehensive, Analytic Solver Optimization, Analytic Solver Upgrade and Analytic Solver Basic in Analytic Solver Desktop or Cloud can transform the model to eliminate the IF functions, replacing them with additional binary and continuous variables and linear constraints that have the same effect on the model as the IF functions. The additional variables and constraints don't appear on the worksheet, but they are handled internally by the PSI Interpreter and the selected Solver engine. To do this, we simply set the Nonsmooth Model Transformation option to Automatic:

\square Transformation		
Nonsmooth Model Tra...	Automatic	
Big M Value	Automatic	
Stochastic Transforma...	Always	
Chance Constraints Use	Never	
Auto Adjust Chance C...	False	

If we again analyze the model by clicking the Analyze button in the Task Pane, or by selecting the dropdown choice Analyze Transformed Problem below the Optimize button on the Ribbon, Analytic Solver reports that the the transformed model has 27 variables (18 of them integer) and 67 constraints, as shown on the next page. But it's now a linear programming (LP) model - so it can be solved by the LP/Quadratic Solver. By solving this transformed model, we can find a solution to the original model on the EXAMPLE5 worksheet.

${ }^{\square}$ Model Diagnosis			:	
Model Type	LP/MIP			
${ }^{\text {E }}$ Variables - Functions - Dependencies				
	Vars	Fcns	Dpns	
All	27	67	150	
Smooth	27	67	150	
Linear	27	67	150	
Recourse	0	0	0	
Uncertain	0	0	0	
${ }^{\text {® }}$ Other Model Elements				
Bounds	36			
Integers	18			
Chance Constraints	0			
Sparsity	8.29			

When we now click the Optimize button, the message "Solver found a solution. All constraints and optimality conditions are satisfied" appears in green at the bottom of the Task Pane, and the objective function value at cell B19 is 2400. The message indicates that the Solver has found a proven optimal solution for the original problem with IF functions.

The PSI Interpreter can automatically transform models containing IF, AND, OR, NOT, ABS, MIN and MAX, and relations <, <=, >= and > into equivalent models where these non-smooth functions are eliminated. When this transformation is sufficient to make the overall model linear - as it was in this case - you can use the LP/Quadratic Solver or a large-scale LP/MIP Solver engine to solve the problem.

A Model with Cone Constraints

In the EXAMPLE6 and EXAMPLE7 worksheets, we wish to solve a model to optimize the location of an airline hub. The hub will serve six cities, each of which is located at some latitude and longitude (in these models, we use simple X, Y coordinates). We want to choose a location (X, Y coordinate) for the airline hub that will minimize the maximum distance from the hub to any of the six cities. The distance from the hub (X, Y) to a city (Xc, Yc) is SQRT ((Xc -$\left.\mathrm{X})^{2}+(\mathrm{Yc}-\mathrm{Y})^{2}\right)$. The model is pictured below. In EXAMPLE6, we model and solve the problem using the GRG Nonlinear Solver. In EXAMPLE7, which requires Analytic Solver Comprehensive, Analytic Solver Optimization, Analytic Solver Upgrade or Analytic Solver Basic, we model the problem using cone constraints, and solve it using the SOCP Barrier Solver.

Modeling the Problem with Nonlinear Functions

In EXAMPLE6, our decision variables are the (X, Y) coordinates of the airline hub, at cells D12:E12, and a third decision variable at F19. Cell F19 also serves as the objective function, to be minimized. We calculate the distance from the hub to each of the six cities in cells F13:F18. We define a block of constraints F13:F18 <= F19 - this means that the distance from the hub to each city must be less than or equal to the decision variable F19, which the Solver will minimize. The effect of these constraints is to cause the Solver to find values for D12:E12 - the (X, Y) coordinates of the hub - that minimize the maximum distance to any of the cities.

Click the EXAMPLE6 tab to display the model, and click Analyze - Analytic Original Problem. We see that the model is diagnosed as smooth nonlinear (NLP), with 3 variables and 7 functions. Notice that the Standard GRG Nonlinear Solver is selected.

Click the Optimize button. The message "Solver found a solution" appears in green at the bottom of the Task Pane. The optimal location for the airline hub is at $\mathrm{X}=1.25, \mathrm{Y}=4.0$, and the maximum distance from this location to any of the six cities is 2.1360 units.

Modeling the Problem with Cone Constraints

In EXAMPLE4, we solved the simplest kind of nonlinear optimization problem, a portfolio optimization QP model with a quadratic objective and all linear constraints, and a variation that was a QCP model, with a quadratic constraint . We saw that we could solve the problem with the GRG Nonlinear Solver, but we could also solve both variations of the problem with the SOCP Barrier Solver - and we learned that we could more easily 'scale up' the SOCP problem to large size, with thousands of stocks or more.

We can do the same thing with the airline hub problem. The model is a little more complex, with more variables and constraints - but this allows the Solver
to exploit the structure of the model, and solve it more quickly and reliably. To do this, we will explicitly use cone constraints.
We have actually used a simple kind of cone constraint before - in EXAMPLE1, our first linear programming problem, at the beginning of this chapter. In that model, we used an objective and constraints that were linear functions of the decision variables, and non-negativity constraints on the variables. These constraints specified that the variables must lie within a simple kind of cone, called the non-negative orthant. This first order cone places a bound on the L1norm of the vector of decision variables:

In our reformulation of the airline hub problem in EXAMPLE7, we'll specify that groups of variables must lie within a second order cone (also called a Lorentz cone, or "ice cream cone") - a convex set that looks like this:

This cone places a bound on the $L 2$-norm of the vector of decision variables. If A1:A3 are variables that lie within this cone, then

A1 >=SQRT(SUMSQ(A2:A3)) must hold. A problem with a linear objective and linear or second order cone (SOC) constraints is called a second order cone programming (SOCP) problem; it is always a convex optimization problem.
Second order cone programming is the natural generalization of linear programming. It offers the same advantages of convexity and scalability to large problems offered by linear programming - but for a broader class of models. For history buffs, Premium Solver Platform V6.0 was the first commercial software product to offer broad support for second order cone programming.
The EXAMPLE7 worksheet is shown below. In this model, we compute the simple differences $\mathrm{Xc}-\mathrm{X}$ and $\mathrm{Yc}-\mathrm{Y}$ between the airline hub coordinates and the coordinates of each city. We define new variables F21:F26, G21:G26, and H21:H26. We use constraints to make G21:G26 equal to the Xc - X differences, and $\mathrm{H} 21: \mathrm{H} 26$ equal to the $\mathrm{Yc}-\mathrm{Y}$ differences.
Then we specify that each set of three variables (for example F21, G21, H21) must belong to a second order cone - hence F21 >=SQRT(SUMSQ(G21:H21)) - and likewise for F22, G22, H22, etc. Finally, we use one more variable F27 as the objective to be minimized, and we add a block of constraints F21:F26 <= F27 - much as we did in EXAMPLE6. The effect of these constraints is to cause the Solver to find values for the (X, Y) coordinates of the hub - now at D14:D15 - that minimize the maximum distance to any of the cities.

Click the EXAMPLE7 tab to display the model, and click Analyze - Analyze Original Model. We see that this formulation of the model is diagnosed as second order cone programming problem (SOCP), with 21 variables and 19 functions. Notice that the SOCP Barrier Solver is selected to solve the problem.

Click the Optimize button. After a moment, the same optimal solution as in EXAMPLE6 is found. In this simple example, both the Standard GRG Nonlinear Solver and the SOCP Barrier Solver solve the problem in sub-second time. But if we were to scale up this model to large size - say with 1,000 cities - the SOCP Barrier Solver would likely show a speed advantage.

Solving an Optimization Model using Excel Online or Google Sheets

In late 2014, Frontline Systems released Solver App for use with Excel 2013 and Solver Add-on for use with Google Sheets. With the Solver App you can define and solve optimization problems in your Excel workbook, using Excel Online in Office 365, the Excel Web App in SharePoint 2016 or 2013, or desktop Excel 2016 or 2013. With the Solver Add-on, you can define and solve optimization problems in Google Sheets. You can create and solve models on tablets, phones, or anywhere a Web browser can be used. Solver models that you may already have created in old or new versions of Microsoft Excel, are automatically recognized by the Solver App and, after the existing worksheet is published, with the Solver Add-on.

In Analytic Solver Desktop and AnalyticSolver.com, the Freeze and Thaw buttons were combined into a single Publish button, as shown in the screenshot below. (In Premium Solver Pro/Platform where there was no Freeze/Thaw function, the Ribbon now includes a Publish icon.) Note: This functionality is not supported in Analytic Solver Cloud.

Like the "Freeze" button, the Publish button can be used to prepare a workbook for distribution to other users who don't have Analytic Solver or its subsets installed: All formulas containing Psi function calls (which would yield \#NAME? for other users) are replaced by their values, and the formulas are saved, so they can be restored later by choosing "Unpublish" (equivalent to the old "Thaw").

But the major use of the Publish button in ASP and later, is to prepare a workbook for use with our Solver/Risk Solver Apps for Excel Online and our Solver/Risk Solver Add-on for Google Sheets (the online spreadsheets have limited or no support for user-defined functions).

In ASP, when a model is published, the limits for Solver App (for Excel Online) and Solver Add-on (for Google Sheets) will be automatically adjusted to match the problem limits of your license. For example, if you purchased a license for Analytic Solver, then you will be able to solve linear models using the Solver App or Solver Add-on with up to 8,000 variables and constraints and nonlinear or nonsmooth models with up to 1,000 variables and constraints, if you publish your model first by clicking the Publish button on the Analytic Solver ribbon.

Let's go back to the model on the Example1 tab used in the section above, click the Publish icon on the Ribbon to display the following dialog.

Select Google Sheets then Publish. (If you are a user of Excel Online, please see the example below.) Make sure to save the workbook before uploading to Google Drive.

Note: Only the Active Worksheet is published. To solve a model on a different worksheet within the same Workbook (say Example2), you'll need to publish that worksheet separately. This is important when solving an optimization
model. If solving a simulation model, this does not apply. (For an example on how to solve a simulation model with Excel Online or Google Sheets, please see the next chapter.)

Log on to your Google Drive account and upload Standard Example.xls, then open this file in Google Sheets.

Uploading and Opening Files in Google Sheets

Click the orange New button then select File Upload to upload the StandardExamples.xls spreadsheet to Google Drive.

Browse to the location of the file, typically C: \backslash Program Files (x86) \Frontline Systems \backslash Analytic Solver Platform\Examples (if using 32 bit Excel with 64 bit Windows) or C:\Program Files\Analytic Solver Platform\Examples (if using 64 bit Excel or 32 bit Excel with 32 bit Windows). StandardExamples.xls will appear under My Drive.
Double click the file to open in Google Drive Preview Viewer (shown below). Click Open - Google Sheets.

To add the Solver Add-on, choose the menu option Add-ons - Get Add-ons...

In the Add-ons dialog, scroll until you see Solver. Click to select and install.

Once these steps are finished, Solver should now appear on the Add-ons menu.

Choose Add-ons - Solver - Start. The Solver Task Pane (Google calls this a Sidebar) will appear containing the Solver model: objective, variables, and constraints.

Solver

Set Objective:
\$D\$18
To: © Max \bigcirc Min \bigcirc Value Of \square
By Changing:
\$D\$9:\$F\$9

Subject To:
\$C\$11:\$C\$15<=\$B\$11:\$B\$15
D9:F9 >= 0

Add
Change Delete

Solving Method:

Since this is a linear model, click the down arrow to the right of GRG Nonlinear under Solving Method to select the LP/Quadratic engine.

Solving Method:

Click Solve to run the Simplex LP engine to solve the linear model. The Solver Add-on solves the model, inserting the final variable values of 200/200/0 in cells D9:F9 and finding an objective equal to $\$ 25,000$. Note: Reports, such as Answer Report, Sensitivity Report, and/or Limits reports, are not supported in the Solver Add-on.

The Solver Sidebar behaves much like the Excel Solver dialog. To change a constraint, simply highlight the desired constraint and click Change. To delete a constraint, highlight the desired constraint and click Delete. Click Reset All to clear the objective, all variables and constraints, and all options settings. Select Options to change an engine option such as Constraint Precision, Automatic

Scaling, Convergence, etc. For more information on each of these options, please see the Engine Option chapter in Frontline Solvers Reference Guide.

Solver Options	
Constraint precision:	0.000001
V Use Automatic Scaling	
\square Ignore Integer Constraints	
Integer Optimality(\%):	1
Convergence:	0.0001
\square Use Multistart	
Population Size:	100
Random Seed:	0
Mutation Rate:	0.075
Maximum Time without improvement:	30
V Require Bounds on Variables	
\square Assume Non-negative	
OK	Cancel

Now let's Publish this same model to Excel Online. Let's go back to Excel and StandardExamples.xls. Click Publish - Unpublish.

Reopen the Publish dialog by clicking Publish. Confirm that Excel Online is selected. Click Publish to publish the worksheet to Excel Online.

Note: Only the Active Worksheet is published. To solve a model on a different worksheet within the same workbook (say Example2), you'll need to publish that worksheet separately. This is important when solving an optimization model. If solving a simulation model, this does not apply. (For an example on how to solve a simulation model with Excel Online or Google Sheets, please see the next chapter.)

Now Save the file as StandardExamples.xlsx on your SharePoint or Office 365 site.

Note: In order to use the Solver App, your file must be saved on SharePoint or Office 365 site. This app cannot solve models saved on your local hard drive.

Open the workbook using Excel Online, then click Edit Workbook - Edit in Excel Online.

Click Insert - Office Add-ins.

Select the Store tab and search for Solver, then select ($2^{\text {nd }}$ app in the list) and Install. Note: A Premium Solver app which solves linear models with more than 200 variables and nonlinear models with more than 200 variables and 200 constraints is available for purchase. Please contact Frontline Systems for more information at sales@solver.com.

Please see the next chapter for an example on the use of the Risk Solver App.

The Solver App task pane opens to the right on your screen.

Simplex LP has already been selected for Solving Method. Click Solve to run this engine to solve this simple linear model. If running for the first time, you will be asked to Trust the App.

Risk Solver App

Solver inserts the final variable values 200/200/0 into cells D9:F9 and adds the final result message "Solver found a solution. All Constraints and optimality conditions are satisfied." to the bottom of the Solver pane.

Note: The Answer Report and Sensitivity Report are only supported when using the Solver App within Excel 2016. You can create the reports after Solver has found a solution by clicking the Create Report icon located in the title bar of the Solver App. If using Excel 2013, Excel for iPad \& iPhone or Excel Online, you will not have the option to create reports.

This task pane behaves much like the Excel Solver. To Add a constraint, click Constraints, then Add. To Change or Delete a constriant, select the desired constraint and click Change or Delete. To change an engine option, click Engine then Options. For more information on each of these options, please see the Engine Option chapter in Frontline Solvers Reference Guide.

Examples: Simulation and Risk Analysis

Introduction

This chapter introduces simulation and risk analysis in Analytic Solver, with a series of examples. Each of these examples with the exception of the last one can be used in Analytic Solver Simulation.

- "A First Simulation Example" takes you step-by-step through the process of building and analyzing a risk analysis model using Monte Carlo simulation.
- "Airline Revenue Management Example" takes you through three versions of an airline yield management problem, to illustrate a single simulation, multiple parameterized simulations, and simulation optimization.

A First Simulation Example

Building a simulation model in Analytic Solver is straightforward: You simply build a conventional spreadsheet model, designed for 'what-if' analysis. Next, you identify the inputs to your model that are uncertain, and use PSI Distribution functions to describe the uncertainty. Then, you identify the outputs of special interest (such as Net Profit), and use PSI Statistics functions to examine or summarize how they behave in light of the uncertainty.

To open this example in Analytic Solver Desktop or Analytic Solver Cloud, click Help - Examples on the Ribbon, which opens a workbook Frontline Example Models Overview.xls. Click the Simulation link.

We'll build the simulation model step-by-step in this section using the model in the worksheet, BusinessForecast. To view the completed model, see the $2^{\text {nd }}$ tab in the workbook, BusinessForecastPsi.

Uncertain Variables

In any problem, there are factors or inputs that you can control - for example, the price you set for a product, and factors or inputs that you cannot control for example, customer demand, interest rates, etc. Analytic Solver uses uncertain variables (random variables in mathematics) to represent inputs that are uncertain and beyond your control. (It uses decision variables to represent factors or inputs that you can control.)

Uncertain Functions

You will also have outputs or results of interest - such as Net Profit - that you can compute, using formulas that depend on the factors influencing the problem - possibly both decision variables and uncertain variables. We'll use the term uncertain functions for quantities whose calculation depends on uncertain variables (in mathematics these are called functions of random variables).

A Business Planning Example

We'll illustrate the process of building a simulation model step by step, using a simple business planning example. Imagine you are the marketing manager for a firm that is planning to introduce a new product. You need to estimate the first year profit from this product, which will depend on:

- Sales in units
- Price per unit sold
- Unit manufacturing cost
- Fixed costs and overhead

Profit will be calculated as Profit = Sales * (Price - Unit cost) - Fixed costs.
Fixed costs are known to be $\mathbf{\$ 1 2 0 , 0 0 0}$. But the other factors all involve some uncertainty. Sales in units can cover quite a range, and the selling price per unit will depend on competitor actions. Unit manufacturing costs will also vary depending on vendor prices and production experience.

Uncertain Variables: Sales and Price

Based on your market research, you believe that there are equal chances that the market demand will be Slow, OK, or Hot for this product:

- In the Slow market demand scenario, you expect to sell $\mathbf{5 0 , 0 0 0}$ units at an average price of $\mathbf{\$ 1 1 . 0 0}$ per unit.
- In the OK market scenario, you expect to sell 75,000 units, but you'll likely realize a lower average selling price of $\mathbf{\$ 1 0 . 0 0}$ per unit.
- In the Hot market scenario, you expect to sell $\mathbf{1 0 0 , 0 0 0}$ units, but this will bring in competitors who will drive down the average selling price to $\mathbf{\$ 8 . 0 0}$ per unit.

Since the scenarios are equally likely, your average volume is $\mathbf{7 5 , 0 0 0}$ units, and your average price per unit is $\mathbf{\$ 9 . 6 7}$. But think: How likely is this average case? (Will it ever actually occur?)

Uncertain Variables: Unit Cost

Your firm's production manager advises you that unit costs may be anywhere from $\$ 5.50$ to $\$ 7.50$, with a most likely cost of $\mathbf{\$ 6 . 5 0}$. The most likely cost is also the average cost.

Uncertain Function: Net Profit

Net Profit is calculated as Profit = Sales * (Price $\boldsymbol{-}$ Unit cost) $\boldsymbol{-}$-Fixed costs. Sales, Price and Unit costs are all uncertain variables, so Net Profit is an uncertain function.

A What-If Spreadsheet Model

At this point, you can summarize the problem in the Excel model pictured below, which calculates Net Profit based on average sales, price, and unit cost.

B11		- $0 f_{x}$		=B4* ${ }^{(B 5-B 6)-B 7}$			
1	A	B	C	D	E	F	
1							
2	Financial Forecast						
3				Sales Scenarios	Volume	Price	
4	Sales Volume	75,000					
5	Selling Price	\$9.67		Hot Market	100,000	\$8.00	
6	Unit Cost	\$6.50		OK Market	75,000	\$10.00	
7	Fixed Costs	\$120,000		Slow Market	50,000	\$11.00	
8							
9				Cost Scenarios			
10							
11	Net Profit	\$117,750		Minimum Cost	\$5.50		
12	True Average			Most Likely Cost	\$6.50		
13				Maximum Cost	\$7.50		
14							

The Net Profit figure of $\$ 117,750$ (=B4*(B5-B6)-B7) calculated by this model, based on average values for the uncertain factors, is quite misleading, as we'll see in a moment. The true average Net Profit is closer to $\$ 93,000$! In the spirit of Prof. Sam Savage's book The Flaw of Averages, we'll refer to the model above as the Flawed Average model.

Defining a Simulation Model

To "stress test" this model, we need to replace the fixed Sales, Price and Unit cost amounts with variable amounts that reflect their uncertainty.

Since there are equal chances that the market will be Slow, OK, or Hot, we want to create an uncertain variable that selects among these three possibilities, by drawing a random number - say 1,2 or 3 - with equal probability. We can do this easily in Analytic Solver using an integer uniform probability distribution. We'll then base our Sales Volume and Selling Price on this uncertain variable.
If using Analytic Solver Desktop or AnalyticSolver.com, we'll choose a currently empty cell, B9, to hold this distribution by clicking on it and selecting Distributions - Discrete on the Ribbon. This displays a cascading menu, as shown on the next page.

A sample drawn from a discrete distribution is always one of a set of discrete values, such as integer numbers. We click to choose IntUniform from the gallery or menu. Analytic Solver displays the Uncertain Variable dialog for a integer uniform distribution, initially with parameters lower 0 and upper 10:

We click in the Value column and change the parameters to read lower 1 and upper 3. This means that on each trial, we'll draw a number 1 , 2 or 3 from this distribution. As we do, the chart of probability mass (density) is updated:

When we click the Save icon in the dialog toolbar in Analytic Solver Desktop or the Save button at the bottom of the dialog in Analytic Solver Cloud or AnalyticSolver.com, a formula $=\operatorname{PsiIntUniform}(\mathbf{1 , 3})$ is written to B9. B9 is now an uncertain variable. For each trial of the Monte Carlo simulation, a different value - either 1, 2 or 3 - will appear in cell B9. When we run a Monte Carlo simulation of (say) 1,000 trials, 1,000 different values of 1,2 or 3 will be sampled for this cell's value.

Now, we need to select one of the three sales scenarios in formulas for Sales Volume and Selling Price. With cell B4 selected, we enter the formula:
=CHOOSE(B9,E5,E6,E7) for Sales Volume
This will cause B4 to return $100,000,75,000$, or 50,000 , depending on the value in B9. Next, with cell B5 selected, we enter the formula:
$=\mathbf{C H O O S E}(B 9, F 5, F 6, F 7)$ for Selling Price
This will cause B5 to return $\$ 8, \$ 10$ or $\$ 11$, depending on the value in B9.
Notice that the values returned by B4 and B5 are related, or correlated: Higher sales volume is accompanied by lower selling prices, and vice versa. If we had scenarios with 100,000 units sold at $\$ 11$ each, our model would be unrealistic. Analytic Solver has more versatile ways to specify correlation between uncertain variables, but this approach is easy to understand in this example.
Next, we'll deal with Unit Cost. We have not just three, but many possible values for this variable: It can be anywhere from $\$ 5.50$ to $\$ 7.50$, with a most likely cost of $\$ 6.50$. A crude but effective way to model this is to use a triangular distribution. Analytic Solver provides a function called PsiTriangular() for this distribution.

With cell B6 selected, we select Distributions - Common - Triangular from the Ribbon.

(Unlike a discrete distribution, a sample drawn from a continuous distribution can be any numeric value, such as 5.8 or 6.01 , in a range.) Analytic Solver displays the Uncertain Variable dialog with a chart of the triangular distribution, initially from 0 to 3 , peaking at 1 .

To see more of the features of this dialog, try clicking on the Parameters drop down at the top of the right panel. See Frontline Solvers Reference Guide for more information.

The minimum, most likely, and maximum values for Unit Cost are in cells E11, E 12 and E13. If we enter these cell references - not just the numbers 5.50, 6.50 and 7.50 - into our PsiTriangular() function call, we'll have a more flexible model. To start, we simply click in the Value field for the min parameter.

Now we can either type in a number or cell reference, or we can click the \qquad button at the right edge of the field: When we do this, a small dialog appears. Type "E11", then click OK.

If using Analytic Solver Cloud or AnalyticSolver.com, simply type the cell address into the $\mathbf{m i n}$ field.

Now E11 appears as the $\mathbf{m i n}$ (a) parameter. Since at this moment, the min (a) value of 5.50 is greater than the $\max (\mathbf{b})$ value of 3 , the error "The distribution is invalid with the current values of the parameters" is displayed instead of the chart. This is a hint that the parameters are inconsistent. (If using Analytic Solver Cloud, click OK to clear the error and continue editing the Parameter fields.) The chart reappears once we enter references to cell E12 for likely (c) and E13 for max (b). When we click the Save icon, $=$ PsiTriangular(E11,E12,E13) is inserted into cell B6.

We've now defined the uncertain variables in our model. Anything calculated from these uncertain variables is an uncertain function, but usually we're interested only in specific results such as Net Profit at cell B11. When we run a simulation, B11 will effectively hold an array of values, each one calculated from different values sampled for B4, B5, B6 and B7.

What would we like to know about the array of values for Net Profit at cell B11? The simplest summary result is the average (or mean) Net Profit. Note that this will be the true average of Net Profit across 1,000 or more scenarios or trials not a single calculation from average values of the inputs.

Click Results to open the Simulation Results dialog then select Statistics from the left and Mean from the right. Enter the output cell and the cell where the statistic is to be placed, then click Insert.

Selecting Uncertain Functions

When we define a summary statistic, such as =PsiMean(B11), we've implicitly designated cell B11 as an uncertain function. Analytic Solver will keep track of the full range of trial values for B11 during a simulation, and will display frequency and sensitivity charts, statistics and percentiles for it on demand. As noted above, in principle anything calculated from the uncertain variables is an "uncertain function" - but to save time and memory, Analytic Solver keeps track of trial values only for the formula cells that we designate as uncertain functions.

What if we want to designate cell B11 as an uncertain function without calculating any summary statistic for it on the worksheet?

With cell B11 selected, select Results to open the Result Dialog, then click OK to accept Output for Category and In Cell for Function.

This will modify cell B11's formula $=\mathrm{B} 4 *(\mathrm{~B} 5-\mathrm{B} 6)-\mathrm{B} 7$ to read $=\mathbf{B 4}$ *(B5-B6)-B7 + PsiOutput(). If we don't want to modify this formula, we can instead choose Results - Output - Referred Cell.

If we click in cell B12, this cell will contain $=\mathbf{P s i O u t p u t}(\mathbf{B 1 1})$. Any one of these three actions - defining a summary statistic such as PsiMean() on B11, add PsiOutput() to the formula in cell B11, or placing $=$ PsiOutput(B11) in another cell - is sufficient to designate cell B11 as an uncertain function.

Our model now looks like the one pictured below. Notice that the Task Pane Model tab shows our simulation model in outline form, and cell B12, where we placed the PsiMean() function, displays as \#N/A - because a simulation has not yet been executed.

-	A	B	C	D	E	-	
1							Solver Options and ..
2	Financial Fore						
3				Sales Scenarios	Volume		+ \times ¢ ${ }^{\text {a }}$,
4	Sales Volume	50,000					${ }^{4}+4$ Sensitivity
5	Selling Price	\$11.00		Hot Market	100,000		© Optimization
6	Unit cost	\$6.50		OK Market	75,000		- ${ }^{\text {dimalation }}$
7	Fixed Costs	\$120,000		Slow Market	50,000		\dagger Uncertain Variables -包 BusinessForecastPsi
8							($\triangle \$$ B $\$ 6$
9		3		Cost Scenarios			- $\$$ B\$9
10							Uncertain Functions
11	Net Profit	\$104,803		Minimum Cost	\$5.50		$\begin{gathered} \text { - } \quad \text { BusinessForecastPsi } \\ =\$ B \$ 6 \end{gathered}$
12	True Average	\#N/A		Most Likely Cost	\$6.50		- $\$$ \$ $\$ 11$
13				Maximum Cost	\$7.50		Statistic Functions
14							
15							- Correlation Matrices
16							- Parameters
17							$+{ }^{-\infty}$ Data Mining Decision Tree
18							
19							

Running a Simulation

Click the green arrow on the Model tab to start a simulation. With an oldfashioned simulation software package, you'd press a button to start a simulation, then perhaps get a cup of coffee. Because simulations ran slowly, software packages were designed for "batch" operation: You'd spend time getting everything set up just right, run a simulation and wait (sometimes quite a while), then spend time analyzing the results. But with Analytic Solver, you'll find that in the blink of an eye, your first Monte Carlo simulation is complete!

Since there is one uncertain function, and this is the first time a simulation has been performed, the following dialog opens. Subsequent simulations will not produce this report. However, it is possible to reopen this frequency chart simply by double clicking cell B11. (See below for more information on this chart.)

If your simulation model contains more than one output function, then a chart containing frequency graphs of up to 9 output functions and uncertain variables will appear. For example, if the uncertain variable in cell B6 was also selected to be an output cell $(\mathrm{B} 6=\operatorname{PsiTriangular}(0,1,3)+\operatorname{PsiOutput}())$ and a simulation was performed, the following graph would appear at the end of the simulation.

Analytic Solver Desktop

Analytic Solver Cloud displays only output functions; B6 and B11 in this example.

Analytic Solver Cloud

Double clicking the "\$B\$6(func)" chart in Analytic Solver Desktop will open the B6 uncertain variable dialog, as shown below. To open the uncertain function dialog, click the Show Output icon on the top left of the title bar.

Double clicking "BusinessForecastPsi!B6" in Analytic Solver Cloud will open the uncertain function dialog, as shown below.

If you select Percentiles from the drop down menu on the top right, you'll notice that the the vertical red lines displayed on the chart denote the 5% and the 95% percentiles values of 5.82 and 7.18 , respectively.

Parameters
Parameters
Analytic Moments
Percentiles
Chart Type
Axis Options
Markers

Each of the 5 values at the top of the chart can be edited in Analytic Solver Desktop. For example, the red lines can be moved to the left or right until the
desired percentile is achieved, or you can directly edit the percentile or the percentile's value by clicking the value to be changed. Note: This functionality is not supported in Analytic Solver Cloud or AnalyticSolver.com. The red lines denoting the $5^{\text {th }}$ and $95^{\text {th }}$ percentiles are both stationary in these products.

If you close the uncertain variable dialog for cell B6, (by clicking the X in the top right corner) you will see that cell B12 displays the true average for Net Profit across these trials - as shown below.

-	A	B	C	D	E
1					
2	Financial Forecast				
3				Sales Scenarios	Volume
4	Sales Volume	100,000			
5	Selling Price	\$8.00		Hot Market	100,000
6	Unit cost	\$6.42		OK Market	75,000
7	Fixed Costs	\$120,000		Slow Market	50,000
8					
9		1		Cost Scenarios	
10					
11	Net Profit	\$37,918		Minimum Cost	\$5.50
12	True Average	\$92,250		Most Likely Cost	\$6.50
13				Maximum Cost	\$7.50
14					

The result of "shaking the ladder" is striking: Our true average Net Profit for these 1,000 trials is $\$ 92,250$ - quite a bit less than the "Flawed Average" Model figure of $\$ 117,750$! And we also see that we can lose money. Notice that the first eight percentiles are negative in the screenshot below.

In Analytic Solver Desktop you can try pressing F9 (the Excel recalculate key) on this model: Each time you do, another 1,000 Monte Carlo trials are run, and a slightly different true average Net Profit figure will be displayed - but normally much less than $\$ 117,750$.

Interactive Simulation in Desktop Solver

We've just seen that the mean or 'True Average' Net Profit, over 1,000 different simulated outcomes, is less than we expected from our naïve "Flawed Average" model. We've also seen that in some outcomes, our Net Profit is actually a loss. A quick look at the dropdown galleries for Results - Statistic, Measure and Range on the Ribbon suggests that we can easily compute and view many other statistics about Net Profit. But we'd really like to see the full range of outcomes in this model. This is very easy to do in Analytic Solver Desktop using Interactive Simulation. Note: Interactive Simulation is not supported in Analytic Solver Cloud or AnalyticSolver.com.

With Interactive Simulation turned on, simply move the mouse pointer to B11 and wait about 1 second. A miniature, live frequency distribution chart of the simulation trial values for cell B11 appears automatically:

To see and do more, just double-click on B11, the output cell calculating Net Profit, to display the same frequency chart that was automatically opened after our first simulation run.

Viewing the Full Range of Profit Outcomes

We see immediately that in some outcomes, we can lose of lot of money - over $\$ 60,000$! We also see that we make a profit in most outcomes - but how many exactly? Analytic Solver automatically sets a Lower-Cutoff of " 0 " in the Frequency chart by displaying a vertical red bar. The probabilities are automatically shown above the chart. In this case there is an 8.4% chance of a loss and a 91.60% chance of a profit. In Analytic Solver Desktop, the lower cutoff can be changed by clicking the $\$ 0$ at the top of the chart. The percentile values can be edited in the same way.

Note: If you change the lower cutoff from 0 to -10 , you'll notice the red vertical line denoting the lower cutoff of $\$ 0$ has now moved to $-\$ 10$ and the percentile values have also changed accordingly. Percentile values can be edited in the same way or by simply moving the red vertical line to the left or right.

Looking at the right panel you can see the Statistics view, which includes summary statistics for the full range of Net Profit outcomes. We can see that the worst case outcome (Minimum) of this simulation was $-\$ 66,629$, and the best case outcome (Maximum) was $+\$ 213,347$. Value at Risk 95% shows that we have a 5\% chance of making $\$ 15,629$ or less. The Conditional Value at Risk 95% value indicates that the average profit we will see (up to the 95% percentile) is $\$ 87,012$.

Another view of the full range of outcomes is shown on the Cumulative Frequency tab.

Click on the Statistics drop down at the top of the right panel and choose Percentiles from the list.

The Percentiles tab shows the same information as the Cumulative Frequency tab, but in numeric form. Below, we've shown the $75^{\text {th }}$ through $99^{\text {th }}$ percentiles:

Note that you can close and open the right hand panel simply by clicking on the two arrows on the vertical bar between the chart and the right hand panel.

Analyzing Factors Influencing Net Profit

Other tabs on the Uncertain Function dialog can help us understand how the uncertain variables in our model influence our Net Profit.

Sensitivity Tab

The Sensitivity tab displays a "Tornado chart" that shows you how much Net Profit changes with a change in the uncertain variables - the Triangular distribution for Unit Cost at cell B6, and the integer uniform distribution at cell B9. In this model there are only two uncertain variables, but in a large model with many such variables, it's usually not obvious which ones have the greatest impact on outcomes such as Net Profit. A Tornado chart highlights the key variables: B6 has a negative correlation with Net Profit, whereas B9 has a positive correlation.

The fact that Net Profit goes down as our Unit Cost at B6 goes up is expected. But why does Net Profit go up as cell B9 goes up? Note that B9 $=1$ corresponds to the Hot market scenario, 2 corresponds to the OK market, and 3 corresponds to the Slow market scenario. The fact that B9 is positively correlated with Net Profit is telling us that we make higher profits when the market is slow, not when it's hot. Our typical Selling Price is lower when the market is hot, and the increased Sales Volume doesn't make up for this.

Scatter Plots Tab

The Scatter Plots tab, shown on the next page, gives us a different view of the relationship of Net Profit to our uncertain variables: Unit Cost at cell B6, and the integer uniform distribution at cell B9.

Notice that the scatter plot against Unit Cost has three downward-sloping lines: Each line corresponds to a different market scenario (Hot, OK or Slow), and shows that as Unit Cost rises, our Net Profit drops - dropping fastest in the Hot Market scenario, because our profit margin is so narrow.

The scatter plot against the integer uniform distribution shows three high-low ranges for Net Profit, again corresponding to a different market scenario - Hot, OK, or Slow. We see again that the range of Net Profit is lowest in the Hot Market scenario.

Interactive Simulation with Charts and Graphs

With an old-fashioned simulation software package, you'd press a button to start a simulation, then perhaps get a cup of coffee. Because simulations ran slowly, software packages were designed for "batch" operation: You'd spend time getting everything set up just right, run a simulation and wait (sometimes quite a while), then spend time analyzing the results. But with Analytic Solver, simulations run so fast that fully Interactive Simulation is practical.

Now 1,000 Monte Carlo simulation trials (the default number) will be executed each time we change the spreadsheet. Since there is one uncertain function, and this is the first time a simulation has been performed, the following dialog opens. Subsequent simulations will not produce this report. However, it is possible to reopen this frequency chart simply by double clicking cell B11. (See below for more information on this chart.)

To turn on Interactive Simulation, simply click the light bulb on the Ribbon. It will "light up," as shown below.

Interactive Simulation makes Analytic Solver Simulation fundamentally different from other Monte Carlo simulation tools for Excel. The kinds of charts we've just seen can be produced by other tools, but only at the end of a "simulation run." In contrast, Analytic Solver makes these charts live as you play what-if with your model.
After seeing this model, your production manager might think of a way to reduce the maximum Unit Cost to $\$ 7.00$ instead of $\$ 7.50$. What would be the impact of this change on Net Profit, over the full range outcomes? With Analytic Solver Comprehensive or Analytic Solver Simulation, this is as easy as any other 'what-if' question in Excel:

Click the Frequency tab to re-display the frequency chart of outcomes for cell B11. Then simply change the number in cell E13 from 7.50 to 7. Immediately, a thousand Monte Carlo trials are performed, and the chart is updated. The effect is striking: We have a 97.7% chance of making a profit, and - checking the Percentiles tab - we see that instead of a 1% chance of losing about $\$ 48,000$, we have a 1% chance of losing just $\$ 5,285$!
But Analytic Solver Simulation is even faster than this: Click the Options button on the Ribbon, and change the number of Monte Carlo trials from 1,000
to 100,000 (or more). In a second or less on most modern PCs, one hundred thousand Monte Carlo trials are performed, and the chart is updated!

The Flawed Average model presented a limited and misleading picture of this business situation. In contrast, the Analytic Solver model has illuminated the situation considerably. We can see what can go right, and what can go wrong. We can make an informed decision about whether the reward is worth the risk. And - most important - we can interactively explore ways to improve the reward and reduce the risk. This is risk analysis at work.

Charts and Graphs for Presentations

Often, you may be called up to present your results to others. One great way to do this is in Excel itself, live! But at times you may need to print a chart, or copy it into a Word document or PowerPoint presentation. This is very easy to do in Analytic Solver Desktop, with the toolbar buttons in the title bar of the Uncertain Variable or Uncertain Function dialog. Note: This functionality is not supported in Analytic Solver Cloud or AnalyticSolver.com.

Click the Clipboard icon to copy the currently displayed chart to the Windows Clipboard. You can then choose Edit Paste in Word, Excel, PowerPoint and many other applications to paste the chart image into your document. (Choosing Edit Paste in Excel inserts a static, non-updating chart image in the worksheet.)
Click the Print icon to immediately print the currently displayed chart on your default printer, or click the down arrow next to this icon to display the menu choices shown above: Print Preview, Printer Settings and Page Settings. You
can choose a printer and set printer options, set page margins, and preview your output using these menu choices.

Analytic Solver also makes it easy to control the format of your charts. Below, we've re-opened the right hand panel and clicked on the drop down menu to choose Chart Type.

You can control the chart type, color, dimensionality and transparency, bin density, titles and legends, axis labels and number formats, horizontal axis scaling, and more. As you change chart options in the right pane, the chart is immediately updated so you can see the results (unlike some other simulation products for Excel). When you're satisfied with the chart format, you can save and apply it to just this chart, to all charts on this worksheet, or to all charts in the workbook when you click the Apply button at the bottom of the right pane.

Exporting Data to Microsoft's Power BI

Microsoft's POWER BI, for use with Office 365, is a cloud-based service that works with Excel to help you visualize your data using various charts and reports. Analytic Solver Desktop includes the ability to export a fixed set of data from your simulation model, including all trial values, output function statistics, percentiles, etc., directly into a dataset in Power BI. This functionality is not present in Analytic Solver Cloud or AnalyticSolver.com. See the chapter, Creating Power BI Custom Visuals, that appears later on in this guide for more information on using Power BI with these two products.

Once Solver has stopped with a final result message, click the
icon on the Output tab or on the Uncertain Function dialog to upload the model results to the Power BI dashboard. If this is the first time that the icon has been clicked within the current Excel instance, you will be asked to \log in to Power BI.

Once logged in, you will be asked to either update an existing dataset or create a new dataset.

In the screenshot above, we have created a new dataset, BusinessForecast, which will contain the uncertain variable and uncertain function trial values, statistics and percentiles, etc from our optimization model. Once the upload is complete, the following message will appear.

Analytic Solver V2020 (20.0.0.0)	\times
Export succeeded!	

Logon to Power BI (http://powerbi.microsoft.com/). The newly created dataset will be listed under Datasets.
λ Get Data

Filter content

Dashboards
Management

Reports
Number of Products to...

Datasets

BusinessForecast *
ProductMix1

Select BusinessForecast, then determine the components to be included in the
graph. In this example, we have created a bar chart by clicking (to the right of the graph) and selecting the Maximum, Mean, Minimum, and Mode Output Statistics.

Use the
 icon to pin this graph to the Dashboard.

Now, each time the model is solved, the results may be uploaded to your Power BI dashboard. Click back to Excel and change the Price of the Slow Market from $\$ 11$ to $\$ 15$, then run a $2^{\text {nd }}$ simulation either by clicking the green arrow on the Model tab in the Solver Task Pane or by clicking the Simulate icon on the

Analytic Solver ribbon. Once Solver stops, click the Output tab or the Uncertain function dialog to uplo Note: We are not asked to \log in to the Power BI site a second time since we are using the same instance of Excel. However, we are asked if we would like to select an existing dataset to update. Select BusinessForecast and then click OK. Click back to Power BI in your browser and refresh, the chart will update automatically with the new final statistic values, as shown below.

Exporting Data to Tableau

Tableau is a popular interactive software package that allows you to visually explore and analyze your data. Tableau can import data from a wide range of sources, including Excel workbooks, and it is often used in conjunction with Excel. Because Tableau is designed to import data in table form, it hasn't been easy to import the results of a simulation model (such as final values of the uncertain functions, uncertain variables, percentiles and statistic values) into

Tableau, unless those model elements occur in table form by themselves in your spreadsheet (which usually isn't the case).
Analytic Solver Desktop simplifies this process considerably. With a single click, you can convert the results of your simulation model into a set of Tableau Data Extract files (*.tde), open them directly in Tableau, and visualize them with a few clicks.

This functionality is not present in Analytic Solver Cloud or AnalyticSolver.com. See the chapter, Creating Custom Extensions in Tableau, that appears later on in this guide for more information on using Tableau with these two products.

Click the green arrow on the Output tab in the Solver Task Pane to run a simulation. Once Solver has stopped with a final result message, click the
icon on the Task Pane Output tab or Uncertain Function dialog to save the values for the uncertain functions, uncertain variables, percentiles and statistics to *.tde files. You will be prompted to select a folder where the Tableau files will be saved along with the type of Tableau export desired: Tableau Data Extract or (introduced in V2016-R2) Tableau Web Connector.

Note: If exporting to an existing .tde file, data will be appended rather than overwritten. As a result, when exporting to an existing tde file, all data must be of the same structure as when the .tde file was first created.

If Tableau Data Extract is selected, static data is exported to files saved on your hard drive.

Once you select a folder, the .tde files will be created, and the following message will appear.

Analytic Solver V2020 (20.0.0.0)	
Tableau Data Extract files have been successfully created.	
	OK

Four files will be saved in the folder you selected: InputTrials.tde,
OutputStatistics.tde, OutputTrials.tde, and Percentiles.tde. (Although .tde files are designed to hold multiple tables, currently Tableau's software allows only
one table per file.) When you import this data into Tableau, InputTrials.tde and OutputTrials.tde will have one row for each trial, Percentiles.tde will have one row for percentile and OutputStatistics.tde will have one row for each output function.

- Each row of InputTrials.tde will contain the trial value for each uncertain variable and the simulation index. The number of rows will equal the number of trials.
- Each row of OutputTrials.tde will contain the trial value for each uncertain function and the simulation index. The number of rows will equal the number of trials.
- Each row of Percentiles.tde will contain the percentile value for each uncertain function and the simulation index. The number of rows will equal 99.
- Each row of OutputStatistics.tde will contain the Excel cell address where the uncertain function is located along with 9 statistical functions (mean, standard deviation, variance, kurtosis, skewness, mode, minimum, maximum, and range) and the simulation index.

Note: If exporting to an existing .tde file, data will be appended rather than overwritten. As a result, when exporting to an existing tde file, all data must be of the same structure as when the .tde file was first created.

To open the files in Tableau, either double click each file (if using Desktop
Tableau) or click Other Files under Connect and open the desired file(s).

Tableau Web Connector

The Tableau Web Connector offers much more flexibility over Tableau Data Extract by allowing you to refresh your data dynamically inside of Tableau.

If Tableau Web Connector is selected, you will be prompted to select a folder in which to save SimulationResults.html. This file will hold all contents described above for InputTrials.tde, OutputStatistics.tde, OutputTrials.tde, and Percentiles.tde. The following message will appear.

Note: If exporting to an existing .tde file, data will be appended rather than overwritten. As a result, when exporting to an existing .tde file, all data must be of the same structure as when the .tde file was first created.

```
The Tableau Web Connector file have been successfully created.
For your convenience, a Web service has started at http///localhost port }808
It will be shut down when Excel is closed
In Tableau, enter http://localhost8000/OptimizationResults.html for your
connector.
```

To open the files in Tableau, open a new workbook in Tableau and click Connect to Data.

On the Connect menu, select More Servers - Web Data Connector.

On the Web Data Connector dialog, enter the location displayed on the dialog shown above, i.e. http://localhost:8080/, and press Enter.

When the following dialog appears, click Constraints.html.
Note: The error highlighted in red is a simple warning that the URL is not pointing to a Tableau Web Data Connector file. If we had entered a file name, such as http://localhost:8080/InputTrials.html, the results would have immediately been uploaded to Tableau.

To add more data, click Data - New Data Source on the Tableau ribbon, then repeat the actions described above.

If your Solver results have changed, you'll need to refresh the results within the Tableau Web Connector HTML files. To do so:

1. In ASP, re-run your model
2. Click the Tableau icon on the Output tab in the Solver Task Pane.
3. Select Tableau Web Connector and the folder where the files should be saved.
4. Click OK.
5. In Tableau, click Data - Refresh All Extracts to update your data.

For more information on using Tableau, please refer to the Tableau documentation found at http://www.tableau.com/.

An Airline Revenue Management Model

In this section, we'll explore a simple airline revenue management model, also known as a yield management model. We'll start with a simple simulation model, like the one in the previous section. But in this section, we'll see if we can answer further questions by running multiple parameterized simulations and by solving a simulation optimization model (not available in Analytic Solver Simulation).

To open this example, click Help - Examples on the Ribbon, which opens the workbook, Frontline Example Models Overview.xls. Click the Simulation tab, then the Yield Management Model 1 (a simple simulation model) and Yield Management Model 2 (a model with multiple parameterized simulations) links. Click the Simulation Optimization tab to open Yield Management Model 3, a simulation optimization model. In AnalyticSolver.com, click Help - Examples - Simulation to open Yield Management Model 1 and Yield Management Model 2 and Help - Examples - Simulation Optimization Examples to open Yield Management Model 3.

A Single Simulation

The model YieldManagement1.xls opened in Analytic Solver Desktop is shown on the next page.

The model depicts a hypothetical airline flight from San Francisco to Seattle. The flight has 100 seats, and tickets are $\$ 200$ per seat. Some passengers who purchase tickets are "no-shows" whose seats will be empty; in this example we assume that such passengers receive a refund of 50% of their purchase price.

To utilize their 'perishable inventory' of seats, the airline would like to sell more than 100 tickets for each flight. But we assume that Federal regulations require that any ticketed passenger who is unable to board the flight due to overbooking is entitled to compensation of 125% of the ticket price.

The airline would like to know how much revenue it will generate from each flight, less refunds for no-shows and compensation for 'bumped' passengers. As shown above, this total revenue amount is calculated at cell C31, for any specific number of tickets sold (110 above) and number of no-shows (6 above).
The uncertain quantity in this model is the number of no-shows; hence we should model this with an uncertain variable. We quickly realize that the number of no-shows will depend on the number of tickets sold. After some research, we decide that we can use a LogNormal distribution for the number of no-shows: Cell H27 contains the formula
$=$ PsiLogNormal $(\mathbf{0 . 1} * \mathbf{G 3 2 , 0 . 0 6} * \mathbf{G 3 2})$. Cell G27 contains $=\operatorname{ROUND}(\mathrm{H} 27,0)$ to ensure that the number of no-shows is an integer value - and this is used to compute Total Revenue at cell G36.

Note that the bottom area of the Task Pane is showing the properties of cell H27: for example, the mean of the distribution is 10% of the number of tickets sold.

See the chapter "Mastering Simulation and Risk Analysis Concepts" for advice on choosing distributions for your uncertain variables.

As shown in the Task Pane, cell G36 is an uncertain function; it is defined as such because cell G38 contains =PsiMean(G36) to compute the expected (or average) revenue across all Monte Carlo trials.

Performing the Simulation

To perform a single simulation (with 1,000 Monte Carlo trials), we click the green arrow on the Model tab of the Solver Task Pane. At the end of the simulation the following dialog appears displaying the distribution of outcomes in the Uncertain Function dialog:

The right hand panel shows the statistics from cell G36. We see that the mean or expected net revenue is about $\$ 20,000$. From the Cumulative Frequency tab over the chart or by clicking on the drop down menu in the right hand panel (currently showing "Statistics") and selecting Percentiles, we can see that the 10% percentile is $\$ 19,950$ - if we sell 110 tickets, we'll earn approximately as much revenue as a full flight (100 seats $* \$ 200$), 90% of the time. You can see why airlines find that overbooking makes sense as a policy!

The Scatter Plots tab (click the graph to enlarge) shows you a quick scatter plot of this uncertain function against one or more uncertain variables, or other uncertain functions. In this example - shown on the next page - it shows a scatter plot of G36 (net revenue) against H27 (number of no-shows).

Using Interactive Simulation

If using Analytic Solver Desktiop, we can explore the question of how many tickets to sell with Interactive Simulation: We simply click the Simulate button to "turn on the lights."

Now we can simply type a new number of Tickets Sold, such as $\mathbf{1 2 5}$, into cell G32. Instantly, Analytic Solver (Desktop) performs a new simulation of 1,000 Monte Carlo trials, and updates the Uncertain Function dialog and the worksheet with the results - as shown on the next page.

The new distribution of outcomes is quite different - we have more highrevenue data points - but the mean or expected revenue is not so different -$\$ 20,503$. Selling 125 tickets does seem to be better than selling 110 tickets, but we're not yet sure that this is the best number of tickets to sell. (We'll answer that question in the next two sections.)

In the meantime, however, Interactive Simulation allows us to "play what-if" with this model, changing the parameter that we can control (the number of tickets sold), while properly modeling the behavior of the parameter we cannot control (the number of no-shows). As Prof. Sam Savage says, "Interactive Simulation does for uncertainty what the spreadsheet did for numbers."

Note: Interactive Simulation is not supported in Analytic Solver Cloud or AnalyticSolver.com. However, you can perform the same type of analysis in either product by simply running a new simulation after making the change to cell G32.

Multiple Parameterized Simulations

After playing "what-if" with Interactive Simulation, we can move to ask Analytic Solver to automate this process: Vary a parameter (the number of tickets sold) over a range, performing a simulation for each different number of tickets sold, and summarize the results.
Choose Help - Examples on the Ribbon, click the Monte Carlo Simulation Examples button, then scroll down to click the Yield Management Model 2 link to open YieldManagement2.xlsx. In AnalyticSolver.com, click Help Examples - Monte Carlo Simulation Examples - Yield Management Model 2 to open YieldManagement2.xlsx
We can create YieldManagement2.xlsx from YieldManagement1.xls in just three steps:

1. Select cell G32, choose Parameters - Simulation from the Ribbon, and enter a lower limit of 102 and upper limit of 120 in the dialog. This creates a formula $=\operatorname{PsiSimParam}(102,120)$ in cell G32.
2. In the Task Pane Platform tab Simulation group, set the Number of Simulations to 10 (the maximum number of simulations allowed by Analytic Solver Basic). Cell G32 will take on the value 102 on the first simulation, 104 on the second simulation, 106 on the third simulation and so on, through 120 on the $10^{\text {th }}$ simulation.
3. Select cell G36, choose Results - Statistic - Mean, and select a range of 10 cells, say G40:G50. Analytic Solver will place $=$ PsiMean(G36,1) in the first cell, $=\operatorname{PsiMean}(\mathrm{G} 36,2)$ in the second cell, and so on for as many cells as you specify.
Now, when you run a simulation either by clicking the green arrow on the Model task pane or by using the Simulate icon on the Ribbon, Analytic Solver will perform 10 simulations, each with 1,000 Monte Carlo trials, and give you access to all of the results. On the worksheet, you'll see the expected revenue for $100,102, \ldots, 120$ tickets sold. And you can use the Uncertain Function dialog to display the full distribution of outcomes for any of the 10 simulations.

Examining Results Across Simulations

Once the simulation finishes, the uncertain function dialog for cell G36 will open automatically or you can double-click the cell to open.

The dialog now includes a dropdown list that allows you to select a simulation to display. You can examine the Frequency, Cumulative Frequency, Reverse Cumulative Frequency, Sensitivity, or Scatter Plots tabs for any simulation.

The worksheet will initially display values for the last Monte Carlo trial of the last simulation performed (except for the cells containing PSI Statistics function calls such as PsiMean()). But you can display any trial from any simulation, by changing the selections in the Sim \# and Trial \# controls on the Ribbon:

By examining this data, you can get a better idea of how many tickets to sell. But Analytic Solver can help your further.

Reports and Charts of Multiple Simulations

Analytic Solver Comprehensive and Analytic Solver Optimization with Analytic Solver Simulation, in Analytic Solver Desktop or Analytic Solver Cloud, has rich facilities for reports and charts across multiple simulations. We'll cover just two chart examples; see the Frontline Solvers Reference Guide for further information.

First, select Charts - Multiple Simulations - Trend from the Ribbon. Analytic Solver displays a dialog where you can select one or more simulations to include in the chart. Click the \gg button to select all 10 simulations:

Analytic Solver then draws the Trend Chart:

The number of tickets sold is on the horizontal axis. Analytic Solver shows the mean, $25^{\text {th }}$ and $75^{\text {th }}$ percentile, and $10^{\text {th }}$ and $90^{\text {th }}$ percentile values of net revenue at G36 (this was the only choice in the dropdown list at the top left of the Multiple Simulations dialog). We can see that the mean or expected net revenue peaks at about 116 or 177 tickets sold.
For another view of this information, select Charts - Multiple Simulations -
Box-Whisker from the Ribbon, and again select all 10 simulations to be included in the chart. Analytic Solver Comprehensive draws the following chart:

This shows a Box-Whisker diagram for each of the 10 simulations, with the mean, median, $25^{\text {th }}$ and $75^{\text {th }}$ percentiles, and the minimum and maximum value for net revenue on each one. In Analytic Solver Desktop, you can click the right edge of the Trend and Box-Whisker charts to open a right panel with options for customizing these charts. You can use the icons on the title toolbar to print the chart, or copy it to the Clipboard, where it can be pasted into another application such as PowerPoint.

Simulation Optimization

Running multiple parameterized simulations and examining the results on the worksheet and in chart form, has given us a good deal of intuition about the behavior of this simulation model. But Analytic Solver can directly answer the question "How many tickets should we sell to realize the maximum expected net revenue?"

You can see this by choosing Help - Examples on the Ribbon, then clicking the Simulation Optimization button. Click the link to Yield Management Model 3 in the list of example workbooks. This example will create YieldManagement3.xlsx from the existing YieldManagement1.xls, used in the previous two examples, in just five steps:

1. Select cell G32 and click Decisions on the Ribbon. This makes the number of tickets sold a decision variable for optimization. Alternatively, click the down arrow under Decisions, then select Normal to make the number of tickets sold a decision variable.
2. With G32 still selected, click the down arrow under Constraints, then choose Variable Type/Bound - Integer from the menu. This specifies that G32 must have an integer value at the optimal solution.
3. With G32 still selected, click the down arrow under Constraints, then choose Variable Type/Bound - <= from the menu, and enter 200 for the constraint left hand side. This specifies that G32 must have an upper bound of 200 .
4. With G32 still selected, click the down arrow under Constraints, then choose Variable Type/Bound - <= from the menu, and enter 0 for the constraint left hand side. This specifies that G32 must have lower bound of 0 .
5. Select cell G38, click the down arrow under Objective, then choose Max - Normal from the menu. The optimizer will maximize G38: = PsiMean(G31), the expected value of net revenue.

The model in Task Pane will now look like the one pictured below.

In YieldManagement3.xls, we've made just these selections, and we've also chosen the GRG Nonlinear Solver from the dropdown list on the Engine tab, to solve the problem. (Other choices are possible, but this one is simplest for this example problem.)
Now we can simply click the green arrow on the Task Pane. After a moment of solving, Analytic Solver returns the solution of 116 or 117 tickets sold appears in G32 (the exact number depends on the simulation Random Seed), and the expected value of net revenue for this number of tickets appears at G32 (about $\$ 20,500$). "Solver found a solution. All constraints and optimality conditions are satisfied" appears in green in the Output tab of the Task Pane, as shown on the next page.

Note that this required less than a page to explain how you can get answers to questions like "How many tickets should we sell to realize the maximum expected net revenue?"

4	E	F	G	H	1	－	Solver Options and ．．－x		
23		Ticket Price	\＄ 200.00						
24							QModel melati．EEngine ©outp．．．Work．．		
25		Flight Capacity	100				Eaptimization		
26 <1		Number of no－shows	50\％						
28		Refund to no－shows							
29 30		Overbooking Compensation	125\％						
31		Number of Tickets Sold Number of Customers showing up	117			可in \＄G\＄31 Recourse			
32			108			$\begin{aligned} & \text { Constraints } \end{aligned}$			
33 34		Number of Overbooked tickets	8				HChance －Recourse		
35		Total Revenue Expected Revenue	\＄20，500．00			$\begin{aligned} & \text { Bound } \\ & \text { yElil} \$ G 31<=200 \end{aligned}$			
37			\＄20，619．65						
38		Expected Revenue	\＄20，619．65				-10 Integers 吧 $\$ G \$ 31=$ integer		
39									
40							－Parameters DResults		
41							－ 4 Simulation		
42							E－Uncertain Variables		
43									
44							既 Uncertain Functions		
45							－$\$ 6 \leqslant 35 \mathrm{~S}$ ．		
46							ED Statistic Functions		
47									
48									

Using a Compound Distribution

Starting with V2016－R2，Analytic Solver Comprehensive and Analytic Solver Simulation within Analytic Solver Desktop include the ability to sum multiple independent random variables using a compound distribution．A compound distribution generates values for the sum of N independent identically distributed uncertain variables．Note：This functionality is not included in Analytic Solver Cloud or AnalyticSolver．com．

There are many common applications for compound distributions in industries across the board．For example，in the insurance industry，compound distributions may be used to estimate the amount of claim payouts to customers or a portfolio of policies over a period of time．In healthcare，compound distributions can be utilized for many reasons including to estimate the total amount of demand for a specific drug over a period of time，the number of days a patient will spend in hospital or to estimate the total amount of exposure to a certain toxin（i．e．，radiation or radon）that a group of people might encounter in their lifetime．In addition，compound distributions are used in the food industry to estimate the total number of patients that will become sick due to a food－ borne illness．

The incorrect implementation of creating a compound distribution manually is a primary cause of errors in a simulation model．In an effort to reduce these errors，Frontline Systems has implemented compound distributions with the introduction of a single property，PsiCompound（）．This property supports any existing Psi Distribution function except the Psi multi－variate functions （PsiMVLogNormal，PsiMVNormal，PsiMVResample，and PsiMVShuffle）， PsiSip，and PsiSlurp．PsiCompound is amended to a Psi Distribution，i．e．， PsiBeta（3，2，PsiCompound（100））The signature of this property is：

PsiCompound（number＿cell，deduction，limit）
A compound distribution is made up of a＂severity＂distribution and a ＂frequency＂distribution．Assume the following compound distribution， $=$ PsiBeta（3，2，PsiCompound（A2）），where A2＝PsiPoisson（100）．PsiBeta（3，2）
is referred to as the "severity" distribution. The severity distribution is the distribution to be added N times. PsiPoisson(100) is referred to as the "frequency" distribution. The frequency distribution determines the size N of the sum (i.e, how many PsiBeta to sum). N can be a constant but can also be computed at each trial by drawing from a discrete distribution.

- The number_cell argument passes the number of random trial values to be summed. Number_cell can be an integer, a cell containing an integer, a formula evaluating to an integer, or a cell containing a discrete distribution.

If a fractional value is passed directly or indirectly (by using a formula) or a continuous distribution is passed to this argument, the result will be rounded down to the nearest integer.

Note: If a discrete distribution is passed to the number_cell argument, the frequency distribution must be formulated in such a way that the trial values generated by the distribution must be greater than 1 . If not, trial values <1 will be set equal to 1 .

- The value passed to the deduction argument is subtracted from every term of the compound sum which results in a shift of the compound distribution by $-\mathrm{N} *$ deduction.
- If a trial value is larger than a specified limit, then the trial value is reset to the limit.

Depending on what is passed to the number_cell argument, PsiCompound() automatically selects from several different compounding methods.

- First, ASP tries to compute the distribution analytically. For example "=PsiExponential(par, PsiCompund(N))" can be computed as PsiGamma(N, par). Analytic Solver can immediately sample from this "shortcut" distribution.
- If Analytic Solver is unable to compute a compound distribution analytically, but the frequency of the severity function (N) is greater than the value for the CLT Threshold option, then the distribution will be computed according to the Central Limit Theorem as PsiNormal(m, s). The parameters m and s will be computed analytically from the corresponding analytical moments of the severity distribution. The maximum value allowed for the CLT Threshold option is 1000 while the minimum value allowed is 1. The default setting is 100 .
- Otherwise, the compound distribution will be computed using Monte Carlo simulation to sum up N independent variates of the severity distribution.

The following examples illustrate how to use the PsiCompound() property when a discrete distribution or a constant value is passed to the number_cell argument

Discrete Distribution passed to $1^{\text {st }}$ Argument

Imagine an insurance policy has two basic classes of insured members, class A and class B; there are 50 class A members and 10 class B members. The number of claims from class A members follows a Negative Binomial distribution with parameters $(5,0.25)$, and the number of claims from class B members follows a geometric distribution with parameter 0.25 . The size of a claim from class A members follows an exponential distribution with mean $\$ 40,000$, and the claim size from class B members is distributed with a Pearson 5 distribution with parameters $(10,2000000)$. In other words, if there are six Class A claims, the size of the payout for each of the six claims will follow the PsiExponential(40000) distribution. Calculate the expected claim payment for both classes.

1. Let's start by formulating the compound distribution for the Class A members. Recall that the number of Class A claims follows a Negative Binomial distribution using a success parameter $=5$ and probability parameter $=0.25$ while the size of a Class A claim follows an exponential distribution with mean $\$ 40,000$.
In this example, PsiExponential(40000) is the severity distribution. This is the distribution that will be added together. If there are six claims, then PsiExponential(40000) will be compounded six times. The frequency distribution is the number of Class A claims, $=$ PsiNegBinomial(5, 0.25, PsiTruncate (0, 50)).

Note: Since there are 50 class A members, the PsiTruncate property is used to ensure that sample values always lie within the range from 0 to 50.

If A1 $=\operatorname{PsiNegBinomial}(5,0.25, \operatorname{PsiTruncate}(0,50)$, the full compounding formula for the amount paid to Class A claims can be entered into cell A2 as "=PsiExponential(40000, PsiCompound(A1))".
2. Now we can formulate the compound distribution to calculate the payouts for the Class B members. The second compound distribution may be formulated in the same manner. PsiPearson5(10, 2000000) is the severity distribution while $=\operatorname{PsiGeometric}(0.25, \operatorname{PsiTruncate}(0,10))$ is the frequency function. Since there are 10 class B members, PsiTruncate is used to ensure that sample values lie within the range 0 to 10 .

If B1 $=\operatorname{PsiGeometric}(0.25$, PsiTruncate $(0,10)$, the full compounding formula for the amount paid to Class B claims can be entered into cell B2 as "= PsiPearson5(10,2000000, PsiCompound(B1))".
3. Enter $=\operatorname{PsiMean}(\mathrm{A} 1)$ and $=P s i M e a n(A 2)$ in cells A3 and B3, respectively, to calculate the total expected payout to each class.
Run a simulation by clicking the green arrow on the Output tab on the Solver Task Pane. Instantly, Analytic Solver performs a new simulation of 1,000 Monte Carlo trials, and updates the Uncertain Function dialog and the worksheet with the results - as shown on the next page.

Double click the distribution for $\$ \mathrm{~A} \$ 2(\mathrm{var})$ to open the uncertain function dialog for cell A2.

If an uncertain variable uses the PsiCompound() property to create a compound distribution, you will see added fields on both the Parameter and Analytic Moments menus. Curves displayed in the Uncertain Variable dialog and statistics listed under the Parameters tab are related to the "severity" distribution.

On the Parameter tab, the Compound field will appear under Parameters. (If the distribution is not a compound distribution, this field will be blank.) This field holds the arguments passed to the PsiCompound property.

Click the down arrow next to Parameters and select Analytic Moments from the menu.

On the Analytic Moments menu, four additional statistics relating to the compound distribution appear under Compound Analytic Moments: Mean,

Variance, Standard Deviation and Skewness. Statistics listed under Analytic Moments relate to the severity distribution.

Constant passed to $1^{\text {st }}$ Argument

Recall that it is also possible to pass an integer, a cell containing an integer or a formula evaluating to an integer to the number_cell argument, the first argument of PsiCompound().

Imagine a department store manager predicting demand for snowboards for the coming winter season. From past analysis, she knows that the purchasing behavior of customers that visit her store follow the PsiGamma distribution with parameters of shape $=4$ and scale $=1$. She expects 1000 customers in the month of October. Using a compound distribution, calculate the expected number of snowboard purchases.

The severity distribution in this example is $\operatorname{PsiGamma}(4,1)$. Since $N=1000$, a constant, no frequency distribution exists. Therefore, the syntax for this compound distribution would be $=$ PsiGamma(4, 1, PsiCompound(1000).
Select the cell containing the compound distribution, then click Results Output - In Cell on the Analytic Solver ribbon; "+ PsiOutput()" will be amended to the existing formula.

Again, run a simulation by clicking the green arrow on the Output tab of the Solver Task Pane. Instantly, Analytic Solver Simulation performs a new simulation of 1,000 Monte Carlo trials, and updates the Uncertain Function dialog and the worksheet with the results. If the worksheet only contains this one output function, the following dialog appears.

To view the compound distribution results, click the Show Input icon, circled below.

The Uncertain Variable dialog opens. Again, we see the Compound field, but this time, the constant 10 appears here.

Click the down arrow next to Parameters to view the Analytic Moments for both the severity distribution (under Analytic Moments) and the compound distribution (under Compound Analytic Moments).

```
Analytic Moments
# Analytic Moments
    Mean 4
    Standar... }
    Variance 4
    Skewness 1
    Kurtosis 1.5
    Mode 3
    Median 3.672060749
    Minimum 0
    Maximum +infinity
    Range +infinity
# Compound Analytic Moments
    Mean 40
    Variance 40
    Standar... 6.32455532
    Skewness 0.316227766
```


Publishing a Simulation Model to Excel Online or Google Sheets

In late 2014, Frontline Systems released Solver App for use with Excel 2013 and Solver Add-on for use with Google Sheets. With the Solver App you can define
and solve simulation problems in your Excel workbook, using Excel Online in Office 365, the Excel Web App in SharePoint 2016 or 2013, or desktop Excel 2016 or 2013. With the Solver Add-on, you can define and solve simulation problems in Google Sheets. You can create and solve models on tablets, phones, or anywhere a Web browser can be used. Solver models that you may already have created in old or new versions of Microsoft Excel, are automatically recognized by the Solver App and, after the existing worksheet is published, with the Solver Add-on.
In Analytic Solver Desktop and AnalyticSolver.com, the Freeze and Thaw buttons have been combined into a single Publish button, as shown in the screenshot below. (In Premium Solver Pro/Platform where there was no Freeze/Thaw function, the Ribbon now includes a Publish icon.)

Note: This functionality is not supported in Analytic Solver Cloud.
Like the "Freeze" button, the Publish button can be used to prepare a workbook for distribution to other users who don't have Analytic Solver or its subsets installed: All formulas containing Psi function calls (which would yield \#NAME? for other users) are replaced by their values, and the formulas are saved, so they can be restored later by choosing "Unpublish" (equivalent to the old "Thaw").
But the major use of the Publish button is to prepare a workbook for use with our Risk Solver App for Excel Online and our Risk Solver Add-on for Google Sheets (the online spreadsheets have limited or no support for user-defined functions).

In Analytic Solver, when a model is published, the limits for Solver App (for Excel Online) and Solver Add-on (for Google Sheets) will be automatically adjusted to match the problem limits of your license. For example, if you purchased a license for Analytic Solver, then you will be able to run simulation models with an unlimited number of uncertain variables and functions, if you publish your model first by clicking the Publish button on the Analytic Solver ribbon.

Let's go back to the YieldManagement1.xls example used in the section above, click the Publish icon on the Ribbon to display the following dialog.

Select Google Sheets then Publish. (If you are a user of Excel Online, please see the example below.) If you inspect the worksheet, you'll notice that all Psi functions have been replaced with actual values. For example, cell C16 which used to contain the PsiMean() function, now contains a value of $\$ 19,00.40$. Make sure to save the workbook before uploading to Google Drive.

Log on to your Google Drive account and upload YieldManagement1.xls, then open this file in Google Sheets.

Uploading and Opening Files in Google Sheets

Click the orange New button then select File Upload to upload the YieldManagement1.xls spreadsheet to Google Drive.

Browse to the location of the file, typically C:\Program Files (x86) \Frontline Systems \backslash Analytic Solver Platform\Examples (if using 32 bit Excel with 64 bit Windows) or C:\Program Files\Analytic Solver Platform\Examples (if using 64 bit Excel or 32 bit Excel with 32 bit Windows). The YieldManagementModel1.xls will appear under My Drive.

Double click YieldManagementModel1.xls, the file opens in Google Drive Preview Viewer (shown below). Click Open - Google Sheets.

To add the Solver Add-on, choose the menu option Add-ons - Get Add-ons...

In the Add-ons dialog, scroll until you see Risk Solver. Click to select and install.

Once these steps are finished, Risk Solver should now appear on the Add-ons menu.

Choose Add-ons - Risk Solver - Start. The Risk Solver Task Pane (Google calls this a Sidebar) will appear. The uncertain variable that appears in cell C7 is displayed in this tab.

Click the distribution to change the distribution type and parameters or to view the cell formula and address.

Risk Solver

Change Distribution Options

Distribution

Click Cancel to leave everything "as is" or OK for Risk Solver to accept any changes. For this example, we'll click the Cancel button to leave the Distribution as PsiLogNormal.

Click the green arrow at the top of the sidebar to run a simulation. (Click the Cancel button to stop the simulation before finishing.)

In the sidebar, the Output tab appears with a small frequency chart containing the uncertain function in cell C15. Click the chart to enlarge it. Click the Frequency tab to view statistics (mean, standard deviation, variance, skewness, kurtosis, mode, minimum, maximum, and range) or Percentiles (1-100).

Frequency Sensitivity Correlations

'Yield Management 1!\$C\$15

Statistics	s Percentiles
Mean	19000.1
StdDev	597.869
Variance	357447
Skewness	-1.85547
Kurtosis	5.68925
Mode	19400
Minimum	15000
Maximum	19900
Range	4900

Statistics	Percentiles
$\%$	Value
1	16900
2	17300
3	17597
4	17700
5	17900
6	18000
7	18100
8	18100
9	18200
10	18300
11	18300
12	18400

For more information on the statistics, please see the corresponding Psi function (PsiMean, PsiMean, PsiStdDev (Standard Deviation), PsiVariance, PsiSkewness, PsiKurtosis, PsiMode, PsiMin, PsiMax or PsiRange) in the Psi Function Reference chapter in Frontline Solvers Reference Guide.

Click the Sensitivity tab to view a "Tornado chart" that shows you how much Total Revenue changes with a change in the uncertain variable in cell C7. In this model there is only one uncertain variable. This chart shows a negative correlation between the Number of No-Shows and Total Revenue. For more information on this tab, please see the section, "A First Simulation Example" above.

$$
\text { Frequency } \quad \text { Sensitivity } \quad \text { Correlations }
$$

Select the Correlations tab to view the same negative correlation between the uncertain variable in cell C 7 and the uncertain function in cell C15. For more information on this tab, please see the section above.

Frequency Sensitivity Correlations

Click the icon to go back to the Output tab or click the left and right arrow icons to increment through each of the simulation trials. (The default is 1000.) To change the number of trials per simulation or other option settings, click the icon in the upper right corner of the Sidebar. For more information on these options, please see the chapter Platform Solver Options in the Frontline Solvers Reference Guide.
Trials per Simulation 1000
Random Seed
Sampling Method:
Monte Carlo
Latin HyperCube
Sobol RQMC
Random Number Generator:
Park-Miller
CMRG
WELL
Uncertain Variable Streams:
O Single
Independent

Now let's Publish this same model to Excel Online. Let's go back to Excel and YieldManagement1.xls. Afterwards, click Publish - Unpublish. Immediately, all PsiFunctions are restored in cells C7 and C16.

Click Publish - Publish again, but this time select Excel Online, then click Publish.

Click File - Save As and save this file as YieldManagement1.xlsx on your SharePoint or Office 365 site.

Note: In order to use the Risk Solver App, your file must be saved on SharePoint or Office 365 site. This app cannot solve models saved on your local hard drive.

Open the workbook using Excel Online, then click Edit Workbook - Edit in Excel Online.

Click Insert - Apps for Office.

INSERT	
Table	Apps for Office Apps
s	App

Select the Store tab and search for Risk Solver, then select (1st app in the list) and Install. Note: A Premium Solver app which solves linear models with more than 200 variables and nonlinear models with more than 200 variables and 200 constraints is available for purchase. Please contact Frontline Systems for more information at sales@solver.com.

The Risk Solver App task pane opens on the right of your screen.

The uncertain variable that appears in cell C7 is displayed in this tab. Click the distribution to change the distribution type and parameters or to view the cell formula and address as shown in the Google Sheets example above.

Note: In the Solver App red vertical lines have been drawn at the 5\% and 95\% percentiles.
Risk Solver App

Distribution

\square
Uncertain Variable

Address	SCS7
Formula	PsiLogNormal $\left(0.1^{\star} \mathrm{C} 1:\right.$

Parameters

Click the green arrow at the top of the task pane to run a simulation. (Click the Cancel button to stop the simulation before finishing.) If running for the first time, you will be asked to "Trust" the app.

Risk Solver App

To cancel the simulation before completion, click Cancel.

In the sidebar, the Output tab appears with a small frequency chart containing the uncertain function in cell C15. Click the chart to enlarge it. Click the Frequency tab to view statistics (mean, standard deviation, variance, skewness, kurtosis, mode, minimum, maximum, and range) or Percentiles ($1-100$). Click the Sensitivity tab to view a "Tornado chart" which illustrates the negative correlation between the Number of no-shows (uncertain variables) and Total Revenue (uncertain function) and the Correlations tab to view the relationship between the uncertain variable in cell C7 and the uncertain function in cell C15 as a scatter chart. For more information on either of these tabs, please see the Google Sheets example above.

Click the \square icon to go back to the Output tab or click the left and right arrow icons to increment through each of the simulation trials. (The default is 1000 .) To change the number of trials per simulation or other option settings, click the icon in the upper right corner of the Task Pane. For more information on these options, please see the chapter Platform Solver Options in the Frontline Solvers Reference Guide.

Examples: Stochastic Optimization

Introduction

This chapter introduces stochastic optimization in Analytic Solver Comprehensive (Desktop or Cloud) with a series of examples.
We use the term stochastic optimization to mean optimization of models that include uncertainty, using any solution method. Analytic Solver offers an exceptional level of power to find robust optimal solutions to models with uncertainty, using three different solution methods:

- Simulation optimization
- Stochastic programming
- Robust optimization

The first method, simulation optimization, is also available in Analytic Solver Optimization with Analytic Solver Simulation, Analytic Solver Upgrade and Analytic Solver Basic (Desktop or Cloud), and is the only method in other software products such as Crystal Ball Professional and @RISK Industrial. It handles very general models, but it is not scalable to large models (with thousands of variables and constraints), and it doesn't support the important modeling concept of recourse decisions.
Stochastic programming and robust optimization can be applied only to linear and quadratic programming models with uncertainty, but they are scalable to large models. Either Analytic Solver Comprehensive, Analytic Solver Simulation with Analytic Solver Optimization, Analytic Solver Upgrade or Analytic Solver Basic (Desktop or Cloud) are required to use these methods.

A Project Selection Model

To open the examples, click Help - Examples on the ribbon. Click the Stochastic link on the Overview tab to open the workbook StochasticExamples.xls which includes three worksheets. In AnalyticSolver.com, click Help - Examples, then scroll down to the Stochastic link.

Click the Project Selection tab within the StochasticExamples.xls workbook to open the first example, which may surprise you: It is a capital budgeting problem, where the projects being considered for funding have uncertain future cash flows. Models similar to Project Selection have been used with other software products for many years to illustrate how simulation optimization can be used to optimize models with uncertainty. We'll show how to do this in Analytic Solver Comprehensive, Analytic Solver Simulation with Analytic Solver Optimization, Analytic Solver Upgrade, or Analytic Solver Basic, using simulation optimization and the Evolutionary Solver - with much better performance. But when we use Analytic Solver to analyze the structure of this model, we'll see that this model doesn't require simulation optimization at all.

We can solve this model in a fraction of a second - using the LP/Quadratic Solver!

In Project Selection, eight different capital projects are proposed for funding. Each one has a known initial investment. Each project has a 90% chance of success, and if a project succeeds, it will have an uncertain (but positive) future cash flow. Funding all eight projects would require a total initial investment of $\$ 2.5$ million, but our capital budget is only $\$ 1.5$ million. Hence, we must choose a subset of the projects to fund that will maximize our expected total future cash flow, while ensuring that our total initial investment doesn't exceed our $\$ 1.5$ million budget.

Click the tab for the Projection Selection model, shown below.

To model the uncertainty in this problem, we use PSI functions that define uncertain variables with certain probability distributions. We can create these functions via the Distributions dropdown gallery and the Uncertain Variable dialog, as shown in the last chapter, or we can just type in the formulas.

To model the "Cash Flow if Successful" in column C, we use the PsiTriangular() function, specifying a minimum, most likely, and maximum cash flow. For example, the formula in C 4 is $=\operatorname{PsiTriangular}(400000,500000$, 900000).

To model the "Chance of Success" in column D, we use =PsiBinomial(1,D2) where D2=.9. On each trial, this distribution returns 1 with probability 90% and 0 with probability 10%. In column E we multiply the "Cash Flow if Successful" and the "Chance of Success" to obtain the "Expected Cash Flow."

Column G computes the net cash flow - the "Expected Cash Flow" in column E minus the "Initial Investment" in column F. Column H holds our decision variables, which are constrained to be binary integer (0 or 1 at the solution).
Cell F13 computes the total initial investment as the SUMPRODUCT of the project initial investments (column F) and the $0-1$ variables in column H. In the model, F13 is constrained to be less than the $\$ 1.5$ million budget in F14.

Cell F16 computes the total cash flow as the SUMPRODUCT of the project net cash flows and the 0-1 variables in column H. Cell F17 - unique to a model with uncertainty - contains $=P s i M e a n(F 16)$: It computes the mean (expected) value of total net cash flow. This is the objective function we want to maximize.

We're asking Analytic Solver to find the best combination of projects - by finding 0 or 1 values for the selection variables at $\mathrm{H} 4: \mathrm{H} 11$ - to maximize cell F17, the expected value of total net cash flow, subject to the constraint that the total initial investment doesn't exceed our $\$ 1.5$ million budget.

Solving with Simulation Optimization

We'll first solve this problem using simulation optimization. To do this, go to the Task Pane Platform tab, and confirm the Solve Uncertain Models option is set to Simulation Optimization. (We'll see later what happens when we allow Analytic Solver to choose the solution method automatically.)

Optimization Model		
Optimizations to Run	1	
Run Specific Optimization		
Interpreter	Automatic	
Solve Mode	Solve Complete Problem	
Solve Uncertain Models	Simulation Optimization	-
Use Psi Functions to Defi...	False	
Use Interactive Optimizat...	False	
Number of Threads	0	

On the Engine tab, and confirm that the Evolutionary Solver is selected.

Why do we choose these settings? In the case of other software products, it's because simulation optimization is the only technology they have - and "if your only tool is a hammer, every problem looks like a nail." Simulation optimization is also a very general approach that can handle nonlinear and nonsmooth functions, and it's comparatively easy to understand.

The idea behind simulation optimization is straightforward: For each set of values for the decision variables considered by the optimizer, we perform one simulation, a compute user-specified summary measures - such as =PsiMean(F16) in the Project Selection model - for the constraints and/or objective that depend on uncertainty. The optimizer uses these summary
measures to decide what set of values it should try next for the decision variables - and the process is repeated.

The great strength of simulation optimization is its generality - but this is also its weakness: It requires a new simulation at each step of the optimization, and because the method assumes no structure in the model, in general the number of steps can grow exponentially with the number of variables and constraints.

Now click the green arrow in the Task Pane to run a simulation. If you are using Analytic Solver Desktop, after a second or two (much faster than other software products), you can press ESC to stop the Evolutionary Solver and display the best solution found so far - as shown on the next page.

We've decided to fund projects $\# 1,3,4,5$, and 7 for an expected total net cash flow of $\$ 1,389,477$. That's a great result. But - how much work did we do to solve this model, and did we need to do that much work? It might not matter for a small model like this one - but for a 'scaled-up' model that might involve hundreds or thousands of projects, the solution might have taken far more time.

Solving Automatically

Let's allow Analytic Solver Comprehensive (or Analytic Solver Simulation with Analytic Solver Optimization) to choose the solution method and the Solver Engine automatically. To do this, go to the Task Pane Platform tab, and change the Solve Uncertain Models option to Automatic.
On the Engine tab, check the box to automatically select a Solver Engine in Analytic Solver Deskop or select Automaticaly select engine at the top of the menu for Analytic Solver Cloud or AnalyticSolver.com.
Analytic Solver Desktop

Now click the green arrow on the Task Pane. In a fraction of a second, a solution appears with the same objective value of $\$ 1,389,477$ and the same projects selected, with the message "Solver found a solution. All constraints and optimality conditions are satisfied." This means that Analytic Solver found a proven globally optimal solution - whereas with simulation optimization, we never know whether the solution we found is optimal. How did this happen?

If you examine the solution log, you'll see these messages:

```
---- Start Solve ----
Using: Full Reparse.
Parsing started...
Diagnosis started...
Warning: Canceled diagnostics *0 at 'Project Selection'!F16;
6 ~ C a n c e l e d ~ d i a g n o s t i c s ~ f o u n d .
Uncertain input cells detected.
Attempting Stochastic Transformations...
Using: Full Reparse.
Parsing started...
Diagnosis started...
Convexity testing started...
Warning: Canceled diagnostics *0 at 'Project Selection'!F16;
22 Canceled diagnostics found.
Stochastic Transformation succeeded using Deterministic
Equivalent.
Transformed model is "LP/MIP".
Automatic engine selection: Standard LP/Quadratic
Model: [StochasticExamples.xlsx]Project Selection
Using: Psi Interpreter
Parse time: 0.66 Seconds.
Engine: Standard LP/Quadratic
Setup time: 0.01 Seconds.
Engine Solve time: 0.33 Seconds.
Solver found a solution. All constraints and optimality
conditions are satisfied.
Solve time: 1.56 Seconds.
```

Analytic Solver Comprehensive analyzed the model and diagnosed it as a Stochastic LP (linear programming) problem, with 8 variables, 2 functions (objective and budget constraint), and 16 uncertainties (the PsiTriangular() and PsiBinomial() functions) that affect the objective. As you'll see in the chapter "Mastering Simulation and Risk Analysis Topics," Analytic Solver can solve a Stochastic LP using two other methods besides simulation optimization stochastic programming and robust optimization. For this model, it chose a transformation to Stochastic Programming Deterministic Equivalent form.
But this model is so simple that Analytic Solver determined that no transformations were needed to solve the problem. Despite the presence of uncertainty, this model doesn't require simulation optimization at all. There was no need to run hundreds of Monte Carlo simulations (or many more, with some alternative software products). It was sufficient to run one Monte Carlo simulation at the beginning, to compute the constant linear coefficients of the
objective function. Project Selection is simply an LP/MIP (linear mixed-integer programming) model!
In this small model, we found the same solution within seconds using both methods. But in a 'scaled-up' model in a large company, with hundreds or even thousands of projects, Analytic Solver's ability to analyze the structure of the model could make all the difference - between a solution of unknown quality, found after a long wait using the wrong approach - and a proven optimal solution, found within seconds using the right approach.

A Model with Chance Constraints

The worksheets Gas Company Chance and Gas Company Recourse in StochasticExamples.xls are related - they both describe the same problem, but with different assumptions about when a certain decision must be made. With Gas Company Chance, we'll show how a problem with uncertainty can be formulated with a chance constraint and solved using robust optimization methods. With Gas Company Recourse, we'll show how to use a "wait and see" or recourse decision - a capability not available at all with simulation optimization - to obtain a better optimal solution.

We hope these examples will motivate you to read the chapter "Mastering Simulation and Risk Analysis Topics," which will give you a unified view of the crucial characteristics of models with uncertainty, and the options of solving them with simulation optimization, stochastic programming, and robust optimization methods.

Click the Gas Company Chance tab to display the model, which is pictured on the next page.

In this model, a gas company purchases natural gas from suppliers and resells it to consumers in its service area. Consumer demand is known to be 100 units this year (cell C7) but is uncertain for next year (cell C8); the company must meet this demand with high probability, or it will encounter public relations and regulatory problems. The price of gas is known to be $\$ 5.00 /$ unit this year (cell C4), but is uncertain for next year (cell C5): If the weather is very cold, demand may reach 180 units, and the price may reach $\$ 7.50$ /unit, but if the weather is warm, demand may remain at 100 units, and the price may remain at $\$ 5.00 /$ unit. The company's goal is to minimize its total cost of purchased and stored gas (cell C25). It's decisions are:

- How much gas to purchase and resell to consumers this year (cell D14)
- How much gas to purchase this year and store (cell D15), at a cost of \$1 per unit, for use next year
- How much to purchase and resell to consumers next year (cell D18)

In Gas Company Chance, we assume that the gas company must commit to all of its gas purchases this year, before next year's demand is known: All three decision variables D14, D15 and D18 are normal or 'here and now' decisions. (In the next section, we'll consider Gas Company Recourse, where we assume that next year's gas purchases can be determined on a 'wait and see' basis.)
Gas Company Chance has a constraint that the company must have enough gas to meet next year's uncertain demand "with high probability." We'll model this in Analytic Solver Comprehensive with a chance constraint. Our objective function - total cost, to be minimized - depends in part on next year's uncertain gas price. We will therefore seek to minimize the expected value of total cost.

The objective appears as "Expected(\$C\$25) (Min)" - in Gas Company Chance, we used the Ribbon to define the objective interactively, rather than a PsiMean() function on the worksheet, as we did earlier in Project Selection. The decision variables are cells D14, D15 and D18, as explained earlier; each of these is constrained to be non-negative, as shown in the Bound section of the outline.

At C22 we calculate =D14-C7 (this year's gas purchases minus this year's demand), and at C23 we calculate =D15+D18-C8 (gas purchased and stored this year, plus gas purchased next year, minus next year's uncertain demand).
The normal constraint $\$ C \$ 22=0$ specifies that we must meet this year's consumer demand exactly (forcing D14 to 100). The chance constraint $\operatorname{VaR}_{\mathbf{0} .95}(\$ \mathbf{C} \mathbf{2 3})>=\mathbf{0}$ requires that the $95^{\text {th }}$ percentile of C 23 , over all realizations of the uncertainty, must be non-negative - in other words, we must meet demand with 95% probability.
We could express this chance constraint by placing =PsiPercentile(D15+D18$\mathrm{C} 8,0.95$) in cell C23, and using the Ribbon to define a normal constraint C23>= 0 . But while PsiPercentile and other PSI Statistics functions are acceptable for simulation optimization, the transformation for robust optimization requires that we express the chance property directly in the constraint itself, not in a formula.

Solving with Robust Optimization

We could solve this model using simulation optimization, as we did for Project Selection in the previous section. But here, we want to show how Analytic Solver Comprehensive (or Analytic Solver Simulation with Analytic Solver Optimization) can automatically transform this stochastic linear programming problem - with its expected value objective and chance constraint - into a larger conventional optimization model, using the methods of robust optimization.

The idea behind robust optimization is to transform an optimization problem with known structure - such as a stochastic linear programming problem - into a larger, conventional 'robust counterpart' problem that accounts for the impact of bounded uncertainty on the constraints and objective. Analytic Solver performs one simulation at the outset, to assess the impact of uncertainty and construct the robust counterpart problem. Solving the robust counterpart - a single LP or SOCP problem - gives us an approximate solution to the original stochastic problem.

The strength of robust optimization is its scalability to very large problems since only one simulation and one optimization of an LP or SOCP problem is required. But robust optimization cannot solve more general nonlinear, nonconvex problems.

As saved, the model is ready to be solved using robust optimization. But to see the difference between the original model - a stochastic linear programming model - and the robust counterpart model that is the result of the transformation, we'll first set the Solve Uncertain Models option to Simulation Optimization:

${ }^{\text { }}$ Optimization Model		8
Optimizations to Run	1	
Run Specific Optimization		
Interpreter	Automatic	
Solve Mode	Solve Complete Problem	
Solve Uncertain Models	Simulation Optimization	\checkmark
Use Psi Functions to Defi...	Automatic	
Use Interactive Optimizat...	Simulation Optimization	
Number of Threads	Stochastic Transformation	
${ }^{\text { }}$ Simulation Model	Stochastic Decomposition	

and then click Analyze - Analyze Transformed Model (on the Model tab) to analyze the structure of the model. The Model Diagnosis section of the Task Pane Model tab "pops up" to show the results, as shown below.

	Model Diagnosis			$\stackrel{\oplus}{\dagger}=-\bar{A} \downarrow$
	Model Type	Stochastic LP		
\square Variables - Functions - Dependencies				
		Vars	Fans	Dpns
	All	3	3	6
	Smooth	3	3	6
	Linear	3	3	6
	Recourse	0	0	0
	Uncertain	1	2	2
\square Other Model Elements				
	Bounds	3		
	Integers	0		
	Chance Constraints	2		
	Sparsity	66.67		

The model is diagnosed as a Stochastic LP, with 3 variables, 3 functions, and 1 uncertainty (the Beta distribution at cell D5, which models the weather). Now, we'll set the Solve Uncertain Models option to Automatic:

Optimization Model Optimizations to Run	1
Run Specific Optimization	
Interpreter	Automatic
Solve Mode	Solve Complete Problem
Solve Uncertain Models	Automatic
Use Psi Functions to Defi...	Automatic
Use Interactive Optimizat...	Simulation Optimization
Number of Threads	Stochastic Transformation Stochastic Decomposition

and click the Analyze - Analyze Transformed model again - this will analyze the structure of the transformed robust counterpart model.

	Model Diagnosis			$\stackrel{\oplus}{\dagger}=-\mathrm{A}$
	Model Type	LP Convex		
\square Variables - Functions - Dependencies				
		Vars	Fcns	Dpns
	All	9	8	19
	Smooth	9	8	19
	Linear	9	8	19
	Recourse	0	0	0
	Uncertain	0	0	0
\square Other Model Elements				
	Bounds	7		
	Integers	0		
	Chance Constraints	0		
	Sparsity	26.39		

The transformed model has 9 variables and 8 functions (instead of 3 and 3), but it has 0 uncertainties - it's a conventional linear programming model. Solving this robust counterpart model will give us an approximate (and somewhat conservative) solution to the original stochastic LP problem.

Technical note, explained in the chapter "Mastering Simulation and Risk Analysis Topics:" The robust counterpart model is an LP because the Platform tab Chance Constraints Use option is set to D Norm. If it had been set to L2 Norm, the robust counterpart model would have been an SOCP.

Now click the green arrow on the Task Pane. In a fraction of a second, the solution appears, with the message "Solver found a conservative solution to the robust chance constrained problem. All constraints are satisfied." You can click this message to display Help with a more complete explanation of what this means. To resolve the formula in cell C26, click the Simulate icon to run a simulation. The results are shown below.

We run one simulation to see the expected value of the objective, which is about $\$ 1,509$, lower than the initial value of $\$ 1,693$. But our chance constraint is not only satisfied but
over-satisfied - we meet consumer demand about 99% of the time, when we asked for only 95%. This solution is more conservative than necessary.
But Analytic Solver Comprehensive within Analytic Solver Desktop can automatically improve this solution, by adjusting the size of the uncertainty set for the chance constraint. To do this, click the special (Dutton to "Auto Adjust Chance Constraints" that appears at the top of the Task Pane. After a moment, a new solution appears with the message "Solver has converged to the current solution of the robust chance constrained problem. All constraints are satisfied." To resolve cell C26, double click cell C25 and click "Yes" to run a simulation.

To find this same solution in Analytic Solver Cloud, click the Platform tab and set Auto Adjust Chance Constraints to True and then resolve by clicking the green arrow on the Model tab. To resolve cell C26, click the Simulation button to run a simulation.

The results are shown on the next page.

We run one simulation to see the expected value of the objective, which is about $\$ 1,447$. As noted earlier, this very simple model could have been solved via simulation optimization; but with robust optimization, we can scale up a model like this one to large size, and solve it efficiently using the LP/Quadratic Solver, or any of several large-scale Solver Engines.

A Model with Recourse Decisions

We now have a good solution to the Gas Company problem, found with either simulation optimization or robust optimization. But we can do better than this we can reduce our expected total cost to $\$ 1,276$, a significant improvement.

We can do this provided that the business situation permits us to make the decision of how much gas to purchase next year on a 'wait and see' basis, after the uncertainty of the weather is resolved - a so-called recourse decision. In this example, our gas supplier must accept our purchase order next year, and not require us to commit to a specific amount of gas this year for delivery next year.

One of the most important messages we can convey is this: If the business situation permits you to make some decisions on a 'wait and see' basis, it's
crucial to include this in your optimization model. If you don't do this, you may find an optimal solution to the wrong model for the actual business problem.

We emphasize this because so many people have built models that don't include 'wait and see' decisions, because (i) they haven't learned this concept and (ii) their software hasn't allowed them to create models with recourse decisions. Simulation optimization is very popular, but as described in the technical literature and implemented in software, it has no concept of recourse decisions.
In the next example, Gas Company Recourse, we'll assume that our decision of how much gas to purchase next year can be made on a 'wait and see' basis, after the uncertainty of the weather has been resolved. Click the Gas Company
Recourse tab to display the model, which is pictured on the next page.

This model has the same objective (C25), the same decision variables (D14, D15 and D18), and the same constraints (C22 and C23) as in EXAMPLE2. It differs in just two ways: (i) Cell D18 - the amount of gas to purchase next year appears as a recourse decision variable. (ii) Cell C23 is no longer a chance constraint - it is a normal constraint, and in fact it's = rather than $>=-$ we expect to satisfy next year's consumer demand exactly. The recourse decision variable allows us to do this - in each possible future scenario, once the weather uncertainty is resolved and consumer demand is known, we will purchase just the amount of gas we need to meet demand.

Solving with Robust Optimization

We cannot solve Gas Company Recourse with simulation optimization, since this method has no concept of recourse decisions. But we can use robust optimization methods to transform and solve Gas Company Recourse, much as we did with Gas Company Chance. We can proceed in much the same way. If we analyze the structure of the original model (by clicking Analyze - Analyze Transformed Model with the Solve Uncertain Models option set to Simulation Optimization), we find that it is a stochastic LP:

	Model Diagnosis			$\stackrel{\oplus}{\dagger}=-\bar{A} \downarrow$
	Model Type	Stochastic LP		
\square Variables - Functions - Dependencies				
		Vars	Fcns	Dpns
	All	3	3	6
	Smooth	3	3	6
	Linear	3	3	6
	Recourse	1	2	2
	Uncertain	1	2	2
\square Other Model Elements				
	Bounds	3		
	Integers	0		
	Chance Constraints	1		
	Sparsity	66.67		

Again, the model has 3 variables, 3 functions, and 1 uncertainty - but now 1 of the 3 variables is a recourse decision variable. Note that the recourse variable plays a role in 2 functions - the objective, and the constraint that requires us to meet next year's consumer demand. Our recourse decision variable will have many possible values at the optimal solution - one for each realization of the uncertain demand. With default settings in Analytic Solver Comprehensive (1,000 Monte Carlo trials in a simulation), the Solver will find 1,000 different values for D18.

If we analyze the structure of the robust counterpart model (by clicking Analyze - Analyze Transformed Model with the Solve Uncertain Models option set to Automatic or Stochastic Transformation, and the Stochastic
Transformation option set to Robust Counterpart), the result is:

The robust counterpart has 9 variables and 8 functions, but the uncertainty and the recourse decision have been eliminated, yielding a conventional linear programming model. As with Gas Company Chance, solving this robust counterpart model will give us an approximate solution to the original problem.

Now click the Optimize button, or the green arrow on the Task Pane. In a fraction of a second, the solution appears, with the message "Solver found a solution. All constraints and optimality conditions are satisfied." As shown on the next page, the expected value of the objective is now about $\$ 1,365-$ a
considerable improvement over the minimum cost of about $\$ 1,434$ in Gas Company Chance.

As noted above, our recourse decision variable will have many possible values at the optimal solution - one for each realization of the uncertain demand. We can see these different realizations (there are 1,000 different values) by clicking

- the left and right arrows on the Ribbon in Analytic Solver Desktop. Starting in Analytic Solver Desktop V2015, it's also possible to enter the number of trials directly into the Trials field.

- the left and right arrows on the Tools tab in the Task Pane in Anaytic Solver Cloud.

If you examine the trials, you'll see the pattern: The optimal solution is to not store any gas in Year 1 for use in Year 2, but instead to buy just enough gas to meet the uncertain demand in Year 2. (With higher gas costs or lower storage costs, the optimal solution might change.) Click the Simulation icon to run a simulation and resolve the contents of cell C26.

This solution offers a lower expected cost (the average cost over all future scenarios) because of the flexibility introduced by use of a recourse decision. And we were able to do this because we created the right kind of model for the business situation.

The 'moral of this story' is that Analytic Solver Comprehensive (Desktop or Cloud) gives you the power to solve such problems, using three different technologies - simulation optimization, stochastic programming, and robust optimization. But it's up to you to take advantage of the concept of recourse decisions - when they can be used - and create the right kind of model for your company's business situation.

Deploying Your Model

Introduction

When using Analytic Solver you have the ability to not only create, design and solve your optimization, simulation, simulation optimization and stochastic optimization models in Microsoft Excel, but you also have the ability to embed your model into your own application and solve it on the Web or within Power BI or Tableau by calling our RASON Server.

RASON (which stands for Restful Analytic Solver Object Notation) is Frontline Systems' modeling language embedded in JSON and a REST API that makes it easy to create, test and deploy analytic models using optimization, simulation and data mining, in web and mobile applications.

Users of Frontline's Excel Solvers will find that 1. it's exceedingly easy to translate Excel models into RASON models 2. that your knowledge of Excel formulas and functions is immediately usable and 3. RASON models can be more flexibly "bound" to data from a variety of sources.

When you click the newly added Create App icon located on the Analytic Solver ribbon, you'll notice that your optimization or simulation model can be deployed to the Cloud, Power BI, Tableau, or your own application on the Web.

Web App Developers will be able to immediately find how exceptionally easy it is to embed RASON models as JSON and solve them using Frontline's RASON server, which exposes a simple REST API that's scalable to handle very large, compute-intensive analytic models. Months of work, that would have previously been required, have been reduced to a single command button click!

Create App Menu

The purpose of Create App is to enable your model to be used wherever/whenever it is needed - on the factory floor, on a salesperson's laptop or smart phone or in a call center custom application. On your own, without web development or IT help, you can get your model working as a cloud
service. Once you've shown that it works, your developers or IT will find they can everything they'd like - customize code, connect to operational databases, apply security and governance best practices.

Rason makes your model accessible 24×7 via simply REST API and JSON responses - the common standard for web and mobile apps. Even better, it makes your model results available via OData - the standard widely supported by Microsoft apps including Power Platform. And Rason has built-in facilities to get the updated data your model needs directly from operational busines systems. This is amazingly easy if you are using Power BI, Power Apps, Power Automate, or Dynamics 365.

Rason contains the entire Excel formula language as a subset, including virtually all of Excel's built-in functions. That makes translation possible and it allows you to see your Excel formulas embedded in Rason's syntax. To work well in web and mobile apps, Rason is embedded in JSON (JavaScript Object Notation) which allows it to work directly in Power BI, Tableau or a page on any website.

With RASON, you can create more flexible models, by working with Rason arrays and tables instead of fixed-size cell ranges. When products, regions, time periods and other "dimensions" change, your model can automatically adjust and keep running - without any extra work on your part.

When you first click the Create App icon on the Analytic Solver ribbon in V20.5, the new Create App dialog appears.

Follow the steps below to convert an optimization or simulation model into a RASON model and solve it in the Cloud, Tableau, Power BI, with Solver SDK or on an automatically created web page.

Deployment Wizard

If you just aren't sure where to start or what you need, use handy deployment wizard to help guide you through the Create App menu options.

When you click "Next" you'll be guided to select the best way to deploy your Excel model. In each case, you or a developer can extend your deployed application by writing C\#, JAVA, C++, Python, R, JavaScript, or you can revise your model in Excel and "plug" the new version into the application.

Create App Menu

Clicking the first option, Cloud Service gives you two options, RASON Model and Excel Model. RASON Model translates your optimization, simulation, data mining and decision table model into Rason and POSTs the model to your RASON account. Excel Model POSTs the Excel workbook model to the RASON account. From here you can maintain and solve your model and get the results on www.RASON.com.

Clicking the second option, Power BI, gives you the ability to turn your Excelbased optimization or simulation model into a Microsoft Power BI Custom Visual. First, you simply select rows or columns of data to serve as changeable parameters, next, you select Create App - Power BI - Managed
Model/Embedded Model, and thirdly, you save the file created by Analytic Solver. Afterwards, you click the Load Custom Visual icon in Power BI and select the file you just saved. What you get isn't just a chart - it's your full optimization or simulation model, ready to accept Power BI data, run on demand on the web, and display visual results in Power BI! You simply need to drag and drop appropriate Power BI datasets into the "well" of inputs to match your model parameters. This is possible because Analytic Solver translates your Excel model into RASON® then "wraps" a JavaScript-based Custom Visual around the RASON model. For more information on this feature, see the next chapter "Creating Power BI Custom Visuals".

Clicking the third option, Tableau, allows you to turn your Excel-based optimization or simulation model into a Tableau Dashboard Extension. You simply select rows or columns of data to serve as changeable parameters, then choose Create App - Tableau - Managed Model/Embedded Model, and save the file created by Analytic Solver. In Tableau, you'll see the newly created file under Extensions on the left side of the dashboard, where you can drag it onto your dashboard. You'll be prompted to match the parameters your model needs, with data in Tableau. Much like with Power BI, what you get isn't just a chart it's your full optimization or simulation model, ready to accept Tableau data, run on demand (using our RASON server), and display visual results in Tableau! Note: This feature works (only) with Tableau version 2018.2 or later. For more information on this feature, see the chapter "Creating Custom Extensions in Tableau".

The fourth option, Solver SDK - Rason Model translates your optimization, simulation, data mining or decision table Excel model to Rason and then opens an application that loads the RASON model. Solver SDK - Excel Model runs the SDK application and loads the RASON model.

The last option, Quick Test automatically deploys your simulation, optimization, data mining or decision table Excel Model to a Web application where it can be solved.

Conversion Exceptions

There are several types of models that Frontline Excel Solvers are not able to convert to RASON models, i.e. Excel models containing errors such as \#NUM, \#VALUE, etc. For all unsupported features, the conversion generator returns an appropriate message.

Note: When converting a simulation model into the RASON modeling language note that only statistics with explicit numeric arguments such as $=$ PsiPercentile(cell, 0.50) or $=$ PsiPercentile(cell, A1) where A1 $=0.05$ are
supported. Expressions passed to arguments such as $=$ PsiPercentile(cell, $\mathrm{A} 1+\mathrm{A} 2$), where $\mathrm{A} 1=.1$ and $\mathrm{A} 2=.3$ are not supported.

Manage Models

Click Manage Models (top right) to display your models and model versions from your account on www.rason.com. Selecting a model name in the left column displays the model properties in the right. Select all models to see all your models on your Rason account, Rason as well as Excel models. Click Show Versions to see all versions of each named model. With a model name selected, clicking the Runs button displays a list of the most recent model instances in the right column. Click Show Run Parameters to display query parameters. Clicking Delete deletes the selected named model (all versions) or a specific version.

Cloud Service: Rason or Excel

Clicking the first option, Cloud Service gives you two options, RASON Model and Excel Model. RASON Model translates the Excel model into Rason and POSTs the model to your RASON account. Excel Model POSTs the Excel workbook model to the RASON account. From here you can maintain and solve your model and get the results.

Cloud Service - Rason

When you select Create App - Cloud Service - Rason Model, Analytic Solver automatically translates your Excel workflow or optimization/simulation/decision table into Rason.

In Analytic Solver Desktop, open the Product Mix(RASON).xlsx model by clicking Help - Example Models on the ribbon, clicking Optimization Examples and then the Product Mix for RASON link. A similar version of this model was
previously discussed in the Conventional Optimization chapter. Recall that this example model determines the optimal mix of products that a company should produce in order to maximize profits.

4	A	B	C	D	E	F	G	H
6		Product Mix Example Problem 1						
7		Assume a company manufactures TVs, stereos and speakers, using a						
8		common parts inventory of chassis, LCD Screens, speakers, power supplies						
9		and various internal electronics. Parts are in limited supply. Determine the						
10		most profitable mix of products to produce.						
11								,
12		Production Decisions						'
13		Number to Build:	LCD TV	Stereo	Speakers			;
14			0	0	0	\checkmark		
15								\downarrow
16		Part Requirements by Product					Part Inventory Levels	
17		Part Name	LCD TV	Stereo	Speakers		Used	Available
18		Chassis	1	1	0		0	450
19		LCD Screen	1	0	0		0	250
20		Speaker	2	2	1		0	800
21		Power Supply	1	1	0		0	450
22		Electronics	2	1	1		0	600
23		Profit per unit						
24			\$75	\$50	\$35		\$0	4------,
25								

The optimization model is included in the Model tab in the Solver Task Pane. This model written in algebraic form is below.

Maximize: Total Profit $=\$ 75 \mathrm{x} 1+\$ 50 \times 2+\$ 35 \times 3$
Subject To:
Chassis: $1 \mathrm{x} 1+1 \times 2+0 \times 3<=450$
LCD Screen: 1x1 $+0 \times 2+0 x 3<=250$
Speaker: $2 \mathrm{x} 1+2 \mathrm{x} 2+1 \mathrm{x} 3$
Power Supply: $1 \mathrm{x} 1+1 \mathrm{x} 2+0 \mathrm{x} 3$
Electronics: $2 \times 2+1 \times 2+1 \times 3$
$\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3>0$
Click Create App on the ribbon, then select Cloud Service - RASON Model. Note that this action supports all model types: optimization, simulation, data mining and decision table.
There is no need to solve the model first unless a change has been made to an already existing RASON model. If a change has been made to the workbook after a RASON model has been created, then you MUST either solve or diagnose the Excel model in order for the changes to be reflected in the new RASON model.

When creating a RASON model through desktop Analytic Solver or AnalyticSolver.com, model elements (objective function and all variables and constraints) may exist on multiple worksheets within the same Excel workbook.

Note on Rason Subscriptions
If you have already registered on www.Solver.com, then you will automatically be registered on www.Rason.com with a basic subscription. If you are a subscriber to a premium plan, you will be subject to the problem limits of the purchased plan.
The free basic Rason subscription allows you to:

- \quad Solve linear models with up to 200 variables.
- Solve nonlinear models with up to 100 variables.
- Run Monte Carlo simulations with up to 10,000 trials
- Includes 240 minutes (4 hours) of
compute time per month.
If you find yourself pushing the limits of
the Basic plan, then contact Sales
@ solver.com for information related to upgrade plan pricing.

On the Confirm Model Name dialog, you can accept the default name by clicking Save or you can enter a new model name and then click Save.

For this example, click Save to accept the default model name. In a matter of seconds, a browser opens and navigates to the Web IDE on the Editor page at www.RASON.com. The Product Mix model, now written in the RASON modeling language, is displayed in the Model Editor.

Notice that the model ProductMix(RASON) is also listed in the Models pane to the left. This is because your Excel model, translated into the RASON modeling language, has automatically been posted to the Rason Server. Now you'll be able to solve the model and obtain the returns in JSON.

A RASON model begins with an opening \{ and closes with a closing \}. Within the two braces, our model is made up of various "sections" - there are a total of
eleven：＂variables＂，＂uncertain variables＂，＂data＂，＂dataSources＂， ＂engineSettings＂，＂formulas＂，＂modelSettings＂，＂objective＂，＂constraints＂， ＂indexSets＂and＂objective＂．Some optimization models will consist of just 3 sections：variables（where the decision variables will be defined），constraints （where the constraints will be defined）and objective（where the objective will be defined））where other larger and more complex models might contain several additional segments such as：engineSettings（where the engine is chosen and an engine options are specified），data（where any arrays used in the calculation of the constraints or objective are defined），formula（where any intermediate calculations are performed）and／or dataSources（where any data is imported from an outside source such as a CSV file）．

Our example is rather simple and only includes four：variables，constraints， data and objective．Let＇s compare our Excel model with our newly generated RASON model section by section，starting with variables．
If we click back to the Excel example，we can see the model in the Model tab in the Solver Task Pane．

－细Optimization	\wedge
Objective	
－	
－Variables	
Tormal	
四䁬 \＄C\＄14：\＄E\＄14	
－Recourse	
Constraints	
Tormal	
可困 \＄G\＄18：\＄G\＄22＜＝\＄H\＄18：\＄H\＄22	
\square Chance	
－Recourse	
T－Bound	
（⿴囗⿰丨丨⿹⿺⿻⿻一㇂㇒丶刂灬丶 \＄C\＄14：\＄E\＄14＞＝0	
\square Conic	
－Integers	
\square Parameters	v
－．．	

Under Variables，in the Model tab of the Solver Task Pane，we see the cell range：C14：E14．Now click back to your RASON model．

Within the variables section，we see the same cell range，＂C14：E14＂．In our RASON model，C14：E14 is an array with three elements：C14，D14 and E14． （To refer to an individual element，use：＂C14＂，＂D14＂，or＂E14＂．）The initial value specified for the value property in the RASON model equals the values contained in the Excel cell range C14：E14 at the time the model was converted （ 0 for all three cells）．The lower property in the RASON model exists because a constraint specifying the variable lower bounds is present in the Excel model （C14：E14＞＝0）．If an upper bound was present，the upper property would be inserted into the RASON model too．Upper and lower bounds may be present in the Excel model using explicit constraints，such as we have here，or they may be entered into the Platform tab of the Solver Task Pane for Decision Vars Lower and Upper．The properties＂value＂，＂lower＂and＂finalValue＂are the default properties returned for a variable．

```
variables: {
    "c14:e14": {
        "value": 0,
        "lower": 0,
        "finalValue":[]
    }
}
```

Let＇s move on to the data section．

The data is contained in the Excel model within the cell range: C18:E22 (constraint coefficients) and also C24:E24 (objective function coefficients).

Part Requirements by Product			
Part Name	LCD TV	Stereo	Speakers
Chassis	1	1	0
LCD Screen	1	0	0
Speaker	2	2	1
Power Supply	1	1	0
Electronics	2	1	1
Profit per unit	$\$ 75$	$\$ 50$	$\$ 35$

The exact same values have been inserted into 6 arrays containing three elements each: C18:E18, C19:E19, C20:E20, C21:E21, C22:E22 and C24:E24. Again, to refer to individual elements of, say, the c18:e18 array, use: c18, d18, or e18.

```
data: {
    "c18:e18": {
        value: [
            [1, 1, 0]
        ]
    },
    "c19:e19": {
        value: [
            [1, 0, 0]
        ]
    },
    "c20:e20": {
        value: [
            [2, 2, 1]
        ]
    },
    "c21:e21": {
        value: [
            [1, 1, 0]
        ]
    },
    "c22:e22": {
        value: [
            [2, 1, 1]
        ]
```

```
        },
        "c24:e24": {
            value: [
            [75, 50, 35]
        ]
    }
},
```

Click back to the Excel model. Under Constraints in the Model tab of the Solver Task pane, we see the entry: G18:G22 $<=\mathrm{H} 18: \mathrm{H} 22$. If we inspect the first cell in the range, G18, we find the formula: =SUMPRODUCT(C18:E18, \$C\$14:\$E\$14) while H18=450. The other four cells, G19:G22, hold similar formulas.

4	F	G	lels
16		Part Inventory Levels	
17		Used	Available
18		=SUMPRODUCT(C18:E18,\$C\$14:\$E\$14)	450
19		=SUMPRODUCT(C19:E19,\$C\$14:\$E\$14)	250
20		=SUMPRODUCT(C20:E20,\$C\$14:\$E\$14)	800
21		=SUMPRODUCT(C21:E21,\$C\$14:\$E\$14)	450
22		=SUMPRODUCT(C22:E22,\$C\$14:\$E\$14)	600

In the constraint section of the RASON model, we see five arrays, containing one element each, corresponding to the five constraints in our Excel model. The value for each upper bound is taken from cells H18:H22.

```
constraints: {
    "g18": {
        "formula":"SUMPRODUCT(C18:E18,$C$14:$E$14)",
        "upper": 450
    },
    "g19": {
        "formula":"SUMPRODUCT(C19:E19,$C$14:$E$14)",
        "upper": 250
    },
    "g20": {
        "formula":"SUMPRODUCT(C20:E20,$C$14:$E$14)",
        "upper": 800
    },
    "g21": {
        "formula":"SUMPRODUCT(C21:E21,$C$14:$E$14)",
        "upper": 450
    },
    "g22": {
        "formula": "SUMPRODUCT(C22:E22,$C$14:$E$14)",
        "upper": 600 }
    },
```

The objective function being maximized in the Excel model is located in cell G24 and contains the formula, $=$ SUMPRODUCT (C24:E24,\$C\$14:\$E\$14).

Looking back to the RASON model, we see the same formula for the G24 array. The type property is set to "max" to maximize the objective.

```
"objective": {
    "g24": {
        "formula":"SUMPRODUCT(C24:E24,$C$14:$E$14)",
        "type": "max",
        "finalValue": []
    }
}
```

At the end of this section, a closing $\}$ ends the RASON model. For information on what a Rason model looks like for a simulation, decision table or data mining model, see the Rason User Guide.

Models entered into the Rason Model Editor in the Web IDE may be solved or analyzed using either a 'Quick Solve' REST API endpoint (also referred to as Synchronous Endpoints) or a standard REST API endpoint (also referred to as Asynchronous endpoints). Note: The endpoints displayed on these command buttons are the actual REST API endpoints that will be called when you create your own webpage in the next section. For more information on these endpoints, see the RASON User Guide.

There are two ways to solve a model in Rason, using the "Quick Solve" or Synchronous API calls or the Asynchronous API Calls. For this example, we will use a call to an asynchronous API endpoint. For more information on Quick Solve endpoints, see the RASON User Guide.

Click the arrow next to the \square icon and select Optimize (or Solve) from the Solve drop down menu to call the RASON endpoint, POST
rason.net/api/model/\{nameorid\}/optimize. The model is submitted to the

RASON Server which solves the model and returns the result in the Output window, shown below.

"Solve" calls the REST API endpoint POST rason.net/api/model/ProductMix(RASON)/solve which solves any problem type (optimization, simulation, decision table or data mining) while Optimize calls the REST API endpoint POST rason.net/api/model/ProductMix(RASON)/optimize which solves only optimization models.
In the Output Window at the bottom of the screen you'll see similar output.

```
Executing asynchronous solve: POST
https://rason.net/api/model/2590+ProductMix(RASON) +2020-06-17-18-
26-05-284735/solve
{
    "ModelId": "2590+ProductMix(RASON)+2020-06-17-18-47-24-
        166065", 166065",
"ModelName": "ProductMix(RASON)",
"ModelDescr": "",
"ModelFiles": [],
"RuntimeToken": "",
"ModelType": "Instance",
"ModelKind": "Rason",
"IsChampion": false,
"ParentModelId": "2590+ProductMix (RASON) +2020-06-17-18-26-05284735",
"QueryString": ""
\}
```

Model ID identifies this instance of the ProductMix (RASON) model. The ParentModelld is the model that was solved to create this instance. For more information on the Rason REST API, see the Rason User Guide downloadable from the Help page.

The results in JSON are inserted into the Models pane beneath "Results".

If we click the entry under Results, the Editor tab will open and display the results of the solve in JSON.
\{

```
"status": {
    "id": "2590+ProductMix(RASON) +2020-06-17-18-47-24-166065,
```

```
    "code": 0,
    "codeText": "Solver found a solution. All constraints and
optimality conditions are satisfied.",
    "solveTime": 64
    },
    "results": {
        "c14:e14": ["finalValue"],
        "g24_": ["finalValue"]
    },
    c14:e14": {
    "objectType": "dataFrame",
    "name": "c14:e14",
    "order": "col",
    "colNames": ["finalvalue"],
    "colTypes": ["double"],
    "indexCols": null,
    "data": [
            [200, 200, 0]
    ]
    },
    "g24 ": {
    "objectType": "dataFrame",
    "name": "g24_",
    "order": "col",
    "colNames": ["finalvalue"],
    "colTypes": ["double"],
    "indexCols": null,
    "data": [
            [25000]
    ]
    }
}
```

The result "Solver found a solution. All constraints and optimality conditions are satisfied" means that no other solution exists that is better than the solution found. (For more information on this and all possible Solver Result messages, please see the RASON Reference Guide.) To maximize profit, we should make 200 TV sets, 200 stereos and 0 speakers. The final objective value of 25,000 is the maximum profit that we can attain.

As you can see, Analytic Solver users have the ability to build an optimization/simulation/decision table model in Microsoft Excel and deploy it to Frontline's Rason server without ever having to write a single line of code. From here, users can publish, manage and govern analytic models as RESTful decision services, easily update them with new data and solve them, and use the results in any application that can consume JSON or OData.

Rason is the easiest way to transition into the world of web, mobile and cloudbase applications. For more information on using Frontline's Rason Services or to see how a Rason model looks for a simulation, decision table or data mining model, see www.Rason.com or simply contact our Technical Support staff using support@solver.com.

Note: When converting a simulation model into the RASON modeling language note that only statistics with explicit numeric arguments such as $=$ PsiPercentile(cell, 0.50) or $=$ PsiPercentile(cell, A1) where A1 $=0.05$ are supported. Expressions passed to arguments such as $=$ PsiPercentile(cell, $\mathrm{A} 1+\mathrm{A} 2$), where $\mathrm{A} 1=.1$ and $\mathrm{A} 2=.3$ are not supported.

Cloud Service - Excel

What if you had a large optimization, simulation or decision table model, or a workflow with a combination of each, with literally hundreds of thousands of decision variables/uncertain variables and constraints/uncertain functions? A
translated Rason model could be too large and unwieldy to maintain, or maybe you just feel more comfortable maintaining your model in Excel? That's no problem because with Analytic Solver 20.5, it's possible to deploy your model to the Rason Server and maintain it in Excel. You can do so by using the Cloud Service - Excel option on the Create App menu.

To get started, click back to Help - Example Models on the ribbon, click Monte Carlo Simulation Examples and then the Business Forecast link. Click the Forecast with Uncertainty tab. Recall this example model from the Simulation \& Risk Analysis chapter which finds the True Average of a sales forecast.

This example includes just one Statistic function, PsiMean, in cell D20. As a result, our results will only contain one result, the Mean of cell D20. We could add additional Psi Statistics functions such as PsiPercentiles, PsiStdDev, etc., if desired in order to add these statistics to our results in Rason.

Before we click Create App, let's use the PsiInput function to expose a few input parameters which we might expect will change later. For example, let's expose the product cost per scenario and also the maximum market demand, which, due to unforeseen circumstances, might change in the future.

To do so, click a blank cell on the worksheet, say G24 and enter $=\operatorname{PsiInput}(\mathrm{J} 16)$ and in cell G25 enter $=\operatorname{PsiInput}(\mathrm{H} 20: \mathrm{J} 20)$.
Note: You can also define cell J16 and cells H20:J20 using defined names such as MaxDemand (J16) and Cost (cells H20:J20) and then use PsiInput(MaxDemand) and PsiInput(Cost).

If running an optimization model, there are 6 output Psi functions available that you could enter into the spreadsheet: PsiFinalValue, PsiInitialValue, PsiSlackValue, PsiDualLower, PsiDualUpper and PsiDualValue. These may all be used to obtain the specified value of a constraint or variable in the result. For more information on these functions, see the Psi Functions chapter within the Analytic Solver Reference Guide.

Click Create App - Cloud Service - Excel Model

then click Save to use the default model name. This option will simply POST the Excel model to your Rason account. (If your model is saved on your OneDrive account, click the checkbox.)

If your model is saved on your OneDrive account, click the "My workbook resides on OneDrive" checkbox to expand the
dialog and enter your Connection Name (File name).

Notice that the BusinessForecast(Sim) model now appears in the Models pane on www.rason.com.
Models CL \approx
จ BusinessForecast(Sim)

- Versions
\quad 2020-06-17-19-27-21-502;
- ProductMix(RASON)

Unnamed-1 \times		BusinessForecast(Sim)...736376 \times							\star
	B	c	D	E	F	G	H	1	J
15									-
14	Sales Forecast						Market Demand		
15	Sales Volume		50,000				Slow	OK	Hot
16	Selling Price		"\$"550,000	"\$"11.00		Volume	50,000	75,000	100,000
17	Unit Cost		"S"342,602	"S"6.85		Price	"\$"11.00	"\$"10.00	"S"8.00
18	Fixed Costs		"S"120,000						
19	Net Profit		"\$"87,398				Minimum	Most Likely	Maximum
20	True Average					Product cost	"\$"4.50	"\$"6.50	"\$"8.50
21									
22							Market Typ...	1.00	
23									
24						100000			
25						4.5	6.5	8.5	\checkmark
									,
	Forecast without Uncertainty		Forecast with Uncertainty						

Under Properties on the left, we will use the Query Parameters edit box to change our Cost parameters to, say, Minimum $=\$ 10$, Most Likely $=\$ 15$ and Maximum = \$20 and the Maximum sold to 200,000.
? J16=200000\&H20:J20=[10, 15, 20]
Note:"?worksheet=Forecast with Uncertainty\&J16=200000\&H20:J20=[10, 15, 20]" is also supported.

Note that if we use PsiInput() to designate multiple cells as input parameters, it is not possible to change just 1 of the input parameters, you must pass all or none. If you want to change just one parameter, use PsiInput() for just the single parameter as we did in cell G24, $=\operatorname{PsiInput}(\mathbf{J} 16)$

Properties
Name
BusinessForecast(Sim)
Version
2020-07-07-20-45-31-94698
Data Files
No data files specified.
Choose Files...
Query Parameters
?J16=200000\&H20:J20=[10,

Note: If we had used the defined names, our query would have been:
?MaxDemand=200000\&Cost=[10,15,20] or
?worksheet=Forecast with
Uncertainty\&MaxDemand=200000\&Cost=[10,15,20]
To run a new simulation with these updated parameters, click the down arrow next to the play button and click Solve.

The results will appear under Results in the Models pane on the right.

```
Models
C*
DAirpass_Workflow
BusinessForecast(Sim)
    \nabla Versions
    2020-07-07-20-45-31-946
    ~ Results
    2020-07-02-23-56-23-4522
```

Click the new result entry to view the new simulation results. \{

```
"status": {
    "id": "2590+BusinessForecast(Sim)+2020-07-02-
        23-56-23-452286",
    "code": 0,
    "codeText": "Solver has completed the
        simulation.",
    "solveTime": 58
```

```
    },
    "results": {
        "$D$19.statistics": ["mean"]
    },
    "$D$19": {
    "statistics": {
        "objectType": "dataFrame",
        "name": "$D$19.statistics",
        "order": "col",
        "colNames": ["mean"],
        "colTypes": ["double"],
        "indexCols": null,
        "data": [
            [-781671.43164415448]
        ]
    }
    }
}
```

If you had multiple parameters to update, then you could enter the updated values into a spreadsheet or text file and then use the Choose Files button to upload the new data to the Rason Cloud Service. Simply click the Put icon to update your model with the attached data sheet and then click Solve to solve your model with the latest data.

PUT rason.net/api/model/id

Updates the current model on the server and returns
a new model version ID.

Conversion Exceptions

There are several types of models that Frontline Excel Solvers are not able to convert to RASON models, i.e. Excel models containing errors such as \#NUM, \#VALUE, etc. For all unsupported features, the conversion generator returns an appropriate message.

Note: When converting a simulation model into the RASON modeling language note that only statistics with explicit numeric arguments such as $=$ PsiPercentile(cell, 0.50) or $=$ PsiPercentile(cell, A1) where A1 $=0.05$ are supported. Expressions passed to arguments such as $=$ PsiPercentile(cell, $\mathrm{A} 1+\mathrm{A} 2$), where $\mathrm{A} 1=.1$ and $\mathrm{A} 2=.3$ are not supported.

Problem Limits

Your Frontline Excel Solver license determines the size and type of model that can be solved with the RASON Web IDE. If you have a license for Analytic Solver Comprehensive, then the same problem limits will apply when solving a RASON model via the Rason Server, i.e. linear models with up to 8,000 variables (2,000 integers) and 8,000 constraints; smooth, nonlinear models with up to 1,000 variables and 1,000 constraints; nonsmooth models with up to 1,000 variables and 1,000 constraints and SOCP models with up to 2,000 variables and 8,000 constraints.

Power BI: Managed Model or Embedded Model

When you choose Create App - Power BI - Managed Model, you must have previously used Create App - Cloud Service to create a named model (either in Excel or Rason) that "lives" on the public Rason cloud service. You will be prompted for the name of that model. Analytic Solver will automatically create a "Custom Visual" that can be used on a Power BI dashboard or report. (This is saved as a file ending in .pbiviz, that you open in Power BI, adding it to your palette of visuals.)

Analytic Solver offers a $2^{\text {nd }}$ "quick" option that works for some (modest size) but not all Excel models, when you choose Create App - Power BI - Embedded Model. Analytic Solver automatically translates your Excel model into Rason, our high-level modeling language that works in the cloud as well as on desktops and servers.

Analytic Solver then automatically creates a "Custom Power BI Visual" that can be used on a Power BI dashboard or report, where the RASON model is embedded inside the visual, in a .pbiviz file. You don't have to create a named model that "lives" on the public Rason cloud. The Custom Visual accepts the data your model needs from Power BI; whenever this data changes, it sends your Rason model plus this data to the public Rason cloud service where it is solved, gets back the results and displays them in bar chart form.

Note: This option only supports the creation of a Power BI Custom Visual with optimization and simulation models. Decision Flows, Decision Table and Data Mining models are not supported at this time.

Power BI Managed Model

Click back to the ProductMix(RASON).xlsx example model. Since we've already posted this model to the Rason cloud service within the previous section, we can immediately go to Create App - Power BI - Managed Model. This Create App option allows you to create a Data Well in Power BI which accepts input data.

Note: The menu choice Create App - Cloud Service - Excel Model does not support the use of Data Wells in Power BI. You must first post your model to the RASON Server using Create App - Cloud Service - Rason Model.
Select a blank cell, say J4. In Analytic Solver Desktop, click Formulas - Insert Function to open the Insert Function dialog, then select PSI Dimension for Category. Afterwards, highlight the function PsiDataSrc, and click OK.

In Analytic Solver Desktop or AnalyticSolver.com, you can simply type the formula directly into the cell.

The Function Arguments dialog opens displaying 5 arguments: Src_name, Val_col_names, Data, Idx1_name and Idx1_elem. We will use this dialog to create a PsiDataSrc() in cell J4 that will allow us the ability to change the inventory values and resolve the Product Mix example model not in Excel, but in Power BI.

PsiDataSrc() Arguments

Src_name - This argument names the text file, created by the custom visual, which is submitted, along with the RASON model, to the RASON server. For this example, type: inventory_src.

Val_col_names - This is the name given to the "data well" that will appear in Power BI. This "data well" will hold the actual data. For this example, type: inventory.
Data - Enter the Excel range where the data is located on the spreadsheet for this argument. For this example, use your mouse to click the upward pointing arrow to the right of the Data argument and select cells H18:H22. You can also simply type this range into the edit box.
Idx1_name - Enter the name of the ($\left.1^{\text {st }}\right)$ index set for the data specified in the Data argument. In this example, our Index set is simply the inventory available for each Part. Therefore, enter "parts" for this argument.

Idx1_elem - Enter the Excel range containing the data (or elements) for the first index set. For this example, either type or select cells: B18:B22

Since this index set is 1-dimensional, nothing further is needed and we can click OK to enter the PsiDataSrc() function into cell J4.

In Analytic Solver Cloud or AnalyticSolver.com, you can type the formula directly into cell J4.

```
=PsiDataSrc("inventory_src", "inventory",
Number_available, "parts", B18:B22)
```

Afterwards, cell J4 will display the value given to the Src_name argument, inventory_src.

Save the Excel model and then click Create App - Power BI - Managed Model to create the Power BI Custom Visual.

Confirm the name of the model by clicking Save on the Confirm Model Name dialog. This is the name of the model that will reside on the Rason Cloud Server.

W. Confirm Model Name		\times
Confirm model name		
Model Name		
ProductMix(RASON)		

Browse to a location of your choice and enter a name for the PBIViz File. (This example uses ProductMix(Rason).

Then click Save to save the ProductMix(Rason).pbiviz file. A window appears as the file is being created.

In order to provide our new data to Power BI, we must create a data file. This data file, containing the new inventory levels by part, will be imported into Power BI. This data file can be of any format supported by Power BI such as a CSV file, a text file, a database, etc. In this example, we will use an Excel
workbook to hold the data. For more information on what types of files Power BI supports, please see the Power BI documentation at:
https://powerbi.microsoft.com/en-us/documentation/powerbi-landing-page/
Open a blank worksheet and create a table with two columns. List the parts by name in the first column using the column heading "parts" and the inventory levels in the second column using the column heading "inventory", as shown in the screenshot below. Make sure to pass a new inventory value of 1,000 Speakers.
Click Help - Example Models - Optimization Examples - Product Mix Data for Power BI - Tableau to open a complete data file. This table is included on the Parts Inventory tab.

	A	B
1	parts	inventory
2	Chassis	600
3	LCD Screen	250
4	Speaker	1,000
5	Power Supp	450
6	Electronics	600

Note: Column headings must be identical to the names of the Index Sets passed to the PsiDataSrc function. Make sure there are no spaces before or after column headings or row elements.
=PsiDataSrc("inventory_src","inventory",Number_available,"parts",B18:B22)
Recall that we labeled the IndexSet as "parts" ($4^{\text {th }}$ argument of PsiDataSrc) and Val_col_names as "inventory" ($2^{\text {nd }}$ argument of PsiDataSrc) so the title for column A must be "parts" and the title for column B must be "inventory". Now save the workbook to a desired location.

Open either desktop or cloud-based Power BI and click Get Data - Excel.

Browse to the location of the saved data file (C:\Program Files\Frontline Systems \backslash Analytic Solver Platform\Examples) and click Open. Select the worksheet that contains your newly created data table and click Load.

	\bigcirc	Parts Inventory	
Display Options -	[a	parts	inventory
4 ProductMixData.xisx [4]		Chassis	600
\square - Table1		LCD Screen	250
\square Table2		Speaker	1000
\square Table2		Power Supply	450
\checkmark 鲄 Parts Inventory		Electronics	600

After the data table is uploaded to Power BI, click the icon containing three horizontal dots at the bottom of Visualizations, then select Import from file from the menu. Navigate to the location of the saved ProductMix(RASON).pbiviz file. Select the file, then click Open. If the import was successful, you will see a message indicating as such. Click OK to clear this dialog. A small icon appears bearing the Frontline Frontline Solvers logo is added under Visualizations.

Click this icon to open Frontline Solvers' custom visual.
Click the custom visual, the black and white chart is displayed. At this point you should see newly added items such as "parts" and "inventory" under Visualizations, on the task pane on the right, and the same under Fields. Recall that these are the same names that we passed to the PsiDataSrc() function within the Excel example model, ProductMixOpt.xlsx.

Two fields are added under Inventory in the Fields section of the Task Pane: inventory and parts.

Click parts Under Fields and move to parts under Visualizations where the words "Add data fields here" is located. Now drag inventory on the right to inventory on the left.

Click the down arrow next to both parts and inventory and select Don't summarize from the menu.

inventory	
inventory	Remove field
Drillthrough	Rename
Cross-report	Move to
Off	Don't summarize

Immediately, the model is sent to the RASON server, solved, and the final values are returned. After enlarging the custom visual, your screen should appear similar to the screenshot below.

At the bottom of the custom visual, we find Solver's result message: Solver found a solution. All constraints and optimality conditions are satisfied. In the Variables chart, we see that final variable values are: Var1 (LCD TV) equal to $50, \operatorname{Var} 2$ (Stereo) equal to 400 and Var3 (Speakers) equal to 100 . These variable values result in an objective function value equal to 27,250 . The payoff of increasing the available speakers from 800 to 1,000 is an added profit of \$2,250 (\$27,250-\$25,000).

Solver found a solution. All constraints and optimality conditions are satisfied.
You can use the PsiFinalValue Psi function to add the constraints to the Custom Visual output, if desired, by entering PsiFinalValue(G18:G22) in a blank cell and then updating the model on the Rason Cloud Service (Create App - Cloud Service - RASON Model) and recreating the Custom Visual (Create App Power BI - Managed Model).

You can easily update your inventory on the Parts Inventory tab of ProductMixData.xlsx, then click the three dots next to the data source within Power BI and select Refresh Data from the menu to resolve the model and display the new results in the Custom Visual.

You can update your named model (i.e. change a objective or constraint coefficient or a constraint right hand side) to a new version on the Rason Cloud service and still use the same Custom Visual in Power BI, as long as the input data definition your model requires has not changed. If the input data has changed, you'll need to use this menu option to create a new Custom Visual, to replace the old one.

Note: Continue reading to discover how to deploy a simulation model to Power BI or see the following chapter, Creating Power BI Custom Visuals, for more information on this feature.

Create App - Power BI - Embedded Model

Another "quick" option that works for some (modest size) but not all Excel models, when you choose Create App - Power BI - Embedded Model: Analytic

Solver automatically translates your Excel model into Rason and embeds your model into the Custom Visual.

Note: The menu choice Create App - Cloud Service - Excel Model does not support the use of Data Wells in Power BI. You must first post your model to the RASON Server using Create App - Cloud Service - Rason Model.

You don't have to create a named model that "lives" on the public Rason cloud. The Custom Visual accepts the data your model needs from Power BI; whenever this data changes, it sends your Rason model plus this data to the public Rason cloud service where it is solved, gets back results, and displays it in bar chart form.

Open the Business Forecast for Power BI - Tableau from Help - Example Models - Monte Carlo Simulation Examples. This model includes two PsiDataSrc functions in cells G24 and G25 to generate data wells for use in the Power BI Custom Visual.

G24 =PsiDataSrc("market_src", "market", J17:L18, "parameters", I17:I18, "mktdemand", J16:L16)

G25=PsiDataSrc("price_src", "mktprice", J21:L21, "price", J20:L20)
Two Psi Functions, PsiPercentiles and PsiData, in order to draw the histogram in the Custom Visual.

Note that your model must also contain PsiPercentiles and PsiData to draw a histogram with $5^{\text {th }}$ and $95^{\text {th }}$ percentile markers in the Power BI Custom Visual when using Create App - Power BI - Managed Model.
$\mathrm{H} 28=$ PsiPercentiles(F20)
G28 = PsiData(F20)
The PsiPercentiles function returns all percentiles (0.01-0.99) for the uncertain function in cell F20. The PsiData function returns all trial values for cell F20.

For more information on these formulas, see the Analytic Solver Reference Guide.

Click Create App - Power BI - Embedded Model to create a new Power BI custom visual file.

When asked, provide a name for the Custom Visual.

A window appears as the file is being created.

Analytic Solver automatically creates the Custom Visual that can be dragged onto the Power BI Dashboard, or a report. The Rason model will be embedded inside the Custom Visual.

Once the npm window disappears, open Microsoft Power BI. Upon opening, click the three dots beneath Visualizations, and select Import from file.

Click back to Excel and open a new workbook to enter the following data into an Excel table, then save the workbook as BusinessForecastData.xlsx. (You can open the completed data file, BusinessForecastData.xlsx, from Help Example Models - Monte Carlo Simulation Examples.)

A	B	C D	E
parameters ${ }^{\text {- }}$	mktdemand	market ${ }^{\text {P price }}$ -	mktprice ${ }^{\text {- }}$
volume	slow	50,000 minimum	4.50
volume	ok	75,000 most likely	6.50
volume	hot	100,000 maximum	8.50
price	slow	11 minimum	4.50
price	ok	10 most likely	6.50
price	hot	8 maximum	8.50

Open Power BI and add in the custom visual (Import from file BusinessForcast1.pbiviz), then click Get Data - Excel to import the data. Afterwards, drag the data fields to the appropriate data wells as shown in the table below.

Fields	Data Wells
market	market
mktdemand	mktdemand
mktprice	mktprice
parameters	parameters
price	price

Your task pane should match the following screenshot. Make sure that none of the Fields are being summarized.

Immediately, once the data wells are filled with the appropriate data fields, a simulation will be run.

Again, note that as long as your PsiDataSrc functions remain the same, you will not need to create a new custom visual.

If your data changes, say your demand explodes, you can simply edit your data file.

,	A	B	C	D	E
1	parameters -	mktdemand -	market -	price -	mktprice ${ }^{-}$
2	volume	slow	100,000	minimum	4.50
3	volume	ok	150,000	most likely	6.50
4	volume	hot	200,000	maximum	8.50
5	price	slow		minimum	4.50
6	price	ok		most likely	6.50
7	price	hot	8	maximum	8.50

Click back to Power BI and click the three dots to the right of the data source...

Sheet 1

and select Refresh Data from the menu.

New measure

New column
New quick measure
Refresh data
The Custom Visual will automatically redraw using the new data.

This option is simpler initially, but if you want to update your model in any way, you'll have to use this menu option to create a new Custom Visual. If you expect to revise the model over time, it's better to use the first option, Managed Model. For more information on creating a Power BI Custom Visual including how to use Data wells in Power BI, see the chapter Creating Power BI Custom Visuals.

Tableau: Managed Model or Embedded Model

When you click Create App - Tableau, you'll see two options: Managed Model and Embedded Model, just like with Power BI above. Continue reading to discover which option suits your needs.

Note: This option only supports the creation of a Tableau Extension with optimization and simulation models. Decision Flows, Decision Table and Data Mining models are not supported at this time.

Tableau: Managed Model

When you choose Create App - Tableau - Managed Model, you must have previously used Create App - Cloud Service (Rason or Excel) to create a named model that "lives" on the public Rason Cloud service. You will be prompted for the name of that model. Then Analytic Solver will automatically create a Tableau Dashboard Extension that can be used on a Tableau dashboard. (This is saved as a set of files, one ending in .trex that must be added to "My Extensions" in Tableau.)

The Dashboard Extension does three things: 1. It prompts you in Tableau to connect the input data your Excel or Rason model needs, for any Tableau source; 2. Whenever the Tableau data is updated, it automatically runs your model as a cloud service, getting optimization or simulation results; 3. It displays results in bar chart form, right where you placed the visual on your dashboard or report.

You can update your named model to a new version on the Rason cloud service, and still use the same Dashboard Extension, so long as the input data definition your model needs has not changed. If it has changed, you must return to Create App - Tableau - Managed Model to create a new Custom Visual, to replace the old one.

Click back to the ProductMix(RASON).xlsx example model discussed in the Cloud Service section above. Since we've already posted this model to the Rason cloud service within the previous Cloud Service section, we can immediately go to Create App - Tableau - Managed Model.

Note: The menu choice Create App - Cloud Service - Excel Model does not support the use of Data Wells in Tableau. You must first post your model to the RASON Server using Create App - Cloud Service - Rason Model.

Confirm the name of the model by clicking Save on the Confirm Model Name dialog. This is the name of the model that will reside on the Rason Cloud Server. To see a list of all models in your Rason account, click Manage Models (at the top of the Create App dialog). For more information on the Manage Models dialog, see the Introduction to this chapter.

- Confirm Model Name		\times
Confirm model name		
Model Name		
ProductMix(RASON)		
	Save	

Browse to a location of your choice and select a folder to save the Tableau Extension. (This example uses ProductMixExt.)

Open Tableau from the Desktop or on the Web. Upon opening, you'll be asked to connect to a data source. You can use ProductMixData.xlsx file saved locally at C:\Program Files\Frontline Systems\Analytic Solver Platform\Examples.

Click Connect - Microsoft Excel.

获
 Connect

Search for Data
Tableau Server

To a File
Microsoft Excel
Text file
JSON file
Microsoft Access
PDF file
Spatial file
Statistical file
More

Browse to C:\Program files\Frontline Systems\Analytic Solver Platform\Examples and open the file ProductMixData.xlsx. (If you are using Analytic Solver Cloud app, then you can download the file from Help Example Models - Optimization Examples and save the file locally or to your OneDrive account.)

Click Open. Tableau opens to the Data Source tab. Select the AllData Sheet to open the data table.

Click the New Dashboard icon at the bottom of the page to create a new Tableau dashboard.

Drag an Extension (from the Objects palette) to the dashboard.
Objects

Click My Extensions...
Choose an Extension
\times

Extensions are web applications that can interact with worksheets and data in Tableau. You can add custom extensions to your dashboard to add new capabilities to Tableau. Learn more

Find and download new extensions from the Extension Gallery. Click My Extensions to use an extension (.trex file) from your computer.

Extension Gallery
My Extensions
...browse to the location of the Tableau Extension.

(In this example, the Tableau Extension was saved to the ProductMix folder. Drill down to the Extensions folder to open the Solver.trex file.) Click Open.

Click OK to allow the extension to be added to the dashboard.

You can use the PsiFinalValue Psi function to add the constraints to the output, if desired, by entering PsiFinalValue(G18:G22) in a blank cell and then updating the model on the Rason Cloud Service (Create App - Cloud Service - RASON Model) and recreating the Tableau Extension (Create App - Tableau - Managed Model).

You can easily update your inventory on the Parts Inventory tab of ProductMixData.xlsx, then click back to the Data Source tab in Tableau and click the Refresh icon to refresh the data which will trigger an automatic resolve of the model. New results will be displayed in the Extension.

You can update your named model (i.e. change a objective or constraint coefficient or a constraint right hand side) to a new version on the Rason Cloud service and still use the same Tableau Extension, as long as the input data definition your model requires has not changed. If the input data has changed, you'll need to use this menu option to create a new Extension, to replace the old one.

See the following chapter Creating Custom Extensions in Tableau for more information on this feature.

Tableau Embedded Model

You have another "quick" option that works for some (modest size) but not all Excel models, when you choose Create App - Tableau - Embedded Model. When this option is chosen, Analytic Solver translates your Excel model into Rason, and then automatically creates a "Dashboard Extension" that can be used on your Tableau dashboard.

This option is different than Tableau - Managed Model because with Tableau Embedded Model, your model is embedded inside the extensions' JavaScript file. There is no need to create a named model that "lives" on the public Rason cloud. The Dashboard Extension accepts the data your model needs from Tableau; whenever this data changes, it sends your Rason model plus this data to the public Rason cloud service where it is solved, obtains the results and displays them in chart form.

Although this option is initially simpler, if you want to update your model in any way, you'll have to use this menu option to create a new Dashboard Extension. If you expect to revise the model over time, it's better to use Create App Tableau - Managed Model.

Open the Business Forecast for Power BI - Tableau from Help - Example Models - Monte Carlo Simulation Examples. This model includes two

PsiDataSrc functions in cells G24 and G25 to generate data wells for use in the Tableau Extension.

G24 =PsiDataSrc("market_src", "market", J17:L18, "parameters", I17:I18, "mktdemand", J16:L16)

G25=PsiDataSrc("price_src", "mktprice", J21:L21, "price", J20:L20)
Two Psi Functions, PsiPercentiles and PsiData, in order to draw the histogram in the Tableau Extension.
$\mathrm{H} 28=$ PsiPercentiles(F20)
G28 = PsiData(F20)
The PsiPercentiles function returns all percentiles (0.01-0.99)e for the uncertain function in cell F20. The PsiData function returns all trial values for cell F20.

For more information on these formulas, see the Analytic Solver Reference Guide.

Click Create App - Tableau - Embedded Model to create a new Tableau Extension.

Note: The menu choice Create App - Cloud Service - Excel Model does not support the use of Data Wells in Tableau. You must first post your model to the RASON Server using Create App - Cloud Service - Rason Model.

Browse to a location of your choice and select a folder to save the Tableau Extension. (This example uses BusinessForecast.)

Click back to Tableau and again drag the Extension icon to the dashboard.

Objects

Click My Extensions...
Choose an Extension

Extensions are web applications that can interact with worksheets and data in Tableau. You can add custom extensions to your dashboard to add new capabilities to Tableau.
Learn more
Find and download new extensions from the Extension Gallery Click My Extensions to use an extension (.trex file) from your computer.

Extension Gallery My Extensions
...browse to the location of the new Tableau Extension. (In this example ...\BusinessForecast\Extensions.)

Click OK to allow the extension to be added to the dashboard.
Allow Extension
This dashboard contains the following network-enabled extension, which is a web application that
expands the capabilities of Tableau. To allow this extension to run in the dashboard, click OK. Learn
more about how extensions access your data.
Extension Name: Solver
Created by: Frontine Systems
Full Data Access: Yes
Extension URL: http:/llocalhost:8000

Again, note that as long as your PsiDataSrc functions remain the same, the named model can be updated on the Rason Cloud Service and you will not need to create a new custom visual. However, if the PsiDataSrc() functions change, you will need to update both the Rason named model residing on the Rason Cloud Server and the custom visual.

SolverSDK: Rason or Excel Model

When you click Create App - Solver SDK - Rason Model, Analytic Solver translates your Excel model into Rason and starts a simple Windows application that you can run right away, plus sample source code in C\# that you can use to modify, compile and run the application. This time, when the app runs, it calls our Solver SDK asking it to load your Rason model from a JSON (text) file and solve it by performing an optimization or simulation. You can easily supply input data and pull results from the Rason model.
When you click Create App - Solver SDK - Excel Model, Analytic Solver creates a simple Windows application plus sample source code in C\# you can use to modify, compile (using Visual Studio) and run that Windows application. When the app runs, it calls our Solver SDK and asks it to load your Excel workbook model and solve it. Note: Data Mining models are not supported. Through the SDK's high-level, object-oriented API, users can obtain input data from any source available to your code and "plug" this data into your Excel model as loaded into memory - in cell ranges that you specify, "point and click" in Excel. Once solved, the app can easily pull results from cell ranges you choose in the model such as decision variables or the objective value.

RASON Model

Click Help - Example Models -Optimization Examples and click the Product Mix link.

Recall that this model determines the optimal mixture of products to manufacture given a set of parts.

To solve this example in Analytic Solver, we can of course simply click the green arrow on the task pane.

Notice the decision variable values for Number to Build: 200 TVs, 200 Stereos and no Speakers. The maximum profit is $\$ 25,000$.

Now let's solve this same model using Frontline's Solver SDK, Frontline's Software Development Kit that allows you to solve your optimization and simulation models from within C++, C\#, Java, Python or R.

Click Create App - Solver SDK - RASON Model. Immediately, the Rason Run Test Windows application opens containing the Excel model translated into Rason code.

Solve the model by clicking Run - Optimize. If a simulation model had been exported, you would click Run Simulate and Run Calculate for a Decision Table Model.

Run	Window
Optimize	
Simulate	
Calculate	
Generate	

The results are displayed in the output window. Notice the same final decision variable values of 200, 200 and 0 and the same objective function value of $\$ 25,000$.

Now what if we wanted to change our selling price for a TV from $\$ 75$ to $\$ 150$. We can easily expose this parameter by using the PsiInput() function within the original excel model.

Click back to the Product Mix example and enter the following formula into a blank cell: =PsiInput(C24)

Now click Create App - Solver SDK - Rason Model. Notice the grid at the top of the app. Enter 150 to change the price of a TV from $\$ 75$ to $\$ 150$. Then click Run - Optimize to solve the model with the new selling price.

In order to view sensitivity information for the variables or constraints, or initial variable values, we could add PsiDualValue() and PsiInitialValue() to the original Excel model.

Click back to Excel and enter the following formulas into blank cells.
=PsiInitialValue(C14:E14) - Will report the variable initial values.
=PsiDualValue(G18:G22) - Will report the dual values for the constraints.
=PsiDualUpper(G18:G22) - Will report the dual upper values for the constraints.
=PsiDualLower(G18:G22) - Will report the dual lower values for the constraints.
$=$ PsiFinalValue(G18:G22) - Will report the final values of the constraints.
$=$ PsiSlackValue(G18:G22) - Will report the slack values of the constraints.

Now click Create App - Solver SDK - RASON Model. Rason Excel Test opens and displays the RASON model.

Now click Run - Optimize to solve the model and display the results.
\{

```
"status" : {
    "code" : 0,
```

 "codeText" : "Solver found a solution. All constraints and
 optimality conditions are satisfied."
 \},
 "variables" : \{
"c14:e14" : \{ "initialvalue" : [[200, 200, 0]] \}
\},
"objective" : \{
"g24 " : \{ "finalvalue" : 25000 \}
\},
"constraints" : \{
"g18" : \{
"duallower": 400,
"dualupper": $1 e+30$,
"dualvalue" : 0,
"finalvalue" : 400,
"slackvalue" : 50
\},
"g19" : \{
"duallower": 400,
"dualupper": $1 e+30$,
"dualvalue" : 0,
"finalvalue" : 200,
"slackvalue": 50
\},
"g20" : \{
"duallower": 400,
"dualupper": $1 e+30$,
"dualvalue" : 12.5,
"finalvalue" : 800,
"slackvalue" : 0
\},
"g21" : \{
"duallower": 400,
"dualupper": 1e+30,

```
        "dualvalue" : 0,
        "finalvalue" : 400,
        "slackvalue" : 50
    },
    "g22" : {
        "duallower": 400,
        "dualupper": 1e+30,
        "dualvalue" : 25,
        "finalvalue" : 600,
        "slackvalue" : 0 }
    }
}
```


Excel Model

Click Help - Example Models -Optimization Examples and click the Cutting Stock link.

This model determines how to cut steel sheets, given steel sizes of 100, 80 and 55 inches, to meet demand in 3 sizes, 45,30 and 18, while minimizing waste.

Enter "=PsiInput(D30)" in a blank cell to expose the demand for the 45 " cut so that it can be changed within the SDK Windows app. This example uses cell D32.

Click the green arrow on the task pane to solve the model. The number of sheets to cut are located under "Number of Sheets" and the cuts to make per sheet are listed under 45, 30 and 18 , respectively

Click Create App - Solver SDK - Excel Model. Immediately, the Rason Run Test Windows application opens. Notice the PsiInput parameters beneath Sheets_demand.

Input Data:	
\$D $\$ 30$	
	Col-1
	150

Click Run -- Optimize

Run
Window
Optimize
Simulate
Calculate
Generate

The results are displayed in the output window.

```
"status" : {"code" : 0, "codeText" : "Solver found a solution. All constraints and optimality conditions are satisfied." }.
""status" : {"code" : 0, "codeText" : "Solver found a solution. All constraints and
objective": {
"Total_waste" : {"finalValue" : 350 }
```

Now change the values of the input parameter (the demand for the $45^{\prime \prime}$ cut). Let's use: 200. Click Run Optimize again. The new results are displayed in the output window at the bottom of the app.

Click Run - Generate to generate the Rason model.

```
Rason Excel Test - IspAACC1.tm
al File Run Window
Input Daso: sos30
    CO0.1
    Commert: "Tivemodel has been generied by Psi fom an Eccel model in the wokbook sspAAC1.mp",
    M
mdelSetting: {workseets: ['artin__Stcck'], activeSheel: "Cuting_Stock").
egineSettngs: / engine: "LP/Quadratic",
varables:
```



```
data:{
    "d14d22":{ vave: [2,1,1,0,0,0,0,1,1,0,0,0,1,0,0.0]
```



```
    "Y44,28":{value: {0, , , , , , , , , , , , , , , , , , , , , , , , ,3}).
    "d13f13": {value: [45, 30, 18] ).
    "d1414": {value: [12. 0.011}.
    "15515":{ value:|1.1.11}
    "d1515":{ value: Il. 1.,
    6f16": {value: [11,0,3
    "d7f17":{ value: [0, 3,01])
    "d18+18: {value: [0, 2,2]]).
    "d19f19:{ {value: [0, 1,3]).
    "t20f20":{ value: [10, 0.5\].
    "d21f2"":{voluc:[1,1,01,1].
    "d22+2"-{ {valu: [1,0,11}
    "d2f2":{ value:[11,0,11])
    d23423":{ value: [0, 2, 11]}
    d2424":{ value: [0, 1, 2|]}.
    "d25f25":{value: [0. 0.4|].
    "d26f26":{ value: [1, 0,0|]}.
    "d27427":{value: [0, 1, 1]|}.
    "d28828":{value: [10,0.3\]).
"144;28:{{vaue: {0,0, 150,0,0,0,0,0,0, 200. 0, 0, 0, 0.0]}
```


Quick Test: Web Page or Rason Model

When you choose Create App - Quick Test - Web Page, Analytic Solver automatically translates your Excel model into Rason; then it creates a Web page (a file ending in .html) with some text boxes and buttons, and the Rason translation of your Excel model and data - embedded in the JavaScript code on the Web page. This is a working version of your model that runs on the Web if you click the Quick Solve or Solve button, after a moment you'll see the same solution values that you would see in Excel, but returned in JSON (JavaScript Object Notation).
When you choose Create App - Quick Test - Rason Model, Analytic Solver automatically translates your Excel model into Rason. To show you the new Rason model, Analytic Solver opens a new Web browser to www.Rason.com, logins as you, uploads the translated model text and displays it in Rason's Model Editor. You can solve the model using Rason's menu Quick Run Optimize\Simulate\Decision\Solve endpoints.

Whether you keep your model in Excel or translate it to Rason the big difference is that your model can be used wherever / whenever it is needed - on the factory floor, on a salesperson's laptop or smartphone, or in a call center custom application. And Rason can get the updated data your model needs directly from operational business systems. This is amazingly easy if you are using Power BI, Power Apps, Power Automate or Dynamics 365.

Quick Test Web Page

Analytic Solver includes the ability to bypass months of development work by creating a web application that solves the optimization, simulation, stochastic optimization, simulation optimization and/or decision table model in Excel. Click back to Excel, and the Product Mix example, then click Create App Quick Test -- Web Page.

NOTE: When creating a RASON model through desktop Analytic Solver or AnalyticSolver.com, model elements (objective function, decision variables, constraints, uncertain variables and/or uncertain functions) may now appear on multiple worksheets within the same Excel workbook.

Immediately, a browser opens displaying the newly created Web Application.
See Note on RASON Subscriptions in the section above for \log in and subscription information pertaining to solving models via the RASON Server.

Click Solve.

```
Messages:
Solve started at: Tue Feb 26 2019 15:27:03 GMT-0800 (Pacific Standard Time)
RASONModelID: https://rason.net/api/model/2590+2019-02-26-23-27-07-556826
Checking status..
Checking status.
Model finished in: }11266\mathrm{ milliseconds
Result:
{
    "status": {
    "code": 0,
    "codeText": "Solver found a solution. All constraints and optimality conditions are satisfied."
},
"variables":
    "c14:e14":
    "finalvalue": [
```

Automatically, the model is submitted to the RASON Server and the optimization is started using the RASON Rest API Endpoint POST rason.net/api/model/id/solve, the status is checked using the Endpoint GET rason.net/api/model/id/status and the results are obtained via the Endpoint GET rason.net/api/model/id/result. All this, at the click of a button.

Clicking the Quick Solve command button will call the Quick Solve endpoint. Try it for yourself - the results from the Quick Solve will be appended in the Result window.

Click Stop to stop an already executing optimization and Clear Messages to clear the output window.

Click back to Excel and the Business Forecast example, and click Create App Quick Test -- Web Page. A new browser open displaying a new Web Application. This Web App solves the Business Forecast simulation model.

Click Solve. Automatically, the model is submitted to the RASON Server and the simulation is started using the RASON Rest API Endpoint POST rason.net/api/model/id/solve, the status is checked using the Endpoint GET rason.net/api/model/id/status and the results are obtained via the Endpoint GET rason.net/api/model/id/result. All this, at the click of a button.

```
Simulate started at: Tue Feb 26 2019 15:32:33 GMT-0800 (Pacific Standard Time)
RASONModelID: https://rason.net/api/model/2590+2019-02-26-23-32-35-730216
Checking status...
Status: Incomplete
Status: Complete
Model finished in: 4324 milliseconds
Result:
{
"status": {
    "code": -10,
    "codeText": "Problem could not be loaded. Duplicated Json assignment PSI could not parse Excel formulas.",
    "message": "Problem could not be loaded. Duplicated Json assignment PSI could not parse Excel formulas.",
    "line": 1
}
```

Clicking the Quick Solve command button will call the Quick Solve endpoint.
To view the code used in the Web Application, right click (on the shaded blue region at the top of the page) and select View Page Source (if using Mozilla Firefox or Google Chrome) or View Source (if using Internet Explorer). A browser will open displaying the code for the Web Application. This code gives examples of how to call all RASON REST API Endpoints. Please see the RASON User Guide for a description of each along with complete information about the RASON Rest API.

```
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
    <meta charset="utf-8" />
    <meta http-equiv="X-UA-Compatible" content="IE=edge"/> 
    <title>Rason Server Example</title>
    <script type="text/javascript" language="Javascript">
        / to be used with simple models
        // This approach is intended for more complex models requiring more significant computational effort and time.
        var rasonApp = { false,
            RASOMModelID: false,
            molveStopped: false,
            URL fragment determining whether or not we are simulating or optimizing the model
            RASONServer: 'https://rason.net/api',
```



```
            // The declarative model we will solve with this app
    comment: "This model has been generated by Psi from an Excel model",
uncertainVariables: {
    "e17": { formula: "PsiTriangular(H20,I20,J20)" },
    "i22": { formula: "PsiIntUniform(1,3)" )
\prime'
data: {
    "h20":{ value: 4.5},
    "i20": { value: 6.5 },
    "j20": { value: 8.5 },
```


Quick Test - Rason Model

When you choose Create App - Quick Test - Rason Model, Analytic Solver automatically translates your Excel model into Rason.

Click back to Excel and the Product Mix model and click Create App - Quick Test - Rason Model.

To show you the new Rason model, Analytic Solver opens a new Web browser to www.Rason.com, logins as you, uploads the translated model text and displays it in Rason's Model Editor.

You can solve the optimization model using Rason's menu Quick Run Optimize or Quick Run - Solve endpoints.

Model results are displayed in the Output window.

```
Output
Executing synchronous optimization: POST https://rason.net/api/optimize
    "status": {
            "id": "2590+2020-06-20-21-40-58-680551",
    },variables": {
            "c14:e14": {
            "finalValue": [
                [200, 200, 0]
            }
        }
    },objective":
        "g24-": {
            g24-": "finalvalue": 25000
        }
    }
```

Rason is the easiest way to transition into the world of web, mobile and cloudbase applications. For more information on Frontline's Rason Cloud Service, visit www.rason.com.

Using Custom Functions

Introduction

In past versions of Analytic Solver, users were driven to define their own VBA function when their models required custom functions. However, such functions were not supported by the PSI Interpreter; a severe limitation. In Analytic Solver V2021, this limitation has been overcome with the implementation of custom Box functions and the support of Excel's new LAMBDA function. This chapter begins by illustrating how to create a custom function by using Excel's Lambda function and finishes with an explanation of how to use a custom Box function.

LAMBDA Function Design

Microsoft Excel's LAMBDA function allows users to define a custom function written in Excel's formula language.
Suppose a user wanted to create a function that computes the Total Profit of a company that produces TV, Stereos and Speakers. (Recall this is exactly what the Product Mix example model does in the Optimization chapter that occurred previously in this guide.)
$=$ LAMBDA(TV,Stereos,Speakers, $75 *$ TV $+50 *$ Stereos $+35 *$ Speakers)
The LET function can be used in conjunction with the LAMBDA function to give:
=LAMBDA(TV,Stereos,Speakers,LET(TV,TV*75,Stereos,50*Stereos,Speakers ,35*Speakers,TV+Stereos+Speakers))
The function takes three arguments named TV, Stereos and Speakers, binds the value of 75 * TV to the name TV, the value of $50 *$ Stereos to Stereos, the value of $35 *$ Speakers to Speakers and TV + Stereos + Speakers as the result.

The Name Manager in Excel allows a name to be assigned to the formula. If this function is named TotalProfit, then the formula TotalProfit(200,200,0) would evaluate to 25,000 .
Note: According to Microsoft's Support for the Lambda function, it's best to create the function within an Excel cell before adding to the Name Manager, in order to determine if the custom lambda function is calculating correctly.

Once the function is created, or named, the function can be called by that name thereby eliminating the need to enter this formula multiple times in the spreadsheet.
Note: Although in Excel a LAMBDA can be an argument to another LAMBDA, this behavior is not supported in Analytic Solver.

LAMBDA Example Models

Optimization Example

Open the Airport Box Function example (Help - Example Models Optimization Models) to view an example of how a custom box function could be used in an optimization model.

Original Formulation Recap

As discussed in the earlier Optimization chapter, the original model formulation is in the first worksheet, Original Formulation. This example uses the distance formula in cells G14:G19 to find the optimal location (using X and Y coordinates) of a proposed airport. The airport's location should be as equidistant as possible between each of the six cities.

- The decision variables in this model are in cells E13, F13 and G20.
- The constraints in this model are G14:G19 <= G20. Cells G14:G19 use the distance formula $\left(\mathrm{SQRT}(\mathrm{Xc}-\mathrm{X})^{\wedge} 2+(\mathrm{Yc}-\mathrm{Y})^{\wedge} 2\right)$ to calculate the distance between the proposed airport location and each city.
- The objective to be Minimized is the decision variable, G20.

The objective in cell G20 is being minimized which "squishes" the values in cells G14:G19 to be as small as possible. This is what is referred to as a MiniMax problem; G20 will equal the maximum of G14:G19 in the final solution.

LAMBDA Function Formulation

On the Lambda Function tab, the model has been reformulated to use the Microsoft Excel LAMBDA function to calculate the distance between the proposed airport location and each of the six cities in cells G14:G19. The LAMBDA function, named DistanceFormula, is defined within Excel's Name Manager as:

DistanceFormula=LAMBDA(Xone,Xtwo,Yone,Ytwo, SQRT((Xtwo-Xone)*2 + (Ytwo-Yone)^2))
Notice the order of the arguments, Xone, Xtwo, Yone, Ytwo. When invoked in the Excel cell, the arguments must be passed in this same order.

Invoking the LAMBDA Function

Rather than typing the distance formula into cells G14:G19, this formulation of the model calls the newly created DistanceFormula custom function to calculate the distance between the proposed airport site and each city.

In the Excel sheet, Cell G14 contains the formula:

=DistanceFormula(\$E\$13, E14, \$F\$13, F14)

Following the order of the arguments in the LAMBDA function: Xone $=\mathrm{E} 13$, Xtwo $=$ E14, Yone $=$ F13 and Ytwo $=$ F14 .

This custom function in cell G14 calculates as:

SQRT((E14-E13)^2 + (F14-F13)^2)

The remaining functions in cells G15:G19 calculate similarly.
Click LAMBDA and LET for Microsoft Excel documentation.

Solving the Model

Click the green arrow on the task pane to solve the model. Notice that Analytic Solver is able to find an optimal solution with an objective equal to 3.5355 and final variable values equal to $\mathrm{X}=3.5$ and $\mathrm{Y}=4.5$. This is the same optimal solution found with the original formulation.

Note: Recall that according to Microsoft's Support for the Lambda function, it's best to create the function within an Excel cell before adding to the Name Manager, in order to determine if the custom lambda function is calculating correctly. This is exactly why you see the LAMBDA function in cells H14:H19.

Simulation Example

Open the GBM Simple Model Box Function example (Help - Example Models - Simulation Models) to view an example of how a custom box function could be used in an simulation model.

Original Formulation

As mentioned above, the original model formulation is in the first worksheet, Original Formulation. This example predicts the average daily closing price of a stock based on it's previous closing price.

- The uncertain variables in this model are in cells D13:D36.
- The uncertain functions in this model are in cells F13:F36. Recall that these cells are designated as uncertain functions by the statistic PsiMean that appears in cells H13:H36.
- Cells H13:H36 contain the PsiMean() function which finds the expected value of cells F13:F36.

In the original formulation of the model, cells F13:F36 contains the formula:
$=(\operatorname{F12*}(\operatorname{EXP}((\$ K \$ 18-\$ K \$ 17 * \$ K \$ 17 * 0.5) *(1 / \$ K \$ 13))+(\$ K \$ 17 * \operatorname{SQRT}(1 / \$ K \$ 13) * D 13)))$
As mentioned previously, it's easy to imagine how easy it would be to accidentally introduce an error when entering this intricate formula. To alleviate this challenge, and the challenge of searching for an error in a spreadsheet with formulas such as this, Analytic Solver now fully supports the use of Microsoft's LAMBDA function which can be defined once and reused repeatedly. Custom functions reduce "bugs" in the spreadsheet by only requiring an complex function to be defined once.

LAMBDA Function Formulation

On the Lambda Function tab, the model has been reformulated to use the Microsoft Excel LAMBDA function to calculate the predicted Daily Price of a stock. The LAMBDA function, named PredDailyPrice, is defined within Excel's Name Manager (Formulas - Name Manager) as:

PredDailyPrice=LAMBDA(Volatility,NumofDays,NormDist,Appreciation,Previ ous,Previous*(Volatility*SQRT(1/NumofDays)*NormDist)+ $\operatorname{EXP}(($ Appreciation-Volatility^2*0.5)*(1/NumofDays)))
As with the previous optimization example, notice the order of the arguments: Volatility, NumofDays,NormDist,Appreciation, Previous. When invoked in the Excel cell, the arguments must be passed in this same order.

Invoking the LAMBDA Function

In the Excel sheet, Cell F13 contains the formula:
$=$ PredDailyPrice(Volatility,NumofDays,D13,Appreciation,F12)
Following the order of the arguments in the function: Volatility $=$ Volatility, NumofDays $=$ NumofDays, NormDist $=$ D13, Appreciation $=$ Appreciation, Previous = F12.

This custom function in cell F13 calculates as:
$\mathrm{F} 13 *(\mathrm{~K} 17 * \operatorname{SQRT}(1 / \mathrm{K} 13) * \mathrm{D} 13)+\operatorname{EXP}((\mathrm{K} 18-\mathrm{K} 17 \wedge 2 * 0.5) *(1 / \mathrm{K} 13)))$
The remaining functions in cells F14:F36 calculate similarly.
Click LAMBDA and LET for Microsoft Excel documentation.
Note: Recall that according to Microsoft's Support for the Lambda function, it's best to create the function within an Excel cell before adding to the Name Manager, in order to determine if the custom lambda function is calculating correctly. This is exactly why you see the LAMBDA function in cells F13:F36.

Notes on the LAMBDA Function

Scope of variables within a LAMBDA function

When a LAMBDA expression is calculated, Excel/Analytic Solver will first search the local scope of the expression for the definition of a variable. If not
found, Excel/Analytic Solver will proceed to search the parent scope and then will move to the global scope (cell/range names).

Assume an empty cell with the defined name " z " and the custom Lambda function below exist within the same workbook.
$=\operatorname{LAMBDA}(\mathrm{x}, \mathrm{y}, \operatorname{LET}(\mathrm{z}, \mathrm{x}+1, \mathrm{y} * \mathrm{z}+\mathrm{b} 1))$
In this instance, the local scope is the LET function, the parent scope is the LAMBDA function enclosing the LET function, and the global scope is all cell/range names in the workbook. The variable $z=x+1$ despite the existence of z in the global scope. The variable z inside LET and the z defined name in Excel are considered to be different variables.

Entering the LAMBDA/LET functions in Excel

It's possible to enter the LAMBDA function in an Excel in multiple lines by pressing ALT + ENTER. For example:
$=$ LAMBDA (
$\mathrm{x}, \mathrm{y}, \operatorname{LET}($
$y * z+b 1$
)
)

Nesting LAMBDA/LET functions

Analytic Solver supports only nested LET functions. Nested LAMBDA functions are not supported by Analytic Solver.

Properties of LAMBDA/LET in PSI Interpreter

The following list contains important properties of both the LAMBDA and LET functions when used with Analytic Solver.

1. Reusability - LET definitions are not reusable while LAMBDA definitions, even ones containing LET functions, are resuable.
2. Nesting - LET definitions can be nested while LAMBDA definitions cannot.
3. Recursion - Although the LAMBDA function is recursive in Excel, Analytic Solver does not support recursion with this function.
4. Threads - Analytic Solver supports both LET and LAMBDA functions running in multiple threads.
5. Polymorphic Evaluation - Analytic Solver supports the calculation of derivates, intervals, etc inside of a LAMBDA and LET function.
6. Analytical Transformations - Non-smooth trasnformations inside both LET and LAMBDA functions is restricted. Stochastic transformations allow both LET and LAMBDA functions.
7. Cube Evaluations: Analytic Solver does not support the use of dimensional modeling (cubes) within a LAMBDA or LET function.
8. Environment: Both LAMBDA and LET functions are supported in Analytic Solver, Solver SDK Platform and RASON Decision Services.
9. Model Conversion: Both LET and LAMBDA functions are supported in model conversion from Excel to RASON (Create App - RASON).

- A LET function within an Excel model will appear within the "formulas" section within the RASON model, after conversion is complete.
- The LAMBDA function within an Excel model will appear within a new section, "boxFunctions" within the RASON model, after the model conversion is complete.
See the RASON User Guide for more information on both the LET and LAMBDA functions appearing within a RASON model.

Box Function Design

An example of a custom box function is below as implemented in an Excel workbook. Assume both appear in cells A3:D7 in the Excel workbook.

Function Name	Box Function Example using FEEL syntax. Monthly Payment			
Formula Language	FEEL	P	r	n
	number	number	number	number
Returned value type	1 2	payment Fee	$\begin{aligned} & \left(p^{*} r / 12\right) /\left(1-(1+r / 12)^{* *}-n\right) \\ & 0.01 * \text { payment } \end{aligned}$	
	payment + fee			

Box Function Example using Excel syntax.

Function
result
The first box function is written using the formula syntax for FEEL and the second table has been written using Excel syntax.

Box Function Component	Description
Function name	(Required) The name of the custom function appears above the top- left cell of the table layout.
Formula language	(Required) The formula language is specified in the top-left cell. Supported options are FEEL or EXCEL. If FEEL is entered as the formula language, FEEL syntax is expected. (See top screenshot.)
Returned value type	Formula Language = Excel Array: Any Excel cell reference, i.e. A1:C1.

	This can be used for a Box function, that, say, computes the SUMPRODUCT(A1:A3, B1:B3) where A1:A3 is a range for the first input parameter and B1:B3 is the range for the second input parameter. Boolean: The entered words TRUE and FALSE are interpreted as Boolean reserved words, not strings. Empty: Select "empty" if Formula Language = EXCEL and no Data Type is being specified. Error: Any Excel error such as \#N/A, \#Number, etc. Number: May be an integer or fraction. String or Text: Any string
	Language = FEEL
Input Parameter types	
Boolean: The entered words TRUE and FALSE are interpreted as	
Boolean reserved words, not strings.	
Date: Any valid date, such as 05-05-1964	
Duration: There are two formats for duration, one measuring	
periods in months and another measuring periods in seconds. For	
example, P1DT1H2M3S denotes:	
P for "period"	
Input parameters	
Error: Any Excel error such as \#N/A, \#Number, etc.	

$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { Number: May be an integer or fraction. } \\ \text { String or Text: Any string }\end{array} \\ & \begin{array}{l}\text { Language = FEEL } \\ \text { Boolean: The entered words TRUE and FALSE are interpreted as } \\ \text { Boolean reserved words, not strings. } \\ \text { Date: Any valid date, such as 05-05-1964 }\end{array} \\ \text { Duration: There are two formats for duration, one measuring } \\ \text { periods in months and another measuring periods in seconds. For } \\ \text { example, P1DT1H2M3S denotes: } \\ \text { P for "period" } \\ \text { 1D for 1 day } \\ \text { T for "time" } \\ 1 H \text { for 1 hour } \\ 2 M \text { for 2 minutes and } \\ 3 S \text { for 3 seconds. } \\ \text { Number: May be an integer or fraction. } \\ \text { String or Text: Any string } \\ \text { Time: Any valid time }\end{array}\right\}$

The function in the examples above accepts three numbers, p, r and n , and returns a number. In order to calculate the function the first formula, payment, is calculated as: $(\mathrm{p} * \mathrm{r} / 12) /\left(1-(1+\mathrm{r} / 12)^{\wedge}-\mathrm{n}\right)$. The $2^{\text {nd }}$ formula, fee, is calculated as 0.01 * payment. Finally, the final result is calculated as: payment + fee.

Execution of a Custom Function

The new PSI function, PsiBoxFunction, executes the custom function. This function must be called with the cell address of the custom function and any input parameters.
$=$ PsiBoxFunction(loc_range, input1, input2, input 3 , etc.)

To invoke the custom function in this example use:
$=$ PsiBoxFunction(A3:D7, 60000, $0.0374,360$) where $60,000=\mathrm{p}, 0.0374=\mathrm{r}$ and $360=n$

It's also possible to create a defined name for the function location in cells A3:D7 and a defined name for each input parameter into a cell with a defined name, then pass the defined name as the argument, i.e.
$=$ PsiBoxFunction(Function1, amount, rate, term)
Continue to the next section to see these same two example models formulated using a custom Box function

Box Function Examples

Optimization Example

Open the Airport Box Function example (Help - Example Models Optimization Examples) to view an example of how a custom box function could be used in an optimization model.

Original Formulation

The original model formulation is in the first worksheet, Original Formulation. This example uses the distance formula in cells G14:G19 to find the optimal location (using X and Y coordinates) of a proposed airport. The airport's location should be as equidistant as possible between each of the six cities.

- The decision variables in this model are in cells E13, F13 and G20.
- The constraints in this model are G14:G19 <= G20. Cells G14:G19 use the distance formula $\left(\mathrm{SQRT}(\mathrm{Xc}-\mathrm{X})^{\wedge} 2+(\mathrm{Yc}-\mathrm{Y})^{\wedge} 2\right)$ to calculate the distance between the proposed airport location and each city.
- The objective to be Minimized is the decision variable, G20.

The objective in cell G20 is being minimized which "squishes" the values in cells G14:G19 to be as small as possible. This is what is referred to as a MiniMax problem; G20 will equal the maximum of G14:G19 in the final solution.

Box Function Formulation

On the Box Function tab, the model has been reformulated to use a custom box function to calculate the distance between the proposed airport location and each of the six cities. The box function is located in cells E24:I28.

Creating a Custom Box Function

To quickly create a Box function on the worksheet, select an empty cell on the worksheet, click the down arrow next to the + icon on the Model tab of the Solver Task Pane and select Box Function at the bottom.

```
##- Add Sensitivity Parameter
f0 Add Sensitivity Function
ulla}\mathrm{ Add Objective
*)}\mathrm{ Add Variable
so Add Constraint
*) Add Optimization Parameter
L4 Add Observed Function
4. Add Uncertain Variable
稣 Add Uncertain Function
fax Add Statistic Function
Add Correlation Matrix
*I. Add Simulation Parameter
Ladd Tree Node
*[自 Add Tree Branch
围 Add Decision Table
#/### Add Rule Row
    4| Add Decision Function
ffo| Add Box Function
    fac Add Input
```

The Define Your Table dialog appears．
For this example，enter the following：
－Function Name：Distance
A function name is required．
－Formula Language：Click the down arrow and select EXCEL．Recall that this setting determines the syntax used in the function．You must select either EXCEL or FEEL．
－How Many Input Parameters？：Enter 4
At least one Input Parameter is required．
－How Many Body Formulas？：Enter 2 Recall that these are the intermediary formulas．

Body formulas are optional；if none，enter 0.
The completed dialog should look similar as the one in the screenshot below．

Click Next．

In the Define Input Parameters dialog，enter the four Input Parameters（Xone， Xtwo，Yone，Ytwo）and their types（number）as shown below．Recall that the Input Parameters are the arguments to the custom function．The Data Type argument is optional．Select＂empty＂if not specifying a data type．

Click Next. Enter the two intermediary formulas (if using) on the Define Body Formulas dialog. Formulas are executed in the order entered.

Click Next. On the last dialog, the Define Function Result dialog,

- Select Number for Result Type. This argument is optional. Select "empty" if not specifying a data type.
- The formula, SQRT(Formula1+Formula2) for Result Formula. This field is required.

Click Finish.

Notice the form of the function.
The Function name (required) appears at the top left of the function, in this example, the function name appears in cell E23, Distance.

The Formula Language (required) appears in the cell immediately below the Function name. This setting determines what syntax is used in the function.

The Input Parameters (required) appear in the columns to the right of the Formula Language. This example uses four input parameters, Xone, Xtwo, Yone and Ytwo. Arguments must be passed to PsiBoxFunction() in this order.

The 2nd row includes the Result and Input Parameter types, (optional). Cell E25 contains the result type, which will be a number. The same is true for the Input Parameter types, which are all numbers. Although, the types are optional, this row must exist, even if empty.

The third row is the start of the Function body, (optional). The body is where intermediary formulas may be calculated. The first column of the body contains an incrementing number $1,2,3$. etc., the second column of the body contains the formula name and the third, merged column contains the actual formula. In this example, the 1st formula calculated is Formula1, followed by Formula 2.

The last merged row contains the Function result．，（required）．In this example， the function calculates as： $\operatorname{SQRT}\left((\text { Xone－Xtwo })^{\wedge} 2+(\text { Ytwo－Yone })^{\wedge} 2\right)$ ．This is the same function used in cells G14：G19 in the original formulation．

Invoking the Box Function

The custom box function is invoked in cells G14：G19 using the PSI function， PsiBoxFunction．

G14＝PsiBoxFunction（\＄E\＄24：\＄I\＄28，\＄E\＄13，E14，\＄F\＄13，F14）
Notes：
－The＂anchors＂around the box function location and the E13 and F13 arguments are needed when copying this formula down to cell G19．
－The order of the arguments passed to PsiBoxFunction is the same as the order in the custom function，Xone，Xtwo，Yone，Ytwo．

This formula calculates as：SQRT（（E14－E13）＾2 $\left.+(\text { F14－F13 })^{\wedge} 2\right)$
This formulas in cells G15：G19 are similar．
The PsiBoxFunctions are displayed in the task pane under Decisions－Box Functions．

```
#Model «Platf... ■Engine 『O
-n}
    |) $E$13:$$$13
        -W$$$20
    - Recourse
Constraints
    #Normal
```



```
    - Chance
    \squareRcourse
    Baund
    Conic
    - Integers
    - Parameters
    Results
#able Simulation
#-4) Data Mining
-4P Decisions
    TP Decision Table
- 唛Decision Tree
-G)Box Functions
    G畔 Box Function
        [-7) $G$14:$G$19
            f&$G$14
            f% $G$15
            f& $G$16
            f= $G$17
            f% $G$18
            f. $G$19
```

To solve the model，click the green arrow in the Model Task Pane．Analytic Solver calls the box function to calculate the distance formula and solves the optimization model．Notice that the final variable values $(X=3.5, Y=4.5)$ are exactly the same as in the original formulation．

Continue to the next section to see this same model formulated using the Excel LAMBDA function．

Simulation Example

Open the GBM Simple Model Box Function example (Help - Example Models - Simulation Models) to view an example of how a custom box function could be used in a simulation model.

Original Formulation

The original model formulation is in the first worksheet, Original Formulation. This example predicts the average daily closing price of a stock based on it's previous closing price.

- The uncertain variables in this model are in cells D13:D36.
- The uncertain functions in this model are in cells F13:F36. Recall that these cells are designated as uncertain functions by the statistic PsiMean that appears in cells H13:H36.
- Cells H13:H36 contain the PsiMean() function which finds the expected value of cells F13:F36.
In the original formulation of the model, cells F13:F36 contains the formula:
$=(\operatorname{F12*}(\operatorname{EXP}((\$ K \$ 18-\$ K \$ 17 * \$ K \$ 17 * 0.5) *(1 / \$ K \$ 13))+(\$ K \$ 17 * \operatorname{SQRT}(1 / \$ K \$ 13) * D 13)))$
Due to the length and intricacy of this formula, one can imagine how easy it would be to accidentally introduce an error when entering this formula. Not to mention the effort required when searching for an error in the spreadsheet. To combat these challenges, Analytic Solver now fully supports the use of custom Box functions which can be defined once and reused repeatedly. Custom Box functions reduce "bugs" in the spreadsheet by only requiring an intricate function to be defined once.

Box Function Formulation

On the Box Function tab, the model has been reformulated to use a custom box function to calculate the predicted daily stock price. The box function is located in cells K23:M28.

Creating the Custom Box Function

To quickly create the Box function on the worksheet, select an empty cell on the worksheet, click the down arrow next to the + icon on the Model tab of the Solver Task Pane and select Box Function at the bottom.

5	$\cdots \times \psi^{4}$
\＃，블	Add Sensitivity Parameter
f，	Add Sensitivity Function
Illa	Add Objective
號	Add Variable
cos	Add Constraint
＋${ }^{-3}$	Add Optimization Parameter
4	Add Observed Function
L	Add Uncertain Variable
閭	Add Uncertain Function
$f \times$	Add Statistic Function
國	Add Correlation Matrix
\％	Add Simulation Parameter
\square	Add Tree Node
¢ 羍	Add Tree Branch
＊${ }^{\text {冏 }}$	Add Decision Table
	Add Rule Row
＊${ }^{\text {圆 }}$	Add Decision Function
	Add Box Function
f_{x} ］	Add Input

The Define Your Table dialog appears．
For this example，enter the following：
－Function Name：DailyPrice
A function name is required．
－Formula Language：Click the down arrow and select EXCEL．Recall that this setting determines the syntax used in the function．You must select either EXCEL or FEEL．
－How Many Input Parameters？：Enter 2
At least one Input Parameter is required．
－How Many Body Formulas？：Enter 2 Recall that these are the intermediary formulas．
Body formulas are optional；if none，enter 0.
The completed dialog should look similar as the one in the screenshot below．

Click Next．

In the Define Input Parameters dialog，enter the two Input Parameters （PrevClose and NormDist）and their types（number）as shown below．Recall
that the Input Parameters are the arguments to the custom function. The Data Type argument is optional. Select "empty" if not specifying a data type. See the table above for definitions of all Data Types.

Click Next. Enter the three intermediary formulas (if using) on the Define Body Formulas dialog. Formulas are executed in the order entered.

Click Next. On the last dialog, the Define Function Result dialog,

- Select Number for Result Type. This argument is optional. Select "empty" if not specifying a data type. See the table in the introduction to this chapter for the definitions of all Result Types.
- The formula, PrevClose*(Formula2+Formula1) for Result Formula. This field is required.

Click Finish.

The form of this function is:

- Function name - (Cell K23) Appears at the top left of the function, in this example, DailyPrice. (Required)
- Formula Language - (Cell K24) Appears in the cell immediately below the Function name. This entry can either be EXCEL or FEEL. This setting determines what syntax is used in the function. (Required)
- Input Parameters - (Cells (L23:M23) Appear in the columns to the right of the Formula Language. This example uses two input parameters, PrevClose and NormDist . Arguments must be passed to PsiBoxFunction() in this order. (Required)
- Result and Input Parameter Types - (Cells K24:M24) contains the result type for both the Result and Input Parameters, in this example a number. Although, the types are optional since Formula Language $=$

Excel, this row must exist, even if empty. (Required if Formula Language $=$ FEEL, otherwise optional)

- Function Body - (Cells K25:M27) The third row is the start of the Function body. The body is where intermediary formulas may be calculated. The first column of the body contains an incrementing number $1,2,3$. etc., the second column of the body contains the formula name and the third, merged column contains the actual formula. In this example, the 1 st formula calculated is Formula1, followed by Formula 2. (Optional)
- Function Result - (Cells K28:M28) The last merged row contains the Function result. In this example, the function calculates as:
$=$ PrevClose $*$ (Formula1 + Formula 2)
$=$ PrevClose $*(\text { Vol } * \text { SQRT(1/NumDays) })^{*}$ NormDist $)+$ EXP((AppRate$\left.\mathrm{Vol}^{\wedge} 2 * 0.5\right) *(1 /$ NumDays $)$
where
- PrevClose $=$ the previous days predicted daily rate $($ Box Function Input Parameter 1)
- $\mathrm{Vol}=\mathrm{K} 17=0.09486$
- NumDays $=$ K13 $=100$
- NormDist $=$ PsiNormal() uncertain function in column D (Box Function Input Parameter 2)
- AppRate $=\mathrm{K} 18=0.0234992$

Invoking the Box Function

The custom Invoking box function is invoked in cells F13:F36 using the PSI function, PsiBoxFunction.

F13 = BoxFunction(\$K\$23:\$M\$28,FirstClose,D13)
Notes:

- The "anchors" around the box function location are needed when copying this formula down to cell G36.
- The order of the arguments passed to PsiBoxFunction is the same as the order in the custom function, PrevClose, NormDist.

This formula in cell G13 calculates as: $=\mathrm{F} 12 *(\mathrm{~K} 17 * \operatorname{SQRT}(1 / \mathrm{K} 13) * \mathrm{D} 13)+$ $\operatorname{EXP}((\mathrm{K} 18-\mathrm{K} 17 \wedge 2 * 0.5) *(1 / \mathrm{K} 13)$.

This formulas in cells F14:F36 calculate similarly.
The PsiBoxFunctions are displayed in the task pane under Decisions - Box Functions.

Solving the Model

To solve the model, click the green arrow in the Model Task Pane. Analytic Solver calls the box function to calculate the predicted daily price over 1000 trials.

To view a histogram of each predicted daily price, double click any cell in the F column. The uncertain function dialog below displays the distribution of trial values found for the custom function in cell F20. From this histogram, a user can determine that there is a 90% chance that the stock price will range from $\$ 19.49$ to $\$ 21.30$. For more information on how to interpret a histogram in Analytic Solver, see the Simulation chapter.

Using Decision Tables

Introduction

Decision Tables were introduced to Analytic Solver starting in V2019. A decision table contains a set of rules which specify actions to perform based on specific conditions. Decision tables are a good tool to use when there is a consistent number of rules, or conditions, to be evaluated followed by a specific set of actions to be performed once a rule, or condition, is met. For example, the simple decision table below returns an employee's pay based on the number of hours worked.

$\mathrm{C}+$	hours	pay
	number	$27,5,3,2$
1	$[1 . .40]$	$25 *$ hours
2	>40	45^{*} (hours -40)

If the employee worked from 1 to 40 hours in a week, the pay is $\$ 25 *$ hour. If any overtime is worked, the employee gets paid $\$ 45$ an hour for any hour above 40.

In Analytic Solver, a decision table is a specific realization of a custom function. A table has a name, input/output parameters and a body implementing the logic through a structured framework. A decision table is invoked in the same way as a VBA function when computing one or more output parameters for the passed one or more input values. In Analytic Solver, a decision table is invoked using the Psi function, PsiDecTable(). The modeling language inside of Analytic Solver's Decision Table tool is S-FEEL extended to standard conversion functions in FEEL. For more information on Decision Tables, we invite you to reference the following: DMN Method and Style by Bruce Silver (Cody Cassidy Press, September 28, 20180 and DMN Cookbook by Bruce Silver \& Edson Tirelli (Cody-Cassidy Press, April 4, 2018).

Decision Table Structure

Open the example model, DT Structure.xlsx by clicking Help - Examples Decision Trees/Decision Tables on the Ribbon. This table returns the number of holidays apportioned to an employee based on his/her age and number of years in service. This file defines the regions of the decision table as illustrated in the screenshot below.

A Decision Table is created using the newly introduced PsiDecTable() function where the cell range of the table is passed as the first argument. See the PsiDecTable() function as it appears in cell J17,
=PsiDecTable(G7:K16,2,age,service,"holidays") where:

- G7:K16 - The cell address range of the table is G7:K16.
- 2 - The number of input variables
- age, service - input variables
- "holidays" - output

The steps required to create the decision table above are listed below. To help guide in the creation, Analaytic Solver has created a Decision Table wizard. Add a new worksheet to DT Stucture.xlsx and follow along with the steps below. To open, click a blank cell on the worksheet and click the plus on the Solver Task pane (to the right of your screen), and select Add Decision Table from the menu.

Step 1: Enter a unique Name for the table immediately above the upper left corner of the table, to define the table. (This argument creates the decision table
object and identifies the table.) In this example, the table name is specified as "Policy Output Order". When Excel generates the RASON Code, the name component is used to identify this specific table.

If using the wizard, be sure to enter a unique name such as "Policy Output Order 2".

Step 2: Enter a header, consisting of one or two rows, separated to the right and below by a double horizontal line. The first row in the header is mandatory. Two headers are contained in the table above, age, and service.

If you are using the Decision Table Wizard, this will be done for you.
Step 3: Enter a Hit Policy, usually a capital letter or a name, entered in the upper left cell of the table. The Hit policy specifies how the table will be evaluated when multiple rules are applicable and hence, multiple output values are returned. The entered value identifies the supported policies by a capital letter and an operator when applicable. You may enter the $1^{\text {st }}$ letter of the policy or the whole word. The currently supported Hit types and their meanings are:

Unique (U): A unique rule must "hit" evaluating to a unique result. If multiple rules are "hit", an error will be returned.
Any (A): If rules overlap, but point to the same result, that unique result is returned.

Priority (\mathbf{P}) : If multiple rules are "hit" and multiple results collected, return only one result with the highest priority; the priorities are defined by the order of the output values.
First (\mathbf{F}): Only 1 result is returned for this policy. Once a rule is evaluated successfully, or a hit occurs, the search stops.

Rule Order (\mathbf{R}) - If multiple rules are hit, return the collection of results as created in the rule order

Output Order (O) - Currently entered value in cell G7. If multiple rules are hit, return the collection of results in the priority order of the listed output values.

Collect (\mathbf{C}) - The same as (\mathbf{R}). However, we may make this policy more specific by adding an operator to it in order to allow aggregation.

Note: If aggregating a date, a scalar is returned. If using an operator, output must not be a string, but only a numerical value.

C+ - sum the matched output values
$\mathbf{C}<$ - return the min of matched output values
C> - return the max of matched output values
C\# - return the number of matched output values

In the Wizard, click the down arrow next to Hit Policy and select Output Order.

Step 4: Enter Input Parameters in the $1^{\text {st }}$ header row next to Hit policy and up to the double vertical lines. The input parameter names are listed to the left of the double vertical line. In this example, age and service are the input parameters. These input parameters belong to the local scope of this table.

In the wizard, enter " 2 " for "How Many Input Parameters?".

Step 5: Enter Output Parameters in the $1^{\text {st }}$ header row to the right side of the double vertical lines. In this example, holidays and rule are the output parameters. After calculation, a table returns a few selected or all output parameter values in the form of a dynamic array. If a table has a single output or a single output has been selected, the result will be a scalar value. These input parameters belong to the local scope of this table

In the wizard, enter "2" for "How many Output Parameters?" and click Next.

Step 6: (Optional) Enter the Input Values in the $2^{\text {nd }}$ header row, to the left of the double vertical line, beneath the input parameter to which they are releated. Input Values may be a list of values separated by a commas (i.e. 27, 5, 3, 2), a list of unary tests (i.e. $<10,>=20,[18 . .20]$), or a data type (i.e. boolean, number, text, data, time, and duration).

Data Types

Boolean: The entered words TRUE and FALSE are interpreted as Boolean reserved words, not strings.
Number: Maybe an integer or fraction. This is the data type entered in the example above.

Text: Any string
Date: Any valid date, such as 05-05-1964
Time: Any valid time
Duration: There are two formats for duration, one measuring periods in months and another measuring periods in seconds. For example, P1DT1H2M3S denotes:

- P for "period"
- 1D for 1 day
- T for "time"
- 1 H for 1 hour
- 2 M for 2 minutes and
- 3 S for 3 seconds.

When testing a value against a list of values or unary tests, the OR operator is used. For example, in the first example above, the list of values is evaluated as 27 OR 5 OR 3 OR 2. Likewise, the list of unary tests is evaluated as <10 OR $>=20$. It's possible to negate a list as well. For example, NOT(27, 5, 3, 2) would result in a selection of a record that does not includes 27 OR 5 OR 3 OR 2. Similarly, NOT $(<10\rangle=20$,$) would equate to neither \langle 10$ OR $\rangle=20$ being selected.

All input entries in the relevant input column should cover the entered domain, otherwise, an error will be generated indicating that the table is not complete. If an input value does not exist, the completeness test is not performed.
In the wizard, enter "age" and "service" for Input Parameter Names and select "Number" from the Data Type menu for both parameters. Then click Next.

Step 7: Enter Output values in the $2^{\text {nd }}$ header row, to the right side of the double vertical line, beneath the output parameter to which they are related. Similar to Input Values, an Output value may be a list of values separated by a commas (i.e. 27, 5, 3, 2), a list of unary tests (i.e. $\langle 10\rangle=20,,[18 . .20]$), or a data type (i.e. boolean, number, text, data, time, and duration). Similarly, to an Input values, if a value appears in the table that does not match the output value, an error will be returned.
In this example, the list " $27,5,3,2$ " is entered beneath "holidays" and "text" is entered beneath "rule". The list beneath "holidays" gives the priority when returning the results. In other words, the results are to be returned largest to
smallest. The output value, "text" specifies that the appropriate text contained in cells K9:K16 is to be returned along with the holiday.

In the wizard, enter "holidays" for the first Output Parameter Name and then select Ordering for Data Type/Ordering. Enter "rule" for the second Output Parameter Name and then select "Text" for Data Type/Ordering, then click Finish.

The top portion of the Policy Output table will be inserted onto the new worksheet.
Policy Output Order 2

O	age	service	holidays	rule
	Number	Number		Text
1				

Notice the blank cell beneath "holidays". Enter the priority order of the rules here, " 20,5,3,2"

Policy Output Order 2

O	age	service	holidays	rule
	Number	Number	$27,5,3,2$	Text
1				

Step 8: Enter the Decision Table Rules (or Unary tests) in each row below the double horizontal line. The unary test returns information (true or false) about the rule. Supported unary tests may have one of the following syntax forms: value(Boolean, number, text, date, time, duration), < value, > value, <= value, $>=$ value, [value..value], (value..value], [value..value), (value..value), "-". Note: Currently, rules may only be entered as rows.

The first test examines whether the value being tested is equal to the value inside the parenthesis. For example, if the Unary test consists of the single value 'medium', the resulting test would ensure that the variable being tested was equal to 'medium'. The forms, [value..value], (value..value], [value..value) and (value..value), are interval tests. The [] operators denote a closed interval while the () operators denote an open interval. The last test, "-" returns TRUE against any value. Note: To return a default value for a table, simply use "-" "-" for the unary tests.

Expressions

Variables and constants can be combines through operations called literal expressions. Literal expressions in S-FEEL are similar to formulas in Excel and in the RASON modeling language.

The following operators are supported in combination with decision table rules: addition (+), subtraction (-), multiplication (*), division (/) and exponentiation
(**). Variables and constants can be combined using only these supported operators and parentheses. An example of an expression is: 2 * age - service where two variables, age and service, and a constant, 2 , are linked by two arithmetic operations (* and -). Note that an expression is a FEEL expression, NOT an Excel formula. In this example, the expression "age - service" appears in the first rule where "age" and "service" refer to cells H7 and I7. This expression does not refer to any appearances of "age" or "service" outside of the scope of this table. For more information on supported conversion expressions, please see the Expressions heading at the end of this chapter.

Step A: (Optional) Enter the Rule numbers in the first column under the Hit policy starting with "1". Although optional, this component of the table is strongly recommended.
Step B: Enter the Input entries in the input columns
Step C: Enter the Output entries in the output columns.

Decision Tables at Work

The decision table contained within DT Structure.xlsx is shown below. This table returns the number of vacation days allotted to an employee based on his age and number of years in service. Notice cells G10:H11 at the top of the screenshot below containing age and service in the first row and 58 and 31 in the second. Cells G11 and H11 have been given the defined names (Insert - Name - Define) of age and service, respectively. These are the input variables on which the table depends. Each time the values of 30 and 10 are changed and a recalculation is performed (by clicking the green arrow on the task pane), the decision table function (PsiDecTable) will return the appropriate computed result in cell I26.

I26 = PsiDecTable(F16:J25,,, age, service) where:

- F16:J25 is the location of the decision table on the Excel worksheet
- Age and service are the two input variables. Alternative, we could have specified the cell address (G11 and H11) or the values (58 and 31).
$=$ PsiDecTable(F16:J25,,age,service) or =PsiDecTable(F16:J25,,, 58, 31)

Two optional arguments are missing in this formula: output_names ($2^{\text {nd }}$ argument) and ret_header (third argument). These arguments are explained below.

Delete the contents of cells J26:K29. Immediately cells I26:J28 will populate.

A	F	G	H	1	J
10	inputs	age service 31			
11					
12 13 14	Values to the left of the double line border are INPUTS			Values to the right of the double line border are OUTPUTS	
15	Policy Output Order			1	
16	0	age	service	holidays	rule 4
17		number	number	27,5,3,2	text
18	1	-	-	age - service	r1
19	2	$>=60$	-	3	r2
20	3	-	$>=30$	3	r3
21	4	<18		5	r4
22	5	$>=60$		5	r5
23	6		>=30	5	r6
24	7	[18..60]	[15.30]	2	r7
25	8	[45..60]	<30	2	r8
26				27 r1	
27				5 r 6	
28				3 [3	

The PsiDecTable() signature above includes only 2 input parameters, age and service. If using Excel 2019, the result will "spill" into 3 rows and 2 columns as shown in the screenshot above starting with cell I26. In the first column you see the rule output: 27,5 , and 3 . The second column contains the rule numbers, r1, r6 and r3. If you are using an earlier version of Excel, which does not support Dynamic Arrays, you'll need to use the PsiCalcValues() function, entered as an array (CTRL + SHIFT + ENTER) in cells J26:K28, to view the results.

Note: It's important when using Dynamic arrays in Excel V2019 that you enter the array in a cell location where there are enough blank cells to contain the array. This example contains two output values: holidays and rule. Therefore, we automatically know that the dynamic array will contain two columns, one containing the number of holidays and one containing the rule label. The first column will start in the cell containing the PsiDecTable() function. However, you will not know in advance how many rows will be used. This is also true when entering PsiCalcValues as an array in earlier versions of Excel.

During recalculation, each rule is evaluated. Both unary tests must be satisfied in order for a "hit" to occur and the results to be added to the result collection.

1. The first rule, under age, uses the unary tests age: "-" and service: "-", which, as you will recall, returns TRUE against any value. Therefore, the first "hit" occurs with R1, as age - service or $58-31=27$.
2. The next rule tests whether age is $>=60$ which is not successful as 58 is not greater than or equal to 60 .
3. The next rule (rule 3) returns TRUE for age ("-") and TRUE for service (>= 30). Therefore, the next "hit" is for R3 which returns "3" (from column J).
4. The fourth rule returns FALSE for age $<=18$.
5. The fifth rule returns FALSE for age $>=60$.
6. The sixth rule returns TRUE for "-" for age and service $>=30$. Therefore a hit occurs and the result for r 6, " 5 ", is added to the result collection.
7. The $7^{\text {th }}$ rule returns FALSE for both the age interval [18..60] and the service interval [15..30].
8. The $8^{\text {th }}$ rule returns TRUE for the age interval [45..60] but FALSE for service <30.

Three rules, r1, r3, and r6 are added to the result collection. The results for these three rules are 27,3 , and 5 , respectively. After the reslts are updated, the HIT policy is checked. In this example, the hit policy is "O" or "Output Order" which specifies that if multiple rules are hit, the collection is retuned in the priority order of the listed output values which can be found beneath "holidays" or $27,5,3,2$. Therefore, our results are returned as $27(\mathrm{r} 1), 5$ (r6) and 3 (r3) or largest to smallest.
Open the example DT Hit Policy Examples.xlsx to see how the different Hit policies work.

Note: During parse-time, each PsiDecTable() function is uniquely identified by it's cell address. A "completeness test" ensures that all input/output entries per column cover the domain of the input/output values in the same column, as long as the output values are not expressions against the output values. If so, these expressions are evaluated at run-time. Type verification is performed for those columns in which a data type is specified rather than an input/output value.

Decision Table Errors

Change the priority order in cell I17 to " $20,5,3,2$ " and then perform a recalculation by clicking the green arrow on the task pane. Then click the output tab to view the error:

```
Output entry not found in the output domain
PSI could not parse Excel formulas - Use Excel Interpreter.
Error occurred at range 'Decision Table'!$I$26
[tblPolicyOutputOrder]
```

This error was generated because " 20 " was not found in the output results. As you can see, it's important to take into account your range of output values when generating rules for your decision table, especially when specifying priority order.

Optional Arguments

PsiDecTable() supports two optional arguments: output and ret_header.
To return the result for a given output only, we must pass an additional argument to the PsiDecTable() function. For example, to only receive the number of holidays, rather than both holidays and the rule label, add "holidays" as the second arguent to our existing formula in cell I26. In this instance, only one column will be returned containing the values: $27,5,3$.

I26=PsiDecTable(F16:J25, "holidays",, age, service) where

- F16:J25 is the location of the decision table on the Excel worksheet,
- "holidays" (optional) to ensure that the returned results only include the specified output.
- age and service are the two input variables.

It's also possible to use a $2^{\text {nd }}$ optional argument, ret_header, this time a Boolean argument, as the third argument to PsiDecTable(). When TRUE is passed for this argument, a header containing the names of the output(s) is included in the result. In this instance, one column will be returned containing the values: "holidays", 27, 4, 3.

I26=PsiDecTable(F16:J25, "holidays", TRUE, age, service) where

- F16:J25 is the location of the decision table on the Excel worksheet,
- "holidays" (optional) to ensure that the returned results only include the specified output,
- TRUE to add a header to the result and
- age and service are the two input variables,

This is the complete signature for the PsiDecTable() function.

Additional Examples

This section presents a special class of tables, in which the specific Date, Time, and Duration data types are utilized.

Decision Table Containing Dates

Open the first tab within the workbook DT Date \& Time Examples.xlsx. This table returns the credit risk rating of an individual based on their age and medical history. The PsiDecTable function appears in cell G19 = PsiDecTable(B13:E19,,, bd, mh) where

- B13:E19 is the location of the decision table,
- bd (cell G14 containing "1964-05-05") and mh (cell H14 containing "good") are the input variables.

Notice that the string values in columns D (medHistory) and E (riskRating) in the table are entered without quotes. This is because Analytic Solver always assumes any output as an expression requiring parsing. If a single word or "token" is detected, the Psi Interpreter first checks if it is a local scope variable name. If not, the word-token is assumed to be a string. In the first example table the expression age - service existed in the "holidays" column. Since age and service are variables connected through the operator '-‘, the Psi Interpreter assumed the entry as an expression to be evaluated. If instead, we wanted to enter that expression as a string value, then we would need to surround the expression with quotation marks.

The situation with dates is however, different. While in Excel we may enter a date without " ", when a Date is part of a Decision table, we must surround the date with single " or double "". S-FEEL defines a single format for the Date type 'yyyy-mm-dd'. Optionally a date may begin with the letter D, for example "D1964-05-05". Other date type formats in Excel are not valid in S-FEEL.
When we pass a date as an input parameter to a Decision table, the date must be a string formatted as S-FEEL Date. If we enter an Excel date in that cell, it will
be automatically converted into the date representing number and the Decision table will still recognize it as date. However, we strongly recommend using the S-FEEL format outside of Decision tables for readability of the model.

In this example,the unique rule which matches the input birthdate "1964-05-05" is rule \#3, because "1964-05-05" is in the date interval ['1935-05-05'..'1970-0505'].

Decision Table Containing Time

The Psi Interpreter will convert any time entries in a decision table into the Time format, "hh:mm:ss". Optionally, we could enter the times using the format beginning with the letter \mathbf{T} such as in "T18:29:30". Usually this time format denotes local time. If we want to specify the UTC time, we can simply add \mathbf{z} at the end of the format, for example "T18:29:30z". However, it's important to note that the z time format is just a readable format. The Psi Interpreter cannot effectively convert local and zulu times, because the location of the local time is not specified in the supported format.

\triangle	B	C	D	E	F	G
10 Toll Tax						
11	U	operTime	traffic	toll		now
12		time	text	number		"18:50:05"
13	1	> '19:00:00'	low	5		
14	2	['15:00:00'..'19:00:00']	high	7		
15	3	['09:00:00'..'15:00:00')	medium	6		
16	4	['06:00:00'..'09:00:00')	high	7	toll	7
17	5	<'06:00:00'	low	5	traffic	high

Click the $2^{\text {nd }}$ tab in the workbook to open the example shown above which returns the traffic prediction (low, medium, or high) for a toll station based on the time of day.
To avoid the downward spill of the result for the two outputs, we use the optional output argument in both PsiDecTable() functions in cells G16 and G17.
G16 = PsiDecTable(B14:E20, "toll",, byNow)
G17 = PsiDecTable(B14:E20, "traffic",, byNow)

Decision Table Containing Duration

Finally, let's take a look into an example using the data type, duration. Click the third tab in the workbook to open the decision table, shown below, which computes the output parking fee according to the input parking time. The table is invoked through the Excel formula in cell F16 = PsiDecTable(B11:D16, , , period).

10	B	c	D	E	F
	Parking Fee				
11	U	dtDuration	parkingFee		period
12		duration	number		
13	1	<'PT20M'	0		PT25M
14	2	['PT20M'..'PT1H')	2 *ceiling(duration(dtDuration)/duration('PT20M'))		
15	3	['PT1H...'PT4H')	6 * ceiling(duration(dtDuration)/duration('PT1H'))		
16	4	> = 'PT4H'	30^{*} ceiling(duration(dtDuration)/duration('P1D'))		4

There are two types of formats for Duration:

- P1Y2M - measures duration in months
- P1DT1H20M10S - measures duration in seconds

The individual components in these formats are optional. For example, if we have 0 hours to represent, we may skip the hour component. For example, we can represent a 20 minutes duration using either: PT0H20M0S or PT20M.

While we can skip a duration component in the format, the order of components in a format must be followed. For example, we cannot first enter minutes and then hours; PT20M1H is not a currently supported syntax.

Hit Policies

This section presents a collection of tables to illustrate each of the 7 Hit policies currently supported by Analytic Solver: Any, Collect, First, Rule Order, Output Order, Priority Order and Unique. Open the example workbook, DT Hit Policy Examples.xlsx. This workbook contains 7 tabs, one tab for each example.

Hit Policy: Any

The decision table appearing on the Any tab returns the loan compliance for an individual given their credit rating, current card balance, and current student loan balance.

The PsiDecTable() function is located in cell F19. This function returns "compliant" or "not compliant" given a credit rating of "B", a credit card balance of $\$ 12,000$, and a student loan balance of $\$ 75,000$. The Hit policy Any will return only one result even if multiple rules overlap.
F19 = PsiDecTable(B13:F18, , , "B", 12000, 75000)

4	B	c	D	E	F
12	Policy Any				
13	A	creditRating	creditCardBalance	studentLoanBalance	loanCompliance
14					
15	1	A	<10000	<50000	compliant
16	2	$\operatorname{Not}(\mathrm{A})$	-	-	not compl
17	3		$>=10000$		not compl
18	4			$>=50000$	not compl
19					not compl

In this table, all rules except for rule 1 are evaluated successfully for a "hit". However, the result collection only includes 1 "not compl" entry.

Hit Policy: Collect

Click the Collect tab to display the $2^{\text {nd }}$ Hit Policy example. This decision table returns the total number of holidays allotted to an employee based on their age and number of years in service. In the previous example, the Hit Policy was equal to Unique which resulted in all successfully hit rules returning their unique result. In this example, the Collect policy is used with the " + " operator. This operator returns the sum of the collection of results in rule order when multiple rules are applicable. The Collect Policy allows 4 operators, + (sum), < (return the minimum of matched output values), $>$ (return the maximum of matched output values) and \# (return the number of matched output values).

-	B	C	D	E
13	Policy Collect			
14	C\#	age	service	holidays
15		number	number	number
16	1	-	-	22
17	2	$>=60$	-	3
18	3	-	$>=30$	3
19	4	<18	-	5
20	5	$>=60$	-	5
21	6	-	$>=30$	5
22	7	[18..60]	[15..30]	2
23	8	[45..60]	<30	2
24				3

In this example, the PsiDecTable() function appears in cell E24 = PsiDecTable(B14:E23, , , 58, 31). As in the previous example, three rules, 1, 3 and 6 , are included in the results returning the values, 22,3 and 5 , respecitvely. However, since this Hit policy sums the results, the answer 30 is returned.
Let's see what happens when we change the Hit Policy to C<. Simply select cell $\mathrm{C}+$ and enter $\mathrm{C}<$, then click the green arrow on the Model tab of the Solver Task Pane to recalculate the table. When the Hit Policy is equal to $\mathrm{C}<$, $\operatorname{PsiDecTable()~}$ returns the minimum result value, 3 .

	B	C	D	E
13	Policy Collect			
14	C<	age	service	holidays
15		number	number	number
16	1	-	-	22
17	2	> $=60$	-	3
18	3	-	>=30	3
19	4	<18	-	5
20	5	> $=60$	-	5
21	6	-	>=30	5
22	7	[18..60]	[15..30]	2
23	8	[45..60]	<30	2
24				3

Let's repeat these steps for "C"> to find the maximum result value of 22,

	B		C	D
13	Policy Collect		E	
14	C>	age	service	holidays
15		number	number	number
16	1	-	-	22
17	2	$>=60$	-	3
18	3	-	$>=30$	3
19	4	<18	-	5
20	5	$>=60$	-	5
21	6	-	$>=30$	5
22	7	$[18 . .60]$	$[15 . .30]$	2
23	8	$[45 . .60]$	<30	2
24				

and "C\#" to find the number of returned results, 3.

	B	C	D	E
13	Policy Collect			
14	C\#	age	service	holidays
15		number	number	number
16	1	-	-	22
17	2	>=60	-	3
18	3	-	>=30	3
19	4	<18	-	5
20	5	>=60	-	5
21	6	-	>=30	5
22	7	[18..60]	[15..30]	2
23	8	[45..60]	<30	2
24				3

Hit Policy: First

Click the First tab to display the next Hit Policy example. In this example, a percentage discount is returned based on where an order originated, on the web or by phone, the location of the order, inside or outside the US, and customer type, wholesaler or retail according to the First Hit Policy. When this policy is in use, only the first entry in the result collection is returned.

The PsiDecTable() function appears in cell F19.
F19=PsiDecTable(B13:F18, 3,,", "web", "non_US", "retailer")

	B		C	D	E	
12	Policy First	F				
13	F	order	location	customer	discount	
14						
15	1	web	US	wholesaler	10	
16	2	phone	-	-	2	
17	3	-	non_US	-	0	
18	4	-	-	retailer	5	
19						
-2			0			

Two rules are "hit", rule 3 and rule 4. However, since we are using the First Hit Policy, only the result for rule 3 is returned, 0 .

Hit Policy: Rule Order

Click the next tab to display the Rule Order Hit Policy example. This table returns the amount of money available to a student based on their grade point average and number of times they took the ACT. Funds may be provided via a scholarship, loan, or work study program. The "Rule Order" Hit policy returns the collection of results in priority order of the listed output values. The PsiDecTable() function is located in cell F19 = PsiDecTable(B13:G18, "eligibility", , 3.6, 4, TRUE). Given an honors student with a gpa $=3.6$ and an act_count $=4$, this student would be eligible to receive a scholarship covering 20% of tuition (rule 1) and a student loan covering 30% of tuition (rule 2).

	B	C	D	E	F	G
12	Policy Rule Order					
13	R	gpa	act_count	honor_member	eligibility	rule
14		number	number	boolean	text	text
15	1	>3.5	$>=4$	TRUE	20\% scolar	r1
16	2	>3.0	-	TRUE	30\% loan	r2
17	4	>3.0	$>=2$	FALSE	20\% work	r3
18	5	< $=3.0$	-	-	20\% work	r4
19					20\% scolar	r1
20					30\% loan	r2
21						
22					20\% scolar	r1
23					30\% loan	r2
24					\#N/A	\#N/A

Rules 3 and 4 are not applicable because the student is an honor student (honor_member = TRUE) and the student's GPA is greater than 3.0.

Cells F22:G24 contain PsiCalcValue(F19). Use these values to return the contents of the result collection when using a version of Excel that does not support Dynamic Arrays. Note that if this function is entered into more than the number of cells required, \#N/A is returned.

4	B	C	D	E	F	G
12	Policy Rule Order					
13	R	gpa	act_count	honor_member	eligibility	rule
14		number	number	boolean	text	text
15	1	>3.5	$>=4$	TRUE	20\% scolar	r1
16	2	>3.0	-	TRUE	30\% loan	r2
17	4	> 3.0	$>=2$	FALSE	20\% work	r3
18	5	< $=3.0$	-	-	20\% work	r4
19					20\% scolar	
20					30\% loan	
21						
22					20\% scolar	20\% scolar
23					30\% loan	30\% loan
24					\#N/A	\#N/A

Adding in the two optional arguments, output_names and return_header, returns the header "eligibility", and only the eligibility text.
F19 = PsiDecTable(B13:G18, "eligibility", TRUE, 3.6, 4, TRUE).

Notice that when only one column is returned, the PsiCalcValue array simply repeats the results in cells G22:G23.

4	B	c	D	E	F	G
12 Policy Rule Order						
13	R	gpa	act_count	honor_member	eligibility	rule
14		number	number	boolean	text	text
15	1	>3.5	$>=4$	TRUE	20\% scholar	r1
16	2	>3.0		TRUE	30\% loan	r2
17	3	>3.0	> $=2$	FALSE	20\% work	r3
18	4	< $=3.0$	-	-	20\% work	r4
19					eligibility	
20						
21						
22					eligibility	eligibility
23					20\% scholar	20\% scholar
24					30\% loan	30\% loan

Hit Policy: Output Order

Click the next tab to display the Output Order Hit Policy example. This example returns to our original example where the number of holidays allotted to an employee is returned based on the employee's age and number of years of service. The output is returned in the order as given in the Output values header (cell D3). The PsiDecTable() function is located in cell E23 =
PsiDecTable(B13:E22, , ,58, 31). According to the rules of the table, a 58 year old employee with 31 years of service is allotted $27+3+5$ vacation days via rules 1,3 , and 6 , respectively. However, since the Hit Policy specifies that the results must be returned priority order, the result collection is listed as 27, 5, and 3.

A	B	C	D	E	F	G
12	Policy Output Order					
13	0	age	service	holidays		
14				27,5,3,2		
15	1	-	-	age - service	expression in the output	
16	2	> $=60$	-	3		
17	3	-	>=30	3		
18	4	<18	-	5		
19	5	>=60	-	5		
20	6	-	>=30	5		
21	7	[18..60]	[15..30]	2		
22	8	[45..60]	<30	2		
23				27		
24				5		
25				3		
26						
27				27		
28				5		
29				3		
30				\#N/A		
31						

Hit Policy: Priority

Click the next tab to display the last Hit Policy example. According to the Priority Hit Policy, if multiple rules are "hit" and multiple results are collected, only one result will be returned. The priority of the returned result is defined by the order of the output values in the header.

This example returns a risk of disease rating of low, medium, or high based on a person's age and medical history. The PsiDecTable() function in cell E18 (=PsiDecTable(B12:E17, , , 61, "bad")) returns "medium" for a 61 year old person with a "bad" medical history. Note that according to our criteria, two rules are returned as successful, rule 2 (age > 60 and medicalHistory = "bad") and rule 3 (age = "-" and medHistory = "medium"). Why isn't "high" returned? Because the priority list in cell B13 (low, medium, high) specifies that "medium" should have higher priority than "high".

1	B	C	D	E
12	Policy Priority Order			
13	P	age	medHistory	riskRating
14				low,medium,high
15	1	$>=25$	good	medium
16	2	>60	bad	high
17	3	-	bad	medium
18	4	<25	good	low
19				medium

Hit Policy: Unique

Click the last tab to display the last Hit Policy example. According to the Unique Hit Policy, only one rule may "hit". If multiple rules are "hit" and multiple results are collected, an error will be returned.

-	B	C	D	E	F
10	Policy Unique				
11	U	age	medHistory	riskRating	rule
12					
13	1	>60,<25	good	medium	r1
14	2	>60	bad	high	r2
15	3	[25..60]	-	medium	r3
16	4	<25	good	low	r4
17	5	<25	bad	medium	r5
18				medium	r3
19					
20				medium	r3

E18 = PsiDecTable(B11:F17, "rule",, 54, "good")
This table uses the optional output_names argument to return a risk rating (only) for an individual based on their age and medical history (medHistory). In this example, given an age or 54 and a "good" medical history, a "medium" risk rating is returned by rule 3 .

Merging Decision Table Results

The DT Loan Recommend Example illustrates how to use the PsiJoin() function to merge the results of one decision table with a $2^{\text {nd }}$ table.

The decision table, in cells B18:I34, returns a loan or loans meeting various criteria. Cell K27 includes the PsiDecTable() formula. Two types of loans meet the 4 loan requirements (reqObj = payment, reqType $=$ fixed 30 , conforming $=$ TRU and reqDown = 30): a conventional Arm $3 \backslash 1$ and a conventional Fixed 40. (See the results in cells J32:L34).

K27=PsiDecTable(B18:I34, , True, reqObj, reqType, conforming, reqDown, TRUE)

The PsiCalcValue() functions located in cells Loan Types!K32:M34 are used to persist the results from PsiDecTable().

Notice that the optional "header" argument has been passed to PsiDecTable() in cell K27. This was done in preparation for the use of the PsiJoin() function to merge the results (cells K32:M34) with the table on the Bank Rates tab.

	B	c	D	E	F	G	H	1	,	K	L	M	N
17	Loan Types												
18	c	reqObj	reqType	conforming	reqDown	loanType	conflype	downPct					
19		payment		boolean	number		conventional, jumbo	number		Requested			Conforming
20	1	payment	Fixed 30, Fixec	-	<20.0	ARM 3\1	conventional	20		loan type	fixed 30		true
21	2	payment	Fixed 30, Fixed	FALSE	>=20	ARM $3 \backslash 1$	jumbo	reqDown		objective	payment		
22	3	payment	Fixed 30 , Fixed	true	$>=20$	ARM $3 \backslash 1$	conventional	reqDown		down pct	30		
23	4	payment	Fixed 15	-	<20	Fixed 20	conventional	20		loan amt	350000		
24	5	payment	Fixed 15	false	$>=20$	Fixed 20	jumbo	reqDown		ZIP	91001		
25	6	payment	Fixed 15	true	$>=20$	Fixed 20	conventional	reqDown					
26	7	payment	Fixed 20	-	<20	Fixed 30	conventional	20					
27	8	payment	Fixed 20	false	$>=20$	Fixed 30	jumbo	reqDown		\#N/A			
28	9	payment	Fixed 20	true	$>=20$	Fixed 30	conventional	reqDown					
29	10	payment	Fixed 30	-	<20	Fixed 40	conventional	20					
30	11	payment	Fixed 30	FALSE	> $=20$	Fixed 40	jumbo	reqDown					
31	12	payment	Fixed 30	true	$>=20$	Fixed 40	conventional	reqDown					
32	13	payment	ARM 7 IT,ARM		<20	ARM $3 \backslash 1$	conventional	20		\#N/A	\#N/A	\#N/A	
33	14	payment	ARM 71, ARM	false	$>=20$	ARM 3 311	jumbo	reqDown		"N/A	"N/A	"N/A	
34	15	payment	ARM 71.1 "ARN	true	$>=20$	ARM $3 \backslash 1$	conventional	reqDown		\#N/A	\#N/A	\#N/A	

Click the Bank Rates tab to view the $2^{\text {nd }}$ table in cells A2:I8. This table lists six banks offering loans in the area. Notice that no bank is offering the Fixed 40 loan.

The PsiJoin function has been entered as an array in cells A12:L15.
A12:L15\{= PsiJoin('Loan Types'!J32:L34, A2:I8, "loanType = loanType, confType = confType, downPct >= 'minDown \%'") \}

This function joins results from the decision table function in Loan Types!J27 with the second table on the Bank Rates tab.

PsiJoin() takes three arguments, Table1, Table2, and Clause. The Table1 argument passes the first table, in this example, the table in Loan Types!A18:H34. The Table2 argument passes the second table, in this example, the table in Bank Rates!A2:I8. The third argument, Clause, passes the conditions for joining the table. In this example, the results and the table are joined via three columns: loanType, confType, and downPct. This argument must be surround by quotes.

Note that in this example, two conditions used to join the results from PsiDecTable() and the Bank Rates table are the same, i.e. loanType = loanType and confType = confType. This is not a requirement; table headers can be different.

The third condtion, downPct >= 'minDown \%' requires that the downPct in the Loan Types decision table must be greater than the "minDown \%" in the Bank Rates table. In other words, the down payment percentage in the Loan Types table must be greater than the minimum percentage down in the Bank Rates table in order for the loan to be selected and displayed by PsiJoin().
Note: Recall that the PsiDecTable() function in cell Loan Types!J27 included the optional "header" argument. If the results had not included this argument, it would not have been possible to use the PsiJoin() function complete the merge.

All three columns are common to both the PsiDecTable() results and the Bank Rates table. Three banks offer a conventional ARM 3\1 loan: Mount Diablo, AimLoan, and America One. The first three columns (A12:L15) are the three columns passed to the Clause argument: loanType, confType, and downPct. Columns D through L contain the remaining information for each offered loan: Lender, loanType, confType, minDown\%, Term, APR \%, Rate \%, Points, and feesAmt.

	A	B	c	D	E	F	G	H	1	J	K	L
1	Bank Rates											
2	Lender	loanType	conftype	minDown \%	Term	APR \%	Rate \%	Points	feesAmt			
3	Mount Diablo Lending	ARM 3\1	conventional	20	360	3.002	3	0				
4	AimLoan	ARM $3 \backslash 1$	conventional	20	360	3.103	2.875	0	1995			
5	America One	ARM $3 \backslash 1$	conventional	20	360	3.13	2.875	1	899			
6	Mount Diablo Lending	Fixed 30	conventional	20	360	3.629	3.625	0				
7	AimLoan	Fixed 30	conventional	20	360	3.682	3.625	0	1068			
8	America One	Fixed 30	conventional	20	360	3.79	3.75	0	799			
9	Than											
10												
11	Excel Solution											
12	loanType	conftype	downPct	Lender	loanType	confType	minDown	Term	APR \%	Rate \%	Points	feesAmt
13	ARM $3 \backslash 1$	conventional	30	Mount Diablo L	ARM $3 \backslash 1$	convention	20	360	3.002	3	0	0
14	ARM $3 \backslash 1$	conventional	30	AimLoan	ARM $3 \backslash 1$	convention	20	360	3.103	2.875	0	1995
15	ARM $3 \backslash 1$	conventional	30	America One	ARM $3 \backslash 1$	convention	20	360	3.13	2.875	1	899

Using Cascading Decision Tables

Open the DT Loan Strategy Model to learn how to use cascading decision tables where the output of one decision table is the input to another.
This Input worksheet contains the input parameters to the Loan Strategy model contained on the Loan Strategy and Post Bureau worksheets. Input parameters are all constant values.

-	B	C	D	E	F	G
11	Customer				Loan	
12						
13	age	40			type	standard
14						
15	exist	FALSE			rate	5
16						
17	marital status	s			term	30
18						
19	employment status	selfemployed			amount	100000
20						
21	credit score	610				
22						
23	bankrupt	FALSE				
24						
25	monthly income	2500				
26						
27	monthly expenses	1000				
27						

Click the Loan Strategy worksheet. This worksheet contains six cascading decision tables. The first table appears in cells A2:E14. This table returns a partial "risk of default" score based on a loan applicant's age, marital and employment status. Higher scores are given to older, employed, married applicants. Cell E15 contains the PsiDecTable() function.

	A	B	C	D	E
1	App R	sk Score			
2		cust age	marital status	employment status	partial score
3	C+	[18..120]	s, m	unemployed,employed,self employed,student	
4	1	[18..21]	-	-	32
5	2	(21..25]	-	-	35
6	3	(25..35]	-	-	40
7	4	(35..49]	-	-	43
8	5	>49	-	-	48
9	6	-	s	-	25
10	7	-	m	-	45
11	8	-	-	unemployed	15
12	9	-	-	student	18
13	10	-	-	employed	45
14	11	-	-	selfemployed	36
15					104
16					
$\mathrm{E} 15=\mathrm{PsiDecTable}(\mathrm{A} 2: \mathrm{E} 14$, , custAge, maritalSt, employSt)					

The input parameters from the Input worksheet are: custAge="40", maritalSt = "s", employSt = "selfemployed". The applicable rules for these input parameters are: 4,6 , and 11 resulting in partial scores of 43,25 , and 36 , respectively. Since the Hit Policy is " $\mathrm{C}+$ " the result collection is added together, $43+25,+36=$ 104.

The next decision table is located in cells G5:J14, the Bureau Risk Cat table. This table returns a risk category of high, medium, or low based on their customer status (existing or not) and their application risk score. Non-existing customers are allowed a higher risk score. Cell J15 contains the PsiDecTable() function

	G	H	I	J
4	Bureau Risk Cat			
5	U	cust exist	app risk score	bureau risk cat
6				
7	1	FALSE	<100	high
8	2	FALSE	[100..120]	medium
9	3	FALSE	[120..130]	low
10	4	FALSE	>130	veryLow
11	5	TRUE	<80	decline
12	6	TRUE	[80..90]	high
13	7	TRUE	[90..110]	medium
14	8	TRUE	>110	low
15				medium

J15 =PsiDecTable(G5:J14, , , custExist, tblAppRiskScore) where custExist = False and tblAppRiskScore() refers to the value in cell E15, or 104. Based on these conditions, one rule is "hit", rule 2. This rule returns "medium" for the bureau risk category. Since the hit policy is equal to U (Unique) only one result is returned, even if multiple results are returned.

The next decision table, Bureau Call Type, is located in cells L11:N14. This table returns the bureau call type based on the bureau risk category found in the previous decision table, Bureau Risk Cat. Cell N15 contains the PsiDecTable() function.

	K	L	M	N
9				
10	Bureau Call Type			
11		U	bureau risk cat	bureau call type
12		1	high, medium	full
13		low	mini	
14			veryLow, decline	none
15			full	
10				

N15=PsiDecTable(L11:N14, , , tblBureauRiskCat) where tblBureauRiskCat is equal to the result of the PsiDecTable() function in cell J15, or "medium". Only 1 rule is "hit", rule 1 , which returns "full".

The next decision table, Eligibility, is located in cells A20:E25. This table returns the applicant's eligibility based on three criteria: the bureau risk category, from cell J15, bureau afford, calculated in cell C36, and customer age, located in cell Input!C13. Since the Hit Policy is equal to P (Priority), the result collection will be returned in the order listed according to the list in cell E21. The PsiDecTable() function is located in cell E26.

	A	B	C	D	E
19	Eligibility				
20		bureau risk cat	bureau afford	cust age	eligibility
21	P				ineligible, eligible
22	1	decline	-	-	ineligible
23	2	-	FALSE	-	ineligible
24	3	-	-	<18	ineligible
25	4	-	-	-	eligible
26					eligible

E26 = PsiDecTable(A20:E25, , , tblBureauRiskCat, bureauAfford, custAge)

Intermediate Formulas

Cell C36 calculates the bureau afford statistic, $=\mathrm{IF}$ (disposIncome * tblCreditContFactor > monthInstall, TRUE, FALSE)
where disposIncome is calculated in cell C34, tblCreditContFactor is calculated in cell N26 (more on this later) and monthInstall is calculated in cell C32.

Cell 34 calculates an applicant's disposable income using the formula, $=$ monthIncome - (monthRepay + monthExpenses) where monthIncome $=2500$, monthRepay is calculated in cell C30 and monthExpenses $=$ 1000.

Cell C30 calculates the monthly loan replayment amount using the formula, -PMT(loanRate\%/12, loanTerm*12, loanAmnt) where loanRate is 5%, loanTerm $=30$ and loanAmnt $=100,000$.

Finally, cell C28 calculates the monthly fee using the IF statement, = IF(loanType = "standard", 20, IF(loanType = "special", 25, 0)), where loanType = standard.

Using the final input values of tblBureauRiskCat $=$ medium, bureauAfford $=$ True, and custAge $=40$, the last rule, rule 4 , is the only rule "hit", returning "eligible".

The next decision table is located in cells G22:J25. This table returns the loan strategy based on the applicant's eligibility and bureau call type. The PsiDecTable() function is located in cell J26.

	G	H	I	J
21	Strategy			
22	\mathbf{U}	eligibility	bureau call type	strategy
23	1	ineligible	-	decline
24	2	eligible	full, mini	bureau
25	3	eligible	none	through
26			bureau	

J26=PsiDecTable(G22:J25, , , tblEligibility, tblBureauCallType) where tblEligibility is calculated in cell E26 and tblBureauCallType is calculated in cell N15. Both of these inputs are outputs of earlier decision tables. Based on the results calculated by the previous decision tables, this PsiDecTable() function results in a "bureau" strategy.

Finally, the last decision table, Credit Cont Factor, is contained in cells L22:N25. The PsiDecTable() function is located in cell N26.

,	K	L	M	N
21		Credit Cont Factor		
22		U	bureau risk cat	credit cont factor
23		1	high, decline	0.6
24		2	medium	0.7
25		3	low, veryLow	0.8
26				0.7

N26 =PsiDecTable(L22:N25, , , tblBureauRiskCat) where tblBureauRiskCat is calculated in cell J15. Again, this input is an output from an earlier discussed decision table.

If the result of the PsiDecTable function in cell J26 would have been either "decline" or "through", then our work would be finished. We would either decline or accept the applicant, respectively. However, since "bureau" was returned, more analysis is required and on we must go. Click the Post Bureau worksheet to proceed.
The first decision table on the Post Bureau tab is the Post Bureau Risk Cat table. This table returns a Post Bureau Risk Category based on if the applicant is an existing customer, his/her application Risk Score and credit score. The PsiDecTable() function can be found in cell E17.

1	A	B	C	D	E
1	Post Bureau Risk Cat				
2	U	custExist	appRiskScore	creditScore	postBureauRiskCat
3					
4	1	FALSE	<120	<590	high
5	2	FALSE	<120	[590..610]	medium
6	3	FALSE	<120	>610	low
7	4	FALSE	[120..130]	<600	high
8	5	FALSE	[120..130]	[600..625]	medium
9	6	FALSE	[120..130]	>625	low
10	7	FALSE	>130	-	veryLow
11	8	TRUE	<=100	<580	high
12	9	TRUE	<=100	[580..600]	medium
13	10	TRUE	<=100	>600	low
14	11	TRUE	>100	<590	high
15	12	TRUE	>100	[590..615]	medium
16	13	TRUE	>100	>615	low
17					medium
18					

E17 $=$ PsiDecTable(A2:E16, , , custExist, tblAppRiskScore, creditScore) where custExist is False, tblAppRiskScore (104) is calculated in cell E15 and creditScore $=610$. Given these input values, 1 rule is "hit", rule 2.
Finally, we come to the Routing table in cells G2:L8. This table returns a final strategy based on two decision table results (postBureauRiskCat and postBureauAfford) and two input parameters, bankrupt and creditScore. The PsiDecTable() function in cell L9 = PsiDecTable(G2:L8, , ,
tblPostBureauRiskCat, postBureauAfford, bankrupt, creditScore) where tblPostBureauRiskCat $=$ medium, postBureauAfford $=$ True (calculated in cell H15), bankrupt $=$ FALSE (never bankrupt) and creditScore $=610$.

The input parameter postBureauAfford is calculated in cell H 15 according to the formula, $=\mathrm{IF}$ (disposIncome * postCreditContFactor > monthInstall, TRUE, FALSE). Since the product of disposIncome and postCreditContFactor (963.18 * .7) is greater than the monthly installment (556.82), the IF function returns TRUE

The input parameter postCreditContFactor is calculated in cell $\mathrm{H} 12=$ PsiDecTable('Loan Strategy'!L22:N25, , , tblPostBureauRiskCat). Note that this PsiDecTable() function refers to the App Risk Score decision table in cells Loan Strategy!L22:N25. Analytic Solver supports multiple PsiDecTable() functions that refer to the same table, as long as the input variables are different. Multiple PsiDecTable() functions with identical input variables are not supported and will result in an error. Two PsiDecTable() functions return to the App Risk Score decision table.

With these criteria, the last rule, rule 5, is hit, accept the loan application.

Using Decision Tables in Optimization and Simulation

It's also possible to build an optimization and simulation model using a decision table as input. See the Data Mining User Guide for an example on how to use a decision tree in conjunction with a data mining model saved in PMML format.

Optimization

Open DT Opt \& Sim Examples.xlsx and click the Optimization tab. The decision table appearing in cells B12:F24 returns the collective score, due to the Hit Policy of "Collect +", of a set of partial scores based on a customer's age, marital status, and employment status. The PsiDecTable() function appearing in cell F25 = PsiDecTable(B12:F24, , , I12, maritalSt, employSt) where I12 currently refers to the age "1", "maritalSt" refers to cell Input!B15 ("s" for single) and "employSt" refers to cell Input!B17 ("selfemployed").

The Model tab on the Solver Task Pane shows the optimization model which is maximizing the PsiDecTable() function in cell F25 by varying cell I12 subject to the variable bounds of 18 and 65. Click Optimize - Analyze Original Model. Analytic Solver will report the model type as "NSP" meaning "nonsmooth problem". The model is nonsmooth due to the use of the decision table. As a
result, you will need to either select the Evolutionary Engine to solve the model or set Automatically Select Engine on the Engine tab. Then click the green arrow on the Model tab to solve the optimization model.

Almost immediately, the Evolutionary Engine stops with the result, "Solver has converged to the current solution. All constraints are satisfied." This result means that the Solver has been unable to find a new, better member of the population whose "fitness" represents a relative (percentage) improvement over the current best member's fitness. For more information on this result, see the "Solver Result Messages" chapter within the Frontline Solvers Reference Guide.

The final variable age results in the largest collective score according to the decision table rules, based on the initial starting point. (For more information on optimizing with the Evolutionary Engine, see the Frontline Solvers Reference Guide.)

Simulation

Click the Simulation tab to open the simulation example. This example uses the same decision table as in the optimization example. However, in this example, the PsiDecTable() function in cell E26 = PsiDecTable(A13:F25, , custAge, maritalSt, employSt), where "custAge" refers to Input!C11 which holds a PsiNormal() function. This function will pull 1000 values from the PsiNormal() distribution, with a mean of 40 and a standard deviation of 7, during the simulation. The PsiMean() function in cell E28 will summarize the 1000 trial values into one mean value. In addition, the PsiMean function will also denote cell E26, the cell containing the PsiDecTable() function, as an output cell. For simulations, Analytic Solver tracks the values of all uncertain functions (simulation outputs, referenced in PsiOutput() or PSI Statistics function calls).
Click the green arrow on the Model tab to run a simulation. Immediately, the simulation finishes and the uncertain function dialog opens displaying a discrete distribution where we can see that over 70% of the time, the values for the collective sum of the partial scores is over 101 when the age parameter follows a normal distribution with mean 40 and standard deviation 7. For more information on simulation with Analytic Solver, see the Examples: Simulation chapter that appears previously in this guide.

Note: Using a PsiStatistic as an input to the PsiDecTable() is not supported.
For example, given the formula, =PsiDecTable(a1:f10, , , G1, G2) neither G1 nor G2 may contain a PsiStatistic, such as PsiMean, PsiMedian, etc.

Using Decision Tables with Data Mining

This DT Loan Strategy + Predictive.xlsx example expands on the DT Loan Strategy Model by adding an element to the APP Risk Score table on the Loan tab. The formula in cell Loan!E15 returns the minimum of 2 outputs. The first output is produced from a linear regression model scoring new data contained in cells Input! $\mathrm{F} 26:$ I27. The second output is from the decision table.

Input Parameters

This Input worksheet contains the input parameters to the Loan Strategy model contained on the Loan Strategy and Post Bureau worksheets. Input parameters are all constant values.

Loan Strategy

Click the Loan Strategy worksheet. Like in the DT Loan Strategy Model.xlsx workbook, this worksheet contains six cascading decision tables. The first table appears in cells A2:E14. This table returns a partial "risk of default" score based on a loan applicant's age, marital and employment status. Higher scores are given to older, employed, married applicants. Cell E15 contains the PsiDecTable() function.

	A	B	C	D	E
1	App Risk Score				
2	C+	cust age	marital status	employment status	partial score
3		[18..120]	s, m	unemployed,employed,self employed,student	
4	1	[18..21]	-	-	32
5	2	(21..25]	-	-	35
6	3	(25..35]	-	-	40
7	4	(35..49]	-	-	43
8	5	>49	-	-	48
9	6	-	s	-	25
10	7	-	m	-	45
11	8	-	-	unemployed	15
12	9	-	-	student	18
13	10	-	-	employed	45
14	11	-	-	selfemployed	36
15					20.56795175

In this workbook, however, the formula in cell E15, has an added component. In this example, the Excel MIN function is used to return the minimum of a predicted value obtained from a linear regression model made to score on an applicant's data (see cells Input!F26:I28) and the decision table result given the applicant's name, marital status, and employment status.
$=$ MIN(PsiPredict(Predictive_PMML_Model!B12:B44,Input!E15:H16),PsiDecT
able(A2:E14, , , custAge, maritalSt, employSt))
The input parameters for the first term in the MIN function (PsiPredict(Predictive_PMML_Model!B12:B44,Input!E15:H16) are the linear regression model saved in PMML format on the Predict_PMML_Model tab in cells B12:B44 and the new data saved on the Input tab in cells E15:H16. The result from PsiPredict() is 20.57 For a complete explanation of the PsiPredict function, see the Data Mining User Guide.

The input parameters from the Input worksheet are: custAge="40", maritalSt = "s", employSt = "selfemployed". The applicable rules for these input parameters are: 4,6 , and 11 resulting in partial scores of 43,25 , and 36 , respectively. Since the Hit Policy is "C+" the result collection is added together, $43+25,+36=$ 104. As shown in the DT Loan Strategy Model, the output from the App Risk Score table is 104.

The minimum value returned is of course 20.57, or the output from the PsiPredict() function.

The remaining decision tables are calculated as in the DT Loan Strategy Model.
The next decision table is located in cells G5:J14, the Bureau Risk Cat table. This table returns a risk category of high, medium, or low based on their customer status (existing or not) and their application risk score. Non-existing customers are allowed a higher risk score. Cell J15 contains the PsiDecTable() function

-	F	G	H	1	J
4	Bureau Risk Cat				
5		U	cust exist	app risk score	bureau risk cat
6					
7		1	FALSE	<100	high
8		2	FALSE	[100..120]	medium
9		3	FALSE	[120..130]	low
10		4	FALSE	>130	veryLow
11		5	true	<80	decline
12		6	TRUE	[80..90]	high
13		7	true	[90..110]	medium
14		8	TRUE	>110	low
15					high

J15 =PsiDecTable(G5:J14, , , custExist, tblAppRiskScore) where custExist = False and tblAppRiskScore() refers to the value in cell E15, or 20.57. Based on these conditions, one rule is "hit", rule 2. This rule returns "high" for the bureau risk category. Since the hit policy is equal to U (Unique) only one result is returned, even if multiple results are returned.
The next decision table, Bureau Call Type, is located in cells L11:N14. This table returns the bureau call type based on the bureau risk category found in the previous decision table, Bureau Risk Cat. Cell N15 contains the PsiDecTable() function.

	K	L	M	N
9				
10	Bureau Call Type			
11		U	bureau risk cat	bureau call type
12		1	high, medium	full
13		low	mini	
14		3	veryLow, decline	none
15			full	
10				

N15=PsiDecTable(L11:N14, , , tblBureauRiskCat) where tblBureauRiskCat is equal to the result of the PsiDecTable() function in cell J15, or "medium". Only 1 rule is "hit", rule 1 , which returns "full" This means that a full evaluation by the bureau must be performed.

The next decision table, Eligibility, is located in cells A20:E25. This table returns the applicant's eligibility based on three criteria: the bureau risk category, from cell J15, bureau afford, calculated in cell C36, and customer age, located in cell Input!C13. Since the Hit Policy is equal to P (Priority), the result collection will be returned in the order listed according to the list in cell E21. The PsiDecTable() function is located in cell E26.

	A	B	C	D	E
19	Eligibility				
20		bureau risk cat	bureau afford	cust age	eligibility
21	P				ineligible, eligible
22	1	decline	-	-	ineligible
23	2	-	FALSE	-	ineligible
24	3	-	-	<18	ineligible
25	4	-	-	-	eligible
26					eligible

E26 = PsiDecTable(A20:E25, , , tblBureauRiskCat, bureauAfford, custAge)

Intermediate Formulas

Cell C36 calculates the bureau afford statistic, $=\mathrm{IF}$ (disposIncome * tblCreditContFactor > monthInstall, TRUE, FALSE)
where disposIncome is calculated in cell C34, tblCreditContFactor is calculated in cell N26 (more on this later) and monthInstall is calculated in cell C32.

Cell 34 calculates an applicant's disposable income using the formula, $=$ monthIncome $-($ monthRepay + monthExpenses $)$ where monthIncome $=2500$, monthRepay is calculated in cell C30 and monthExpenses $=$ 1000.

Cell C30 calculates the monthly loan replayment amount using the formula, -PMT(loanRate\%/12, loanTerm*12, loanAmnt) where loanRate is 5%, loanTerm $=30$ and loanAmnt $=100,000$.

Finally, cell C28 calculates the monthly fee using the IF statement, = IF(loanType = "standard", 20, IF(loanType = "special", 25, 0)), where loanType = standard.

Using the final input values of tblBureauRiskCat $=$ high, bureauAfford $=$ True, and custAge $=40$, the last rule, rule 4 , is the only rule "hit", returning "eligible".

The next decision table is located in cells G22:J25. This table returns the loan strategy based on the applicant's eligibility and bureau call type. The PsiDecTable() function is located in cell J26.

G		H	I	J
21	Strategy			
22	U	eligibility	bureau call type	strategy
23	1	ineligible	-	decline
24	2	eligible	full, mini	bureau
25	3	eligible	none	through
26				bureau

J26=PsiDecTable(G22:J25, , , tblEligibility, tblBureauCallType) where tblEligibility is calculated in cell E26 and tblBureauCallType is calculated in cell N15. Both of these inputs are outputs of earlier decision tables. Based on the results calculated by the previous decision tables, this PsiDecTable() function results in a "bureau" strategy.
Finally, the last decision table, Credit Cont Factor, is contained in cells L22:N25. The PsiDecTable() function is located in cell N26.

	K	L	M	N
! 1		Credit Cont Factor		
! 2		U	bureau risk cat	credit cont factor
:3		1	high, decline	0.6
! 4		2	medium	0.7
! 5		3	low, veryLow	0.8
6				0.6
17				

$\mathrm{N} 26=$ PsiDecTable(L22:N25, , , tblBureauRiskCat) where tblBureauRiskCat is calculated in cell J15. Again, this input is an output from an earlier discussed decision table.

If the result of the PsiDecTable function in cell J26 would have been either "decline" or "through", then our work would be finished. We would either decline or accept the applicant, respectively. However, since "bureau" was returned, more analysis is required.

More Information on Decision Tables

Supported conversion functions are listed below.

- date(string date) returns a date serial number, the same as Excel DATEVALUE
- date(number y, number m, number d)
- time(string time) returns a time serial number, the same as Excel TIMEVALUE
- time(number h, number m, number $s[$, number offset $]$) the optional offset is duration in seconds, which can be used to model UTC
- duration(string dur) returns duration in months or seconds depending on format
- yearsAndMonthsDuration(string from_date, string to_date) return difference between two dates as a duration in months
- number(string num, string group_sep, string dec_sep) returns a number from a string
- \quad string(float num) returns a float number as a string
- Supported numeric functions are:
- ceiling(number num) rounds up a number
- decimal(number num, number decimals) rounds a number to the given number of decimals
- floor(number num) rounds down a number
- Supported string functions:
- \quad substring(string str, number pos, number num_chars)
- stringLength(string $s t r$)
- upperCase(string str)
- lowerCase(string str)
- substringBefore(string $s t r$, string match)
- substringAfter(string $s t r$, string match)
- contains(string str, string match)
- \quad startsWith(string str, string match)
- endsWith(string str, string match)
- Supported list functions are:
- min(number n1, number $n 2, \ldots$) returns the minimum number
- $\boldsymbol{\operatorname { m a x }}($ number n 1, number $\mathrm{n} 2, \ldots$)
- $\operatorname{sum}($ number n 1, number $\mathrm{n} 2, \ldots$)
- mean(number n1, number n2,...)
- and(bool b1, bool b2,...)
- or(bool b1, bool b2,...)

Creating Power BI Custom Visuals

In past versions of Analytic Solver and still in Version 20.5, it's possible to turn an Excel-based optimization or simulation model into a Microsoft Power BI Custom Visual. Now with Version 20.5, you can actually embed your optimization or simulation model into the Custom Visual which will accept the data your model needs from Power BI. Whenever this data changes, the Custom Visual will send your model, plus the data, back to Frontline's Cloud Service where it will re-solve the model, obtain the results and will display them in chart form in Power BI.

Where others must learn JavaScript (or TypeScript) programming and a whole set of Web development tools to even begin to create a Custom Visual in Power BI, after reading this section, Analytic Solver users will be able to create one right away.
In either case, users simply select rows or columns of data to serve as changeable parameters, then choose Create App - Power BI, and save the file created by Analytic Solver. Afterwards, users click the Load Custom Visual icon in Power BI and select the file just saved. What is produced isn't just a chart - it's a full optimization or simulation model, ready to accept Power BI data, run on demand on the web, and display visual results in Power BI. Users simply need to drag and drop appropriate datasets into the "well" of inputs in Power BI to match the model parameters.

Analytic Solver translates the Excel model into RASON® (RESTful Analytic Solver Object Notation, embedded in JSON), then "wraps" a JavaScript-based Custom Visual around the RASON model. See the previous chapter "Creating Your Own Application" for more information on RASON.

Installing Power BI

Power BI is Microsoft's desktop or cloud-based interactive data visualization business intelligence tool. In past versions of Analytic Solver, users have only been able to upload their model parameters (model data) to Power BI after solving an optimization or simulation model. Starting with V2017-R2, Analytic Solver can turn your Excel based optimization or simulation model into a Microsoft Power BI Custom Visual, that is your full optimization or simulation model, ready to accept power BI data, run on demand on the web, and display visual results in Power BI.

Note: Click this link to download Power BI for desktop.
In order to use this new feature in Analytic Solver, you must first open desktop Power BI or the free cloud based version of Power BI. (Power BI is part of the office 365 suite.) For more information on this business tool, see the following website: https://powerbi.microsoft.com/en-us/documentation/powerbi-custom-visuals-getting-started-with-developer-tools/
It is important to note, that in order to create a custom visual in Power BI, you will first need to install Power BI's Developer Tools which is comprised of

NodeJS and the Power BI tools. Follow the steps below to install both required items.

1. Click here to download NodeJS.
2. Click the Download button to download NodeJS for 64-bit Windows.
3. Once the NodeJS installer is downloaded, run the installer and follow the directions on the installer dialogs to install NodeJS onto your machine.
4. Install the command line tools by opening a command prompt and typing: "npm install -g powerbi-visuals-tools" as shown in the screenshot below.

Note: If using V2017-R2, type: "npm install -g powerbi-visualstools@1.5".
Command Prompt $\quad-\quad \times$
Microsoft Windows [Version 10.0.15063]
(c) 2017 Microsoft Corporation. All rights reserved.
C: \Users \backslash Frontline>npm install -g powerbi-visuals-tools

After clicking Enter, you'll see the following results in the command prompt window.

Creating a Custom Visual from an Optimization Model

Now that the Developer Tools are installed, we can move on to a small optimization example. In this section, we will create a custom visual using the Product Mix example model.
Open the ProductMix(Opt).xlsx model that was previously discussed in the Conventional Optimization chapter by clicking Help - Example Models on the ribbon, clicking Optimization Examples and then the Product Mix link. Recall this example model determines the optimal mix of products that a company should produce in order to maximize profits.

	A	B	c	D	E	F	G	H
5								
6		Product Mix Example Problem 1						
7		Assume a company manufactures TVs, stereos and speakers, using a						
8		common parts inventory of chassis, LCD Screens, speakers, power supplies						
9		and various internal electronics. Parts are in limited supply. Determine the						
10		most profitable mix of products to produce.						
11								,
12		Production Decisions						,
13		Number to Build:	LCD TV	Stereo	Speakers			'
14			0	0	0			
15								\downarrow
16		Part Requirements by Product				Part Inventory Levels		
17		Part Name	LCD TV	Stereo	Speakers		Used	Available
18		Chassis	1	1	0		0	450
19		LCD Screen	1	0	0		0	250
20		Speaker	2	2	1		0	800
21		Power Supply	1	1	0		0	450
22		Electronics	2	1	1		0	600
23								
24		Profit per unit	\$75	\$50	\$35		\$0	4------

The optimization model is included in the Model tab in the Solver Task Pane. This model written in algebraic form is below.

Maximize: Total Profit $=\$ 75 \mathrm{x} 1+\$ 50 \mathrm{x} 2+\$ 35 \times 3$
Subject To:
Chassis: $1 \mathrm{x} 1+1 \times 2+0 \times 3<=450$
LCD Screen: 1x1 + 0x $2+0 x 3<=250$
Speaker: $2 \mathrm{x} 1+2 \mathrm{x} 2+1 \mathrm{x} 3<=800$
Power Supply: $1 \times 1+1 \times 2+0 \times 3<=450$
Electronics: $2 \times 1+1 \times 2+1 \times 3<=600$
$\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3>0$
The engine selected to solve this model is the Standard LP/Quadratic Engine as shown on the Engine tab in the Solver Task Pane.

```
$Model TPlatf... [. Engine © Outp... & Work...
Standard LP/Quadratic Enqine
2. 2. % \squareAutomatically Select Engine
```

Click Create App on the ribbon, then select Power BI - Managed Model. Recall that in order to use the Managed Model choice, your model must have already been posted to the Rason Cloud Service using Create App - Cloud Service RASON Model.

Note that it's also possible to embed your model into Power BI using Power BI Embedded Model, however, if your model will change in any way, it's recommended to use Managed Model. For more formation on creating an embedded model, see the previous Deploying Your Model chapter.

Click Save to confirm the model name as "ProductMix(Opt)"

There is no need to solve the model first unless a change has been made to an already existing RASON model. If a change has been made to the workbook after a RASON model has been created, then you MUST either solve or diagnose the Excel model in order for the changes to be reflected in the new RASON model.

When creating a Power BI custom visual through desktop Analytic Solver, model elements (objective function and all variables and constraints) may appear across multiple worksheets within the same Excel workbook.

Immediately, the Save As dialog appears. Enter a file name in the location of your choice and then click Save.

- The screenshot below displays a file name of "ProductMix1" being saved into the Power BI folder, in Analytic Solver Desktop.

Analytic Solver Desktop

- In Analytic Solver Cloud, you'll first receive a dialog where you'll name the file to be exported.

After you click Save and the file downloads, you'll be asked if you'd like to open or save the file. Choose "Save As" to open the Save As dialog and browse to where you'd like to save the Power BI export.

Note the Custom Visual Source Code checkbox at the bottom of the dialog. This feature will be explained a little later in this chapter.

Save ProductMix 1.pbiviz. Two command prompt windows will appear on your screen. After several moments, both will disappear. It is during this time that your Excel model is being translated into the RASON® ${ }^{\circledR}$ modeling language, and your Power BI custom visual is created.

Open either desktop or cloud-based Power BI. The screenshot below depicts the opening screen of desktop Power BI. Click the icon containing three horizontal dots that appears at the bottom of Visualizations (in the top right-hand corner).

Then select Import a visual from a file from the menu．

Visualizations	＞	Fields
	阴	\bigcirc search
	迢	
	且	
（6）¢ 123 目	\triangle	囲
凅囲囲 R Py	E°	You haven＇t loaded any
	Get more visuals	
$\cdots \quad \stackrel{\square}{\square}$	Import a visual from a file	
Values		
Add data fields here	Remove a visual	
Drill through	Restore default visuals	

Navigate to the location of the saved ProductMix1．pbiviz file．

Then click Open. If the import was successful, you will see a message indicating as such. Click OK to clear this dialog.

Import custom visual	\times
The visual was successfully imported into this report.	
	ок

A new icon, bearing the Frontline Solvers logo is added under Visualizations.

Click this icon to open Frontline Solvers' custom visual. If you glance at the custom visual, you'll notice "Solving..." is displayed beneath "Objective" which indicates that the model has been submitted to the RASON server. If the model is an optimization or stochastic optimization model, the RASON server will use the engine selected in the Excel model to solve the model. Recall that the LP/Quadratic engine was selected in the Product Mix example model, above. (If the model is a simulation model, Frontline Systems' Risk Solver engine will be used.)

After the model is solved, values for the objective function, variables and constraints, or uncertain variables and uncertain functions, are imported back into Power BI and the results are displayed in the Power BI window. After enlarging the custom visual, your screen should appear similar to the screenshot below.

Solver found a solution. All constraints and optimality conditions are satisfied.
At the bottom of the custom visual, we find Solver's result message: Solver found a solution. All constraints and optimality conditions are satisfied. Recall that since we are solving a linear model, this message indicates that Solver has found the globally optimal solution: There is no other solution satisfying the constraints that has a better value for the objective. For more information on this Solver result, please see the chapter "Solver Results Messages" within the Frontline Solvers Reference Guide.

In the first chart, we see that final variable values are: Var1 (LCD TV) equal to 200, Var2 (Stereo) equal to 200 and Var3 (Speakers) equal to 0 . These variable values result in an objective function value equal to $\$ 25,000$.
Solving this model in Power BI could be useful and the chart is certainly informative. However, what if we wanted to change the inventory? What if Purchasing was able to obtain a discount on Speakers and our inventory increased from 800 to 1,000 ? In order to solve the new model with the updated inventory parameters, we would have to go back to the Excel model, update the chassis inventory, save the model, create a new .pbiviz file, Import the new .pbiviz file into Power BI and then finally open the new custom visual. That's a lot of effort to change just one model parameter!

Thankfully, there is an easier way. By using the Psi function, PsiDataSrc(), we are able to specify the parameters in the Excel model that could change in the future, for example, the amount of inventory on hand for each part, the profit point for each product or the number of parts that makeup each product.
Click back to the Excel model and select a blank cell, say J6. In Analytic Solver Desktop, click Formulas - Insert Function to open the Insert Function dialog, then select PSI Dimension for Category. Afterwards, highlight the function PsiDataSrc, and click OK.

Note: It is suggested that you delete the Constraints text box in order to create room for the added PsiDataSrc() functions, described below.

In Analytic Solver Desktop or AnalyticSolver.com, you can simply type the formula directly into the cell.

The Function Arguments dialog opens displaying 5 arguments: Src_name, Val_col_names, Data, Idx1_name, and Idx1_elem. We will use this dialog to create a PsiDataSrc() in cell J6 that will allow us the ability to change the inventory values and resolve the Product Mix example model not in Excel, but in Power BI.

PsiDataSrc() Arguments

Src_name - This argument names the text file, created by the custom visual, which is submitted, along with the RASON model, to the RASON server. For this example, type: inventory_src.

Val_col_names - This is the name given to the "data well" that will appear in Power BI. This "data well" will hold the actual data. For this example, type: inventory.
Data - Enter the Excel range where the data is located on the spreadsheet for this argument. For this example, use your mouse to click the upward pointing arrow to the right of the Data argument and select cells H18:H22. You can also simply type this range into the edit box.
Idx1_name - Enter the name of the ($\left.1^{\text {st }}\right)$ index set for the data specified in the Data argument. In this example, our Index set is simply the inventory available for each Part. Therefore, enter "parts" for this argument.

Idx1_elem - Enter the Excel range containing the data (or elements) for the first index set. For this example, either type or select cells: B18:B22

Since this index set is 1-dimensional, nothing further is needed and we can click OK to enter the PsiDataSrc() function into cell J6.

In Analytic Solver Cloud or AnalyticSolver.com, you can type the formula directly into cell J6.

```
=PsiDataSrc("inventory_src", "inventory", H18:H22,
"parts", B18:B22)
```

Afterwards, cell J6 will display the value given to the Src_name argument, inventory_src. Save the Excel model and then click Create App - Power BI Managed Model to save a new file using a new name such as ProductMix2.pbiviz.

In order to provide our new data to Power BI, we must create a data file. This data file, containing the new inventory levels by part, will be imported into Power BI. This data file can be of any format supported by Power BI such as a CSV file, a text file, a database, etc. In this example, we will use an Excel workbook to hold the data. For more information on what types of files Power BI supports, please see the Power BI documentation at: https://powerbi.microsoft.com/en-us/documentation/powerbi-landing-page/

Open a blank worksheet and create a table with two columns. List the parts by name in the first column using the column heading "parts" and the inventory levels in the second column using the column heading "inventory", as shown in the screenshot below. Make sure to pass the new inventory value of 1,000 Speakers.

Click Help - Example Models - Optimization Examples - Product Mix Data for Power BI-Tableau to open the complete data file. This table is included on the Parts Inventory tab.

A		B	
1	parts	inventory	
2	Chassis	450	
3	LCD Screen	250	
4	Speaker	1,000	
5	Power Supp	450	
6	Electronics	600	

Note: Column headings must be identical to the names of the Index Sets passed to the PsiDataSrc function. Make sure there are no spaces before or after column headings or row elements.
=PsiDataSrc("inventory_src","inventory",Number_available,"parts",B18:B22)
Recall that we labeled the IndexSet as "parts" ($4^{\text {th }}$ argument of PsiDataSrc) and Val_col_names as "inventory" (2 $2^{\text {nd }}$ argument of PsiDataSrc) so the title for column A must be "parts" and the title for column B must be "inventory". Now save the workbook to a desired location.

Open either desktop or cloud-based Power BI and click Get Data - Excel.

Browse to the location of the saved data file and click Open. Select the worksheet that contains your newly created data table and click Load.

After the data table is uploaded to Power BI, click the icon containing three horizontal dots at the bottom of Visualizations, then select Import from file from the menu. Navigate to the location of the saved ProductMix2.pbiviz file. Select the file, then click Open. If the import was successful, you will see a message indicating as such. Click OK to clear this dialog. A new second icon, bearing the Frontline Solvers logo is added under Visualizations.

Click this icon to open Frontline Solvers' custom visual. Your Power BI screen should appear similar to the screenshot below.

Objective: g24_= 25000
Variables

Solver found a solution. All constraints and optimality conditions are satisfied.

Click "parts" Under Fields and move to "parts" under Visualizations where the words "Drag data fields here" is located. Now drag "inventory" on the right to "inventory" on the left.

Click the down arrow next to both parts and inventory and select Don't Summarize from the menu.

inventory		
inventory	Remove field	
Drillthrough	Rename	
Cross-report	Move to	
Off O	\checkmark	Don't summarize

Immediately, you should see the "Solving..." displayed on the custom visual while the model is sent to the RASON server, solved, and the final values are returned. After enlarging the custom visual, your screen should appear similar to the screenshot below.

```
parts and inventory
Objective: g24 =27250
```


Solver found a solution. All constraints and optimality conditions are
satisfied.

In the latest version of Analytic Solver, the generated Power BI visual can be further customized by the user by clicking the Format icon (Paint roller icon). From this menu, chart titles, chart colors, etc can be changed to fine tune the chart to the user's specifications.

At the bottom of the custom visual, we find Solver's result message: Solver found a solution. All constraints and optimality conditions are satisfied. In the Variables chart, we see that final variable values are: Var1 (LCD TV) equal to 50, Var2 (Stereo) equal to 400 and Var3 (Speakers) equal to 100. These variable values result in an objective function value equal to 27,250 . The payoff of increasing the available speakers from 800 to 1,000 is an added profit of $\$ 2,250(\$ 27,250-\$ 25,000)$.

Now, if you wanted to change another inventory level, let's say you were able to obtain 400 more electronic components, for a total of 1000 electronic components in inventory. You would simply update the number of electronic components in ProductMixData.xlsx,...

A	B	
1	parts	inventory
2	Chassis	450
3	LCD Screen	250
4	Speaker	1,000
5	Power Supp	450
6	Electronics	1,000

refresh your data in Power BI....

New measure
New column
New quick measure

Refresh data

...and the Custom Visual will redraw with the correct objective function value, \$36,250.

Solver found a solution. All constraints and optimality conditions are satisfied.
Return the number of electronics in inventory to 600 in ProductMixData.xlsx.

A		B
1	parts	F inventory
2	Chassis	450
3	LCD Screen	250
4	Speaker	1,000
5	Power Supp	450
6	Electronics	600

Now let's go back to the Excel Model and see what happens when we change other parameters such as adding 2 more speakers to a Stereo and increasing the Stereo's selling price to $\$ 100$. Click Help - Example Models - Optimization Examples - Product Mix for Power BI - Tableau to open the completed model.
First, we will use a $2^{\text {nd }}$ PsiDataSrc() function to denote that new data (an increased selling price for Stereos) will be available in Power BI. Click back to the ProductMix(Opt) example model, select cell J7 and then click Formulas Insert Formulas, select PSI Dimension for Category, select PsiDataSrc, then click OK.

Enter the following for the arguments appearing on the Function Arguments dialog.

Src_name - Enter "profit_src" to name the text file, created by the custom visual, which will be submitted, along with the RASON model, to the RASON server.

Val_col_names - Enter "profit" for the data well name.
Data - Enter the Excel range, C24:E24.
Idx1_name - Enter "products" which is the name of the $1^{\text {st }}$ index set for the data specified in the Data argument. In this example, our Index set is simply the selling price for each product.

Idx1_elem - Enter the Excel range containing the data for the first index set, C13:E13.

Since this index set is 1-dimensional, nothing further is needed and we can click OK to enter the PsiDataSrc() function into cell J7. Afterwards, cell J7 will display the value given to the Src_name argument, profit_src.

In Analytic Solver Cloud or AnalyticSolver.com, you can type the formula directly into cell J7.

```
=PsiDataSrc("profit_src", "profit", C24:E24,
"products", C13:E13)
```

We will use a 3rd PsiDataSrc() function to denote that new data (an increase in the number of speakers to be included in the building of a stereo) will be available in Power BI. This time, we will simply enter the formula directly into cell J8.

First type "=PsiDataSrc(", then enter the arguments below.
Src_name - Enter "reqparts_src" to name the text file which will be submitted, along with the RASON model, to the RASON server.

Val_col_names - Enter "requiredparts" for the data well name.
Data - Enter the Excel range, C18:E22.
Idx1_name - Enter "parts" which is the name of the $1^{\text {st }}$ index set for the data specified in the Data argument. In this example, there are two index sets. When data is 2 -dimensional, we must enter the index set that describes the rows first.

Idx1_elem - Enter the Excel range containing the data for the first index set, B18:B22.

Idx2_name - Enter "products" which is the name of the $2^{\text {nd }}$ index set for the data specified in the Data argument.
Idx2_elem - Enter the Excel range containing the data for the second index set, C13:E13.

Now we can type ")" to close the function, then press Enter to enter the PsiDataSrc() function into cell J8. Afterwards, cell J8 will display the value given to the Src_name argument, reqparts_src.

Your PsiDataSrc function should be similar to the screenshot below.
=PsiDataSrc("reqparts_src", "requiredparts", C18:E22, "parts", B18:B22, "products", C13:E13)
At this point, cell J6 displays "inventory_src", cell J7 displays "profit_src" and cell J8 displays "reqparts_src".

Finally, we will use a 4th PsiDataSrc() function to add our variable names to the Power BI chart. This data well will perform double duty by allowing a "starting value" to be passed to the custom visual. Again, we will simply enter the formula directly into cell J 9 .
First type "=PsiDataSrc(", then enter the arguments below.
Src_name - Enter "vars_src" to name the text file which will be submitted, along with the RASON model, to the RASON server.

Val_col_names - Enter "initialvalues" for the data well name.
Data - Enter the Excel range, C14:E14.
Idx1_name - Enter "products" which is the name of the $1^{\text {st }}$ index set for the data specified in the Data argument. In this example, there are two index sets. When data is 2-dimensional, we must enter the index set that describes the rows first.

Idx1_elem - Enter the Excel range containing the data for the first index set, C13:E13.

Now we can type ")" to close the function, then press Enter to enter the PsiDataSrc() function into cell J9. Afterwards, cell J9 will display the value given to the Src_name argument, vars_src.
Your PsiDataSrc function should be similar to the function below.
=PsiDataSrc("vars_src", "initialvalues", C13:E13, "products", C14:E14)
At this point, cell J6 displays "inventory_src", cell J7 displays "profit_src", cell J8 displays "reqparts_src" and J9 displays "vars_src".

Before we create our new Custom Visual, we will add a PsiFinalValue() function to the worksheet in order to add our constraint final values to the visual. In cell K18, enter: =PsiFinalValue(Number_used).

Then enter the PsiSlackValue() function to display the slack values in the visual. In cell L18, enter: =PsiSlackValue(Number_used).

You'll need to update the model on Rason Cloud Services so save the Excel model and click Create App - Cloud Service - Rason Model. You can reuse the previous model name. Then click Create App - Power BI - Managed Model to create a new Custom Visual using a new name such as ProductMix3.pbiviz.

Now we are ready to add a new data table to the ProductMixData.xlsx file.
Open your data file, or the ProductMixData.xlsx workbook.
Important Note: All data for a custom visual MUST be contained within the same Excel table or from within multiple tables with the same number of rows and columns. As a result, we must create a new table in Excel and enter all data into this new table, including the information from the Inventory worksheet.

In a new Excel sheet, create a table (Insert - Table) with 16 rows and 6 columns, then list the products in the first column using the column heading "products", the parts by name using the column heading "parts" in the $2^{\text {nd }}$ column, the parts required per product (requiredparts) in the $3^{\text {rd }}$ column, the selling price or "profit" per product in the 4th column, the part inventory for each product in the $5^{\text {th }}$ column and the initial variable values in the last column. Make sure to pass the new selling price for Stereos (\$100) and the increased number of speakers per stereo (4).

1	A	B	C		D	E	E	F	
1	products -	parts -	requiredparts -	profit	\square	inventory	\square	initialvalues	\checkmark
2	LCD TV	Chassis		1	75		450		1
3	LCD TV	LCD Screen		1	75		250		1
4	LCD TV	Speaker		2	75		1000		1
5	LCD TV	Power Supp\|		1	75		450		1
6	LCD TV	Electronics		2	75		600		1
7	Stereo	Chassis		1	100		450		1
8	Stereo	LCD Screen		0	100		250		1
9	Stereo	Speaker		4	100		1000		1
10	Stereo	Power Suppl		1	100		450		1
11	Stereo	Electronics		1	100		600		1
12	Speakers	Chassis		0	35		450		1
13	Speakers	LCD Screen		0	35		250		1
14	Speakers	Speaker		1	35		1000		1
15	Speakers	Power Supp\|		0	35		450		1
16	Speakers	Electronics		1	35		600		1.

Notice that in order to list all of the required parts for each product, we must list each part and selling price for each part. In addition, each column heading matches the index sets used in the PsiDataSrc() functions. Rename the worksheet "AllData" then save the workbook. If there are any leading or trailing spaces for the column headings or elements, Power BI will stop with an error.

Open either desktop or cloud-based Power BI, click the icon containing three horizontal dots at the bottom of Visualizations, then select Import from file from the menu. Navigate to the location of the saved ProductMix3.pbiviz file. Select the file, then click Open. If the import was successful, you will see a message indicating as such. Click OK to clear this dialog. A new icon, bearing the Frontline Solvers logo and the name ProductMix3 is added under Visualizations.

Click this icon to open Frontline Solvers' custom visual.
If you look to the right of the screen, you will see new data wells appearing under Visualizations. Recall that the "parts" and "inventory" data wells were created by the PsiDataSrc() function in the ProductMix(Opt) example model cell J6, inventory_src. Data wells "products" and "profit" were created by the PsiDataSrc() function in cell J7, profit_src. The PsiDataSrc() function in cell J8, reqparts_src, created the data well "requiredparts". The PsiDataSrc() function in cell J9, vars_src, created the data well "initialvalues".

parts
Add data fields here
inventory
Add data fields here
products
Add data fields here
profit
Add data fields here
requiredparts
Add data fields here
initialvalues
Add data fields here

Now it is time to upload our data. Click back to Power BI, then click Get Data Excel and open the ProductMixData.xlsx file.

Select AllData on the left, then click Load on the right.
The table headings from the AllData worksheet are uploaded to the Fields task pane in Power BI.

```
囲 AllData
```

```\(\Sigma\) initialvalues
```

```\(\Sigma\) inventory
```

```parts
products
```

```\(\Sigma\) profit
```

```\(\Sigma\) requiredparts
\(\checkmark\) 曲 Parts Inventory
```

Drag the fields into the data wells according to the following table.

Field	Data Well
inventory	inventory

parts	parts
products	products
profit	profit
requiredparts	requiredparts
initialvalues	initialvalues

Afterwards, your task pane should match the following screenshot. Make sure to check that none are being summarized by clicking the down arrow beside each and selecting "Don't summarize" from the menu.

Immediately, the RASON model is submitted to the RASON Server, the model is solved and the final variable values are imported back into Power BI.

To update the data source, revise the data, refresh the data source in Power BI and watch as your Custom Visual is automatically redrawn.
As mentioned above, in latest version of Analytic Solver the generated Power BI visual can be further customized by the user by clicking the Format icon (Paint roller icon).

Troop Rotation Optimization Example

In this example, we will create a Power BI Custom Visual using a slightly more complex example, the Troop Rotation example. To open, click Help - Example Models on the Analytic Solver ribbon, then click Optimization Examples and scroll down to Troop Rotation for Power BI-Tableau. Click the hyperlink to open the example model. This example model illustrates the moving of army troops while minimizing cost.

4	B	c	D	E	F	G	H
11	Moving Cost per Soldier						
12		Base 1	Base 2	Base 3	Base 4		
13	Camp 1	34	26	29	31		
14	Camp 2	42	33	28	35		
15	Camp 3	36	29	32	38		
17	Number of Troops Moved						
18		Base 1	Base 2	Base 3	Base 4	Total	Available
19	Camp 1	0	0	0	0	0	500
20	Camp 2	0	0	0	0	0	400
21	Camp 3	0	0	0	0	0	400
22	Total	0	0	0	0		
23	equired	200	250	350	300		
24	Cost	\$0	\$0	\$0	\$0	\$0	

The optimization model is included in the Model tab in the Solver Task Pane. This model written in algebraic form is below.

Maximize: Total Cost $=34 * \mathrm{x} 1+42 * \mathrm{x} 5+36 * \mathrm{x} 9+26 * \mathrm{x} 2+33 * \mathrm{x} 6+29 *$ $\mathrm{x} 10+29 * \mathrm{x} 3+28 * \mathrm{x} 7+32 * \mathrm{x} 11+31 * \mathrm{x} 4+35 * \mathrm{x} 8+38 * \mathrm{x} 12$

Subject To:
Number of troops from Camps 1, 2 and 3 moved to Bases 1, 2, 3 and 4 must not exceed the number of troops available

Camp1: $\mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3+\mathrm{x} 4<=500$
Camp2: $\mathrm{x} 5+\mathrm{x} 6+\mathrm{x} 7+\mathrm{x} 8<=400$
Camp3: $\mathrm{x} 9+\mathrm{x} 10+\mathrm{x} 11+\mathrm{x} 12<=400$
Number of troops assigned per base must not be less than the amount required.
Base 1: $\mathrm{x} 1+\mathrm{x} 5+\mathrm{x} 9>=200$
Base 2: $\mathrm{x} 2+\mathrm{x} 6+\mathrm{x} 10>=250$
Base 3: $x 3+x 7+x 11>=350$
Base 4: $\mathrm{x} 4+\mathrm{x} 8+\mathrm{x} 12>=300$
$\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4, \mathrm{x} 5, \mathrm{x} 6, \mathrm{x} 7, \mathrm{x} 8, \mathrm{x} 9, \mathrm{x} 10, \mathrm{x} 11, \mathrm{x} 12>0$
The engine selected to solve this model is the Standard LP/Quadratic Engine as shown on the Engine tab in the Solver Task Pane.

Next, we will enter four PsiDataSrc() functions into cells J13, J14, J15, and J16 in order to expose our data to the RASON Server and ultimately Power BI.

In J13, we will expose the moving costs per soldier according to the Base and Camp dimensions in cells C13:F15. To open the Function Arguments dialog, click Formulas - Insert Function, select PSI Dimension for Category, select PsiDataSrc, then click OK.

Src_name $=$ Enter "cost_src" for this argument. This names the text file that will be submitted to the RASON server, along with the RASON model, when the Power BI custom visual is created.

Val_col_names - Enter "cost" for this argument. This will be the name of the Power BI data well associated with the data passed in the next argument.

Data - Enter C13:F15 which is the actual cells containing the moving price per soldier.
Idx1_name - Enter "camps" which is the name of the 1 st dimension or index set, the row-wise index set. Remember, you must pass the row-wise index set before the column-wise index set.
Idx1_elem - Enter the elements of the "camps" index set. These appear in cells B13:B15.
Idx2_name - Enter "bases" which is the name of the $2^{\text {nd }}$ dimension or index set, the column wise index set.
Idx2_elem - Enter the elements of the "bases" index set. These appear in cells C12:F12.

The Function Arguments dialog should now appear as shown in the screenshots below.

Click OK to save this function to cell J13.
In Analytic Solver Cloud or AnalyticSolver.com, you can type the formula directly into cell J13.

```
=PsiDataSrc("cost_src", "cost", C13:F15, "camps",
B13:B15, "bases", C12:F12)
```

Click cell J14 and open the Function Arguments dialog to enter the next PsiDataSrc() function.
In J14, we will expose the variables that indicate the number of troops moved by camp and base in cells C19:F21. Open the PsiDataSrc function (as explained above).
Src_name = Enter "vars_src" for this argument.
Val_col_names - Enter "troopsmoved" for this argument. This will be the name of the Data Well in Power BI that is associated with this data.

Data - Enter C19:F21 which is the actual cells containing the moving price per soldier. Note: The data range C19:F21 will automatically convert to "Troops_moved" which is the defined name for this Excel range.

Idx1_name - Enter "camps" which is the name of the $1{ }^{\text {st }}$ dimension or index set, the row-wise index set.

Idx1_elem - Enter the elements of the "camps" index set. These appear in cells B13:B15.

Note that it is important to re-use the location of the index sets. If we would have entered the elements for "camps" as B19:B21, rather than B13:B15, a new index set would be created.

Idx2_name - Enter "bases" which is the name of the $2^{\text {nd }}$ dimension or index set, the column-wise index set.

Idx2_elem - Enter the elements of the "bases" index set. These appear in cells C12:F12.

The Function Arguments dialog should now appear as shown in the screenshots below.

Click OK to save this function to cell J14.
In Analytic Solver Cloud or AnalyticSolver.com, you can type the formula directly into cell J14.

```
=PsiDataSrc("vars_src", "troopsmoved", Troops_moved,
"camps", B13:B15, "bases", C12:F12)
```

Let's enter the last two PsiDataSrc() functions by typing the formulas directly into the Excel cells, starting with the function in cell J15 that will expose the number of troops available for movement.

In cell J15, enter: "=PsiDataSrc("
First the first argument, Src_name, enter "available_src".
For the second argument, Val_col_names, enter: "availabletroops". The Power BI Data Well associated with this data will be given this name.

For the Data argument, the third argument, enter: Troops_available. This is the defined name for cells $\mathrm{H} 19: \mathrm{H} 21$. Alternatively, we could have typed the Excel range, H19:H21.

Type "camps" for the $4^{\text {th }}$ argument, Idx1_name, which is the name given to the row-wise index set.

Enter the range for this index set, B13:B15, for Idx1_elem.

Your PsiDataSrc() function should match the one in the screenshot shown below.

```
=PsiDataSrc("available_src", "availabletroops",
Troops_available, "camps", B13:B15)
```

Click Enter to enter the PsiDataSrc() function into cell J15.
Finally, the last PsiDataSrc() function in cell J 16 should be entered as:
=PsiDataSrc("required_src","requiredtroops",Troops_required,"bases",C12:F12)
Where:
Data_src = "required_src"
Val_col_names = "requiredtroops" This is the name that will appear for the Data Well associated with this data in Power BI.

Data $=$ Troops_required This is the data associated with Val_col_names.
Idx1_name = "bases" This is the name of the index set that is associated with the data passed to the Data argument.
Idx1_elem - c12:f12 This is the Excel range where the elements for Idx1_name are located on the worksheet.

Now we are ready to create the custom visual.
In order to see our constraint final values in the Custom Visual, we will need to use the Psi function PsiFinalValue. (For more information on this function, see the Psi Function chapter in the Analytic Solver Reference Guide.)

- In cell J22, enter "=PsiFinalValue(Troops_per_camp)" to display the final value of the constraints in cells G19:G21 in the Custom Visual. This function will "spill" vertically to cells J22:J25, since the orientation of cells G19:G21 are vertical.
- In cell L22, enter "=PsiFinalValue(Troops_per_base)" to display the final value of the constraints in cells C22:F22 in the Custom Visual. This function will "spill" horizontally to cells L22:O22, since the orientation of cells C22:F22 are vertical.

We can also add PsiSlackValue functions to the workbook to display the constraint slack values in the Power BI Custom Visual. Note that the PsiFinalValue function in cell J22 will spill down to cell J25 so in order not to prevent the spillage, we will enter the PsiSlackValue functions in row 28.

- In cell J28, enter "=PsiSlackValue(Troops_per_camp)" to see the slack values of the constraints in cells G19:G21
- In cell L28, enter "=PsiSlackValue(Troops_per_base)" to display the slack values of the constraints in cells C22:F22.

First, click Create App on the ribbon, then select Cloud Service - RASON Model to post the model to RASON Cloud Services. Then click Create App again and select Power BI - Managed Model.
Since this is the first time we are creating a custom visual from this model, there is no need to solve the model first. If however, we make a change to the Troop Rotation model, then we would need to either diagnose or solve the model first to ensure that the changes are captured in the new custom visual.

Save the .pbiviz file as TroopRotation1.pbiviz in a location of your choice.

Next, we will create the data file. Open a new Excel workbook. Recall, that when supplying data to Power BI, all data must be contained in tables containing the exact same number of rows and columns. If you are unable to pass your data using Excel tables with the exact same number of rows and columns, then you must pass all data in one table.

In this example, since we would not be able to pass the data in multiple tables with the same number of rows, we will pass all data in one Excel table.
In a new Excel sheet, create a table (Insert - Table) with 13 rows and 5 columns, as shown in the screenshot below. Notice that in order to enter all 12 costs, labels for camps, bases, requiredtroops and availabletroops were repeated. In addition, each column heading matches the index sets used in the PsiDataSrc() functions. Rename the worksheet "AllData" then save the workbook as TroopsRotationData.xlsx.

4	A	B	C		D	E
1	bases	- camps	\checkmark cost	\cdots	requiredtroops -	availabletroops -
2	Base 1	Camp 1		34	200	500
3	Base 1	Camp 2		42	200	400
4	Base 1	Camp 3		36	200	400
5	Base 2	Camp 1		26	250	500
6	Base 2	Camp 2		33	250	400
7	Base 2	Camp 3		29	250	400
8	Base 3	Camp 1		29	350	500
9	Base 3	Camp 2		28	350	400
10	Base 3	Camp 3		32	350	400
11	Base 4	Camp 1		31	300	500
12	Base 4	Camp 2		35	300	400
13	Base 4	Camp 3		38	300	400

Now let's click back to Power BI, to import the new custom visual and the data.
Click the three dots under Visualizations and select Import from file.

Once the Frontline Solvers icon is inserted under Visualizations, click the icon to open the custom visual.

Then click Get Data - Excel. Browse to the folder where the TroopsRotationData.xlsx file was saved, and open the file. Select the table containing your data, then click Load. (In this example, select "Table 13", then Load.)

Navigator

	0	Table13				
Display Options -	-	bases	camps	cost	requiredtroops	availabletroops
4 TroopsRotationDatax\|sx [2]		Base 1	Camp 1	34	200	500
$\checkmark \square$ Table13		Base 1	Camp 2	42	250	400
		Base 1	Camp 3	36	350	400
		Base 2	Camp 1	26	300	500
		Base 2	Camp 2	33	200	400
		Base 2	Camp 3	29	250	400
		Base 3	Camp 1	29	350	500
		Base 3	Camp 2	28	300	400
		Base 3	Camp 3	32	200	400
		Base 4	Camp 1	31	250	500
		Base 4	Camp 2	35	350	400
		Base 4	Camp 3	38	300	400

Now it is time to drag the data into the data wells. Drag:
availabletroops \rightarrow availabletroops
bases \rightarrow bases
camps \rightarrow camps
cost \rightarrow cost
cost \rightarrow troopsmoved
requiredtroops \rightarrow requiredtroops
Note: Since "troopsmoved" holds the variable values, we can simply drag "cost", which contains the same number of rows and columns as "troopsmoved", as a starting point for the algorithm. A starting point for this model is not needed because our model is linear, however, if our model was nonlinear or nonsmooth, this would be more important.

After dragging each field to its appropriate data well, click the down arrow next to each element and select "Don't summarize". This is selected in order that the data not be aggregated in the custom visual.

camps		- eyulieutioups	
camps	$\checkmark \times$		
bases	Remove field		
	Rename		
bases	Move to		
cost	\checkmark Don't summarize		
cost	First		Don't summarize
troopsmoved	Last		
	Count (Distinct)		
cost	Count		
availabletroops	New quick measure		
availabletroops	Show items with no data		
requiredtroops		New	

The resultant Power BI custom visual is shown in the screenshot below. Now each time new data is imported into Power BI, the Troop Rotation example data
will be solved from within Power BI. However, please note that as long as your PsiDataSrc functions remain the same, the named model can be updated on the Rason Cloud Service and you will not need to create a new custom visual. However, if the PsiDataSrc() functions change, you will need to update the named model residing on the Rason Cloud service and the Custom Visual.

Notice that PsiSlackValues and the PsiFinalValues are both displayed on the right under Constraints.

Using Optimization Parameters in Power BI

Now what happens when we would like to see how our final variable values and objective function value change as the number of troops required changes. For this type of "What If" analysis, we can use the PsiOptParam() optimization parameter. Recall from the chapter, Examples: Parameters and Sensitivity Analysis, an optimization parameter (PsiOptParam) is automatically varied when you perform multiple optimizations. You do this by clicking the Optimize button on the Ribbon, or the green arrow in the Task Pane, with the Number of Optimizations set to a value greater than 1.

Let's go back to our example Excel model and enter an optimization parameter for the number of troops required in Base 1. In cell C13, enter "=PsiOptParam $(\{34,24,14\})$ ", then click the Platform tab in the Solver Task pane and change the Number of Optimizations to " 3 ". When I click Solve, Analytic Solver will solve 3 optimizations. In the first optimization, cell C13 will be set to 34 , in the second, 24 , and in the third, 14 .

Click the Output tab, then click the green arrow to solve the model. After the solving process is over, we can select the three different optimizations in the Optimization drop down menu (in the Tools section of the Analytic Solver ribbon), to see how the objective function changes according to the value set for this parameter.

Opt \#3

Opt \#1
Opt \#2
Opt \#3

In the first optimization, cell $\mathrm{C} 13=34$ and the resultant objective function value was $\$ 32,950$. In the second optimization, cell C13 = 24 and the resultant
objective function value was $\$ 31,150$ and in the third optimization cell $\mathrm{C} 13=$ 14 with an objective function value of 29,150 .
Save the Excel file, then click Create App - Cloud Service - RASON Model to update the model on RASON server.

Then click Create App - Power BI - Managed Model to create a new custom visual file. This time, we will name the custom visual file, TroopRotationOptParam.pbiviz.
Click back to Power BI and import the newly created custom visual file. Click the new Frontline Solvers icon to open the custom visual. Immediately, the model will solve and the results will be displayed in the Power BI window. To view each solution, click the down arrow within the newly added Multiple Optimization drop-down menu.
Note: When entering PsiOptParam manually (i.e. simply typing the function into an Excel cell) in Analytic Solver Cloud, the taskpane must be refreshed before performing a parameter analysis report.

Simulation Example Model

Now let's create a custom visual from a simulation example. This time, we will embed the model into the Power BI Custom Visual. This option is different than Power BI - Managed Model because with Power BI -- Embedded Model, your model is embedded inside the custom visuals' JavaScript file. There is no need to create a named model that "lives" on the public Rason cloud. The custom visual accepts the data your model needs from Power BI; whenever this data changes, it sends your Rason model plus this data to the public Rason cloud service where it is solved, obtains the results and displays them in chart form.

Note: Although this option is initially simpler, if you want to update your model in any way, you'll have to use this menu option to create a new Dashboard Extension. If you expect to revise the model over time, it's better to use Create App - Power BI - Managed Model.

Open the Business Forecast Example by clicking Help - Example Models Monte Carlo Simulation Examples, Business Forecast hyperlink to open the file, then click the Forecast with Uncertainty tab. To open a completed example, open the BusinessForecastPBI example that appears at the bottom of Simulation Models.

First, we will use a $\operatorname{PsiDataSrc()}$ function to generate data wells for use in the Power BI custom visual.

Click a blank cell, such as cell G24, then type: "=PsiDataSrc("market_src", "market", J17:L18, "parameters", I17:I18, "mktdemand", J16:L16)
where:
market_src - Is the name used to identify the text file that will be submitted to the RASON server.
market - Will be the name of the data well in Power BI.
J17:L18 - Is the data range for "market".
parameters - Is the name of the $1{ }^{\text {st }}$ index set for the data specified in the "data" argument, market.
I17:I18 - Is the Excel range where the data for "parameters" is located.
mktdemand - Is the name of the $2^{\text {nd }}$ index set for the data specified in the "data" argument.

J16:L16 - Is the Excel range where the data for "mktdemand" is located.
Type ")" to close the formula and then press the Enter key to enter the formula into the Excel cell.

Click a $2^{\text {nd }}$ blank cell, such as G25, then enter the following function.
=PsiDataSrc("price_src", "mktprice", J21:L21, "price", J20:L20)
where:
price_src - Is the name used to identify the text file that will be submitted to the RASON server.
mktprice - Will be the name of the data well in Power BI.
J21:L21 - Is the data range for "mktprice".
price - Is the name of the 2nd index set for the data specified in the Data argument, market.
J20:L20 - Is the Excel range where the data for "price" is located.

Two Psi Functions, PsiPercentiles and PsiData, must be added to the spreadsheet in order to draw the histogram in the Custom Visual.

H28 = PsiPercentiles(F20)
$\mathrm{G} 28=\mathrm{PsiData}(\mathrm{F} 20)$
The PsiPercentile function returns all percentiles for the uncertain function in cell F20. The PsiData function returns all trial values for cell F20.

For more information on these formulas, see the Analytic Solver Reference Guide.

Click Create App - Cloud Service - Rason Model to post the simulation model to the RASON server.

Then click Create App - Power BI -- Managed Model to create a new Power BI Custom Visual. Confirm that the name of the model on the Rason Cloud Service and then enter a name for the Custom Visual.

A window appears as the Custom Visual is being created.

Click back to Excel and open a new workbook to enter the following data into an Excel table. Then save the workbook as BusinessForecastData.xlsx.

You can open this completed data file from Help -- Example Models - Monte Carlo Simulation Examples - BusinessForecastData.xlsx

Open Power BI and add in the custom visual (Import from file BusinessForcast1.pbiviz), then click Get Data - Excel to import the data. Afterwards, drag the data fields to the appropriate data wells as shown in the table below.

Fields	Data Wells
market	market
mktdemand	mktdemand
mktprice	mktprice
parameters	parameters
price	price

Analytic Solver automatically creates the Custom Visual, embedded with the RASON model, that can be dragged onto the Power BI Dashboard, or a report.

Once the npm window disappears, open Microsoft Power BI. Upon opening, click the three dots beneath Visualizations, and select Import from file.

Your task pane should match the following screenshot. Make sure that none of the Fields are being summarized.

Immediately, once the data wells are filled with the appropriate data fields, a simulation will be run.
parameters. mktdemand. market. price and mktprice

Again, note that as long as your PsiDataSrc functions remain the same, the named model can be updated on the Rason Cloud Service and you will not need to create a new custom visual. However, if the PsiDataSrc() functions change, you will need to create a new embedded custom visual.

If your data changes, say your demand explodes, you can simply edit your data file.

	A	B	C	D	E
1	parameters -	mktdemand -	market *	price -	mktprice -
2	volume	slow	100,000	minimum	4.50
3	volume	ok	150,000	most likely	6.50
4	volume	hot	200,000	maximum	8.50
5	price	slow	11	minimum	4.50
6	price	ok		most likely	6.50
7	price	hot	8	maximum	8.50
8					

Click back to Power BI and click the three dots to the right of the data source...

Recall from the examples above, once you click Create App - Power BI Managed Model in the Excel worksheet and confirm the model name, the Save As dialog appears.

At the bottom of this dialog is the Custom Visual Source Code Preserve checkbox. When this option is selected, a folder is created in the same location as the .pbiviz file. This folder will contain the source code for the custom visual.

In the screenshots below, new folders, BusinessForecast in Analytic Solver Desktop and ProductMix1 in Analytic Solver Cloud, will be created at the same time as the BusinessForecast.pbiviz and ProductMix1.pbiviz files.
Analytic Solver Desktop

Analytic Solver Cloud

Message from Add-in: Analytic Solver		\times
Name: \quad ProductMix1		
Include source		

You will find the type script file, visual.ts within the src folder. Users can manipulate this file to customize the look and feel of the custom visual, such as the face of the custom visual icon (within Visualizations), alter the RASON model, etc. For more information on customizing the visual.ts file, see the webpage: https://powerbi.microsoft.com/en-us/documentation/

Note: If the visual.ts file is altered, a new pbiviz package must be created. To do so, open a command prompt, change the directory to the root directory of the custom visual, and enter "pbiviz package", as shown in the screenshot below.

The new custom visual file (.pbiviz) will be saved to the Dist folder.

Creating a Custom Visual from a Large Model

For very large embedded models, node.js might run out of heap space when attempting to generate the pbiviz package. If all heap space is consumed, you'll receive the message, " Javascript out of heap space". In order to increase the heap space, simply create a new Environment Variable "NODE_OPTIONS" with value "-max-old-space-size=8192". Doing so will increase the heap space and allow the custom visual to be generated.

Error Messages

If you've made an error in your PsiDataSrc() function or in your data file, your custom visual will display an error such as "Inconsistent Data source definition PSI could not parse Excel formulas" or "Invalid binding source definition PSI could not parse Excel formulas".

If your custom visual is displaying either of these errors or a different error, first, check the PsiDataSrc() function in your Excel model to make sure that you have not mixed up the order of your index sets. In addition, check your data to make sure that it is 1. Contained within an Excel table, 2. That the column headings match the index sets defined in PsiDataSrc() and 3. That your model parameters match the elements in your data table.

For more information on an error message displayed in your custom visual, contact Frontline Systems Support Team by emailing support@solver.com or by calling 888-831-0333.

Creating Custom Extensions in Tableau

Introduction

Analytic Solver includes the ability to turn your Excel-based optimization or simulation model into a Tableau Dashboard Extension, with just a few mouse clicks! This is quite similar to the ability to create Power BI Custom Visuals as discussed in the previous chapter. This feature is only compatible with versions of Tableau version 2018.2 or later.

To start, simply select rows or columns of data to serve as changeable parameters, then choose Create App - Tableau - Managed Model, and save the file created byAnalytic Solver. In Tableau, you'll see the newly-created file under Extensions on the left side of the dashboard, where you can drag it onto your dashboard. You'll be prompted to match the parameters your model needs with data in Tableau. What you get isn't just a chart - it's your full optimization or simulation model, ready to accept Tableau data, run on demand (using our RASON server), and display visual results in Tableau!

You can also use Create App - Tableau - Embedded Model to embed your optimization or simulation model into a Tableau Extension. However, your extension will not allow Input Functions and is not recommended if your model will change at any time.

Installing Tableau

Tableau is an industry leading desktop or cloud-based interactive business intelligence tool that centers on data visualization, dashboarding and data discovery. In past versions of Analytic Solver, users have only been able to upload their model parameters (or their model data) to Tableau after solving an optimization or simulation model. However, starting with V2018, Analytic Solver now includes the ability to turn your Excel based optimization or simulation model into a Tableau Extension, that is your full optimization or simulation model, ready to accept Tableau data, run on demand on the web (using our RASON server) and display visual results in Tableau.

In order to use this new feature in Analytic Solver, you must first install Tableau V2018.2 or later or open the free cloud based version of Tableau. For more information on this business intelligence tool, see the following website: https://www.tableau.com/

Solving Optimization Models in Tableau

In this section, we will create a custom Tableau Extension using the Product Mix example model.

Open the ProductMix(Opt).xlsx model that was previously discussed in the Conventional Optimization chapter by clicking Help - Monte Carlo Simulation

Examples on the ribbon, clicking Optimization Examples and then the Product Mix link. Recall this example model determines the optimal mix of products that a company should produce in order to maximize profits.

The optimization model is included in the Model tab in the Solver Task Pane. This model written in algebraic form is below.

Maximize: Total Profit $=\$ 75 \mathrm{x} 1+\$ 50 \times 2+\$ 35 \times 3$
Subject To:
Chassis: $1 \times 1+1 \times 2+0 \times 3<=450$
LCD Screen: 1x1 $+0 \times 2+0 x 3<=250$
Speaker: $2 \mathrm{x} 1+2 \mathrm{x} 2+1 \mathrm{x} 3<=800$
Power Supply: $1 \times 1+1 \times 2+0 \times 3<=450$
Electronics: $2 \times 2+1 \times 2+1 \times 3<=600$
$\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3>0$
The engine selected to solve this model is the Standard LP/Quadratic Engine as shown on the Engine tab in the Solver Task Pane. This is the engine that will be used to solve the model within Tableau.


```
Standard LP/Quadratic Enqine
\(\therefore\) 2. \(\quad \square\) Automatically Select Engine
```

In past versions of Analytic Solver, you only had the option of uploading your final solution values (final variable, constraint and objective values) to Tableau. As a result, any time there was a change to the model, the model had to be solved in Excel first and then the data could be (again) uploaded to Tableau. All of this changed with V2018. Now you can change your model parameters and resolve your model within Tableau - without ever having to go back to Excel!
To start, we will use the PsiDataSrc() function to "flag" or specify the parameters in the Excel model that might possibly change in the future; for example, in the product mix model, the amount of inventory on hand for each part, the profit point for each product or the number of parts that makeup each product.

Select a blank cell on the Product Mix Example 1 tab, say J6. Click Formulas Insert Function to open the Insert Function dialog, then select PSI Dimension for Category. Afterwards, highlight the function PsiDataSrc, and click OK.

Note: It is suggested that you delete the Constraints text box in order to create room for the added PsiDataSrc() functions, described below.

In Analytic Solver Desktop or AnalyticSolver.com, you can also simply type the formula directly into the cell.

The Function Arguments dialog opens displaying 5 arguments: Src_name, Val_col_names, Data, Idx1_name and Idx1_elem. We will use this dialog to create a PsiDataSrc() in cell J6 that will allow us the ability to change the inventory values and resolve the Product Mix example model not in Excel, but within Tableau.

PsiDataSrc() Arguments

Src_name - This argument names the text file, created by the Extension, which is submitted, along with the RASON model, to the RASON server. For this example, type: inventory_src.
Val_col_names - The available data in Tableau must be mapped to the data source we create in the Excel workbook. This field provides the name of the data repository that will appear in Tableau. For this example, type: inventory. Note: Names passed to Val_col_names are case sensitive.

Data - Enter the Excel range where the data is located on the spreadsheet for this argument. For this example, use your mouse to click the upward pointing arrow to the right of the Data argument and select cells H18:H22. You can also simply type this range into the edit box.

Idx1_name - Enter the name of the ($\left.1^{\text {st }}\right)$ index set for the data specified in the Data argument. In this example, our Index set is simply the inventory available for each Part. Therefore, enter "parts" for this argument. Note: Index set names are case sensitive.

Idx1_elem - Enter the Excel range containing the data (or elements) for the first index set. For this example, either type or select cells: B18:B22

Since this index set is 1-dimensional, nothing further is needed and we can click OK to enter the PsiDataSrc() function into cell J6.

In Analytic Solver Cloud or AnalyticSolver.com, you can type the formula directly into cell J6.
=PsiDataSrc("inventory_src", "inventory", H18:H22,
"parts", B18:B22)
Afterwards, cell J6 will display the value given to the Src_name argument, inventory_src. Save the Excel model.

Click Create App on the ribbon, then select Tableau - Managed Model. Recall that in order to use the Managed Model choice, your model must have already been posted to the Rason Cloud Service using Create App - Cloud Service RASON Model.

Note that it's also possible to embed your model into Tableau using Create App -- Tableau - Embedded Model, however, if your model will change in any way, it's recommended to use Managed Model. For more formation on creating an embedded model, see the previous Deploying Your Model chapter.

Click Save to confirm the model name as "ProductMix(Opt)"

There is no need to solve the model first unless a change has been made to an already existing RASON model. If a change has been made to the workbook after a RASON model has been created, then you MUST either solve or diagnose the Excel model in order for the changes to be reflected in the new RASON model.

When creating a Tableau extension through desktop Analytic Solver, model elements (objective function and all variables and constraints) may appear across multiple worksheets within the same Excel workbook.

Immediately, the Save As dialog appears. Enter a file name in the location of your choice and then click Save.

- In Analytic Solver Desktop, immediately, the Save As dialog appears. Select a folder to save the Tableau extension files to, and then click Save. For example, the screenshot below displays a folder name of "ProductMixExt".
Analytic Solver Desktop

- In Analytic Solver Cloud, first, you will receive the following dialog. Type the filename of the folder, for example, TableauExtensions.

After the file is downloaded, you'll be asked if you'd like to open or save the file, choose Save As, then save the file in the desired location.

Click Select Folder or Save. At this point your Excel model is translated into the RASON® ${ }^{\circledR}$ modeling language, and your Tableau extension is created. After a moment, the following message appears.

Viewing the Tableau Extension File

Open File Explorer and browse to the folder where you saved the Tableau extension. Within that folder will be an Extensions folder. Click that folder and open the Solver.trex file using Notepad.

This file contains information such as the extensions name (or how it will appear in Tableau) and the url where the extension is hosted. To publish the html file to a website, simply replace http://localhost: 8000 with the desired url.

Starting up the Server

Since Tableau extensions are simply web pages, we will first need to start up a web server to serve our content. For this example, we will serve up the webpage to the default location. To do so, open a command prompt, navigate to the root of the extensions repository and run "http-server -p 8000".

This command starts up a simple http server listening on port 8000 .

Creating a Data File

In order to provide the data for the Product Mix example file to Tableau, we must create a data file. Within this file, we will pass the inventory levels by part. This data file can be of any format supported by Tableau such as a CSV file, a text file, a database, etc. In this example, we will use an Excel workbook to hold the data. For more information on the types of files supported by Tableau, please see the Tableau documentation at: http://onlinehelp.tableau.com/current/pro/desktop/en-us/default.html
Open a blank worksheet and create a table with two columns. List the parts by name in the first column using the column heading "parts" and the inventory levels in the second column using the column heading "inventory", as shown in the screenshot below. You can open a completed data file by clicking Help Example Models - Optimization Examples - Product Mix Data for Power BI Tableau.

	A	B
1	parts	inventory
2	Chassis	450
3	LCD Screen	250
4	Speaker	800
5	Power Supply	450
6	Electronics	600

Note: Column headings must be identical to the names of the Index Sets passed to the PsiDataSrc() function. Make sure there are no spaces before or after column headings or row elements.
Recall that we labeled the IndexSet as "parts" (4 th argument of PsiDataSrc) and Val_col_names as "inventory" (2 $2^{\text {nd }}$ argument of PsiDataSrc) so the title for column A must be "parts" and the title for column B must be "inventory". Now save the workbook to a desired location.

Opening Extension within Tableau

Open either desktop, server or cloud-based Tableau. The screenshot below depicts the opening screen of desktop Tableau. Click Microsoft Excel under Connect.

An Open dialog opens.

Browse to the location of your data file (C:\Program Files\Frontline Systems \backslash Analytic Solver Platform\Examples) and click Open.

A new worksheet, Sheet 1 , is automatically created. Click on the Sheet 1 tab.

On Sheet 1, drag Parts (under Dimensions) to Sheet 1 rows...

\ldots and then drag Inventory (under Measures) to Sheet 1.

Hover over SUM(Inventory)
click the down arrow that appears to the right, then select Dimensions from the menu.

Note that the information in ProductMixData.xlsx matches the data in Sheet 1.

ProductMixDataSource.xlsx

	A	B
1	parts	- inventory
2	Chassis	450
3	LCD Screen	250
4	Speaker	800
5	Power Supply	450
6	Electronics	600
7		

Tableau Sheet 1

Sheet 1	
Parts	450
Chassis	600
Electronics	250
LCD Screen	450
Power Supply	800
Speaker	

Right click the Sheet 1 tab and rename the worksheet to "inventory", then click the New Dashboard icon at the bottom of Tableau to open a new dashboard.

First, drag the Inventory worksheet onto the dashboard canvas.

Then drag the Extension icon, under Objects, onto the canvas.

Click My Extensions...

Choose an Extension

Extensions are web applications that can interact with worksheets and data in Tableau. You can add custom extensions to your dashboard to add new capabilities to Tableau
Learn more
Find and download new extensions from the Extension Gallery. Click My Extensions to use an extension (.trex file) from your computer.
... browse to the location of the Tableau Extension.

(In this example, the Tableau Extension was saved to the ProductMixExt folder. Drill down to the Extensions folder to open the Solver.trex file.) Click Open.

Click OK to allow the extension to be added to the dashboard.

... and browse to the location of the Tableau Extension file (Solver.trex).
Within this folder, select All Files, then double click the Extensions folder and select the Solver.trex file.

Click Open to open the Tableau extension. A dialog opens asking to select a data source for "parts". Confirm that "inventory" is selected for "Sheet" and "parts" is selected for "Column". Note that these are the same names passed to the PsiDataSrc() function in the Excel Product Mix.xlsx workbook.

Click OK.

On the Select data source for: inventory dialog, select "inventory" for "Sheet" and "inventory" for "Column". Then click OK.

Immediately, two gears appear and start to turn while the model is sent to the RASON server, solved with the LP/Quadratic engine, and the final values are returned. Your screen should appear similar to the screenshot below.

Once the RASON server has imported the final solution values into Tableau, Solver's result message, "Solver found a solution. All constraints and optimality conditions are satisfied", is displayed at the bottom of the Extension window. In the Variables chart, we see that the final variable values are: Varl (LCD TV) equal to 200, Var2 (Stereo) equal to 200 and Var3 (Speakers) equal to 0 . These variable values result in an objective function value equal to \$25,000.

In the next example we will use the PsiFinalValue function to display the final constraint values in the Tableau Extension.

Now let's go back to the Excel Model and see what happens when we change a few parameters such as increasing the inventory of speakers from 800 to 1,000 , adding 2 more speakers to a Stereo during manufacturing and increasing the Stereo's selling price to $\$ 100$.

First, we will use a $2^{\text {nd }} \operatorname{PsiDataSrc()}$ function to denote that new data (an increased selling price for Stereos) will be available in Tableau. Click back to the ProductMix(Opt) example model, select cell J7 and then click Formulas Insert Function, select PSI Dimension for Category, select PsiDataSrc, then click OK.

Enter the following for the arguments appearing on the Function Arguments dialog.

Src_name - Enter "profit_src" to name the text file, created by the custom visual, which will be submitted, along with the RASON model, to the RASON server.

Val_col_names - Enter "profit" for the data repository name. Note: Names passed to Val_col_names argument are case sensitive.

Data - Enter the Excel range, C24:E24.
Idx1_name - Enter "products" which is the name of the $1^{\text {st }}$ index set for the data specified in the Data argument. In this example, our Index set is simply the selling price for each product. Note: Index set names are case sensitive.

Idx1_elem - Enter the Excel range containing the data for the first index set, C13:E13.

Since this index set is 1-dimensional, nothing further is needed and we can click OK to enter the PsiDataSrc() function into cell J7. Afterwards, cell J7 will display the value given to the Src_name argument, profit_src.

In Analytic Solver Cloud or AnalyticSolver.com, you can type the formula directly into cell J7.

```
=PsiDataSrc("profit_src", "profit", C24:E24,
"products", C13:E13)
```

Finally, we will use a 3rd PsiDataSrc() function to denote that new data (an increase in the number of speakers to be included in the building of a stereo) will be available in Tableau. This time, we will simply enter the formula directly into cell J8.

First type "=PsiDataSrc(", then enter the arguments below.
Src_name - Enter "reqparts_src" to name the text file which will be submitted, along with the RASON model, to the RASON server.
Val_col_names - Enter "requiredparts" for the data repository name. Note: Names passed here are case sensitive.

Data - Enter the Excel range, C18:E22.
Idx1_name - Enter "parts" which is the name of the $1^{\text {st }}$ index set for the data specified in the Data argument. In this example, there are two index sets. When data is 2-dimensional, we must enter the index set that describes the rows first. Note: Index set names are case sensitive.

Idx1_elem - Enter the Excel range containing the data for the first index set, B18:B22.

Idx2_name - Enter "products" which is the name of the $2^{\text {nd }}$ index set for the data specified in the Data argument.

Idx2_elem - Enter the Excel range containing the data for the second index set, C13:E13. Note: Index set names are case sensitive.

Now we can type ")" to close the function, then press Enter to enter the PsiDataSrc() function into cell J8. Afterwards, cell J8 will display the value given to the Src_name argument, reqparts_src.
Your PsiDataSrc function should be similar to the screenshot below.
=PsiDataSrc("reqparts_src, "requiredparts", C18:E22, "parts", B18:B22, "products", C13:E13)
At this point, cell J6 displays "inventory_src", cell J7 displays "profit_src" and cell J8 displays "reqparts_src".
Before we create a new Tableau Extension, we need to add a PsiFinalValue() function in order to see the final constraint values in the Extension. In cell K18 enter "=PsiFinalValue(G18:G22)".

You'll need to update the model on Rason Cloud Services so save the Excel model and click Create App - Cloud Service - Rason Model. You can reuse the previous model name.

Then click Create App - Tableau - Managed Model to create a new Tableau Extension.

Now we are ready to add a new data table to the ProductMixData.xlsx file.
Open the ProductMixData.xlsx workbook to see the completed data table.
Important Note: In Tableau, unlike when creating a Power BI custom visual, it is not necessary that all data be contained within the same Excel table or from within multiple tables with the same number of rows and columns. However, for ease of use, this example includes all data within the same Excel table.

In a new Excel sheet, create a table (Insert - Table) with 16 rows and 5 columns, then list the products in the first column using the column heading "products", the parts by name using the column heading "parts" in the $2^{\text {nd }}$ column, the parts required per product (requiredparts) in the $3^{\text {rd }}$ column, the selling price or "profit" per product in the 4th column, and the part inventory for each product in the last column. Make sure to pass the new selling price for Stereos (\$100) and the increased number of speakers per stereo (4).
Note: Click the $2^{\text {nd }}$ tab in ProductMixData to view the completed data file.

	A	B	C		D	E	
1	products	- parts	\checkmark requiredparts	\checkmark profit	- inventory		
2	LCD TV	Chassis		1	75	450	
3	LCD TV	LCD Screen		1	75	250	
4	LCD TV	Speaker		2	75	1,000	
5	LCD TV	Power Supply		1	75	450	
6	LCD TV	Electronics		2	75	600	
7	Stereo	Chassis		1	100	450	
8	Stereo	LCD Screen		0	100	250	
9	Stereo	Speaker		4	100	1,000	
10	Stereo	Power Supply		1	100	450	
11	Stereo	Electronics		1	100	600	
12	Speakers	Chassis		0	35	450	
13	Speakers	LCD Screen		0	35	250	
14	Speakers	Speaker		1	35	1,000	
15	Speakers	Power Supply		0	35	450	
16	Speakers	Electronics		1	35	600	

Notice that in order to list all of the required parts for each product, we must list each part and selling price for each part. In addition, each column heading matches the index sets used in the PsiDataSrc() functions. Rename the worksheet "AllData" then save the workbook. If there are any leading or trailing spaces for the column headings or elements, Tableau will stop with an error.

Click back to Tableau and click Refresh in the top left hand corner.

You will notice that the "AllData" sheet is added beneath Sheets. Drag this sheet to the window.

Tableau displays information from the Excel table at the bottom of the window.

囲	Data source order			\square Show :
Abc AllData Products	Abc AllData Parts	\# AllData Requiredparts	\# AllData Profit	\# AllData Inventory
LCD TV	Chassis	1	75	450
LCD TV	LCD Screen	1	75	250
LCD TV	Speaker	2	75	1,000
LCD TV	Power Supply	1	75	450
LCD TV	Electronics	2	75	600
Stereo	Chassis	1	100	450
Stereo	LCD Screen	0	100	250
Stereo	Speaker	4	100	1,000
Stereo	Power Supply	1	100	450
Stereo	Electronics	1	100	600
Speakers	Chassis	0	35	450
Speakers	LCD Screen	0	35	250
Speakers	Speaker	1	35	1,000
Speakers	Power Supply	0	35	450
Speakers	Electronics	1	35	600

Right click the Inventory sheet and again drag "Parts", under Dimensions, to Rows and "Inventory", under Measures, to the right of the rows.

Hover over SUM(Inventory), click the down arrow that appears to the right, and select Dimensions from the menu.

Add a new worksheet and drag "Parts", under Dimensions, to Rows and "Products", under Dimensions, to "Columns". Then drag "Requiredparts", under Measures, to the field elements.

Hover over
SUM(Required.. and select Dimensions from the menu.

Name the sheet "Required Parts" and then add a third sheet. In Sheet 3, drag "Products", under Dimensions, to "Columns" and drag "Profit", under Measures, to the column elements.

Hover over SUM(Profit) , click the down arrow that appears on the right then select Dimensions from the menu.

Rename the sheet from Sheet 3 to Profit and then create a new dashboard. Drag all three sheets, Inventory, Required Parts and Profit, to the canvas and then drag a new Extension to the canvas. Open the Solver.trex file in ...\TableauExtensions\Extensions.

At this point we will connect the dimensions created by the PsiDataSrc() function in Excel with the actual data in Tableau. A dialog appears asking to "Select a datasource for: parts". Select "Inventory" for Sheet and "Parts" for Column to match the "parts" dimension in the Excel sheet to the "Parts" dimension in the Tableau Inventory sheet.

Click OK.

On the "Select data source for: inventory" dialog, select "Inventory" for Sheet and "Inventory" for Column to match the "inventory" dimension in the Excel sheet to the "Inventory" dimension in the Tableau Inventory sheet.

```
Select data source for: inventory
Sheet: Inventory v
Column: Inventory v
```


Click OK

On the "Select data source for: products" dialog, select "Required Parts" for Sheet and "Products" for Column to match the "products" dimension in the Excel sheet to the "Products" dimension in the Tableau Required Parts sheet.

```
Select data source for: products
Sheet: Required Parts v
Column: Products \nabla
```


Click OK.

On the "Select data source for: profit" dialog, select "Profit" for Sheet and "Profit" for Column to match the "profit" dimension in the Excel sheet to the "Profit" dimension in the Tableau Profit sheet.

```
Select data source for: profit
Sheet: Profit v
Column: Profit v
```


Click OK.

On the "Select data source for: requiredparts" dialog, select "Required Parts" for Sheet and "Requiredparts" for Column to match the "requiredparts" dimension in the Excel sheet to the "Requiredparts" dimension in the Tableau Required Parts sheet.

```
Select data source for: requiredparts
Sheet: Required Parts v
Column: Requiredparts \
```


Click OK.

Immediately, the RASON model is submitted to the RASON Server, the model is solved with the LP/Quadratic engine and the final variable values are imported back into Tableau.

At the bottom of the extension, we find Solver's result message: Solver found a solution. All constraints and optimality conditions are satisfied. In the

Variables chart, we see that the final variable values are: Var1 (LCD TV) equal to 233 , Var2 (Stereo) equal to 133 and Var3 (Speakers) equal to 0 . These variable values result in an objective function value equal to 30,833 .

To update your data, simply revise your data source, refresh the source within Tableau and your Tableau Extension will automatically update.

Troop Rotation Optimization Example

In this example, we will create a Tableau Extension using a slightly more complex example. In this section, we will create an Extension using the Troop Rotation example model by clicking Help - Monte Carlo Example Models on the Analytic Solver ribbon, then clicking Optimization Examples and scrolling down to Troop Rotation. Click the hyperlink to open the example model. This example model determines how army troops should be moved to minimize costs.

To open a completed version of this model click Help - Example Models Optimization Examples, scroll down and click the link Troop Rotation for Power BI - Tableau.

	A	B	C	D	E	F	G	H
10								
11			Moving Cost per Soldier					
12			Base 1	Base 2	Base 3	Base 4		
13		Camp 1	34	26	29	31		
14		Camp 2	42	33	28	35		
15		Camp 3	36	29	32	38		
16								
17				ber of T	oops Mo			
18			Base 1	Base 2	Base 3	Base 4	Total	Available
19		Camp 1	0	0	0	0	0	500
20		Camp 2	0	0	0	0	0	400
21		Camp 3	0	0	0	0	0	400
22		Total	0	0	0	0		
23		Required	200	250	350	300		
24		Cost	\$0	\$0	\$0	\$0	\$0	

The optimization model is included in the Model tab in the Solver Task Pane. This model written in algebraic form is below.
Minimize: Total Cost $=34 * \mathrm{x} 1+42 * \mathrm{x} 5+36 * \mathrm{x} 9+26 * \mathrm{x} 2+33 * \mathrm{x} 6+29 *$
$\mathrm{x} 10+29 * \mathrm{x} 3+28 * \mathrm{x} 7+32 * \mathrm{x} 11+31 * \mathrm{x} 4+35 * \mathrm{x} 8+38 * \mathrm{x} 12$
Subject To:

Number of troops from Camps 1, 2 and 3 moved to Bases 1, 2, 3 and 4 must not exceed the number of troops available
Camp1: $\mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3+\mathrm{x} 4<=500$
Camp2: $\mathrm{x} 5+\mathrm{x} 6+\mathrm{x} 7+\mathrm{x} 8<=400$
Camp3: $\mathrm{x} 9+\mathrm{x} 10+\mathrm{x} 11+\mathrm{x} 12<=400$
Number of troops assigned per base must not be less than the amount required.
Base 1: $\mathrm{x} 1+\mathrm{x} 5+\mathrm{x} 9>=200$
Base 2: $x 2+x 6+x 10>=250$
Base 3: $\mathrm{x} 3+\mathrm{x} 7+\mathrm{x} 11>=350$
Base 4: $\mathrm{x} 4+\mathrm{x} 8+\mathrm{x} 12>=300$
$\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4, \mathrm{x} 5, \mathrm{x} 6, \mathrm{x} 7, \mathrm{x} 8, \mathrm{x} 9, \mathrm{x} 10, \mathrm{x} 11, \mathrm{x} 12>0$
The engine selected to solve this model is the Standard LP/Quadratic Engine as shown on the Engine tab in the Solver Task Pane. This is the engine that will be used to solve the model within Tableau.

Next, we will enter four PsiDataSrc() functions into cells J13:J16 .
In cell J13, we will expose the moving costs per soldier according to the base and camp dimensions. To open the Function Arguments dialog, click Formulas - Insert Function, select PSI Dimension for Category, select PsiDataSrc, then click OK.

Src_name = Enter "cost_src" for this argument. This names the text file that will be submitted to the RASON server, along with the RASON model.
Val_col_names - Enter "cost" for this argument. This will be the name of the data repository associated with the data passed in the next argument.

Data - Enter C13:F15 which is the actual cells containing the moving price per soldier.

Idx1_name - Enter "camps" which is the name of the $1^{\text {st }}$ index set, the row-wise index set. Remember, you must pass the row-wise index set before the columnwise index set.

Idx1_elem - Enter the elements of the "camps" index set. These appear in cells B13:B15.

Idx2_name - Enter "bases" which is the name of the $2^{\text {nd }}$ index set, the column wise index set.

Idx2_elem - Enter the elements of the "bases" index set. These appear in cells C12:F12.

The Function Arguments dialog should now appear as shown in the screenshots below.

Click OK to save this function to cell J13.
In Analytic Solver Cloud or AnalyticSolver.com, you can type the formula directly into cell J13.
=PsiDataSrc("cost_src", "cost", C13:F15, "camps", B13:B15, "bases", C12:F12)

Click cell J14 and open the Function Arguments dialog to enter the next PsiDataSrc() function.
In J14, we will expose the variables that indicate the number of troops moved by camp and base in cells C19:F21. Open the PsiDataSrc function (as explained above).

Src_name = Enter "vars_src" for this argument.
Val_col_names - Enter "troopsmoved" for this argument. This will be the name of the Data Well in Power BI that is associated with this data.

Data - Enter C19:F21 which is the actual cells containing the moving price per soldier. Note: The data range C19:F21 will automatically convert to "Troops_moved" which is the defined name for this Excel range.

Idx1_name - Enter "camps" which is the name of the $1{ }^{\text {st }}$ dimension or index set, the row-wise index set.

Idx1_elem - Enter the elements of the "camps" index set. These appear in cells B13:B15.

Note that it is important to re-use the location of the index sets. If we would have entered the elements for "camps" as B19:B21, rather than B13:B15, a new index set would be created.
Idx2_name - Enter "bases" which is the name of the $2^{\text {nd }}$ dimension or index set, the column-wise index set.

Idx2_elem - Enter the elements of the "bases" index set. These appear in cells C12:F12.

The Function Arguments dialog should now appear as shown in the screenshots below.

Click OK to save this function to cell J14.
In Analytic Solver Cloud or AnalyticSolver.com, you can type the formula directly into cell J14.

```
=PsiDataSrc("vars_src", "troopsmoved", Troops_moved,
"camps", B13:B15, "bases", C12:F12)
```

Click cell J15. Let's enter this function by typing the formulas directly into the Excel cell. This next PsiDataSrc function exposes the number of troops available for movement.

In cell J15, enter: "=PsiDataSrc("
First the first argument, Src_name, enter "available_src".
For the second argument, Val_col_names, enter: "availabletroops". The Data Well associated with this data will be given this name.
For the Data argument, the third argument, enter: "Troops_available". This is the defined name for cells $\mathrm{H} 19: \mathrm{H} 21$. Alternatively, we could have typed this Excel range.

Type "camps" for the $4^{\text {th }}$ argument, Idx1_name, which is the name given to the row-wise index set.

Enter the range for this index set, B13:B15, for Idx1_elem.
Your PsiDataSrc() function should match the one in the screenshot shown below.

```
=PsiDataSrc("available_src", "availabletroops",
Troops_available, "camps", B13:B15)
```

Click Enter to enter the PsiDataSrc() function into cell J15.
Finally, the last PsiDataSrc() function in cell J16 should be entered as:

```
=PsiDataSrc("required_src","requiredtroops",Troops_re
quired,"bases", C12:F12)
```

Where:
Data_src $=$ "required_src"
Val_col_names = "requiredtroops" This is the name that will appear for the data repository associated with this data in Tableau

Data $=$ Troops_required This is the data associated with Val_col_names.
Idx1_name = "bases" This is the name of the index set that is associated with the data passed to the Data argument.

Idx1_elem - C12:F12 This is the Excel range where the elements for Idx1_name are located on the worksheet.

Now we are ready to create the Tableau Extension.
In order to see our constraint final values in the Tableau Extension, we will need to use the Psi function PsiFinalValue. (For more information on this function, see the Psi Function chapter in the Analytic Solver Reference Guide.) In cell J22, enter "=PsiFinalValue(Troops_per_camp)" to see the final value of the constraints in cells G19:G21 in the Tableau Extension. In cell L22, enter =PsiFinalValue(Troops_per_base)" to see the final value of the constraints in cells C22:F22 in the Tableau Extension.

First, click Create App on the ribbon, then select Cloud Service - RASON Model to post the model to RASON Cloud Services. Then click Create App again and select Tableau - Managed Model.
Since this is the first time we are creating an Extension from this model, there is no need to solve the model first. If, however, we make a change to the Troop Rotation model, then we would need to either diagnose or solve the model first to ensure that the changes are captured in the new extension.
Save the Solver.trex file (the Tableau Extension file) in a location of your choice.

Next, we will create the data file. Open a new Excel workbook. To open the completed data file browse to C:\Program Files\Frontline Systems\Analytic Solver Platform\Examples\TroopsRotationData.xlsx.
For convenience sake, in this example, we will pass all data in one Excel table.
In a new Excel sheet, create a table (Insert - Table) with 13 rows and 5 columns, as shown in the screenshot below. Notice that in order to enter all 12 costs, labels for camps, bases, requiredtroops and availabletroops were repeated. In addition, each column heading matches the index sets used in the PsiDataSrc() functions. Rename the worksheet "AllData" then save the workbook as TroopsRotationData.xlsx. (Note that you can find this completed data file by clicking Help -- Example Models - Optimization Examples and scroll down to click the Troop Rotation Data for Power BI - Tableau link.)

Rename the worksheet "AllData" then save the workbook as TroopsRotationData.xlsx.

Now let's click back to the Data Source tab in Tableau, to import the new Extension and the data. First, just to keep our choices limited to the Troop Rotation example, hover over ProductMixData, click the down arrow that appears on the right and select remove. Right click the Extension tab and select Delete, then Delete all worksheets associated with the Product Mix extension. Then, on the Data Source tab, click Add - Microsoft Excel, browse to the location of TroopsRotationData.xlsx and click Open.

Connections
Sheets
AllData
2 New Union
STopsotationData

[1] So	telds D	ource or	order	-			
-	-	*	*			*	
swer	Sherid	Smed		Stert		Swer	
Bases	Camps	Cost		Requiredtr..		Avalabletr	
Base 1	Camp 1		34		200		500
Base 1	Campz		42		200		400
Base 1	Camp 3		36		200		400
Baso 2	Camp 1		26		250		500
Base 2	Camp 2		33		250		400
Base 2	Camp 3		29		250		400
Ease 3	Camp 1		29		350		500
Basa 3	Camp 2		28		350		400
Base 3	Camp 3		32		350		400
Base 4	Camp 1		31		300		500
83504	Camp 2		35		300		400
Base 4	Camp 3		38		300		400

The AllData sheet appears under Sheets and the data from that sheet appears at the bottom of the Tableau window. Click Sheet 1. Under Dimensions, drag "Bases" to Columns and "Camps" to Rows. Under Measures, drag "Cost" to the table elements. Hover over SUM(Cost) down arrow that appears to the right, and select Dimensions from the menu.

Rename the worksheet to Cost and then add a new Sheet.
On Sheet 2, drag "Bases", under Dimensions, to Columns and "Requiredtroops", under Measures, as the table elements. Hover over, sum(Required.
click the down arrow that appears to the right, then select Dimensions from the menu.

Rename the worksheet to Required Troops and then add a new Sheet.
On Sheet 3, drag "Camps", under Dimensions, to Rows and "Availabletroops", under Measures, to the table elements. Hover over

Rename the sheet to Available Troops and then open a new Dashboard.
Drag each of the three sheets (Cost, Required Troops and Available Troops) and the Extension to the Tableau canvas as described in the Product Mix example.

Match the dimensions from the Excel sheet to the dimensions and measures in the Tableau sheets as follows.

The resultant Tableau Extension is shown in the screenshot below. Now each time new data is imported into Tableau, the Troop Rotation example data will be solved from within Tableau without the need to ever return to the original Excel workbook. However, please note that as long as your PsiDataSrc functions remain the same, the named model can be updated on the Rason Cloud Service and you will not need to create a new extension. However, if the PsiDataSrc() functions change, you will need to update the named model residing on the Rason Cloud service and the Tableau Extension.

Solver found a solution. All constraints and optimality conditions are satisfied.

Using Optimization Parameters in Tableau

Now what happens when we would like to see how our final variable values and objective function value change as the number of troops required changes. For this type of "What If" analysis, we can use the PsiOptParam() optimization parameter. Recall from the chapter, Examples: Parameters and Sensitivity Analysis, an optimization parameter (PsiOptParam) is automatically varied when you perform multiple optimizations. You do this by clicking the Optimize button on the Ribbon, or the green arrow in the Task Pane, with the Number of Optimizations set to a value greater than 1 .

Let's go back to our example Troop Rotation Excel model and enter an optimization parameter for the number of troops required in Base 1. In cell C13, enter "=PsiOptParam $(\{34,24,14\}) "$ ", then click the Platform tab in the Solver Task pane and change the Number of Optimizations to " 3 ". When I click Solve, Analytic Solver will solve 3 optimizations. In the first optimization, cell C13 will be set to 34 , in the second, 24 , and in the third, 14 .

Click the Output tab, then click the green arrow to solve the model. After the solving process is over, we can select the three different optimizations in the Optimization drop down menu (in the Tools section of the Analytic Solver ribbon), to see how the objective function changes according to the value set for this parameter.

Opt \#3

Opt \#1
Opt \#2
Opt \#3

In the first optimization, cell $\mathrm{C} 13=34$ and the resultant objective function value was $\$ 32,950$. In the second optimization, cell C13 $=24$ and the resultant objective function value was $\$ 31,150$ and in the third optimization cell $\mathrm{C} 13=$ 14 with an objective function value of 29,150.
Save the Excel file, then click Create App - Tableau - Managed/Embedded Model to create a new Tableau Extension.
Click back to Tableau and import the newly created Tableau Extension.
Immediately, the model solves and the results will be displayed on the Tableau canvas. To view each solution, click the down arrow within the newly added Multiple Optimization drop-down menu.

Simulation Example Model

Now let's create a Tableau extension using a simulation example. The process is exactly the same as when using an optimization model. Open the Business Forecast Example by clicking Help - Example Models - Monte Carlo Simulation Examples, click the Business Forecast hyperlink to open the file. To open a completed example, open the BusinessForecastPBI example that appears at the bottom of Simulation Models.

First, we will use a PsiDataSrc() function to generate data repositories for use in the Tableau Extension.
Click a blank cell, such as cell G24, then type: "=PsiDataSrc("market_src", "market", J17:L18, "parameters", I17:I18, "mktdemand", J16:L16)
where:
market_src - Is the name used to identify the text file that will be submitted to the RASON server.
market - Will be the name of the data repository in Tableau.
J17:L18 - Is the data range for "market".
parameters - Is the name of the $1^{\text {st }}$ index set for the data specified in the "data" argument, market.
I17:I18 - Is the Excel range where the data for "parameters" is located.
mktdemand - The name of the $2^{\text {nd }}$ index set for the data specified in the "data" argument.

J16:L16 - Is the Excel range where the data for "mktdemand" is located.
Type ")" to close the formula and then press the Enter key to enter the formula into the Excel cell.

Click a $2^{\text {nd }}$ blank cell, such as G25, then enter the following function.
=PsiDataSrc("price_src", "mktprice", J21:L21, "price", J20:L20)
where:
price_src - Is the name used to identify the text file that will be submitted to the RASON server.
mktprice - Is the name of the data repository in Tableau.
J21:L21 - Is the data range for "mktprice".
price - Is the name of the 2nd index set for the data specified in the Data argument, market.

J20:L20 - Is the Excel range where the data for "price" is located.
Two Psi Functions, PsiPercentiles and PsiData, must be added to the spreadsheet in order to draw the histogram in the Tableau Extension.
G27 = PsiPercentile(F20, 0.95)
$\mathrm{G} 28=$ PsiData(F20)
The PsiPercentile function returns the $95^{\text {th }}$ percentile for the uncertain function in cell F20. The PsiData function returns all trial values for cell F20.

For more information on these formulas, see the Analytic Solver Reference Guide.

Click Create App - Cloud Service - RASON Model to post the model to RASON Cloud Services.

Confirm the model name as BusinessForecast(Sim).

Then click Create App - Tableau - Managed Model to create a new Tableau Extension, Solver.trex.

Then save the Tableau Extension to a desired location.
Click back to Excel and open a new workbook to enter the following data into an Excel table. Rename the worksheet as "Data" and save the workbook as BusinessForecastData.xlsx. (You can open this completed file by clicking Help - Example Models - Monte Carlo Simulation Examples, scroll down and open the link.)

	A	B	C	D	E
1	parameters	- mktdemand	- market -	price	mktprice -
2	Volume	Slow	50,000	Minimum	4.50
3	Volume	OK	75,000	Most Likely	6.50
4	Volume	Hot	100,000	Maximum	8.50
5	Price	Slow	11	Minimum	4.50
6	Price	OK		Most Likely	6.50
7	Price	Hot	8	Maximum	8.50

Open Tableau, connect to Microsoft Excel, browse to the location of the BusinessForecastData.xlsx file, then click Open.

Click on the Sheet 1 tab, under Dimensions, drag "Mktdemand" to Columns and "Parameters" to Rows. Then, under Measures, drag "Market" to the table elements. Hover over sum(Market) , click the down arrow that appears to the right and select Dimension.

Rename Sheet 1 to Market and add a new worksheet. On Sheet 2, under Dimensions, drag "Price" to Columns. Under Measures, drag "Mktprice" to the table elements. Hover over sum(Mkitrice), click the down arrow that appears to the right and select Dimension.

Rename Sheet 2 to Price and create a new dashboard.

Drag both the Parameters and Price Sheets to the Tableau canvas. Drag the Extension icon to the canvas, browse to where the Solver.trex file was saved and click Open.

On the "Select data source for: parameters" dialog, select "Parameters" for both Sheet and Column to match the "parameters" dimension in the Excel sheet to the "Parameters" dimension in the Tableau Parameters sheet.
. Then click OK.

On the "Select data source for: mktdemand", select "Parameters" for Sheet and "Mktdemand" for Column to match the "mktdemand" dimension in the Excel sheet to the "Mktdemand" dimension in the Tableau Parameters sheet.
. Then click OK.

On the "Select data source for: market", select "Parameters" for Sheet and "Market" for Column to match the "market" dimension in the Excel sheet to the "Market" measure in the Tableau Parameters sheet.

On the "Select data source for: price", select "Price" for both Sheet and Column, then click OK to match the "price" dimension in the Excel sheet to the "Price" dimension in the Tableau Price sheet. .

On the "Select data source for: mktprice", select "Price" for Sheet and "Mktprice" for Column, then click OK to match the "mktprice" dimension in the Excel sheet to the "Mktprice" measure in the Tableau Price sheet.

Immediately, once the data repositories are filled with the appropriate data fields, a simulation will be run.

Market				Price		
Mktdemand				Price		
Parameters	Hot	ок	Slow	Maximum	Minimum	Most Likely
Price	8	10	11	8.500	4.500	6.500
Volume	100000	75000	50000			

Solver has completed the simulation.

Again, note that as long as your PsiDataSrc functions remain the same, the named model can be updated on the Rason Cloud Service and you will not need to create a new extension. However, if the PsiDataSrc() functions change, you will need to update both the Rason named model residing on the Rason Cloud Server and the Tableau Extension.

If your data changes, say your demand explodes, you can simply edit your data file.

	A	B	C	D	E
1	parameters -	mktdemand -	market -	price	mktprice -
2	volume	slow	100,000	minimum	4.50
3	volume	ok	150,000	most likely	6.50
4	volume	hot	200,000	maximum	8.50
5	price	slow	11	minimum	4.50
6	price	ok	10	most likely	6.50
7	price	hot	8	maximum	8.50
8					

Click back to Tableau and refresh the data source.

The Tableau Extension will automatically redraw using the new data.

Error Messages

If you've made an error in your PsiDataSrc() function or in your data file, your Tableau extension will display an error such as "Inconsistent Data source definition PSI could not parse Excel formulas" or "Invalid binding source definition PSI could not parse Excel formulas".

If your Tableau extension is displaying either of these errors or a different error, first, check the PsiDataSrc() function in your Excel model to make sure that you have not mixed up the order of your index sets. In addition, check your data to make sure that it is 1. Contained within an Excel table, 2. That the column headings match the index sets defined in PsiDataSrc() and 3. That your model parameters match the elements in your data table.
For more information on an error message displayed in your Tableau Extension, see the Frontline Solvers Reference Guide or contact Frontline Systems Support Team by emailing support@solver.com or by calling 888-831-0333.

Examples: Parameters and Sensitivity Analysis

Introduction

Analytic Solver	Risk Solver Plafform	Premium Solver Plafform

Analyt

 SolverThis chapter introduces the use of parameters, and functions for sensitivity analysis in Analytic Solver, with examples. In Version 11, the role of parameters - for optimization, simulation, and sensitivity analysis - was enhanced, and the sensitivity analysis functions were introduced. The use of parameters and sensitivity analysis has also been extended to Analytic Solver Cloud.

Sensitivity analysis is designed to help you explore a conventional Excel spreadsheet model, often before you define an optimization or simulation model. The goal of sensitivity analysis is to identify the key input parameters that have the greatest impact on results of interest in your model (such as Net Profit), and to see the effect of varying these key input parameters over a range, in reports and graphs. Analytic Solver helps you automatically identify sensitivity parameters, and automatically vary them to produce reports and graphs.

Parameters and Results

All Analytic Solver products support three kinds of parameters:

- A sensitivity parameter (PsiSenParam) is automatically varied when you perform a sensitivity analysis. You do this by selecting Sensitivity from the Reports or Charts galleries on the Ribbon.
- An optimization parameter (PsiOptParam) is automatically varied when you perform multiple optimizations. You do this by clicking the Optimize button on the Ribbon, or the green arrow in the Task Pane, with the Number of Optimizations set to a value greater than 1. (Not available in Analytic Solver Simulation.)
- A simulation parameter (PsiSimParam) is automatically varied when you perform multiple simulations. You do this by clicking the Simulate button on the Ribbon, or the green arrow in the Task Pane, with the Number of Simulations set to a value greater than 1. (Not available in Analytic Solver Optimization.)

Note: When entering PsiOptParam, PsiSenParam PsiSimParam manually (i.e. simply typing the function into an Excel cell) in Analytic Solver Cloud, the taskpane must be refreshed before performing a parameter analysis report.

Viewing Parameters in the Task Pane

All three types of parameters appear in the Task Pane Model outline. In the example on the next page, two sensitivity parameters at G11 and H17 have been defined by the user. Parameter G11 is selected, and its properties are shown in the lower part of the Task Pane. It is possible to change the type of a
parameter, by simply selecting from the dropdown list in the lower part of the Task Pane as shown: For example, to use G11 in a simulation model, automatically varied across multiple simulations, you would select Simulation from the dropdown list.

Defining a Parameter

You can manually define an input cell as a parameter by simply selecting the cell, choosing Parameters and Sensitivity, Optimization or Simulation from the Ribbon, and entering a lower and upper limit on values for the parameter, or a list of explicit values for the parameter. In the example on the next page, we are defining a sensitivity parameter.

You can also simply type a formula such as $=\operatorname{PsiSenParam}(1,9)$ in a cell, which has the same effect as the above steps. In both cases, the parameter appears in the Task Pane Model outline.

If you specify a lower and upper limit, the step size for successive values is determined when you perform a parameterized sensitivity analysis, or multiple parameterized optimizations or simulations. Analytic Solver will subdivide the range from the lower to the upper limit into equal-size intervals.

For example, for the above sensitivity parameter, you would select Reports or Charts - Sensitivity - Parameter Analysis and specify the number of points on the major axis. If you specified 18 points, the step size would be 0.5 .

Automatic Parameter Identification

Analytic Solver can automatically find the input cells with the greatest impact on any selected formula cell. You can then choose one or more of these input cells to serve as sensitivity (or optimization or simulation) parameters.

To do this, select any formula cell in an Excel model, and choose Parameters - Identify from the Ribbon.

Analytic Solver traces through all 'precedent' formulas to find input cells (leaves of the formula tree) on which the selected formula cell depends. It then varies each input cell independently, computing its impact on the selected formula cell. The input cells are ranked in descending order by (absolute) impact, and the highest-impact cells are displayed in the Tornado chart.
In the example below, we've clicked Help - Examples on the ribbon to open the StandardExamples.xlsx.

Click the Example 8 tab and set cells B17:G17 to 1 . (If these cells are all 0 , then no projects are selected and the Total NPV is always 0). To see which cells have the greatest impact on Total NPV, we simply select cell (I28) and choose Parameters - Identify from the Ribbon. After a moment, a Tornado chart like the one below appears.

The chart shows us, at a glance, that Total NPV is most sensitive to cell E13 which is a large positive cash flow in Year 6 for Opportunity 4. It is next most sensitive (in the opposite direction, decreasing when the parameter increases) to the interest rate in cell F4.

The right panel of the chart shows the lower value and upper value that were used for each input cell when computing the formula value. An ordinary cell containing a number is set to its current value $-n \%$ and its current value $+n \%$, where $n \%$ (initially 10%) is specified in the edit box in the lower right corner of the chart. If any input cell is already defined as a parameter, the lower and upper limit arguments of its PsiXxxParam() call are used instead.
By choosing the radio button corresponding to "Show Current Parameters", "Show Candidate Cells", or "Show both" at the top of the right panel, you can show either one or both types of input cells in the Tornado chart. By checking the box on the same row as the cell, you can define a candidate cell as a sensitivity parameter (or, if you change the selection in the dropdown list in the lower right corner of the chart, an optimization or simulation parameter). These definitions take effect when you click the Save icon at the upper left corner of the chart. For this example, we'll check the boxes on the same rows as cells E13 and F4; we'll also set F4's Lower value to $\mathbf{0 . 0 1}$ (1\%) and the Upper Value to $\mathbf{0 . 1 0}$ (10%).

Now, when you click Charts - Sensitivity Analysis - Parameter Analysis, you'll see both parameters appear under Parameters in the Sensitivity Report dialog. Continue reading to discover how to create a parameter report using Analytic Solver.

The simplest way to remove a parameter is to select the parameter cell on the worksheet and press the DEL key - which erases its cell formula - or type a number value that will overwrite the formula in the cell. The parameter will then disappear from the Task Pane.

Defining Results

When you perform a sensitivity analysis (which will automatically vary sensitivity parameters), or multiple optimizations or simulations (which will vary optimization or simulation parameters), Analytic Solver will keep track of one or more result cell values, corresponding to each parameter value.

- For optimizations, Analytic Solver tracks the final objective and decision variable values found by the Solver; you can also track a constraint value by setting its Monitor property in the Task Pane.
- For simulations, Analytic Solver tracks the values of all uncertain functions (simulation outputs, referenced in PsiOutput() or PSI Statistics function calls).
- For sensitivity analysis, Analytic Solver tracks results from the cell currently selected at the time you perform the analysis, and any other results you define.

To define a sensitivity result cell in Analytic Solver Desktop, select the cell (such as A3 below - always a formula cell) on the worksheet, and choose Parameters - Monitor Value from the Ribbon. A small "balloon" will appear, containing a function call such as $=\operatorname{PsiSenValue(A3).~You~can~move~the~mouse~}$ to "drag and drop" this formula into an empty cell. When you do this, cell A3 is
defined as a sensitivity result cell, and appears in the Task Pane Model outline under Sensitivity Results.

To define a sensitivity result cell in Analytic Solver Cloud, select the cell (such as A3 below) on the worksheet, and choose Parameters - Monitor Value from the Ribbon. A small dialog will appear, containing the location of the selected cell, a second Target field and three radio buttons. Select the type of parameter you would like to add, Sensitivity, Optimization or Simulation, then enter an empty cell for the Target field, such as A4. Click Save to define cell A3 as a sensitivity result cell which will appear in the Task Pane Model outline under Sensitivity Results.

Sensitivity Analysis Reports and Charts

The Parameters - Identify step just described performs a simple kind of sensitivity analysis; in some situations, this may be all that you need. But it is often useful to document the sensitivity of some computed result to systematic variations in the values of one or more parameters. Analytic Solver can produce both reports and charts to document these results.

How Parameters are Varied

In reports and charts, Analytic Solver can automatically vary your parameters' values in two ways:

1. Varying all parameters simultaneously, from their respective lower to upper limits, for the number of steps that you specify.
2. Varying two parameters independently, from their lower to upper limits, computing a result for all combinations of the two parameters.
You select the second choice by checking the box "Vary Parameters Independently" at the bottom of the dialog shown on the next page. If you do this, you must select exactly one result cell, and exactly two parameter cells in
the dialog below. A report will appear as a two dimensional table, and a chart will appear in 3-D with the two parameters on the axes.

If you don't check this box - meaning that all parameters will be varied simultaneously - you can select one or more parameter cells, and one or more result cells in the dialog below. A report will contain a column for each parameter and each result, and a chart will contain a plot of each result cell.

Creating Sensitivity Reports

To create a sensitivity analysis report, select a formula cell on the worksheet (whose value should be computed in the report say, cell I28 (Total_NPV)), and choose Reports - Sensitivity - Parameter Analysis from the Ribbon. A dialog like the one shown below will appear.

Use the arrow buttons in the top section to select one or more result cells (exactly one if you check the box "Vary Parameters Independently"). Use the arrow buttons in the bottom section to select one or more sensitivity parameter cells (exactly two if you check the box "Vary Parameters Independently"). Then click OK to produce the report, as a new worksheet in into your Excel workbook, just to the left of the active worksheet. An example is shown below.

	A	B	C	D	E	F	G	H	1	J	K
1	Total NPV: \$E\$13 by \$F\$4										
2											
3											
4	\$E\$13	\$F\$4									
5		1\%	2\%	3\%	4\%	5\%	6\%	7\%	8\%	9\%	10\%
6	\$67.50	\$55.56	\$47.19	\$39.43	\$32.25	\$25.59	\$19.41	\$13.69	\$8.38	\$3.46	(\$1.11)
7	\$69.17	\$57.13	\$48.67	\$40.83	\$33.56	\$26.83	\$20.59	\$14.80	\$9.43	\$4.45	(\$0.17)
8	\$70.83	\$58.70	\$50.15	\$42.22	\$34.88	\$28.07	\$21.76	\$15.91	\$10.48	\$5.45	\$0.78
9	\$72.50	\$60.27	\$51.63	\$43.62	\$36.20	\$29.32	\$22.94	\$17.02	\$11.53	\$6.44	\$1.72
10	\$74.17	\$61.84	\$53.11	\$45.01	\$37.51	\$30.56	\$24.11	\$18.13	\$12.58	$\$ 7.43$	\$2.66
11	\$75.83	\$63.41	\$54.59	\$46.41	\$38.83	\$31.80	\$25.29	\$19.24	\$13.63	\$8.43	\$3.60
12	\$77.50	\$64.98	\$56.07	\$47.81	\$40.15	\$33.05	\$26.46	\$20.35	\$14.68	\$9.42	\$4.54
13	\$79.17	\$66.55	\$57.55	\$49.20	\$41.47	\$34.29	\$27.64	\$21.46	\$15.73	\$10.41	\$5.48
14	\$80.83	\$68.12	\$59.03	\$50.60	\$42.78	\$35.53	\$28.81	\$22.57	\$16.78	\$11.41	\$6.42
15	\$82.50	\$69.69	\$60.51	\$51.99	\$44.10	\$36.78	\$29.99	\$23.68	\$17.83	\$12.40	\$7.36

Creating Sensitivity Charts

To create a sensitivity analysis chart, select a formula cell on the worksheet (whose value should be computed in the chart), and choose Charts - Sensitivity - Parameter Analysis from the Ribbon. A dialog like the one on the previous page will appear. Follow the same steps as for sensitivity analysis reports, and click OK. A chart like the one below will appear:

You can use icons on the toolbar at the top of the chart to resize and rotate the chart, print the chart, or copy it to the Windows Clipboard (where you can paste it into other applications).

Optimization and Simulation Reports and Charts

Reports and charts for multiple parameterized optimizations and simulations work in much the same way as the reports and charts for sensitivity analysis shown in the previous section. But where for sensitivity analysis, Analytic Solver simply performs a worksheet recalculation, for these reports and charts, Analytic Solver performs a complete optimization or simulation for each set of parameter values.

To produce these reports and charts, select Reports or Charts - Multiple Optimizations from the Ribbon. For multiple parameterized simulations, select Reports or Charts - Multiple Simulations from the Ribbon.

When Optimizations and Simulations are Run

As shown in the earlier Examples chapters, optimizations are run when you click the Optimize button on the Ribbon, or the green arrow in the Task Pane, and simulations are run when you click the Simulate button on the Ribbon, or (assuming there's no optimization model) when you click the green arrow in the Task Pane. When you select Reports and Charts of Multiple Optimizations or Multiple Simulations other than Parameter Analysis, the results cached in memory from the last optimization or simulation run are used to create the reports or charts.
However, when you select Reports and Charts of Multiple Optimizations or Multiple Simulations with Parameter Analysis, which gives you greater control over how parameters are varied, Analytic Solver cannot use the results cached in memory. Instead, a new set of optimizations or simulations is run, varying the values of the parameters as you've specified; you can for example vary two parameters independently, yielding all combinations of these parameter values. The number of optimizations or simulations to run is independent of the settings you use for Number of Optimizations or Number of Simulations in the Task Pane Platform tab; it is the product of the number of Major Axis Points and Minor Axis Points you select in the Reports or Charts selection dialog. With the default value of 10 points each, 100 optimizations or simulations are required. This can take some time, especially for optimizations; a progress dialog is displayed during this process.

Examples: Decision Trees and Discriminant Analysis

Introduction

This chapter introduces decision trees in Analytic Solver. Such trees are a useful graphical and computational aid for problems that involve sequential decisions and events, where there are a small number of decision alternatives at each step, and a small number of alternative outcomes for each event.

In the example below, we've clicked Help - Examples on the ribbon, clicked Decision Tree Examples on the Overview Tab, and clicked on
TreeExample.xls, which is based on an example by Prof. Mike Middleton.

In this example, a firm must decide (1) whether to prepare a proposal for a contract, and (2) if the contract is awarded, what method to use to satisfy the contract. The first number shown below each branch (horizontal line) is the amount the firm pays out (if negative) or receives (if positive) when it follows that branch. For example, in the path that ends at the terminal node at cell S 18 , the firm (1) pays $\$ 50,000$ to prepare the proposal, (2) receives $\$ 250,000$ up front when awarded the contract, (3) spends $\$ 50,000$ to try the electronic method, and since that method fails, (4) spends $\$ 120,000$ on the mechanical method. The net result is a positive cash flow of $\$ 30,000$ shown at cell T18.
A decision tree is "solved" by Excel fomulas calculating each of the numbers you see on the worksheet. Terminal values such as T18 sum all the partial cash flows along the path leading to that terminal node. The tree is then rolled back by computing expected values (or certainty equivalents) at event nodes, and by maximizing (or minimizing) the alternative values at decision nodes. The rollback values appear below and just to the left of each node, showing the value of the subtree rooted at that node. The numbers "inside the boxes" at decision nodes show which alternative is optimal for that decision. In the example, the 1 in the decision node at C31 indicates that it is optimal to prepare the proposal, and the 2 in the decision node at K16 indicates the firm should try the electronic
method because that alternative leads to a higher expected value $(\$ 90,000)$ than the mechanical method $(\$ 80,000)$.

Since all the computations are performed with Excel worksheet formulas, a decision tree is a 'regular' Excel worksheet model, where you can ask what-if, perform sensitivity analysis, or create simulation or optimization models if desired. For example, the formula at cell F25, for the event where we are or are not awarded the contract, is $=\mathrm{IF}(\mathrm{ABS}(1-$ SUM (\$|\$14,\$1\$31))<=0.00001,SUM(\$1\$14*\$J\$17,\$1\$31*\$J\$34),NA()) - an expected value calculation - and the formula at B32, for the decision whether to prepare a proposal, is simply $=\mathrm{MAX}(\mathrm{F} 25, \mathrm{~F} 39)$, since we are maximizing EV .

The Task Pane Platform tab includes a Decision Tree group of options, where you can choose to maximize or minimize values at decision nodes, and to compute expected values (which are risk neutral) or certainty equivalents (which reflect risk aversion) at each node. If you choose certainty equivalents, you can specify the parameters of an exponential utility function.

Creating Decision Trees

A decision tree consists of nodes and branches. Nodes may be either decision nodes, event nodes, or terminal nodes; branches represent alternative choices at decision nodes, and alternative outcomes at event nodes.

You create and edit a decision tree with the Decision Tree choice on the Ribbon.

Creating Trees in Analytic Solver Desktop

In Analytic Solver Desktop, click the Decision Tree icon on the Ribbon to open the menu choices.

You can also create and edit a decision tree in Analytic Solver Desktop in the Task Pane Model tab, using the Add (+) and Remove (X) icons and the properties area at the bottom of the Task Pane; but you can highlight the best or worst decision strategy (see below) only from the Ribbon.

Create Trees in Analytic Solver Cloud

In Analytic Solver Cloud, click the Decision Tree icon on the Ribbon to open the Decision Tree dialog. You can create and edit decision trees in the Cloud app using menu items at the top of the dialog (Add Node, Change Node, and Delete Node) and also in the fields on the right under Decision Tree. To
highlight the best and worst decision strategies, click Highlight Best or Highlight Works, respectively.

Creating and Editing Nodes

In Analytic Solver Desktop

Selecting Node in the dropdown presents choices for working with nodes:

The Add Node and Change Node options display the dialog shown on the next page. To change a node, you must first select it on the Excel worksheet - you may select either the node graphic or one of the immediately adjacent cells.

The Copy Node and Paste Node choices can be used to copy a subtree (rooted at the selected node) and paste the copy at another position in the decision tree; this is very useful when there are identical choices at later stages in the tree.

In Analytic Solver Cloud

In Analytic Solver Cloud, click Add Node to open the Add Node dialog.

To change a node, you must first select the desired node on the Decision Tree dialog. In the example below, the Prepare proposal node has been selected in the dialog before clicking Change Node on the top left.

Creating and Editing Branches

In Analytic Solver Desktop

Selecting Branch in the dropdown presents choices for working with branches:

The Add Branch and Change Branch options display the Decision Tree dialog shown below. To change a branch, you must first select it on the Excel worksheet - you may select either the branch graphic or one of the immediately adjacent cells. Note that Add/Change Node and Add/Change Branch options display the same Decision Tree dialog: Branches are associated with the node to their left, and you can edit properties of the node and its branches in this dialog.

In this dialog, you can change the type of the node, the name of the node, and you can add, edit, reorder, or remove branches for this node. Each branch for a decision node has a value (the cost or payoff of taking that decision); each branch for an event node has a value and a probability (the cost or payoff, and the probability of occurrence, of that outcome).

In Analytic Solver Cloud

In Analytic Solver Cloud, clicking Add NodelChange Node also allows you to addlchange a branch using the Add Branch and Change Branch options. To change a branch, you must first select it on the Excel worksheet. Branches are associated with the node to their left, and you can edit properties of the node and its branches here.

In this dialog, as in Analytic Solver Desktop, you can change the type of the node, the name of the node, and you can add, edit, reorder, or remove branches for this node. Each branch for a decision node has a value (the cost or payoff of taking that decision); each branch for an event node has a value and a
probability (the cost or payoff, and the probability of occurrence, of that outcome).

Highlighting a Decision Strategy

A decision strategy is a complete sequence of decisions that you can make through the decision tree. You can highlight the best or worst decision strategy by selecting Highlight in the Decision Tree dropdown list in Analytic Solver Desktop or by clicking Highlight Best in the Decision Tree dialog in Analytic Solver Cloud, as shown on the next page. If you are maximizing, the best strategy maximizes EV or CE, and the worst strategy minimizes EV or CE. If you are minimizing, the opposite applies.
Analytic Solver Desktop

The next page shows the example decision tree shown earlier, with Excel worksheet gridlines turned off, and the best decision strategy highlighted. Analytic Solver Desktop

Decision Trees in the Task Pane

Model Tab in Analytic Solver Desktop

In Analytic Solver Desktop, decision trees may also be viewed and edited directly in the Task Pane Model tab, and choices for tree evaluation (see "Platform tab" below) can only be made in the Task Pane. When a node or branch is selected in the Task Pane outline, properties of that node or branch may be viewed and edited in the lower portion of the Task Pane, as shown on the next page. You can also double-click a node in the Model outline to display
the same Decision Tree dialog that appears when you add or change a node from the Ribbon.

In this example, we've selected the decision node named Method, represented by the graphic symbol at cell K16 on the worksheet. The optimal choice at this node (given that we're maximizing expected value or EV) is branch \#2, and the rollback value of the subtree rooted at this node is 90,000 .

Note the small Copy icon in the upper right corner of the Decision Tree Node properties pane: You can click this icon to copy a subtree rooted at this node. When you've selected a Terminal node in the Model outline, you'll notice a small Paste icon in this same area: You can click this icon to paste a subtree at the position of the Terminal node.

Model Tab in Analytic Solver Cloud

In Analytic Solver Cloud, decision trees may only be viewed and edited directly in the Decision Trees dialog, but choices for tree evaluation can be made either in the Decision Tree dialog or in the Task Pane on the Platform tab (see "Platform tab" below).

Tree Options	
Decision Tree	
Certainty Equiv...	Expected Values
Decision Node E...	Maximize
Risk Tolerance	999999999999
Scalar A	1
Scalar B	1
Current Node	
Decision Tree	Node
Name	Method
Node Type	Decision Node
Optimal Value	2
Rollback Value	90000
Current Branch	

Platform Tab

By default, rollback values for a decision tree are computed assuming that you want to Maximize Expected Value or EV. You can change this by setting options in the Decision Tree section of the Task Pane Platform tab, as shown on the next page.
You can select Maximize or Minimize in the dropdown list for the Decision Node EV/CE option. For the Certainty Equivalents option, you can choose either Expected Value or Exponential Utility Function. The remaining three options come into play only when you choose Exponential Utility Function they set parameters of this function.

For the Maximize option with exponential utility, the rollback formulas are $\mathrm{U}=$ $\mathrm{A}-\mathrm{B} * \operatorname{EXP}(\mathrm{X} / \mathrm{RT})$ and $\mathrm{CE}=-\mathrm{LN}((\mathrm{A}-\mathrm{EU}) / \mathrm{B}) * \mathrm{RT}$, where X and EU are cell references. For the Minimize option with exponential utility, the formulas are U $=\mathrm{A}-\mathrm{B} * \operatorname{EXP}(\mathrm{X} / \mathrm{RT})$ and $\mathrm{CE}=\mathrm{LN}((\mathrm{A}-\mathrm{EU}) / \mathrm{B}) * \mathrm{RT}$. RT is the value you specify for the Risk Tolerance option on the Platform tab, and A and B are the values of the Scalar A and Scalar B options on the Platform tab.

When you use an Exponential Utility Function, the utility ($\mathrm{U}=$) and certainty equivalent ($\mathrm{CE}=$) formulas are computed in extra cells on the worksheet, as shown on the next page. For example, B33 computes the utility of the decision
at B32; B32 contains $=\mathrm{MAX}(\mathrm{F} 25, \mathrm{~F} 39)$ as before, to choose the decision with the maximum certainty equivalent value; F 25 contains $=-\mathrm{LN}((\mathrm{A}-\$ \mathrm{~F} \$ 26) / \mathrm{B}) * \mathrm{RT}$.

Multiple Discriminant Analysis

Discriminant analysis is a statistical technique for analyzing a data set, consisting of cases or observations of one or more variables, and classifying the cases into different groups. MDA is sometimes called discriminant factor analysis or canonical discriminant analysis. It has many applications in financial services and consumer marketing, among other fields.

Analytic Solver Data Mining and the Data Mining Cloud app include a powerful version of multiple discriminant analysis on the Data Mining tab on the Ribbon, through the menu option Classify - Discriminant Analysis, and described in depth in the Analytic Solver Data Mining User Guide.

But since a discriminant analysis facility historically was included with Risk Solver Platform (a predecessor to Analytic Solver), before Frontline acquired and integrated the XLMiner software (known today as Analytic Solver Data Mining), this facility is still available on the Analytic Solver Desktop tab, through the menu option Reports - Discriminant Analysis - Discriminant Analysis, and is documented here. Note: Discriminant Analysis is not supported in Analytic Solver Cloud or AnalyticSolver.com.

Discriminant Analysis Example

In the example described below, a winery maintains a dataset which includes 13 variables describing various properties of three different types of wines produced at their vineyard. The three different types of wines produced are classified as Type1, Type 2 and Type 3. The characteristics of each wine type include Alcohol content, Malic Acid content, Ash content, Ash Alkalinity content, Magnesium content, Total Phenols, Flavonoid content, etc. There are 59 observations for Type 1, 71 observations for Type 2, and 48 observations for

Type 3. The vineyard wants to develop a classification rule to help them screen new wine varieties into the three different wine types.
In the picture on the next page, we've selected Reports - Discriminant Analysis - Discriminant Analysis to display the Discriminant Analysis dialog.

For the Grouping Variable Range, we've selected cells B13:B190 which contain the categorical variables (1,2 or 3) representing the three different types of wine and cells C13:O190 containing the remaining corresponding variable values for the Predictor Variable Range. For the Classification Sample, we've selected cells C204:O209 on the same worksheet, containing the values for the 13 different characteristic variables for six new varieties of wine. We are using the default choices for the Classification Method (Mahalanobis Distance), Prior Probabilities (Empirical), and Covariance Matrices (Unpooled Estimates).

Clicking OK in this dialog causes a new Discriminant Analysis report to be inserted into the workbook, as shown on the next page. The report shows how MDA determines 'centroids' for each of the three groups in the space of the predictor variables, and computes 'Mahalanobis distances' for each example of test scores from the group centroids.
At the top of the report, under Group Centroids, the centroids for the three groups have been calculated for each variable. X1 corresponds to the Alcohol variable, X2 corresponds to the Malic_Acid variable, X3 corresponds to the Ash variable, and so on.

Just down from Group Centroids is the Group Frequency table. This table lists the relative frequency of each wine by type (1, 2, or 3). The relative frequency is found by dividing the number of observations of each wine type by the total number of wines. For example, the Relative Frequency of Group 1 is 33.15% or
the number of observations of type (50) divided by the total number of observations (178).

The values listed in the Training Sample Classification Table for Group 1, Group 2, and Group 3 are the distance calculations from the individual observations to the group centroid or "center". The minimum value of the three groups determines the group assignment.

The 'Test Sample Classification' at the bottom of the report shows the predictions obtained by MDA for how the six new wine varieties will be typed. All have been assigned to Type 2.

Just above the 'Test Sample Classification' is a table, often called a 'confusion matrix,' that evaluates how well the classification rule would have handled the 178 historical cases. (The types of these 178 cases are all "known".)
The matrix shows that all 59 of the Group 1 observations would have been assigned to Group 1 correctly. All 71 of the Group 2 observations would have been assigned to Group 2 and all 48 of the Group three assignments would have been assigned to Group 3. The Totals in row 211 show that 178 out of 178 , or 100% of the cases w correctly classified.

187	163	151.5108002	47.86908863	10.65787146	3	3
188	164	130.7239025	28.02261494	4.853930741	3	3
189	165	298.5047588	127.9861802	9.813395417	3	3
190	166	226.1721237	71.00478082	13.11279348	3	3
191	167	277.4442442	178.5166146	14.08432047	3	3
192	168	305.3077705	156.8234863	12.80557438	3	3
193	169	215.1320784	111.3485718	10.72208931	3	3
194	170	202.3542767	128.6277453	13.31861083	3	3
195	171	160.1776543	35.99519886	11.79685799	3	3
196	172	369.4432504	143.9556536	15.13532178	3	
197	173	323.7393973	145.474205	9.61647271	3	3
198	174	248.613381	104.8116238	9.204556732	3	3
199	175	183.9180917	81.23463901	4.245206505	3	3
200	176	281.9069341	156.7250782	13.87979825	3	3
201	177	270.0440022	122.8905606	11.78532656	3	3
202	178	328.6894574	164.8576027	10.08866347	3	3
203						
204						
205	Classification Matrix					
206						
207	Actual / Predicted	Group1	Group2	Group3	Total	\% correct
208	Group1	59	0	0	59	100.00\%
209	Group2	0	71	0	71	100.00\%
210	Group3	0	0	48	48	100.00\%
211	Total	59	71	48	178	100.00\%
212						
213						
214	Test Sample Classific	cation				
215						
216		Mahalanobis Distanc				
217	Observation	Group1	Group2	Group3	Predicted Group	
218	1	145.8261836	39.05392542	59.05212675	2	
219	2	117.5568625	16.2641242	32.35067511	2	
220	3	142.5374781	94.71085006	352.3338449	2	
221	4	116.1107413	89.81575438	874.5137168	2	
222	5	67.44314748	46.51901833	540.0325431	2	
223	6	171.5445072	59.64767007	150.6589595	2	

Getting Results: Optimization

Introduction

This chapter explains how to obtain and interpret results from optimization in Analytic Solver Comprehensive and its subset optimization products: Analytic Solver Optimization, Analytic Solver Upgrade and Analytic Solver Basic when using either Analytic Solver Desktop or Cloud. We'll also discuss what can go wrong, and what to do about it, and also how to get more than a single optimal solution from your model.
Analytic Solver Optimization has many powerful optimization algorithms, and will fully exploit the power of your PC. But the model that you create may be relatively easy to optimize (if you use linear functions like SUM) or extremely difficult to optimize (if you use non-convex and non-smooth functions like LOOKUP). The results you get depend on the model you create.

In the following sections, we'll focus on immediate actions you can take when you get an unexpected result - but if you read the chapter "Mastering Conventional Optimization Concepts," you'll learn more about optimization models and solution methods, and better understand why the unexpected result appeared, and how to design your model to get the solutions you want.

What Can Go Wrong, and What to Do About It

When you click the Optimize button on the Ribbon, or the green arrow on the Task Pane to solve, you'll normally get one of these outcomes:

1. A solution that makes sense to you. This is normally accompanied by a Solver Result message in green at the bottom of the Task Pane. You can proceed to "When Things Go Right: Getting Further Results."
2. A Solver Result error message that you understand and can correct, in red at the bottom of the Task Pane. You can take corrective action.
3. A Solver Result error message that you don't understand, in red at the bottom of the Task Pane. You should read the solution log in the Output tab, click the error message and read Help about the message.
4. A solution that you don't understand, or that seems wrong. Again before doing anything else, you should read the solution log in the Output tab, click the error message to display Help, run available reports as described below, and read the section below "When the Solution Seems Wrong."
5. Solving runs for a very long time, and you don't get a solution or a Solver Result message until you press ESC or click Pause/Stop. You should read the section below "When Solving Takes a Long Time."

In rare cases, you might find Excel shutting down or "locking up" (so nothing happens when you click Pause on the Solver Task Pane). In this case please contact Frontline Systems Technical Support at (775) 831-0300 x4 or support@solver.com. Some Solver Result error messages ask you to contact Technical Support. If you can send us your model, this will be very helpful.

But experience shows that 99% of all technical support cases involve "pilot error" by the user, and that 90% of all such cases could be easily resolved by reading online Help or the User Guide. So we hope you'll keep reading, and that you'll take these steps before calling technical support!

Review Messages in the Output Tab

If using Analytic Solver Desktop, your first step should be to review the messages in the solution log in the Task Pane Output tab. Below is an example of the Output tab at the solution of EXAMPLE5 in StandardExamples.xls (described more fully in the chapter "Examples: Conventional Optimization"):

If you click the Copy 国远 icon, the contents of the solution log will be copied to the Windows Clipboard, where you can paste it into Microsoft Word, NotePad, or an email message to Frontline Systems Technical Support. Below is the complete solution log from the above example:
---- Start Solve ----
Using: Full Reparse.
Parsing started...
No uncertain input cells.
Diagnosis started...
Model diagnosed as "NSP".
Attempting Transformation.
Using: Full Reparse.
Parsing started...
Diagnosis started...

Model transformed into an LP. Transformation will be used.
User engine selection: Standard LP/Quadratic
Model: [OptimizationExamples.xls]EXAMPLE5
Using: Psi Interpreter
Parse time: 0.22 Seconds.

Engine: Standard LP/Quadratic
Setup time: 0.00 Seconds.
Engine Solve time: 0.20 Seconds.

Solver found a solution. All constraints and optimality conditions are satisfied. Solve time: 0.62 Seconds.

This was a successful solution - but in cases where you have a Solver Result error message that you don't understand, or a solution that you don't understand, the solution \log can be quite helpful.
Note: Information related to the solving process in Analytic Solver Cloud is not available during parsing of the model. As a result, feedback is only available once the Solver Engine starts to solve the model.

More Detail in the Solution Log

You can obtain more detailed output in the solution log by setting the Task Pane Platform tab General group Log Level option to Verbose before you solve:

Below is a portion of the solution log (from the LP/Quadratic Solver) for the EXAMPLE5 model:

Integer solution of 3100 found by Feasibility Pump after 0 iterations and 0 nodes (0.01 seconds)
After 0 nodes, 1 on tree, 3100 best solution, best possible 2355.01 (0.18 seconds) After 1 nodes, 2 on tree, 3100 best solution, best possible 2355.01 (0.18 seconds) Integer solution of 2630 found by Unknown after 285 iterations and 2 nodes (0.19 seconds) After 2 nodes, 2 on tree, 2630 best solution, best possible 2361.69 (0.19 seconds)
Integer solution of 2400 found after 294 iterations and 3 nodes (0.20 seconds)
After 3 nodes, 1 on tree, 2400 best solution, best possible 2361.69 (0.20 seconds)
Engine Solve time: 0.20 Seconds.
If you are having problems finding the solution you want or expect, this detailed log can sometimes be helpful.
Note: This functionality is not supported in Analytic Solver Cloud.

Click the Solver Result Message for Help

The Solver Result message is always underlined - it is a hyperlink to Help. If you aren't sure that you fully understand it, click the link to open online Help to a detailed discussion of the message.
Below is an example of Help that appears in Analytic Solver Desktop when you solve EXAMPLE3 in StandardExamples.xls, and click on the Solver Result
error message in red, "The linearity conditions required by this Solver engine are not satisfied." Notice the two hyperlinks in the Help text, to Functions of the Variables and the Linearity Report. If you click the latter link, the Help text below appears.

Below is an example of Help that appears in Analytic Solver Cloud when you solve the same example and then click the red hyperlink, "The linearity conditions required by this Solver engine are not satisfied."


```
FrontlineSolvers
mayst Toals }~\mathrm{ Develper Tocls }~\mathrm{ Example
7. THE LINEARITY CONDITIONS REQUIRED BY THIS SOLVER ENGINE ARE NOT SATISFIED.
In the standard Excol Sdver, this mossage is wortdod 'The conditions for
```



```
youve selected the LPiQuadratic Solver and the Solver's tests determine that the constraints are not linear functions of the varabies or the
```



``` determine that the constraints or the objijective are not linear or convex quadraic functions of the variables. To understand dxactly what is mea y a linear or quararaic function, read the section "Quadratic Furctions" in the crapter "Mastering Convertional OPtimizain Conens."
Fiidd-installable Solver engines can aso display this mosssge. If youvve stected the Laryo-Scale LPPiPP Solver or the XPRESS Sower Engine. fis message appears it the constraints are not irear tunctions of the variables or the objective is not a linear or corvex quadratic tunction of the arabes. II you've selecided the MOSEK SOL. r convex quadratic funcions of the variables.
```



```
6. Solver stopped at user's request.
```

Given our experience that 90% of technical support cases could be easily resolved by reading online Help or the User Guide, you can save yourself, as well as Frontline Systems, time if you do read online Help first.

Choose Available Optimization Reports

The Help above suggests that we select the Linearity Report when we receive this Solver Result error message. As a general rule, it's good idea to examine the available reports and produce the reports that may help you understand what's wrong with your model. Just select Reports - Optimization Reports on the Ribbon - the reports in the gallery are updated each time you solve.

- The Linearity Report and the Structure Report can help when you encounter "The linearity conditions required by this Solver engine are not satisfied."
- The Feasibility Report and Feasibility-Bounds Report can help when you encounter "Solver could not find a feasible solution."
- The Scaling Report can help when you encounter either of these messages, or other unexpected messages or solution values. See the section below "Problems with Poorly Scaled Models."

See the section "An 'Accidentally' Nonlinear Model" in the chapter "Examples: Conventional Optimization" to see how the Linearity Report, and the Structure Report produced by the PSI Interpreter can help us pinpoint the nonlinear formulas in this model.

When Solving Takes a Long Time

When your model takes a long time to solve, the Task Pane Output tab can be helpful during the solution process - at a minimum, to reassure you that the

Solver is still making progress, and has not "hung up." If it is not already visible when you first start solving in Analytic Solver Desktop, the Output tab will appear automatically after a few seconds of solution time, as long as the Task Pane itself is visible.

The Output tab shows the objective of the best solution found so far, and for problems with integer constraints, the Best Integer Objective ("incumbent"), the Best Possible Objective ("best bound"), and the Integer Gap or percentage difference between these two objectives.

In Analytic Solver Cloud, the Task Pane Output tab will display a moving task pane to indicate the status of the model during the solution process.

Running Chart of the Objective

The bottom part of the Output tab shows a running chart of the objective of the best solution found so far. On the next page is an example of the Output tab on a problem called Ads.xlsx that takes about 1 minutes to solve, with the Evolutionary Solver, on a modern 8 - core PC:

Interrupting the Solution Process

You can interrupt the solution process at any time, by pressing the ESC key in Analytic Solver Desktop, or by clicking the button in either Desktop or Cloud, in the Task Pane Output tab. If your model is very large, you might have to hold down the ESC key for a second or two. Since the input focus may not be on the Task Pane when you click with the mouse, you might have to click the $\|$ button twice. A dialog like the one below will appear:

Click Continue if you want to continue solving; click Stop to cause the Solver to stop the solution process (this may take a few seconds) and display the message "Solver stopped at user's request." Clicking Restart may be useful with the Evolutionary Solver - see the Frontline Solvers Reference Guide.

Reasons Why Solving Takes a Long Time

There are several reasons why solving might take a long time:

1. Most often, you've used Excel formulas or functions that make your model non-smooth or non-convex, and much more difficult to solve. You might gain a lot from consulting assistance, or by reading the chapter "Mastering Conventional Optimization Concepts."
2. If model diagnosis or problem setup is slow (see timing messages in the Task Pane Output tab), you might be using array formulas, LOOKUP functions with large ranges as arguments, or long "chains" of formulas where each formula depends on an earlier formula.
3. You might be using a Solver Engine, or Engine option settings, that aren't appropriate for your problem. You can check the box "Automatically Select Engine" on the Task Pane Engine tab. Click Engine options to display Help on each option. You can gain further insight by reading "Optimization Problems and Solution Methods" in the chapter "Mastering Conventional Optimization Concepts."
4. Your model might be well formulated, but very large, or it might require non-smooth functions, or many integer variables. A more powerful plug-in Solver Engine may help considerably, and a faster processor, multi-core processor, or more memory can often help.

Adjusting Automatic Mode Options to Gain Speed

Be sure to read "Automatic Mode and Solution Time" in the chapter "Analytic Solver Overview." If you're using the Automatic setting (the default for new models) for any of the seven options described in this section, you can save time by pre-setting these options to the same values chosen automatically.

Model Design for Maximum Optimization Speed

Paying attention to your Excel worksheet layout and design, and avoiding certain practices, will help you get the most from the PSI Interpreter. Below is a brief list of Do's and Don'ts that will help you realize the best possible speed:

- Do build worksheets starting from the "upper left corner." Don't place cells or formulas at extreme row and column addresses all over the worksheet.
- Do build the model on a small number of worksheets. Don't include references on these worksheets to other worksheets that aren't required for the simulation model.
- Do use numeric and logical formulas and functions. Don't create string results in the middle of numeric calculations (see example below).
- Do use built-in Excel functions (including Analysis ToolPak functions) freely. Don't use third-party or user-written functions unless truly needed. Such functions must not have "side-effects" other than the value returned.
- Do use operators like $+-* / \wedge$ and functions like SUM, AVERAGE, MAX, MIN, AND, OR, NOT, IF, CHOOSE. Don't use INDIRECT, OFFSET, or TEXT, SEARCH, REPLACE, FIXED, DOLLAR, or ROMAN.
- If possible, Don't use array formulas, LOOKUP functions with large ranges as arguments, or long "chains" of formulas where each formula depends on an earlier formula (and hence on all earlier formulas). Each of these things can slow down analysis of your model considerably (by 10x in some cases).
A common practice that slows down the PSI Interpreter, and is easy to avoid, is illustrated by the following:

A1: =IF(B1>100,"Yes","No") and later A10: =IF(A1="Yes",A2,50)
You don't need "Yes" and "No" when Excel provides built-in values TRUE and FALSE. You could write $=\operatorname{IF}(\mathrm{B} 1>100$,TRUE,FALSE $)$, but this is simpler:
$\mathrm{A} 1:=\mathrm{B} 1>100$ and later $\mathrm{A} 10:=\operatorname{IF}(\mathrm{A} 1, \mathrm{~A} 2,50)$
The formula $=\mathrm{B} 1>100$ evaluates to either TRUE or FALSE. A1 holds this value and you can test it later in another formula.

When the Solution Seems Wrong

When the solution on the worksheet seems wrong, before doing anything else, you should read the solution \log in the Output tab, click the error message to display Help, and run available reports as described above. We emphasize this, because very often when we are contacted in technical support, the user has not taken these basic steps.

Although software bugs are always possible, consider carefully the possibility that the solution found by the Solver is correct for the model you've defined, and that your expectation is wrong. This may mean that what your model actually says is different from what you intended. In the majority of cases we see in technical support, the user has an error in a formula or in the expression of a constraint that leads to the unexpected solution.

Problems with Poorly Scaled Models

Many unexpected Solver Result messages are due to a poorly scaled model. A poorly scaled model is one that computes values of the objective, constraints, or intermediate results that differ by several orders of magnitude. A classic example is a financial model that computes a dollar amount in millions or billions and a return or risk measure in fractions of a percent. Because of the finite precision of computer arithmetic, when these values of very different magnitudes (or others derived from them) are added, subtracted, or compared in the user's model or in the Solver's own calculations - the result will be accurate to only a few significant digits. After many such steps, the Solver may detect or suffer from "numerical instability."

The effects of poor scaling in a large, complex optimization model can be among the most difficult problems to identify and resolve. It can cause Solver engines to return messages such as "Solver could not find a feasible solution," "Solver could not improve the current solution," or even "The linearity conditions required by this Solver engine are not satisfied," with results that are suboptimal or otherwise very different from your expectations. The effects may not be apparent to you, given the initial values of the variables, but when the Solver explores Trial Solutions with very large or small values for the variables, the effects will be greatly magnified.

Dealing with Poor Scaling

Most Solver engines include a Use Automatic Scaling option on the Task Pane Engine tab. When this option is set to True, the Solver rescales the values of the objective and constraint functions internally in order to minimize the effects of poor scaling. But this can only help with the Solver's own calculations - it can't help with poorly scaled results that arise in the middle of your Excel formulas.

The best way to avoid scaling problems is to carefully choose the "units" implicitly used in your model so that all computed results are within a few orders of magnitude of each other. For example, if you express dollar amounts in units of (say) millions, the actual numbers computed on your worksheet may range from perhaps 1 to 1,000 .

If you're experiencing results that may be due to poor scaling, you can check your model for scaling problems that arise in the middle of your Excel formulas by selecting the Scaling Report after solving your model. If you're using Analytic Solver Upgrade, you'll have to go through each of your formulas and play "what-if" manually to identify such problems.

The Integer Tolerance Option

Users who solve problems with integer constraints using the standard Excel Solver occasionally report that "Solver claims it found an optimal solution, but I manually found an even better solution." What happens in such cases is that the Solver stops with the message "Solver found a solution" because it found a solution within the range of the true integer optimal solution allowed by the Tolerance option in the standard Solver's Options dialog. In similar cases, Analytic Solver displays a message "Solver found an integer solution within tolerance," to avoid confusion.

When you solve a problem with integer constraints, the solution process in almost all Solver engines is governed by the Integer Tolerance option on the Task Pane Engine tab. When this option value is non-zero - say 0.05 , as in the standard Excel Solver - the Solver engine stops when it has found a solution satisfying the integer constraints whose objective is within 5% of the true integer optimal solution. Therefore, you may know of or be able to discover an integer solution that is better than the one found by the Solver.

To avoid this common problem, the default Integer Tolerance value in Analytic Solver Platform V9.0 and beyond is $\mathbf{0}$ or $\mathbf{0 . 0 0 1}$ (depending on the engine used) rather than 0.05 . But this has an important consequence for solution time: The solution process for integer problems often finds a near-optimal solution (sometimes the optimal solution) relatively quickly, and then spends far more time exhaustively checking other possibilities to find (or verify that it has found) the very best integer solution.

To avoid this extra time, you can either set the Integer Tolerance to a non-zero value - say 0.025 or 0.05 - or you can watch the Task Pane Output tab during the solution process, which displays the current Integer Gap - the value against which the Integer Tolerance is compared. Here's an example from the solution of the EXAMPLE5 model shown earlier, where the Integer Gap was 1.6% just before the Solver "proved optimality" and reported the solution:

Best Integer Objective	2400
Current Objective	2400
Nodes	6
Iterations	0
Relaxed Objective	-5200
Best Possible Objective	2361.69
Integer Gap	0.0162228

You can make a real-time decision that the current solution is "good enough," and press ESC or click the Pause/Stop button, then click the Stop button in the Show Trial Solution dialog, to stop the Solver with the current solution.

When Things Go Right: Getting Further Results

When you do receive a solution that makes sense to you, and you have a Solver Result message in green at the bottom of the Task Pane, there are several ways you can get further results. We'll cover three possibilities:

1. Obtaining dual values from a linear or smooth nonlinear optimization problem.
2. Obtaining multiple solutions from an integer programming problem, or a global optimization problem.
3. Performing multiple parameterized optimizations, and capturing all the solutions in reports and charts.

Dual Values

When you formulate and solve a linear programming problem, or a smooth nonlinear optimization problem, the solution process also yields numbers, called dual values, for the decision variables and constraints that are "pressed to the limit" at the optimal solution. A dual value can tell you, for example, how much you could pay to acquire more units of a scarce resource that is fully utilized in the solution; it is sometimes called a shadow price or marginal value.

- The dual value for a decision variable is nonzero only when the variable's value is equal to its upper or lower bound at the optimal solution. This is called a nonbasic variable, and its value was driven to the bound during the optimization process. Moving the variable's value away from the bound will worsen the objective function's value; conversely, "loosening" the bound will improve the objective. The dual value measures the change in the objective function's value per unit change in the variable's value.
- The dual value for a constraint is nonzero only when the constraint is equal to its bound. This is called a binding constraint, and its value was driven to the bound during the optimization process. Moving the constraint left hand side's value away from the bound will worsen the objective function's value; conversely, "loosening" the bound will improve the objective. The dual value measures the change in the objective function's value per unit change in the constraint's bound.

In nonlinear optimization problems, the dual values are valid only at the single point of the optimal solution - if there is any curvature involved, the dual values begin to change as soon as you move away from the optimal solution. In linear programming problems, the dual values remain constant over a range of increases and decreases in the variables' objective coefficients and the constraints' right hand sides, respectively.

To obtain dual values in report form, simply select Reports - Optimization Sensitivity from the Ribbon. An example Sensitivity Report appears below.
In Analytic Solver Desktop, you can also obtain dual values via the Analytic Solver Object-Oriented API, with simple references such as myProb.VarDecision.DualValue(i) or myProb.FcnConstraint.DualValue(i) in your VBA code. This is described in greater depth in the chapter "Automating Optimization in VBA."

On the next page is a Sensitivity Report for EXAMPLE1, the Product Mix model which is the first example in the chapter "Examples: Conventional Optimization." (Note: Number formatting has been expanded in cells E15 and E22 to show decimal values.) At the optimal solution, we use all 800 Speaker Cones and 600 Electronics units, but not all of the other components. We don't produce any Speakers - cell F9 is driven to its lower bound of 0 . What do the dual values tell us about the two binding constraints, and the one "nonbasic" decision variable?

The dual value of 12.5 for Speaker Cones tells us that we could increase Total Profits by $\$ 12.50$ for every additional Speaker Cone we can acquire, up to 100 more. Similarly, the dual value of 25 for Electronics units tells us we could use up to 50 more units and increase Total Profits by $\$ 25.00$ for each extra unit.
The dual value of -2.5 for F9 tells us that, if we were forced to produce some Speakers, we would reduce Total Profits by $\$ 2.50$ for each Speaker we made (because we'd give up production of another product that is more profitable).

Multiple Solutions

When you solve an integer programming problem or a global optimization problem, the final solution you see on the Excel worksheet is typically the best of several candidate solutions that were found during the solution process. You can obtain and examine these other solutions; this can be useful, especially if you have other criteria, not captured in the formulation of the optimization model, for preferring one solution over another. For each candidate solution, you can examine the final values of the decision variables and the objective.

To obtain multiple solutions in report form, select Reports - Optimization Solutions from the Ribbon.

- For integer programming problems, the report shows each 'incumbent' or feasible integer solution found by the Branch \& Bound method during the solution process.
- For global optimization problems, the report shows each locally optimal solution found by the Multistart method.
- For non-smooth optimization problems solved with the Evolutionary Solver, the report shows key members of the final population of solutions.

For all types of problems, if only one candidate solution was found, the Solutions choice will not appear in the Reports - Optimization gallery. For example, advanced Solvers for integer programming problems may find optimal solutions at the root node of the Branch \& Bound tree, without considering any other incumbent solutions. For integer programming problems solved with the LP/Quadratic or Large-Scale LP/QP Solver, the Engine tab Integer group PreProcessing option must be set to None in order to create a Solutions Report.
On the next page is an example of a Solutions Report created when the GRG Nonlinear Solver with Multistart was used to solve a model called SPACE2, a global optimization problem with many locally optimal solutions. (Given more time, the Solver would find an even better solution than the ones shown.)

A B	C	D	E	F
Microsoft Excel 15.0 Solutions Report Worksheet: [SPACE2.xIsx]SPACE Report Created: 6/17/2014 3:08:27 PM Result: Solver stopped at user's request. All constraints are satisfied. Engine: Standard LSGRG Nonlinear Number of Solutions: 464				
Solutions:				
Cell	Sol 1 (Obj = 0.745052)	Sol $2(\mathrm{Obj}=1.54001)$	Sol 3 (Obj = 2.18067)	Sol 4 (Obj = 2.18068)
\$Q\$4	0	0	0	0
\$R\$4	1	1.162078294	-4.140949271	-3.868312331
\$0\$5	0.745051918	0	1.27364828	1.273951051
\$R\$5	-0.093539653	-3.672201275	-0.257571889	-0.256912259
\$0\$6	0	1.540010025	0	0
\$R\$6	0.827136625	3.527571564	5.088091112	-6.28
\$0\$7	0	0	0.907023763	0.906730628
\$R\$7	1.238990211	4.865344186	2.791229834	1.595919153
\$0\$8	0	0	0	$3.21002 \mathrm{E}-14$
\$R\$8	1.166137728	-5.612806937	-6.110354592	5.616137672
\$0\$9	0	0	0	0
\$R\$9	0.999682268	-4.141652944	2.160288458	3.143533378
\$Q\$10	0	0	0	0
\$R\$10	0.995379852	5.202512545	4.592909872	4.92518359
\$Q\$11	0	0	0	0
\$R\$11	1.000098558	1.413578737	-1.358593973	-5.950134205
\$Q\$12	0	0	0	0
\$R\$12	1.001361364	6.094590657	6.074434888	-3.758379802
\$Q\$13	0	0	0	0
\$R\$13	1.000809992	-0.751172593	1.891554759	1.72610483

You can also obtain multiple solutions via the Analytic Solver Object-Oriented API, by accessing a property such as myProb.Solver.NumSolutions, setting the property myProb.Solver.SolutionIndex to choose a solution, then accessing the solution in the usual manner.

Multiple Parameterized Optimizations

Once you have a model where you're getting an optimal solution that makes sense for one set of inputs or parameters, it's often useful to vary one or more parameters across a range of values, and find the optimal solution for each individual parameter value. With Analytic Solver, you can easily define optimization parameters, run multiple optimizations and save the solutions to each optimization, and summarize the results in reports and charts.
The earlier chapter "Examples: Parameters and Sensitivity Analysis" gives an overview of the role of parameters for optimization, simulation, and sensitivity analysis, and the Frontline Solvers Reference Guide fully documents the features available for multiple parameterized optimization.
In this chapter, we'll illustrate what you can do with EXAMPLE4, the Markowitz portfolio optimization model in StandardExamples.xls described in the chapter "Examples: Conventional Optimization" under "Nonlinear Programming Examples." The model is pictured on the next page.

When we perform a single optimization with this model, we get an optimal allocation of funds to stocks that minimizes portfolio variance (a risk measure) while earning a portfolio rate of return of at least 9.5%, as shown in the Task Pane Model tab. This solution is a single point on the "efficient frontier;" we can find other points on this frontier by solving the problem for different levels of the required portfolio return. 0
This is easy to do in Analytic Solver: We'll define a single optimization parameter, use it in the portfolio return constraint right hand side, and then run multiple (say 10) optimizations where the parameter is automatically varied from (say) 8% to 14%. Let's do this step by step.
To define an optimization parameter, select an empty cell - say I20, and choose Parameters - Optimization from the Ribbon, as shown below.

Analytic Solver displays a dialog where you can enter a lower and upper limit for the parameter value, or alternatively a list of values or a cell range:

When you click OK, the formula $=\operatorname{PsiOptParam}(\mathbf{0 . 0 8 , 0 . 1 4})$ appears in cell I20.
Next, we'll use this parameter in the portfolio return constraint. To do this, we select the constraint 'Portfolio Return $>=0.095$ ' in the Task Pane Model tab, and edit its properties in the lower part of the Task Pane.

We click the cell selector icon to the right of the field containing 0.095 , and then point and click to select cell I20. The properties of the constraint are updated to use cell I20 for the right hand side, as shown on the next page.

Note: Editing optimization parameters in the task pane is not supported in Analytic Solver Cloud. To change a constraint in the Cloud, simply double click the I19 >= 0.095 constraint in the task pane to open the Add Constraint dialog, then change 0.095 to I20.
Just one more step is required: We must specify how many optimizations we want to perform. On the Task Pane Platform tab, we set the very first option Optimizations to Run to 10 , as shown on the next page.

■ Optimization Model	10
Optimizations to Run	10
Interpreter	Automatic
Solve Mode	Solve Complet...
Solve Uncertain Mod...	Automatic
Use Psi Functions to...	False
Use Interactive Opti...	False
Number of Threads	0

Now we simply click the Optimize button on the Ribbon, or the green right arrow on the Task Pane, to run all 10 optimizations. By default, Analytic Solver saves the optimal objective and decision variable values from all 10 optimizations; you can save other results, such as constraint values, by setting their Monitor property in the Task Pane to True.
Just after solving, Analytic Solver Optimization displays the results of the last optimization on the worksheet. But you can display the results of any of the other 9 optimizations by selecting from the Opt \# dropdown list on the Ribbon:

Load/Save
$\left.$WReset All Opt \#10 Opt \#1 Opt \#2 Opt \#3 Opt \#4 Opt \#5 Opt \#6 Opt \#7 Opt \#8 Opt \#9 Opt \#10${ }^{2} \right\rvert\,$

Analytic Solver has built-in facilities to create charts of multiple parameterized optimizations. Just select Charts - Multiple Optimizations - Monitored Cells from the Ribbon.

Select the optimization result you would like to chart: In this example, we want to plot the optimal objective (Portfolio Variance) across the 10
optimizations, where the Portfolio Return threshold is varied on each optimization.

When you click OK, Analytic Solver draws the chart, as shown below. That's a lot more useful results than a single optimal solution!

Getting Results: Simulation

Introduction

This chapter explains how to obtain and interpret results from simulation in Analytic Solver Comprehensive and its subset product Analytic Solver Simulation. We'll discuss what can go wrong, and what to do about it, and also how to get maximum insight from the results of a simulation.

Simulation is 'simpler' than optimization in the sense that it requires only (i) sampling of input values, (ii) calculation of your Excel model with these values, and (iii) collection of the results; no 'search for a best solution' is involved. A simulation can be performed on almost any model, using any Excel functions.

But the way you build your model does affect the speed of simulation, or the time required to get results. And the structure of your model will become even more important in the next chapter, when we consider optimization and models that include uncertainty.
In the following sections, we'll focus on immediate actions you can take when you get an unexpected result - but if you read the chapter "Mastering Simulation and Risk Analysis Concepts," you'll learn more about the Monte Carlo simulation process, and better understand how to design your model to get the best results in the least time.

What Can Go Wrong, and What to Do About It

When you click the Simulate button on the Ribbon, or the green arrow on the Task Pane to run a simulation, you'll normally get one of these outcomes:

1. Results on the worksheet, and the message "Simulation finished successfully" in green at the bottom of the Task Pane. You can proceed to "When Things Go Right: Getting Further Results."
2. An error message that you understand and can correct, in red at the bottom of the Task Pane. You can take corrective action.
3. An error message that you don't understand, in red at the bottom of the Task Pane. You should read the solution log in the Output tab, click the error message and read Help about the message.
4. Results on the worksheet that you don't understand. Again, before doing anything else, you should read the solution log in the Output tab, click the error message to display Help, and read the section below "When Simulation Results Seem Wrong."
5. Simulation runs for a very long time, and you don't get results or a message in the Task Pane until you press ESC or click Pause/Stop. You should read the section "When Simulation Takes a Long Time."

In rare cases, you might find Excel shutting down or "locking up" (so nothing happens when you press and hold the ESC key for several seconds). In this case please contact Frontline Systems Technical Support at (775) 831-0300 x4 or support@solver.com. Some error messages ask you to contact Technical Support. If you can send us your model, this will be very helpful.

But experience shows that 99% of all technical support cases involve "pilot error" by the user, and that 90% of all such cases could be easily resolved by reading online Help or the User Guide. So we hope you'll keep reading, and that you'll take these steps before calling technical support!

Review Messages in the Output Tab

If using Analytic Solver Desktop, your first step should be to review the messages in the solution log in the Task Pane Output tab. Below is an example of the most common simulation error message, and Help that appears when you click the message:

Note: Information related to the solving process in Analytic Solver Cloud is not available during parsing of the model. As a result, feedback is only available on the Output tab once the Solver Engine (for a simulation, Risk Solver Engine) starts to solve the model.

Click the Error Message for Help

Most simulation error messages are underlined - they are hyperlinks to online Help. If you aren't sure that you fully understand it, click the link to open Help to a detailed discussion of the message.

As the Help text explains in the example above, if your model doesn't define any simulation outputs, either via a PsiOutput() function that is added to the formula in an output cell or that refers to the output cell, or via a PSI Statistics function that refers to the output cell, there will be no results when you run a simulation. As corrective action, you simply need to define the formula cells for which you want results as simulation outputs.
Here is this same error in Analytic Solver Cloud.

Hyperlinks are not supported in Analytic Solver Cloud.

Role of the Random Number Seed

The seed, or initial value, of the random number generator used in the simulation process determines whether your results are exactly reproducible when you re-run a simulation, or whether your results are similar but not identical because a different random sample was drawn.

By default, the seed for each simulation is set from the value of the system clock, which is different each time you run a simulation. If you set a seed value as explained below, the same seed value is used on each simulation, which means that the entire stream of random numbers drawn, and hence your simulation results, will be exactly reproducible on each simulation run.

To set the seed, use the Task Pane Engine tab. From the dropdown list at the top of the tab, select Risk Solver Engine, the software engine that actually performs a simulation. The options for Risk Solver Engine will be displayed:

Enter a positive number for the option Sim. Random Seed. A value of 0 here means "use the value of the system clock as the seed on each simulation."

When Simulation Takes a Long Time

When a simulation takes a long time, or if you are running multiple parameterized simulations, the Task Pane Output tab shows you a progress indicator. If it is not already visible when you first start solving, the Output tab will appear automatically after a few seconds, as long as the Task Pane itself is visible.

If you are using Analytic Solver Desktop and have the Task Pane Platform tab Simulation group Interpreter option set to Excel Interpreter, the progress indicator will be updated during the Monte Carlo trials of a single simulation, as shown in the example below.

If you have the Interpreter option set to Psi Interpreter, the progress indicator usually won't be updated during the trials of a single simulation, because all of these trials are being executed in parallel. If you are running a multiple parameterized simulation, the progress indicator will be updated for each new simulation, as shown in the example below.

Interrupting the Simulation Process

You can interrupt the simulation process at any time, by pressing the ESC key in Analytic Solver Desktop, or by clicking the button in the Task Pane Output tab in either app. If your model is very large, you might have to hold down the ESC key for a second or two. Since the input focus may not be on the Task Pane when you click with the mouse, you might have to click the $\|$ button twice. A dialog like the one below will appear:

Click Stop to stop the simulation or Continue if you want to continue.

Reasons Why Simulation Takes a Long Time

Analytic Solver Simulation is by far the fastest Monte Carlo simulation software for Excel on the market, and it takes full advantage of multi-core processors for even faster simulations. But it's still possible to create a model where a simulation takes a long time. There are several reasons for this:

1. If you have the Platform tab Simulation group Interpreter option set to Excel Interpreter in Analytic Solver Desktop, Excel is used to recalculate the worksheet on each Monte Carlo trial. This is usually an order of magnitude slower than the PSI Interpreter, though it requires significantly less memory. This functionality is not supported in Analytic Solver Cloud.
2. If you have Platform tab Simulation group Interpreter option set to Psi Interpreter (this is always the case in Analytic Solver Cloud), and the simulation is slow, you may be using certain Excel functions in ways that slow down the PSI Interpreter. See below for Do's and Don'ts to get the most from the PSI Interpreter.
3. Your model may simply be very large, with many complex formulas, references to other worksheets or workbooks, etc. that take a long time to evaluate. If your workbook includes sizable elements that aren't essential to the simulation model and its results, these extra elements may be slowing down the simulation process.

Time Versus Memory Tradeoffs in Analytic Solver Desktop

The PSI Interpreter is designed to take maximum advantage of available memory, and trade off memory against time. When Excel interprets $=A 1+A 2 *(A 3-4)$, it uses memory for only four numbers - the values of A1, A2, A3 and the constant 4. But when PSI interprets this formula, it uses memory for 3,001 numbers - 1,000 each for A1, A2 and A3. If your PC has plenty of memory, PSI will help you take advantage of it. But if you are tight on memory, you may find that simulations slow down, because Windows will use 'virtual memory' and swap your data between main memory and your hard disk. You can add more memory -- DRAM chips for PCs and notebooks are an amazing value today. However, the best solution is simply to run your simulation model using Analytic Solver Cloud! Since the Cloud app runs on Microsoft's Azure App Service, memory is not an issue in the cloud!

Model Design for Maximum Simulation Speed

Paying attention to your Excel worksheet layout and design, and avoiding certain practices, will help you get the most from the PSI Interpreter. Below is a brief list of Do's and Don'ts that will help you realize the best possible speed:

- Do build worksheets starting from the "upper left corner." Don't place cells or formulas at extreme row and column addresses all over the worksheet.
- Do build the model on a small number of worksheets. Don't include references on these worksheets to other worksheets that aren't required for the simulation model.
- Do use numeric and logical formulas and functions. Don't create string results in the middle of numeric calculations (see example below).
- Do use built-in Excel functions (including Analysis ToolPak functions) freely. Don't use third-party or user-written functions unless truly needed. Such functions must not have "side-effects" other than the value returned.
- Do use operators like $+-* / \wedge$ and functions like SUM, AVERAGE, MAX, MIN, AND, OR, NOT, IF, CHOOSE. Don't use INDIRECT, OFFSET, or TEXT, SEARCH, REPLACE, FIXED, DOLLAR, or ROMAN.
- If possible, Don't use array formulas, LOOKUP functions with large ranges as arguments, or long "chains" of formulas where each formula depends on an earlier formula (and hence on all earlier formulas). Each of these things can slow down analysis of your model considerably (by 10x in some cases).

A common practice that slows down the PSI Interpreter, and is easy to avoid, is illustrated by the following:

A1: $=\operatorname{IF}(\mathrm{B} 1>100$, "Yes","No") and later $\mathrm{A} 10:=\operatorname{IF}(\mathrm{A} 1=" Y e s ", \mathrm{~A} 2,50)$
You don't need "Yes" and "No" when Excel provides built-in values TRUE and FALSE. You could write $=\operatorname{IF}(\mathrm{B} 1>100$,TRUE,FALSE $)$, but this is simpler:
$\mathrm{A} 1:=\mathrm{B} 1>100$ and later $\mathrm{A} 10:=\mathrm{IF}(\mathrm{A} 1, \mathrm{~A} 2,50)$
The formula $=$ B1>100 evaluates to either TRUE or FALSE. A1 holds this value and you can test it later in another formula.

When Simulation Results Seem Wrong

When the simulation results seem wrong, before doing anything else, you should read any messages in the Output tab, and click the message to display Help as described above. We emphasize this, because very often when we are contacted in technical support, the user has not taken these basic steps. As next steps:

1. Make sure you understand how your formulas behave in an ordinary Excel recalculation. If you've "raced ahead" with a simulation model before doing this and you are using Analytic Solver Desktop, you can use the Publish button on the Ribbon to turn your simulation model back into a "what-if" model (by moving all PSI function calls into cell comments), and later click Publish -- Unpublish to restore the PSI functions that make up your simulation model.
2. Bear in mind that an uncertain function cell normally displays the calculated value for the last Monte Carlo trial of the last simulation run. It's usually more meaningful to look at the results returned by PSI Statistics functions, such as PsiMean() or PsiPercentile(), across all the trials of the simulation.
3. It can be very helpful to cycle through the Monte Carlo trials of a simulation, and examine the values of uncertain function cells, as well as intermediate formula cells on which they depend. Just use the left and right arrows on the Analytic Solver Desktop Ribbon or the up and down arrows on the Tools tab of the Solver task pane in Analytic Solver Cloud to change the trial index. You may find that your model calculates a result you did not expect for some values of the uncertain variables.
4. If you are using multiple simulations, check that the Sim \# index on the Ribbon in Analytic Solver Desktop or on the Tools tab of the Solver task pane in Analytic Solver Cloud, or the Sim \# dropdown in the Uncertain Function dialog title bar, are selecting the simulation you want, and that parameters (PsiSimParam() functions) are returning the values you expect for that simulation.
5. If you haven't already done so, double-click uncertain function cells and examine the Frequency tab chart and Percentiles tab numbers to see how the values of this function were distributed across Monte Carlo trials in the simulation. This will help explain the values of PSI Statistics functions.

Although software bugs are always possible, consider carefully the possibility that the simulation results are correct for the model you've defined, and that your expectation is wrong. We sometimes find in technical support that what your model actually says is different from what you intended.

When Things Go Right: Getting Further Results

When you have simulation results on the worksheet that make sense to you, and you have the message "Simulation finished successfully" in green at the bottom of the Task Pane, there are several ways you can get further results. We'll cover five possibilities:

1. Documenting your results in a Simulation Report.
2. Using all the features of the Uncertain Function dialog.
3. Fitting an analytic distribution to uncertain function results.
4. Charting multiple uncertain functions, typically over time.
5. Performing multiple parameterized simulations, and capturing the results on the worksheet or in charts.

Using the Simulation Report

One quick step you can take, when you have simulation results that you want to recall later, is to select Reports - Simulation - Simulation to produce a report worksheet, inserted into your workbook, like the one for the example model BusinessForecastPsi.xls, shown on the next page.

The Simulation Report in Analytic Solver Desktop documents the option settings used to perform the simulation and provides summary information about the uncertain variables and uncertain functions in your simulation model. You are much more likely to use simulation charts, or snapshots of your own worksheet layout when you are presenting reports to others, but this report can be quite useful when you want to refer later to the assumptions behind a simulation analysis.

This report has been completely redesigned in Analytic Solver Cloud. Select Reports - Simulation - Simulation Report to produce a report worksheet, inserted into your Excel Online or Desktop Excel workbook, like the one for the example model BusinessForecast.xlsx, as shown on the next page.

In Analytic Solver Cloud, this report displays the number of input and output functions in the simulation model, the number of simulations and the number of trials. The body of the report contains the distribution of values for all uncertain variables and functions along with the cell address, the mean, the standard deviation, the $5^{\text {th }}$ and $95^{\text {th }}$ percentiles of each.

Using the Uncertain Function Dialog

The Uncertain Function dialog has many features, described in the Frontline Solvers Reference Guide, that you can use to get enhanced results from your simulation. For an introduction to these features, refer back to "A First Simulation Example" in the chapter "Simulation and Risk Analysis," especially the sections starting with "Viewing the Full Range of Profit Outcomes." Here, we'll just reiterate the results available at your fingertips in the Uncertain Function dialog:

Dialog Tabs

- The Frequency, Cumulative Frequency, and Reverse Cumulative Frequency tabs provide three different views of the full range of outcomes
for an uncertain function. In Analytic Solver Desktop, you can click to display "crosshairs" with numerical values on these charts or add Lower and Upper bounds to see the estimated probability of a profit or loss.
- The Tornado chart on the Sensitivity tab quickly shows you which uncertain variables have the greatest impact on this uncertain function, across the full range of Monte Carlo trials. The Scatter Plots tab often reveals further insights about the behavior of this uncertain function versus each uncertain variable, or versus other uncertain functions.

Panels and Toolbars

- Using the right panel of the dialog, you can access a drop down menu including Statistics, Percentiles, Chart Type, Chart Options (Analytic Solver Desktop), Axis Options (Analytic Solver Desktop), and Markers (Analytic Solver Desktop). From the Options dialog (accessible from the Options button on the Analytic Solver Desktop Ribbon), on the Charts and Markers tabs, you can set default chart and marker settings for all of your charts.
- Using the title toolbar icons in Analytic Solver Desktop, you can save your settings, print the charts or numbers from any of the dialog tabs, or copy the charts or numbers to the Windows Clipboard, where they can be pasted into other applications. You can also fit a distribution (as shown below) to the simulation results or upload the simulation results to Microsoft's Power BI application or Tableau. (See the previous chapter, Examples: Simulation and Risk Analysis, for instructions on exporting model results to Power BI and Tableau.)
- Click the rightmost icon on the title toolbar in Analytic Solver Desktop to display the 3-D toolbar that lets you - with a single click - shift between 2D and 3-D, shrink or magnify the chart, or move or rotate the chart to a different perspective.

Fitting a Distribution to Simulation Results

One way to analyze your simulation results is to see whether the distribution of outcomes is similar to a well-known analytic distribution. Frontline Solver's Analytic Solver supports a wide range of analytic distributions, and can fit a distribution and its parameters to sample data. To fit your sample simulation results, click the ilill icon on the Uncertain Function dialog title toolbar in Analytic Solver Desktop or click Tools - Fit on the Analytic Solver Cloud ribbon.

Click cell B11 on the BusinessForecastPsi tab within BusinessForecast.xlsx. When the Fit icon on the Analytic Solver Desktop Ribbon is clicked or Tools Fit on the Analytic Solver Cloud ribbon, the Fit Options dialog appears.

If we accept the default settings and click the Fit button, in a few seconds, Analytic Solver fits a wide range of distributions to the sample data, ranks them in order of the selected goodness-of-fit criterion (AIC/BIC statistics by default, for more information see the Frontline Solvers Reference Guide), and displays the best-fitting distribution.

If you select the checkboxes adjacent to the additional distributions in the left panel, they will be superimposed on the frequency chart in the middle of the dialog. Other tabs of this dialog give you a visual picture of the fit, in the form of P-P and Q-Q charts, and a chart of CDF Differences, shown below.

The P-P tab displays the Probability-Probability chart. This graph is used to determine how well a specific distribution fits the observed data. This chart will be approximately linear (or lie on the $y=x$ line) if the specified distribution is the correct choice.

Click the Q-Q tab to see the Quantile - Quantile chart. Again, if the two distributions being compared are a good fit, the plot will lie approximately on the $\mathrm{y}=\mathrm{x}$ line.

The Cumulative Distribution Function Differences chart quantifies the difference between the empirical distribution function and the cumulative distribution function of the distribution.

You can also fit an analytic distribution to data that you obtain from another source, such as historical observations of the process you want to model. If you have this sample data on your Excel worksheet, you can simply select the cell range containing the data and click the Fit icon on the Analytic Solver Desktop Ribbon or Tools - Fit on the Analytic Solver Cloud ribbon. Using this tool, you can easily create an uncertain variable whose distribution models this data.

Note: When using Analytic Solver Cloud or AnalyticSolver.com, fitting a PsiMetalog function is supported only when using the PsiMetalogFit() function.

Fitting a Meta-Log Distribution

A meta-log distribution is an alternative distribution to a fitted distribution. The metalog distributions are a collection of continuous univariate probability distributions which can be used when cumulative distribution function data is available. For more information on this distribution, see the descriptions for PsiMetalog() in the Continuous Analytic Distribution subsection within the "Psi Function Reference" chapter that appears in the Frontline Solvers Reference Guide.

A general meta-log distribution is defined in a simulation model by using the Psi distribution, PsiMetalog(). This function has as arguments a vector of coefficients (coefficients) and optionally lower (min) and upper (max) bounds. The metalog distribution family is designed to be determined from historical
data, without requiring a distribution fitting process. They are computed from a set of historical data pairs $\{y, x\}$, where y is a cumulative probability and x is the corresponding percentile. The coefficients argument is either a range or an array of 2 to 10 numerical elements.

Fitting the PsiMetalog() function in Analytic Solver Desktop may be performed in two ways, by using the Psi function PsiMetalogFit() or by using the Metalog Fit Options dialog. Currently, this function may be used in Analytic Solver Cloud only by using the Psi function PsiMetalogFit().
To open this dialog on Analytic Solver Desktop, click on a blank Excel cell, then click the Fit Distribution icon on the PsiMetalog() uncertain variable dialog.

Note: In Analytic Solver Cloud, the PsiMetalogFit return a Dynamic Array. To use this function in the Cloud, you need only enter the Psi function in one cell as a normal function, i.e., not as a control array. The contents of the Dynamic Array will "spill" down the column. If a nonblank cell is "blocking" the contents of the Dynamic Array, PsiMetalogFit will return \#SPILL until such time as the blockage is removed. When used in the Cloud apps, the first argument, numCoef, is a scalar, the number of coefficients to produce.

Metalog Fit Options
Cumulative probabilities:
Percentiles: Rank: Upper Bound: Lower Bound: Fit

Argument Descriptions

- Cumulative Probabilities - Excel range containing the historical cumulative probabilities (y values)
- Percentiles - Select the Excel range containing the percentile values (x values)
- Rank - If omitted, the rank is equal to 3. The value entered for Rank must be greater than or equal to 2 and less than or equal to 10 . In
addition, this value should be less or equal to the number of historical pairs given in the Cumulative probability and Percentiles arguments.
- Upper Bound - The function may be limited on the right by the upper bound. If omitted, positive infinity is used for the upper bound.
- Lower Bound - The function may be limited on the left by the lower bound. If omitted, negative infinity isused for the lower bound.

Click Fit in Analytic Solver Desktop to fit the Meta-log distribution. (Click Cancel to close the dialog without performing the distribution fitting.) Analytic Solver replaces the distribution currently in the Uncertain Variable dialog with the PsiMetalog() distribution parameters. If you click the Save button or close the dialog by clicking the " X " in the upper right hand corner in the title bar of this dialog, the PSIMetalog() distribution function with the fitted parameters is written to the current cell.

For example, given the following input parameters.

	A	B
1	input parameters	
2	\mathbf{y}	\mathbf{x}
3	0.010	10.0
4	0.100	22.0
5	0.500	33.0
6	0.900	43.0
7	0.990	50.0

The arguments in the Metalog Fit Options dialog would be as follows. Note that since the Upper and Lower Bound fields are empty, the fitted distribution will be unbounded. Distributions may be bounded on both sides, semi-bounded (bounded on one side) or unbouded. Note: Rank is equal to 2 which falls between the rank argument lower bound, which is equal to 2 , and the number of historical pairs passed for Cumulative probability and Percentiles, 5.

Metalog Fit Options
Cumulative probabilities:
A3:A7
Percentiles:
B3:B7
Rank:
2
$\underline{\text { Upper Bound: }}$
Lower Bound: Fit

After clicking Fit, the uncertain variable dialog changes to the following.

Click Save to close the uncertain variable dialog and save the fitted parameters to the Excel cell. To inspect the coefficients obtained by the fitting, see the resultant PsiMetalog() function that was saved to this cell. In this example, the coefficients obtained were 31.6 and 4.431777 .

```
=PsiMetalog(,{31.6,4.43177733881587})
```


Charting Multiple Uncertain Functions

In some simulation models, you will have a series of uncertain functions that represent the evolution of some process over time. The individual cells might represent sales or inventory levels, interest rates or exchange rates, or some other uncertain factor. You want to understand how this uncertain function changes over time, taking into account its uncertainty.
Analytic Solver Comprehensive has a general facility for creating charts of multiple simulation results, including Overlay, Trend, and Box-Whisker charts. Below, we've used this facility to visualize the evolution of a stock price over
time, using the example model GBMSimpleModel.xls, which simulates stock prices using a Geometric Brownian Motion model. When we perform a simulation, select Charts - Multiple Simulation Results - Trend, and select the first 24 uncertain functions for inclusion in the chart, we get a Trend Chart like the one below:

Here we can see a slow upward drift of the mean value of the stock price, and also its volatility around the mean, depicted here with the $25^{\text {th }}$ and $75^{\text {th }}$, and the $10^{\text {th }}$ and $90^{\text {th }}$ percentiles.

Multiple Parameterized Simulations

Once you have results from a single simulation, you normally want to explore "what if" scenarios, where you change some parameter that is under your control and run simulations to observe the effects of the uncertain variables that are not under your control.

Using Interactive Simulation in Analytic Solver Desktop

Analytic Solver Simulation offers a powerful facility to do this through Interactive Simulation: You can simply click the Simulate button on the Analytic Solver Cloud Ribbon to enter Interactive mode, then change a number on your worksheet and instantly see new simulation results. This is illustrated in "A First Simulation Example" in the earlier chapter "Simulation and Risk Analysis." Analytic Solver is fast enough to make this sort of "what-if" analysis practical.

Using Multiple Simulations

But after exploring the model and its results through Interactive Simulation, you'll likely want to automate the "what-if" process, and more systematically evaluate the effects of changing some parameter or parameters under your control on the simulation results. Analytic Solver makes this easy, with multiple parameterized simulations. This is illustrated in "An Airline Revenue Management Model" in the chapter "Simulation and Risk Analysis."

Setting Up Multiple Parameterized Simulations

Two simple steps are required to set up a multiple parameterized simulation:

1. Define one or more simulation parameters, and use them in your model.
2. Set the number of simulations option to a value greater than 1 , and run the simulation.

To define a simulation parameter, simply select Parameters - Simulation from the Ribbon:

Analytic Solver Simulation displays a dialog box, where you can enter a lower limit and upper limit for the parameter value, or a specific list of values that you would like the parameter to take on successive simulations. If you specify a lower and upper limit, then when you set the number of simulations, the parameter will take on equally-spaced values from the lower to the upper limit.

To set the number of simulations, simply edit the option in the Task Pane Platform tab Simulation group option Simulations to Run:

When you next click the green arrow in the Task Pane, or choose Simulate Run Once from the Analytic Solver Desktop Ribbon, all 10 (in this example) simulations will be run, automatically varying each simulation parameter over its range or list of values, and all the results will be collected and stored. (If you click the Simulate icon in Analytic Solver Desktop to activate Interactive Simulation, all 10 simulations will be run each time you make a change on the worksheet.)

Viewing Results of Multiple Simulations

After running multiple parameterized simulations, you can view the results on the worksheet, or in the Uncertain Function dialog, by selecting the simulation of interest from the Sim \# dropdown. You can create reports and charts of results that span all or some of the simulations. We highly recommend that you read "An Airline Revenue Management Model" in the earlier chapter "Simulation and Risk Analysis," which illustrates how this is done - creating a Trend Chart and a Box-Whisker Chart across all 10 simulations in this model.

Once you become familiar with multiple parameterized simulations, you'll likely want to use them in nearly every simulation analysis you do. They're a natural way to get further results from the effort you've put into a simulation model, and communicate those results to colleagues or clients.

Time Series Forecasting

Starting with version 2014-R2, Analytic Solver Data Mining includes the ability to forecast a future point in a time series in one of your spreadsheet formulas (without using the Score button on the Ribbon) using a PsiForecast() function in conjunction with a model created using ARIMA or one of our smoothing methods (Exponential, Double Exponential, Moving Average, or Holt Winters).
PsiForecast() is similar to the previous PSIForecastXXX functions supported in V2014, 2015, and 2016: it will compute future-looking forecasts based on the fitted model, using the provided new time series observations as initial points. The number of forecasts is determined by the number of selected cells in arrayformula entry. The result of PsiForecast() can be deterministic, if the Simulate argument is FALSE, or non-deterministic, if the Simulate argument is TRUE- in which case the forecasts are adjusted with random normally distributed errors, defined by the forecasts' statistics.

Open the Airpass.xlsx example dataset by clicking Help - Examples on the Data Mining ribbon, then clicking Forecasting/Data Mining Examples. This example
dataset includes International Airline Passenger Information by month for years 1949 - 1960. Since the number of airline passengers increases during certain times of the year, for example Spring, Summer, and in the month of December, we can say that this dataset includes "seasonality".

First, we will partition this dataset into two datasets: a training dataset and a validation dataset. We'll use the training dataset to create the ARIMA model and then we'll apply the model to the validation dataset to forecast six future data points, or one half year of data.
Click Partition in the Time Series section of the Data Mining ribbon to open the Time Series Partition Data dialog. Select Passengers for the Variables in the Partition Data and Month for the Time Variable.

Click OK to accept the defaults for Specify Partitioning Options and Specify Percentages for Partitioning. Recall that when a time series dataset is partitioned, the dataset is partitioned sequentially. Therefore, 60% or the first 86 records, will be assigned to the training dataset and the remaining 40%, or 58 records, will be assigned to the validation dataset. (For more information on partitioning a time series dataset, see the previous chapter Exploring a Time Series Dataset.)

The TSPartition worksheet will be inserted into the Model tab of the Analytic Solver task pane under Transformations - Time Series Partition. Recall the steps needed to produce the forecast. Click ARIMA -- ARIMA to open the ARIMA dialog. Month has been pre selected as the Time variable. Select Passengers as the Selected variable.

This example will use a SARIMA model, or Seasonal Autoregressive Integrated Moving Average model, to predict the next six datapoints in the dataset. (For more information on this type of time series model, please see the earlier chapter, "Exploring a Time Series Dataset.") A seasonal ARIMA model requires 7 parameters, 3 nonseasonal (autoregressive (p), integrated (d), and moving average (q)), 3 seasonal (autoregressive (P), integrated (D), and moving average (Q)), and period. Each parameter must be a non-negative integer.
Selecting appropriate values for $\mathrm{p}, \mathrm{d}, \mathrm{q}, \mathrm{P}, \mathrm{D}, \mathrm{Q}$ and period is beyond the scope of this User Guide. Consequently, this example will use a well documented SARIMA model with parameters $\mathrm{p}=0, \mathrm{~d}=1, \mathrm{q}=1, \mathrm{P}=0, \mathrm{D}=1, \mathrm{Q}=2$ and period $(\mathrm{P})=12$. Please refer to the classic time series analysis text Time Series Analysis: Forecasting and Control written by George Box and Gwilym Jenkins for more information on parameter selection.
Select Fit seasonal model and enter 12 for Period since it takes a full 12 months for the seasonal pattern to repeat. Set the Non-seasonal Parameters as Autoregressive $(\mathrm{p})=0$, Difference $(\mathrm{d})=1$, Moving Average $(\mathrm{q})=1$ and the Seasonal Parameters as Autoregressive $(\mathrm{P})=0$, Difference $(\mathrm{D})=1$, and Moving Average $(\mathrm{Q})=2$.

Click OK to create the SARIMA model.
ARIMA_Output will be inserted into the Model tab of the XLMiner task pane under Reports - ARIMA. This output contains the Training Error Measures and Fitted Model Statistics. (For more information on this report, please see the chapter Exploring a Time Series Dataset within the Analytic Solver Data Mining Reference Guide.) ARIMA_Stored contains the stored model parameters.

Now we'll use this ARIMA model to predict new data points in the validation dataset using the PsiForecast() function. (Note: The first forecasted point will be more accurate than the second, the second forecasted point more accurate than the third and so on.) The PsiForecast() function will be interactive in the
sense that if any of the input values (values passed in the $2^{\text {nd }}$ argument) change, the forecast will be recomputed.
In later versions of desktop Excel, the PsiForecast() function returns a Dynamic Array. To use this function in the Cloud, you need only enter the Psi function in one cell as a normal function, i.e., not as a control array. The contents of the Dynamic Array will "spill" down the column. If a nonblank cell is "blocking" the contents of the Dynamic Array, the Psi Data Mining function will return \#SPILL until such time as the blockage is removed. In Excel versions that do not support Dynamic Arrays, PsiForecast() must be entered as an Excel array.

The PsiForecastARIMA function takes five arguments: Model, Input Data, Simulate, Num_forecasts, and Header. Select a blank cell on the Data worksheet and enter =PsiForecast(. If using a version of Excel that does not support Dynamic Arrays, select B146:B152 on the Data worksheet, then enter $=$ PsiForecast(.

The first argument, Model, is the range of cells used by Analytic Solver Data Mining to store the ARIMA model on the ARIMA_Stored worksheet. This data range will change as the forecast method changes. Select or enter ARIMA_Stored!B12:B38, for this argument.
The second argument, Input_Data, is the range containing the initial starting points from the validation data set. The minimum number of initial points that should be specified for a seasonal ARIMA model is the larger of $\mathrm{p}+\mathrm{d}+\mathrm{s} *(\mathrm{P}+$ $\mathrm{D})$ and $\mathrm{q}+\mathrm{s} * \mathrm{Q}$. In this example, $\mathrm{p}+\mathrm{d}+\mathrm{s} *(\mathrm{P}+\mathrm{D})$ is equal to $13(0+1+12$ * $(0+1)$ and $\mathrm{q}+\mathrm{s} * \mathrm{Q}$ is equal to $13(1+12 * 1)$, therefore the minimum number of initial starting points required is 13 (MAX $(13,13)$). If you provide fewer than the minimum required number of starting points, PsiForecast() will return a column of zeros. (See the table below for the minimum number of initial starting points required by each Forecasting method included in Analytic Solver Data Mining.) The maximum number of starting points is the number of points in the validation dataset. All points supplied in the second argument will be used in the forecast. Select or enter Data!A1:B145, for this argument.
Pass True or False for the third argument. Passing False will result in a static forecast that will only update if a cell passed in the $2^{\text {nd }}$ argument is changed. If True is passed for this argument, a random error will be included in the forecasted points. See the Time Series Simulation example below for more information on passing True for this argument. In this case, Pass False) for this argument.
Your formula should now be the following:
=PsiForecast(ARIMA_Stored!B12:B38,Data!A1:B145, False). If using a version of Excel that does not support Dynamic Arrays, press CTRL + SHIFT + ENTER to enter this formula as an array in all seven cells (B146:B152).

It's also possible to enter this formula using the Insert Function dialog by clicking Formulas - Insert Function, select PSI Data Mining for Category, then PsiForecastARIMA.

The results from this function are displayed below.
Enter True for the Header argument to insert a heading above the forecasted values.

Notice that the formula is entered into cell B146 and the contents of the PsiForecast() Dynamic Array "spill" down into cells B147:B152.

	A	B	
141	Aug-60	606	
142	Sep-60	508	
143	Oct-60	461	
144	Nov-60	390	
145	Dec-60	432	
146		Forecast: 17899	
147		468.082984	
148		443.90313	
149		444.106104	
150		428.416324	
151		424.563033	
152		413.37003	
153			

If any values change in the ranges ARIMA_Stored!B12:B38 or Data!B2:B145, the forecast will be recomputed; but if the input argument values stay the same, the PsiForecast() function will always return the same forecast values. As mentioned above, the first forecasted value in cell B146 is the most accurate predicted point. Accuracy declines as the number of forecasted points increases.

See the Frontline Solvers Reference Guide for specifications on PsiForecast().

Time Series Simulation

Analytic Solver Data Mining includes the ability to perform a time series simulation, where future points in a time series are forecast on each Monte Carlo trial, using a model created via ARIMA or one of our smoothing methods (Exponential, Double Exponential, Moving Average, or Holt Winters).

To run a time series simulation, we must pass "True" as the third argument to PsiForecast(). When the third argument is set to True, Analytic Solver will add a random (positive or negative) "epsilon" value to each forecasted point. Each time a simulation is run, 1000 trial "epsilon" values are generated using the PsiNormal distribution with parameters mean and standard deviation computed
by the PsiForecast() function. You can view the output of this simulation in the same way as you would view "normal" simulation results in Analytic Solver Comprohensive, Analytic Solver Simulation, Analytic Solver Upgrade, or Analytic Solver Basic, simply by creating a PsiOutput() function and then double clicking the Output cell to view the Simulation Results dialog.

Select a blank cell, or Data!C146:C152 if using a version of Excel that does not support Dynamic Arrays, then click Formulas - Insert Function to display the Function Argument dialog.
As discussed previously, the first argument, ARIMA_Stored!B12:B38, is the range of cells used by Analytic Solver to store the ARIMA model on the ARIMA_Stored worksheet.

For the second argument the range containing the initial points in the series must be greater than the minimum number of initial points for a static forecast. For a seasonal ARIMA model when Simulate $=$ True, the minimum number of initial points must be greater than $\operatorname{Max}((\mathrm{p}+\mathrm{d}+\mathrm{s} *(\mathrm{P}+\mathrm{D}),(\mathrm{q}+\mathrm{s} * \mathrm{Q})$. In this example, $\mathrm{p}+\mathrm{d}+\mathrm{s} *(\mathrm{P}+\mathrm{D})$ is equal to $13(0+1+12 *(0+1)$ and $\mathrm{q}+\mathrm{s} * \mathrm{Q}$ is equal to $13(1+12 * 1)$, therefore the minimum number of initial starting points required is 13 (Minimum \#Initial Points > MAX (13, 13)). However, when PsiForecastARIMA() is called with Simulate $=$ True, it is recommended to add an additional number of datapoints, equal to the \#Periods, to the minimum number required. In this instance the number of initial points will be 25: 13 (minimum \# of points) +12 (\# of points for Period in the Time Series - ARIMA dialog). If you provide fewer than the minimum required number of starting points (13 in this example) PsiForecastARIMA() will return \#VALUE. (See the table below for the minimum number of initial starting points required by each forecast method in Analytic Solver.) All points supplied in the second argument will be used in the forecast. Select or enter Data!A1:B145, for this argument.

Passing TRUE for the third argument indicates to Analytic Solver Data Mining that you plan to use this function call in a Monte Carlo simulation, so it should add a random epsilon value (different on each Monte Carlo trial) to each forecasted point.

In versions of Excel supporting Dynamic Arrays, this formula is entered into cell C146 and the contents of the PsiForecast() Dynamic Array "spills" down into cells C147:C152. If versions of Excel that do not support Dynamic Arrays, the formula must be entered as an Excel array.

To view the results of the simulation including frequency and sensitivity charts, statistics, and percentiles for the full range of trial values, we must first create an output cell. Select cell C147, then click Analytic Solver - Results - Referred Cell. Select cell D147 (or any blank cell on the spreadsheet) to enter the

PsiOutput formula. Copy this formula from cell D147 down to cell D152. Therefore D147 = PsiOutput(C147), D148 = PsiOutput(C148), and so on.

D147		! \times	$f x$	=PsiOutput(C147)	
4	A	B		C	D
143	Oct-60	461			
144	Nov-60	390			
145	Dec-60	432			
146		Forecast: Month	Forec	t: Month	
147	Jan-61	440.6349257		453.1571732	453.1571732
148	Feb-61	412.1440457		409.1471791	409.1471791
149	Mar-61	428.9072187		408.1621257	408.1621257
150	Apr-61	485.2473609		496.8346369	496.8346369
151	May-61	492.6189676		487.3958316	487.3958316
152	Jun-61	560.7962281		576.0825778	576.0825778

Click the down arrow on the Simulate icon and select Run Once. Instantly, Analytic Solver will perform a simulation with 1,000 Monte Carlo simulation trials (the default number). Since this is the first time a simulation has been performed, the following dialog opens. Subsequent simulations will not produce this report. However, it is possible to reopen the individual frequency charts by double clicking each of the output cells (B147:B152).
Important Note: For Users who are familiar with simulation models in Analytic Solver Simulation, you'll notice that the time series simulation model that we just created now includes 6 uncertain functions, B147:B152, which are the cells containing our PsiForecast() functions. For more information on simulation with Analytic Solver, please see the Frontline Solvers User Guide chapter, "Examples: Simulation and Risk Analysis".

This dialog displays frequency charts for each of the six cells containing the forecasted data points. Double click the chart for cell C147 (top left) to open the Simulation Results dialog for the PsiForecast() function in cell C147. From here
you can view frequency and sensitivity charts, statistics and percentiles for each forecasted point.

The frequency chart displays the distribution of all 1000 trial values for cell C147 with and observed mean 440.76 and standard deviation of 16.90 shown in the Chart Statistics. Select Simulate - Run Once a few more times (or click the green "play" button on the Solver Pane Model tab). Each time you do, another 1,000 Monte Carlo trials are run, and a slightly different mean will be displayed.

Enter 444 for the Lower Cutoff in the Chart Statistics section of the right panel, A vertical bar appears over the Frequency chart to display the frequency with which the forecasted value was greater than this value during the simulation. You can use this as an estimate of the probability that the actual value will be less than the forecasted value. In this case there was a 58.20% chance that the number of international airline passengers would be less than 444,000 in January 1961 and a 41.80% chance that the number of passengers would be greater than 444,000 .

Looking to the right, you'll find the Statistics pane, which includes summary statistics for the full range of forecasted outcomes. We can see that the minimum forecasted value during this simulation was 397.78 , and the maximum forecasted value was 493.37 . Value at Risk 95% shows that 95% of the time, the number of international airline passengers was 469.72 or less in January 1961, in this simulation. The Conditional Value at Risk 95% value indicates that the average number of passengers we would have seen (up to the 95% percentile) was 438.86 . For more information on Analytic Solver Platform's full range of features, see the Frontline Solvers User Guide chapter, "Examples: Simulation and Risk Analysis".

Statistics	
Statistics	
Mean	440.7573815
Standard Deviation	16.90445378
Variance	285.761
Skewness	0.100805
Kurtosis	-0.189334
Mode	440.3849601
Minimum	397.7823717
Maximum	493.3698657
Range	95.58749402
Clustering	
Show Clusters	No Clustering
Number of Clusters	2
Cluster to show	1
Advanced Statistics	
Mean Abs. Deviation	13.50426773
SemiVariance	139.181
SemiDeviation	11.7975
Value at Risk 95\%	469.7170418
Cond. Value at Risk 95\%	438.8635718
Mean Confidence 95\%	1.04773
Std. Dev. Confidence 95\%	0.70527
Coefficient of Variation	0.0383532
Standard Error	0.534298
Expected Loss	0
Expected Loss Ratio	0%
Expected Gain	440.7573815
Expected Gain Ratio	100%
Expected Value Margin	1

Select cells E147:E156 and then enter the formula, =PsiData(C147) If using a version of Excel that does not support Dynamic Arrays, press CTRL + SHIFT + ENTER to array enter the formula into all 10 cells. Repeat the same steps to array enter " $=$ PsiData(C148)" in cells F147:F156, "=PsiData(C149)" in cells G147:G156, "=PsiData(C150)" in cells H147:H156, "PsiData(C151)" in cells I147:I156, and "=PsiData(C152)" in cells J147:J156. Then click Simulate Run Once to run a simulation.

The ten Excel cells in these columns will update with trial values for each of the PsiForecast() functions in column C. For example, cells E147:N147 will contain the first 10 trial values for the PsiForecast() function in cell C147, Cells E147:N147 will contain the first 10 trial values for cell C148 and so on. (For more information on the PsiData() function, please see the Excel Solvers Reference Guide chapter, "Psi Function Reference.")

Note: In Analytic Solver Cloud and in later versions of desktop Excel, the PsiData() function returns a Dynamic Array. To use this function in the Cloud, you need only enter the Psi function in one cell as a normal function, i.e., not as a control array. The contents of the Dynamic Array will "spill" down the column. If a nonblank cell is "blocking" the contents of the Dynamic Array, PsiData() will return \#SPILL until such time as the blockage is removed. Use the optional numTrials argument to specify the number of trials returned in the Dynamic Array. If not present, all trials will be returned.
If we create an Excel chart of these values, you'll see a chart similar to the one below where each of Series1 through Series6 represents a different Monte Carlo trial. The random "epsilon" value added to each forecast value accounts for (all of) the variation among the lines. If the third argument were FALSE or omitted,
all of the lines would overlap, assuming that the table or parameters and the starting values were not changing.

The remaining Forecasting methods can be used in the same way using PsiForecast() with information from their respective Stored Model sheets.

Forecasting Algorithm	Stored Model Sheet	Minimum \# of Initial Points when Simulate = False	Minimum \# of Initial Points when Simulate = True
Non- Seasonal ARIMA	ARIMA_Stored	$\operatorname{Max}(\mathrm{p}+\mathrm{d}, \mathrm{q})$	$\operatorname{Max}(\mathrm{p}+\mathrm{d}, \mathrm{q})$
Seasonal ARIMA	ARIMA_Stored	$\begin{aligned} & \operatorname{Max}((\mathrm{p}+\mathrm{d}+\mathrm{s} *(\mathrm{P} \\ & +\mathrm{D}),(\mathrm{q}+\mathrm{s} * \mathrm{Q}) \end{aligned}$	$\begin{aligned} & 1+\operatorname{Max}((\mathrm{p}+\mathrm{d}+\mathrm{s} \\ & *(\mathrm{P}+\mathrm{D}),(\mathrm{q}+\mathrm{s} * \\ & \mathrm{Q})^{* *} \end{aligned}$
Exponential Smoothing	Expo_Stored	1	1
Double Exponential Smoothing	DoubleExpo_Stored	1	1
Moving Average Smoothing	MovingAvg_Stored	\# of Intervals	\# of Intervals
Holt Winters Smoothing	MulHoltWinters_Stored AddHoltWinters_Stored NoTrendHoltWinters_Stored	2 * Periods	$2 *$ \#Periods

**Adding a number of data points equal to the Number of Periods (as shown on the Time Series - ARIMA dialog) to the Minimum \# of Initial Points when Simulate = True is recommended when calling PsiForecast() with Simulate $=$ True.

Excel 2016 Forecast Functions

Users of Analytic Solver Comprehensive, Analytic Solver Simulation and Analytic Solver Basic will notice two Psi Forecast functions:

PsiForecastLinear() and PsiForecastETS(). These two functions were introduced to coincide with the new Excel 2016 Forecast functions: Forecast.Linear and Forecast.ETS.

PsiForecastLinear predicts future values for a time series data set (containing known or historical data) using linear regression. PsiForecastETS uses exponential smoothing to predict future values in a time series dataset with the option to either automatically detect seasonality in the data set or pass a seasonality period. Passing False as the last argument to either function will result in a static forecast. If True is passed for this argument, a random error will be included in the forecasted points.

Note: When comparing the results of the Psi functions with the Excel functions, you may see slightly different calculated forecast values depending on whether the Psi Interpreter or Excel Interpreter is selected on the Task Pane Platform tab. When the Psi Interpreter is used, a slightly different (but arguably better) methodology is used to compute these forecast functions. When the Excel Interpreter is selected, Microsoft Excel is used to calculate the worksheet, and thus Excel's methodology will be used.

To illustrate an example of how to use these two functions, we'll reuse the Airpass time series dataset. Click back to the Data tab within Airpass.xlsx. Recall that the Airpass time series dataset contains international airline passenger data from January 1949 to December 1960. Using this historical data, we will forecast the number of passengers in 1961.

PsiForecastLinear() performs linear regression of known_y values with known_x time variables to forecast the value at time, X. This function takes the following arguments.

```
PsiForecastLinear(X, known_ys, known_xs[, simulate])
```

- X: The target date. A data point for which you want the predicted value. A data point may be date/time or numeric.
- known_ys: An Excel range containing the independent variables in the given dataset.
- known_xs: An Excel range containing the time variables in the given dataset.
- simulate: (Optional) Pass True or False for the third argument. Passing False (the default) will result in a static forecast that will only update if a cell passed in the known_ys argument is changed. If True is passed for this argument, a random error will be included in the forecasted points.

Click a blank cell on the worksheet, say cell E3, then in Analytic Solver Desktop click Formulas - Insert Function on the Ribbon to display the Function Argument dialog. In Analytic Solver Cloud, you'll need to type the formula directly into cell E3.
Select PsiData Mining form the Category drop-down menu, then scroll down to PsiForcastLinear and click OK. The Function Arguments dialog opens.

- X: Select cell Data!E3 for the target argument.
- Known_ys: Select or enter B3:B146. These are the independent y values. Be sure to anchor this range of cells (as shown in the screenshot below) so that we can easily copy the formula.
- Known_ys: Select or type A3:A146 for the third argument, known_xs. Again, anchoring this Excel range now allows easy copying and pasting later.
- Simulate: Pass False for this argument. See the Time Series Simulation example below for more information on passing True for this argument.

Click OK to enter the formula into the Excel cell, then copy and paste this formula into cells E4:E14.

1	A	B	C	D	E
1					
2	Month	Passengers		Future Dates	PsiForecastLinear
3	Jan-49	112		Jan-61	471.3943104
4	Feb-49	118		Feb-61	475.7290965
5	Mar-49	132		Mar-61	478.1732961
6	Apr-49	129		Apr-61	480.8793742
7	May-49	121		May-61	483.4981594
8	Jun-49	135		Jun-61	486.2042375
9	Jul-49	148		Jul-61	488.8230227
10	Aug-49	148		Aug-61	491.5291008
11	Sep-49	136		Sep-61	494.2351789
12	Oct-49	119		Oct-61	496.8539641
13	Nov-49	104		Nov-61	499.5600422
14	Dec-49	118		Dec-61	502.1788274
15	--. rn	115			

If any values change in the ranges Data!A3:A146 or Data!B3:B146, the forecast will be recomputed; however, if the input argument values remain the same, PsiForecastLinear() will always return the same forecast values. As mentioned above, the first forecasted value in cell E3 is the most accurate predicted point. Accuracy declines as the number of forecasted points increases.
We can create a similar forecast using PsiForecastETS(). PsiForecastETS() performs Exponential Triple Smoothing on known values to forecast future values at time, target. The fourth argument, seasonality, is optional. If not given, seasonality is automatically detected from the the data. If given, automatic seasonality detection is turned off, and the given seasonality period is enforced. This function takes the following arguments.

```
PsiForecastETS(target_date, values, timeline[,
seasonality][, data_completion][, aggregation][,
simulate])
```

- target_date: A data point for which you want the predicted value. A data point may be date/time or numeric. If a target date is given that appears before the start of the timeline in the dataset, PsiForecastETS will return \#NUM (i.e., if 1940 is passed for X).
- values: An Excel range containing the historical values in the given data set.
- timeline: An Excel range containing the time variables in the given data set. Both functions require the historical data to be structured using a constant interval between data points. Since the Airpass data set presents monthly passenger data, the forecast must also predict the number of passengers by month.
- seasonality: (Optional) This argument indicates the length of the seasonal pattern. The following values are accepted as valid inputs. All other values will return a \#NUM error.
0 : Signifies no seasonality exists in the data. The result is a linear prediction.

1: (Default Value) Triggers Solver to automatically detect seasonality within the data.
$1<\mathrm{N}<8,760$: Positive integer values greater than 1 but less than 8,760 , will can be entered as the seasonality period.

- data_completion: (Optional) This argument specifies how to handle missing values. The default value of 1 replaces missing values by interpolation. If 0 is passed, missing values will be replaced with 0 's.
- aggregation: (Optional) PsiForecastETS can aggregate multiple points with the same time stamp. Pass an integer value from 0 to 6 to indicate which method should be used.

0: (Default) Average
1: SUM
2: COUNT
3: COUNTA
4: MIN
5: MAX
6: MEDIAN

- simulate: (Optional) Pass True or False for the third argument. Passing False (the default) will result is a static forecast that will only update if a cell passed in the second argument is changed. If True is passed for this argument, a random error will be added to each forecasted point.
On the Excel ribbon, click Formulas - Insert Function to display the Function Argument dialog.
Select PsiData Mining form the Category drop-down menu, then scroll down to PsiForcastETS and click OK.
- Target_date: Select cell Data!E3.
- Values: Select or enter B3:B146. These are the independent y values. Anchoring the cell range (as shown in the screenshot below) will allow us to easily cut and paste the formula later.
- Timeline: Enter the dates January 1961 - December 1961 in cells D3:D11 for timeline. These are our target dates or the dates that we want to predict. These are our time variables. Anchoring the cell range, as shown in the screenshot below, will allow us to easily cut and paste the formula.
- Seasonality: Enter 1 for this argument to automatically detect the seasonality within the data.
- data_completion: Enter 0 for this argument to substitue any empty value with 0 .
- aggregation: Enter 0 for this argument to aggregate multiple points with the same date using AVERAGE.
- Simulate: Passing TRUE for the third argument indicates to XLMiner that you plan to use this function call in a Monte Carlo simulation. Therefore, a random epsilon value (different on each Monte Carlo trial) will be added to each forecasted point.

Click OK to enter the formula into the Excel cell. This formula can easily be copied to cells E4:E14.

	A	B	C	D	E	F
1						PsiForecastET
2	Month	Passengers		Future Dates	PsiForecastLinear	Automatic Seasonality Detection
3	Jan-49	112		Jan-61	467.7264315	450.9100631
4	Feb-49	118		Feb-61	475.7290965	476.9380729
5	Mar-49	132		Mar-61	478.1732961	460.112461
6	Apr-49	129		Apr-61	480.8793742	491.7549692
7	May-49	121		May-61	483.4981594	482.2688644
8	Jun-49	135		Jun-61	486.2042375	433.3969442
9	Jul-49	148		Jul-61	488.8230227	514.7938906
10	Aug-49	148		Aug-61	491.5291008	577.1929713
11	Sep-49	136		Sep-61	494.2351789	516.4226707
12	Oct-49	119		Oct-61	496.8539641	501.8959522
13	Nov-49	104		Nov-61	499.5600422	459.7185426
14	Dec-49	118		Dec-61	502.1788274	430.0349623

As with the PsiForecast Data Mining functions, to view the results of the simulation, including frequency and sensitivity charts, statistics, and percentiles
for the full range of trial values, we must first create an output cell. Select cell F3, then click Analytic Solver Platform - Results - Referred Cell on the Excel ribbon. Select cell F17 (or any blank cell on the spreadsheet) to enter the PsiOutput formula. Copy this formula from cell F17 down to cell F28. Therefore F17 $=\operatorname{PsiOutput}(\mathrm{F} 3), \mathrm{F} 18=\operatorname{PsiOutput}(\mathrm{F} 4)$, and so on.

Click the down arrow on the Simulate icon on the Analytic Solver Platform ribbon and select Run Once. Instantly, Analytic Solver Simulation performs a simulation with 1,000 Monte Carlo simulation trials (the default number). Since this is the first time a simulation has been performed, the following dialog opens. Subsequent simulations will not produce this report. However, it is possible to reopen the individual frequency charts by double-clicking each of the output cells (F17:F28).

Important Note: For users who are familiar with simulation models in Analytic Solver, you will notice that the time series simulation model that we just created now includes 12 uncertain functions (F17:F28) which are the cells containing our PsiForecastETS() functions.

The dialog above displays frequency charts for the first nine, of the total 12, uncertain function cells containing the forecasted data points. Double-click the chart for cell F3 (top-left) to open the Simulation Results dialog displaying PsiForecastETS() function in cell F3. From here, you can view frequency and sensitivity charts, statistics and percentiles for each forecasted point.

The frequency chart displays the distribution of all 1000 trial values for cell F3 with an observed mean 455.825 and standard deviation of 38.23 shown in the Chart Statistics.

On the right of the dialog, you'll find the Statistics pane, which includes summary statistics for the full range of forecasted outcomes. We can see that the minimum forecasted value during this simulation was 290.98 , and the maximum forecasted value was 579.84. In this simulation, Value at Risk 95\% shows that 95% of the time, the number of international airline passengers was 519.65 or less in January 1961. The Conditional Value at Risk 95\% value indicates that the average number of passengers we would have seen (up to the 95% percentile) was 451.69. For more information on Analytic Solver Platform's full range of features, see the chapter, "Examples: Simulation and Risk Analysis".

As in the previous section, we will graph the first few trial values (out of a total of 1000) for each forecasted point. Select cells G17:G28, then enter the formula,$=\operatorname{PsiData}(F 17)$, then press CTRL + SHIFT + ENTER to array enter the formula into all 12 cells. Repeat the same steps to array enter "=PsiData(F18)" in cells H17:H28, "=PsiData(F19)" in cells I17:I28, and so one. On the Analytic Solver Platform ribbon, click Simulate - Run Once to run a simulation.

The 12 Excel cells in these columns will update with trial values for each of the PsiForecastETS() functions in cells F3:F14. Cells G17:G28 will contain the first 12 trial values for the PsiForecastETS() function in cell F3, cells G17:G28 will contain the first 12 trial values for cell F4, and so on. (For more information on the PsiData() function, please see the Excel Solvers Reference Guide chapter, "Psi Function Reference.")

If we create an Excel chart of these values, you will see a chart similar to the one below where each of Series 1 through Series 12 represents a different Monte Carlo trial. The random "epsilon" value added to each forecast value accounts for (all of) the variation among the lines. If the third argument were FALSE or
omitted, all of the lines would overlap, assuming that the table or parameters and the starting values were not changing.

Getting Results: Stochastic Optimization

This chapter explains how to obtain and interpret results from stochastic optimization (optimization of models with uncertainty) in Analytic Solver Comprehensive or Analytic Solver Simulation with Analytic Solver Optimization. We'll discuss what can go wrong, and what to do about it, and also how to get more than a single optimal solution from your model.

Analytic Solver Comprensive has powerful algorithms for automatically transforming and solving optimization models with uncertainty. But since a stochastic optimization model includes decision variables, uncertain variables, and constraints and an objective that may depend on both, there are "more things that can go wrong." Indeed, everything you've read in the previous two chapters, "Getting Results: Optimization" and "Getting Results: Simulation" will apply to stochastic optimization - plus there are a variety of special result messages and error messages that apply only to stochastic optimization models.
The good news is that everything you've learned so far about conventional optimization and Monte Carlo simulation does apply to stochastic optimization in Analytic Solver Comprehensive. Unlike most other software packages, Analytic Solver Comprehensive has one consistent user interface, set of terms, and model elements for all types of simulation and optimization models.

In the following sections, we'll focus on immediate actions you can take when you get an unexpected result - but if you read the chapter "Mastering Stochastic Optimization Concepts," you'll learn far more about stochastic optimization models and solution methods, and better understand why the unexpected result appeared, and how to design your model to get the solutions you want.

What Can Go Wrong, and What to Do About It

When you click the Optimize button on the Ribbon, or the green arrow on the Task Pane to solve, you'll normally get one of these outcomes:

1. A solution that makes sense to you. This is normally accompanied by a Solver Result message in green at the bottom of the Task Pane. You can proceed to "When Things Go Right: Getting Further Results."
2. A Solver Result error message that you understand and can correct, in red at the bottom of the Task Pane. You can take corrective action.
3. A Solver Result error message that you don't understand, in red at the bottom of the Task Pane. You should read the solution log in the Output tab (in Analytic Solver Desktop), click the error message and read Help about the message.
4. A solution that you don't understand, or that seems wrong. Again before doing anything else, you should read the solution log in the

Output tab (in Analytic Solver Desktop), click the error message to display Help, run available reports as described below, and read the section below "When the Solution Seems Wrong."
5. Solving runs for a very long time, and you don't get a solution or a Solver Result message until you press ESC or click Pause/Stop. You should read the section below "When Solving Takes a Long Time."

In rare cases, you might find Excel shutting down or "locking up" (so nothing happens when you press and hold the ESC key for several seconds in Analytic Solver Desktop or the Pause button in Analytic Solver Cloud). In this case please contact Frontline Systems Technical Support at (775) 831-0300 x4 or support @ solver.com. Some Solver Result error messages ask you to contact Technical Support. If you can send us your model, this will be very helpful.

But experience shows that 99% of all technical support cases involve "pilot error" by the user, and that 90% of all such cases could be easily resolved by reading online Help or the User Guide. So we hope you'll keep reading, and that you'll take these steps before calling technical support!

Review Messages in the Output Tab

If using Analytic Solver Desktop, your first step should be to review the messages in the solution log in the Task Pane Output tab. This is especially important when you're solving a stochastic optimization model, to ensure that you understand the solution method that Analytic Solver Comprehensive used, and how your model was transformed and solved.

A Model Solved with Simulation Optimization

On the next page is an example of the Output tab at the solution of the example model YieldManagementModel3.xls (described more fully in the chapter "Examples: Simulation and Risk Analysis").
If you are using Analytic Solver Desktop, you can click the Copy 㞟 icon to copy the contents of the solution log to the Windows Clipboard, where you can paste it into Microsoft Word, NotePad, or an email message to Frontline Systems Technical Support. Also, on the next page is the complete solution log from the Gas Company Chance model (before clicking the button to automatically improve the solution).

Note what happened during the solution process: Analytic Solver Comprehensive found that a Stochastic Transformation could not be applied to this model, because it has a decision-dependent uncertainty (the number of noshows at cell C7 depends on the number of tickets sold, our decision variable, at C11). See the chapter "Mastering Stochastic Optimization Concepts" for more information on this important property of your model.

Analytic Solver diagnosed the model as "SIM NonCvx," and solved it using simulation optimization - the most general, but least scalable stochastic optimization method in Analytic Solver Comprehensive. It used the GRG Nonlinear Solver Engine (selected by the user) for optimization, and on every trial solution explored by the GRG Solver, it automatically performed a simulation.

---- Start Solve ----
Using: Full Reparse.
Parsing started...
Diagnosis started...
Warning: Non-smooth operation PSILOGNORM at 'Yield Management 3'!H25; 5 Nonsmooth operations found.
User selected "Simulation Optimization".
Diagnosis started...
Warning: Non-smooth operation PSILOGNORM at 'Yield Management 3'!H25; 10 Nonsmooth operations found.
Model diagnosed as "SIM NonCvx".
User engine selection: Standard GRG Nonlinear
Model: [YieldManagementModel3(SimOpt).xls]Yield Management 3
Using: Psi Interpreter
Parse time: 0.30 Seconds.

Engine: Standard GRG Nonlinear
Setup time: 0.00 Seconds.

Engine Solve time: 0.22 Seconds.
Solver found a solution. All constraints and optimality conditions are satisfied.
Solve time: 0.76 Seconds.
Note: Information such as what is shown above is not available in the Cloud app since the RASON Server does not rely any information back to the app until the model is handed over to the Solver engine.
Let's contrast what happened above with another example, where there are no decision-dependent uncertainties, and the underlying optimization model is a linear programming problem, but there is a chance constraint.

A Model Solved with Robust Optimization

Below is an example of the Output tab in Analytic Solver Desktop at the solution of the Gas Company Chance model in StochasticExamples.xls (described more fully in the chapter "Examples: Stochastic Optimization").

Again, if you click the Copy copied to the Windows Clipboard, where you can paste it into Microsoft Word, NotePad, or an email message to Frontline Systems Technical Support. Below is the solution log from the Gas Company Chance model (before clicking the button to automatically improve the solution).
---- Start Solve ----
Using: Full Reparse.
Parsing started...
Uncertain input cells detected.
User requested Robust Counterpart.
Diagnosis started...
Convexity testing started...
Stochastic Transformation succeeded using Robust Counterpart with D Norm.
Transformed model is "LP Convex".
Model: [StochasticExamples.xls]Gas Company Chance
Using: Psi Interpreter
Parse time: 1.19 Seconds.
Engine: Standard LP/Quadratic
Setup time: 0.02 Seconds.
Engine Solve time: 0.00 Seconds.
Solver found a conservative solution to the robust chance constrained problem. All constraints are satisfied.
Solve time: 1.36 Seconds.

Click the Solver Result Message for Help

The Solver Result message in Analytic Solver Desktop is always underlined it is a hyperlink to Help. If you aren't sure that you fully understand it, click the link to open online Help to a detailed discussion of the message.
Below is an example of Help that appears when you solve the Gas Company Chance model, and click on the Solver Result error message in green, "Solver found a conservative solution to the robust chance constrained problem. All constraints are satisfied."

Notice that the Help topic points out the option to Auto Adjust Chance Constraints. This is one key to better solutions when robust optimization is used, as in this example. Clicking the (D) icon at the top of the Task Pane yields an improved solution, and the following solution log:
---- Start Solve ----
Model: [StochasticExamples.xls]Gas Company Chance
Using: Psi Interpreter
Using: Full Reparse.
Parsing started...
Diagnosis started...
Parse time: 0.19 Seconds.
Engine: Standard LP/Quadratic
Setup time: 0.00 Seconds.
Engine Solve time: 0.00 Seconds.
(above lines appear 7 times)
Solver has converged to the current solution of the robust chance constrained problem. All
constraints are satisfied.
Solve time: 0.39 Seconds.
This was a successful solution - but in cases where you have a Solver Result error message that you don't understand, or a solution that you don't understand, the solution \log can be even more helpful.

Note: If you are using Analytic Solver Cloud, set Operating Mode (Help Operating Mode) to either Guided Mode or Auto Help Mode to find detailed information on the Solver result messages.

Choose Available Optimization Reports

As for conventional optimization, the available reports can help you understand the properties of a solution found by Analytic Solver. Just select Reports Optimization Reports on the Ribbon - the available reports in the gallery are updated each time you solve.

Message from Add-in: Analytic				\times
Analytic Solver Reports				
Reports are available after your model has run. Click to select an available report or learn more about why a report is unavailable. Hover over the options for additional information.				
Sensitivity		Parameter Analysis Answer Report		
Optimization		Sensitivity Report	Feasibility Report	
		(3) Structure Report	Uncertainty Report	
V) $\begin{aligned} & \text { Simulation } \\ & \text { Simulation Reports }\end{aligned}$	>	Solutions Report	Population Report	
Close				

Below is an Answer Report obtained for the Gas Company Chance model when we first received the Solver Result message "Solver found a conservative solution to the robust chance constrained problem. All constraints are satisfied." Note: This report is only generated in Analytic Solver Cloud when uncertain exceptions exist.

Note especially row 26, which reports the status of the chance constraint $\operatorname{VaR}_{0.95}(\$ C \$ 23)>=0$: We asked for satisfaction of this constraint $\mathbf{9 5 \%}$ of the time, but at this solution the constraint is being satisfied $\mathbf{9 9 . 5 \%}$ of the time. This is a strong hint that the solution is conservative, and can be improved.

The Uncertainty Report for this model shows us the subset of the constraints and objective that depend on uncertainty. (Note: Since this model is automatically transformed to its robust counterpart, which has no uncertainty, you must set the Task Pane Platform tab Optimization Model group Solve Uncertain Models option to Simulation Optimization, then choose Analyze Original Problem to produce this report.)

Note: This report is not available in Analytic Solver Cloud.

When Solving Takes a Long Time

When your model takes a long time to solve, the Task Pane Output tab can be helpful during the solution process - at a minimum, to reassure you that the Solver is still making progress, and has not "hung up." If it is not already visible when you first start solving, the Output tab will appear automatically after a few seconds of solution time, as long as the Task Pane itself is visible.

Running Chart of the Objective

The bottom part of the Output tab shows a running chart of the objective of the best solution found so far. This is most often useful for simulation optimization models, which may take some time to solve. Below is an example (staffing for a call center, not included among the installed example files):
$\left.\begin{array}{|l|}\hline 106000 \\ 104000 \\ 102000 \\ 100000\end{array}\right]$

Interrupting the Solution Process

You can interrupt the solution process at any time, by pressing the ESC key in Analytic Solver Desktop, or by clicking the button in either Analytic Solver Desktop or the Cloud app, in the Task Pane Output tab. If your model is very large and you are using Analytic Solver Desktop, you might have to hold down the ESC key for a second or two. Since the input focus may not be on the Task Pane when you click with the mouse, you might have to click the button twice. A dialog like the one on the next page will appear.

Click Continue if you want to continue solving; click Stop to cause the Solver to stop the solution process (this may take a few seconds) and display the message "Solver stopped at user's request." Clicking Restart may be useful with the Evolutionary Solver - see the Frontline Solvers Reference Guide.

Reasons Why Solving Takes a Long Time

There are several reasons why solving a stochastic optimization model might take a long time. To better understand why, read the chapter "Mastering Stochastic Optimization Concepts."

1. If your model doesn't meet the requirements for the stochastic programming or robust optimization solution methods, then the slowest method - simulation optimization - must be used. Since this requires an optimizer (such as the Evolutionary Solver) that will explore many Trial Solutions, and a new simulation must be performed for every Trial Solution, this method can take a lot of computing time.
2. If you are using Analytic Solver Desktop and you have the Platform tab Simulation group Interpreter option set to Excel Interpreter, Excel is used to recalculate the worksheet on each Monte Carlo trial. This is usually an order of magnitude slower than the PSI Interpreter, though it requires significantly less memory.
3. If model diagnosis or problem setup is slow (see timing messages in the Task Pane Output tab), you might be using array formulas, LOOKUP functions with large ranges as arguments, or long "chains" of formulas where each formula depends on an earlier formula, which can slow down the PSI Interpreter. See the analysis in the chapter "Getting Results: Optimization."
4. Your model might be well formulated, but very large, or it might require non-smooth functions, or many integer variables. A faster processor, multi-core processor, or more memory may help.

When the Solution Seems Wrong

When your optimization results seem wrong, before doing anything else, you should read any messages in the Output tab, and click the message to display Help as described above. We emphasize this, because very often when we are contacted in technical support, the user has not taken these basic steps.
Bear in mind that the uncertain function cells in your optimization model normally display the calculated value for the last Monte Carlo trial of the last simulation run. (All of Analytic Solver's solution methods - stochastic programming, robust optimization, and simulation optimization - perform at least one simulation). It can be very helpful to cycle through the Monte Carlo
trials, and examine the values of uncertain function cells, as well as intermediate formula cells on which they depend. Just use the left and right arrows on the Ribbon to change the trial index. You may find that your model calculates a result you did not expect for some values of the uncertain variables.

Although software bugs are always possible, consider carefully the possibility that the simulation results are correct for the model you've defined, and that your expectation is wrong. We sometimes find in technical support that what your model actually says is different from what you intended.

When Things Go Right: Getting Further Results

When you do receive a solution that makes sense to you, and you have a Solver Result message in green at the bottom of the Task Pane for your stochastic optimization model, you have available all the optimization and simulation reports and charts that apply to your model and solution. Since a simulation is performed for every stochastic optimization model, you can double-click the uncertain function cells in your model (in Analytic Solver Desktop) or on the Model tab of the Solver Task Pane (in Desktop or the Cloud) to display the Uncertain Function dialog, and obtain many different views of the uncertainty in your model:

Dialog Tabs

- The Frequency, Cumulative Frequency, and Reverse Cumulative Frequency tabs provide three different views of the full range of outcomes for an uncertain function. In Analytic Solver Desktop, you can click to display "crosshairs" with numerical values on these charts, or add Lower and Upper bounds to see the estimated probability of a profit or loss, for example.
- The Tornado chart on the Sensitivity tab quickly shows you which uncertain variables have the greatest impact on this uncertain function, across the full range of Monte Carlo trials. The Scatter Plots tab often reveals further insights about the behavior of this uncertain function versus each uncertain variable, or versus other uncertain functions.
- The Statistics and Percentiles tabs give you a full range of numerical results for this uncertain function, across the full range of Monte Carlo trials. Using PSI Statistics functions, you can place any of these values into a worksheet cell.

Panels and Toolbars

Analytic Solver Desktop includes rich charting abilities that are currently not available in Anlaytic Solver Cloud, but are coming soon. The suggestions below all pertain to Analytic Solver Desktop.

- Using the right panel of the dialog, you can change the chart type and color in both Analytic Solver Desktop and Cloud apps. In Analytic Solver Desktop you can additionally add titles, legends, gridlines, or chart markers. From the Options dialog (accessible from the Options button on the Analytic Solver Desktop Ribbon), on the Charts and Markers tabs, you can set default chart and marker settings for all of your charts.
- Using the title toolbar icons in Analytic Solver Desktop, you can save your settings, print the charts or numbers from any of the dialog tabs, or copy the charts or numbers to the Windows Clipboard, where they can be pasted
into other applications. You can also fit a distribution to the simulation results or export your results to either Power BI or Tableau.
- In Analytic Solver Desktop, click the leftmost icon on the second row to display the 3-D toolbar that lets you - with a single click - shift between 2D and 3-D, shrink or magnify the chart, or move or rotate the chart to a different perspective.

Dimensional Modeling

Introduction

Dimensional Modeling is a fundamental new capability in Analytic Solver Comprehensive when using Analytic Solver Desktop. It introduces new concepts such as dimensions and cubes, and provides all the tools you need to build and solve models using these concepts. If you're used to spreadsheet modeling, Dimensional Modeling will require some learning and practice. But when you want to construct larger models for common business situations where there are multiple products, projects or investments, multiple customer types, geographic regions, or time periods, multiple sources and destinations, dimensional modeling can turn a very complex, hard-to-maintain spreadsheet problem into a simple, well-structured, easily maintained and expandable model.
Note: Dimensional modeling is not currently supported in Analytic Solver Cloud.

If you've used Pivot Tables or PowerPivot in Excel, or if you've used a multidimensional database, data warehouse or business intelligence tool, the concepts behind Dimensional Modeling will probably be familiar. But these tools primarily deal with multidimensional data, generally reflecting the past. Dimensional Modeling makes it easy to construct multidimensional models, mostly composed of formulas, that you can use in planning for the future.
Unlike other tools, in Analytic Solver you can use everything you know about Excel formulas in Dimensional Modeling. For example, if cell A1 contains a number and cells B2 and C3 contains =PsiCube() functions, a formula like $=\mathrm{A} 1+\mathrm{B} 2 * \mathrm{C} 3$ in a cell will yield a "cube result," multiplying and adding the appropriate values along several dimensions. You can also define B2 and C3 based on Pivot Tables containing input data, and easily obtain a Pivot Table that displays the results of like $=\mathrm{A} 1+\mathrm{B} 2 * \mathrm{C} 3$.

Very often, a successful model is expanded to include more products, regions, time periods, etc. This is much easier to do with a Dimensional Model than with a traditional spreadsheet model. Formulas like $=\mathrm{A} 1+\mathrm{B} 2 * \mathrm{C} 3$ need not change at all when you add elements (more cell or database values) to the existing dimensions. You can even add new dimensions to B2 and C3, or turn A 1 from a single cell to a cube, and $=\mathrm{A} 1+\mathrm{B} 2 * \mathrm{C} 3$ will automatically calculate results across the additional dimensions.

Dimensional Modeling in Optimization and Simulation

Dimensional Modeling can be used to create multidimensional "what if" models - a very powerful capability by itself. But you can also use it to create better structured, more compact and easily readable optimization and simulation models. For example, blocks of constraints that once required large ranges of repetitive formulas can now be entered in one or a few cells, drastically reducing the number of formulas. Similarly, in a simulation model, blocks of uncertain functions that once required large numbers of repetitive formula cells can be reduced to one or a few cells. You can define as many "structural dimensions" as you like, and use up to 8 of them at one time, in any PsiCube() function or calculated "cube intermediate result" in a formula.

Dimensional Modeling and Parametric Analysis

Dimensional Modeling also offers a powerful extension of Analytic Solver's capabilities for multiple parameterized optimization and simulation (described in the earlier chapters "Examples: Parameters and Sensitivity Analysis," "Getting Results: Optimization" and "Getting Results: Simulation"). It enables you to perform sensitivity analysis, or run many optimizations or simulations, varying parameters across multiple dimensions on each run, and capture all the results optionally in Pivot Tables and Pivot Charts.

Without Dimensional Modeling, you define parameters for sensitivity analysis, optimization and simulation, using PsiSenParam(), PsiOptParam() and PsiSimParam() functions, respectively. These parameters function like simple "cubes" defined over just one dimension - the "run index" 1, 2, 3, etc. You run multiple calculations, optimizations or simulations, where all the parameters of a given type "move together" through their arrays of values.
With Dimensional Modeling, you can define as many "parametric dimensions" as you like, and create cubes of parameter values that are defined over one or more dimensions. You can then perform sensitivity analysis or run multiple optimizations or simulations, where any subset of your parametric dimensions are "active" (the others are "locked"), and get results for all combinations of the parameter values you've defined.

Just as you can expand a model by adding a structural dimension and generalize one or more cubes over the new dimension, without changing your formulas, you can add a parametric dimension, use it in one or more cubes, and expand your sensitivity analysis, optimization or simulation runs to include more scenarios, without changing any formulas.

Visualizing Dimensional Modeling Results

As mentioned earlier, you can define cubes based on Pivot Tables containing input data, and easily create new Pivot Tables that displays results of formulas like $=\mathrm{A} 1+\mathrm{B} 2 * \mathrm{C} 3$. But creating a Pivot Table does require several steps, as well as "real estate" on your spreadsheet. If you want to inspect the results of intermediate calculations, you might need a separate table area for each "cube formula" cell in your model.
Analytic Solver makes this much easier. Just double-click on any cube formula to see a pop-up window that behaves like an "instant Pivot Table," allowing you to 'drag and drop' both structural and parametric dimensions across the columns and rows, and reorganize and display the data or calculated results. You'll see a number of examples of these pop-up windows in this chapter. For final results and reporting, you can use Pivot Tables and Charts.

Dimensions and Cubes

Let's define the concepts in Dimensional Modeling more formally. You can define two types of dimensions, Structural and Parametric, and use them in calculation/sensitivity analysis, optimization and simulation models. You give a name (such as "Region") for the dimension, and you provide names/labels or numbers for the elements of the dimension - for example "North," "South," "East" and "West." Note that a dimension doesn't define the data itself - it defines a structure, relevant for your business situation, for the data.

Cubes are multi-dimensional arrays that hold the data. Other names used in data warehouse and business intelligence systems, are measures and/or fact tables.

A cube has an element (data value) for each combination of elements of the dimensions you specify when defining the cube. For example, you might create a cube named "Sales," defined over the "Regions" dimension, with four numeric values representing sales in the North, South, East and West regions. The structure of a cube is very much like a Pivot Table, and you can create a cube by placing a PsiPivotCube() function in a cell, referencing an existing Pivot Table.

A single cube holds a single "measure" or type of value. For example, a person has many attributes such as height, weight, hair color, and eye color. You might define a dimension "Person" with elements such as "John", "Mary" and "Susan." But since a cube holds a single attribute or measure, you'd need four different cubes, each defined over the "Person" dimension, to hold the values of height, weight, hair color, and eye color.

There are three main steps involved in creating a Dimensional Model. Step 1 is to define at least one dimension, either parametric or structural. Step 2 is to define at least one (usually several) cubes. Step 3 is to define at least one output cell - for example, the objective cell in an optimization model - with a formula that depends on a cube. Often, you'll have outputs that are cubes and contain many - even thousands of - result values.

An Example Dimensional Model

This chapter will use the Product Mix example, introduced at the beginning of the chapter "Examples: Conventional Optimization," to illustrate Dimensional Modeling concepts, and the menu choices and Psi functions you can use to build a Dimensional Model step by step. The example is very simple, with just two structural dimensions - Products and Parts. This will make it easier to fully grasp the concepts and step-by-step operations, but since you can usually "lay out" two-dimensional data in regular spreadsheet columns and rows, Dimensional Modeling might seem like "overkill" for this simple example. The advantages of Dimensional Modeling will be apparent when you are modeling a more realistic business situation with many dimensions.

Click Help - Example Models on the Analytic Solver ribbon, to open the Frontline Example Models Overview workbook. Click the Optimization Examples button, or select the Optimization tab, and scroll down to find and click Structural Dimensions from the list. When this workbook opens, click the Product Mix Original tab, which displays a conventional version of the Product Mix model.

This example solves the problem of how many TVs, Stereos and Speakers a company should manufacture. It has three decision variables (C14:E14) that correspond to the number of TVs, Stereos and Speakers that the company will manufacture. The profit margins for each product are known. The gross margin (cell C24) for a TV is $\$ 75$. The gross margin for stereos (cell D24) is $\$ 50$ and the gross margin for speakers (cell E24) is $\$ 35$.

Five different parts are used in the manufacturing process of these three products. The parts needed to build a TV are: 1 chassis, 1 picture tube, 2 speaker cones, 1 power supply, and 2 electronic kits. To build a stereo requires 1 chassis, 2 speaker cones, 1 power supply, and 1 electronic kit. Finally, speakers require 1 speaker cone and 1 electronic kit.

The constraints are simply that the number of parts used to build each product (calculated in cells G18:G22) cannot exceed the inventory (found in cells $\mathrm{H} 18: \mathrm{H} 22$). A non-negativity bound has also been added to the variables (C14:E14 >=0) as it would be impossible to manufacture a negative amount of products. Since the company wants to maximize profit, we ask ASP to maximize the value of the objective (cell G24), the total gross profit.

You can view the complete model in the Task Pane Model tab. Solve the model by clicking the green arrow in the Model tab. ASP will run an optimization to find a solution of 200 TVs (cell C14), 200 Stereo (cell E14) and 0 speakers (cell E14). This solution gives a final objective of $\$ 25,000$ in cell G24.

Now let's inspect a model of this same problem setup using Dimensional Modeling: Click the Dimensional Modeling tab.

Cells K13 and L13 define the Products and Parts dimensions. Cells K16:L17 define four cubes, using the PsiCube() function. Cells K20 and L20 contain cube formulas that calculate the constraints and objective, using the PsiReduce() function. Cells K25:K29 contain an Excel array formula $\{=$ PsiCubeData(K20) $\}$ to display the values of the left hand sides of the constraints on the spreadsheet; but if you simply double-click cell K17, you'll see the same values in a pop-up window that functions like an "instant Pivot Table."

Notice that the Task Pane Model tab outline (not pictured here) lists the Dimensions and Cubes in the model, as well as the Variables, Constraints,

Objective and other model elements. To keep things simple for users who aren't using Dimensional Modeling, these outline elements appear only when you have functions such as PsiDim() and PsiCube() in cells on your worksheet.

The decision variables are still in cells C14:E14. Try changing one of these cells to a new value such as 100 . You'll see that the worksheet recalculates just like a normal Excel model, even though it is composed of dimensions and cubes.

Dimensional optimization models continue to use a separate cell for each decision variable - whereas they might have thousands of constraints in a single cell. Keeping decision variables in individual cells makes it easy to capture final solution values, save them in your workbook, and use Excel to recalculate the spreadsheet later. Cube formulas appear to Excel as ordinary formulas (with single values) using user-defined functions such as PsiCube() and PsiReduce(); the actual multidimensional calculations are performed "behind the scenes" by the PSI Interpreter.

Solve the model by clicking the green arrow in the Model tab, just as you did on the Original sheet. You'll see the same optimal solution appear in cells C14:E14.

The following sections will take you step by step through the process of building a Dimensional Model like the one above. You can use the Analytic Solver menu choices, grouped under the Model button, to define dimensions, cubes and results, or you can type functions such as PsiCube() and PsiReduce() directly into cells, without using the GUI at all.

Using Dimensional Modeling in Optimization

Keep in mind the following three steps when using Dimensional Modeling:

1. Define a Dimension.
2. Define a Cube.
3. Define a Cube Output cell. (This step is optional).

Defining a Dimension

Two dimensions have been created in cells K13 and L13, Products and Parts, respectively. The Products dimension (cell K13) contains three items or elements: TVs, Stereos and Speakers. The Parts dimension (cell L13) contains five items or elements: Chassis, LCD Screens, Speakers, Power Supply, and Electronics.

To create a dimension, you may either type the PsiDim() function call directly into a cell, or use the Model menu, shown below, to insert the PsiDim() formula into the active (selected) cell.

To use the Model menu, click Model - Dimension - From Cell Range. The Add Dimension dialog appears.

Enter a name of your choice for the Name field. In this case, we have used Products. Select Range and enter the Excel cell range that contains the product names. One could also enter an integer here, say " 11 ", which would result in the creation of a dimension with 11 elements. Select Bounds to enter a lower and upper bound. These bounds can be entered directly into the lower and upper bound fields or cell addresses can be used. For example, if bounds of 1 and 10 are entered directly or cell addresses of cells containing 1 and 10 are entered into the Lower and Upper fields, a dimension with 10 (upper - lower + 1) elements will be created. (In this case, there will be no names associated with the elements other than indices from 1 to n.)

Enter the range address of C13:E13 which hold the product names: TVs, Stereos and Speakers. Specify the cell address or defined cell name for Location, this example uses K10. Finally, select Structural to create a Structural dimension. (See below for instructions on how to create a Parametric Dimension.) Click OK to add the formula "=PsiDim("Products",C13:E13)" to cell K13, Repeat these steps in cell L10 using the Name Parts and Range B18:B22.

Add Dimension		
Name:	Products	
Specify:	ORange	Obounds
Range:	$\$$ \$ $\$ 13: \$ E \$ 13$	
Location:	K13	
Type:	OStructural	OParametric
	OK	Cancel

For more information on the PsiDim() function, please see the Frontline Solvers Reference Guide.

Let's take a look at the Model tab on the Solver Task Pane. You should now have two dimensions listed under the Sheetl worksheet, Products and Parts. The Products dimension has three elements: TVs, Stereos and Speakers. The Parts
dimension has five elements: Chassis, Screen, Speaker, Power Supply and Electronics.

Select the Products dimension.

Several options will appear at the bottom of the task pane under Dimension (as shown in the screenshot above). Here you can view the cell where the dimension is located (cell K13), the formula, the name of the dimension and the type of dimension (structural or parametric). These fields are all read-only. Current Value, however, controls the values displayed in the cell containing the cube. For example, select Speakers for Current Value. Values in cells K16, K17, L16, and L17 will change to reflect values for Speakers. For example, K13 will change to Products[3] to indicate that the third element of the Products dimension has been selected. K16 will change to 0 (the value of cell C13), K17 will change to 450 (the value of cell H18), L16 will change to 35 (the value of cell E24), and cell L17 will change to 0 to reflect that 0 chassis are used in the production of speakers.

Defining a Cube

Four Cubes have been created in cells K16 (which holds the variable cells), L16 (which holds the Profit values for each product), K17 (which holds the constraint right hand sides), and L17 (which holds the amount of parts used per product). To create a cube, you may either type the PsiCube() formula into a cell or use the Model menu, shown below, to insert the formula into the selected cell.

To use the Model menu, click Model - Cube - From Cell Range. The Add Cube dialog appears.

Enter an Excel cell range for Range, in this instance, select cells C14:E14, the variable values. Select Products from the Dimension drop down menu. To add more than one dimension to the cube, click "+" button. Select a blank cell for Location - this example uses cell K16. Click OK to create the cube. The following formula will be entered into cell K16,
$=$ PsiCube(\$C\$14:\$E\$14,"Products"). (This formula may also be entered directly.)

The first argument of any cube is the cell address of the data. In the cube located in cell K16, the first argument is C14:E14 (the variable cells). The second thru ninth arguments are the dimensions for which the data will be calculated. (At least one dimension is required.) This 1-dimensional cube, calculated over the Products dimension, holds the data in cells C14:E14 which
are the number of products to build - the decision variables. The data for the cube located in cell L16 can be found in cells C24:E24. This 1 dimensional cube contains the profit values for each of the products. This cube is also calculated over the Products dimension. In the 1 -dimensional cube located in cell K17 (the cube holding the constraint right hand sides), the data is contained in cells H18:H22. In cell L17, a 2-dimensional cube has been created using the Products and Parts dimensions. This cube holds the fact table containing the parts required per product (cells C18:E22).

Note: When calculating a cube over multiple dimensions, the "most rapidly changing" dimension must be first, while the "most slowly changing" dimension must appear last. Take the example table below.

A	B	C	D	
1	Part Name	LCD TV	Stereo	Speakers
2	Chassis	1	1	0
3	Screen	1	0	0
4	Speaker	2	2	1
5	Power Supply	1	1	0
6	Electronics	2	1	1

Starting from cell B2 (the start of the fact table) and reading from left to right, the 1 st element of the cube will be 1 (Chassis \& LCD TV), the $2^{\text {nd }}$ element of the cube will be 1 (Chassis \& Stereo), the $3^{\text {rd }}$ element of the cube will be 0 (Chassis \& Speakers). The $4^{\text {th }}$ element of the cube will be 1 (Screen $\& \mathbf{L C D}$ TV), the $5^{\text {th }}$ element of the cube will be 0 (Screen \& Stereo) and the $6^{\text {th }}$ element of the cube will be 0 (Screen \& Speakers). Between Products and Parts, which dimension is changing more frequently as we read from left to right? Correct! Products is changing more frequently which means this dimension should come first in the AddCube dialog or PSTCube() function.

Double click cell L17 to open the fact table for the cube located in this cell. The following window appears. The data contained in this fact table is the same data contained in cells C18:E22. Click the arrows on the right side of the dialog to open an additional pane. Here you can control the display formatting of the cube by selecting Cube Rows or Cube Columns from the drop down menu or by simply dragging Parts to Products and vice versa.

Click the Refresh Cube Data icon when changes have been made to the contents of the cube on the spreadsheet. Click the Export Pivot Table icon to export the contents of the cube to an Excel Pivot Table. Click the Copy icon (or click the down arrow to the right of the icon) to copy the grid to the spreadsheet, to Outlook, Word, etc. Click the Autosize Pivot Table icon to autosize the columns in the grid. Click the Print icon (or click the down arrow to the right of the icon) to send the grid to the printer, see a print preview, or to change printer or page settings.

Cube Formulas: Operations and Dimensions

When executing an operation over cubes, if all participating cubes have the same dimensions, then the result cube will have the same dimensions too. For example, if a cube with 4 dimensions is multiplied (or added, subtracted, divided, etc.) with another cube also containing the same 4 dimensions, the result cube will contain the same 4 dimensions.

Otherwise, the result cube will be a union of the participating dimension sets. For example, if a cube B 2 with two dimensions is multiplied by a cube C 3 with one dimension that also appears in the first cube, the result $\mathrm{B} 2 * \mathrm{C} 3$ will be twodimensional. If C3 is defined over a dimension different from either of the two dimensions in B2, the result cube will be three-dimensional.

You can use almost any Excel arithmetic or intrinsic operations, as well as almost all Excel built-in functions in cube formulas. There are a few Excel functions that are not supported by the PSI Interpreter and are thus not supported in Dimensional Modeling. These functions include: CubeX(), Call(), Cell(), EuroConvert(), GetPivotData(), Info(), Hyperlink(), Indirect(), RegisterID() and SQLRequest().

Now let's calculate the constraints. In the original model, the constraints are the number of parts used (cells G18:G22) must be less than the inventory (found in cells H18:H22).
To calculate the constraint in this example using Dimensional Modeling, we must use the PsiReduce() function. This function reduces or aggregates a multidimensional cube along one dimension. A cube may be aggregated using the following supported functions: average, sum, max, min, stdev, or var. (For example, if PsiReduce() is used to aggregate a 3 -dimensional cube, the resultant cube would contain 2 dimensions.) A cube reduced along all its dimensions is called a Degenerated Cube and will be a single value, or scalar.

Select cell K20, then click Model - Reduction. The Add Reduction dialog appears.

Select Other Cell from the Cube drop down menu, then enter L17*K16 into the empty field. Since we want to reduce the cube along the Products dimension, select Products from the Dimension drop down menu. Next select Sum from the Reduce By drop down menu. This is how the cube will be aggregated.

Confirm that Location is cell K20, then click $\mathbf{O K}$. The formula, =PsiReduce(\$L\$17*\$K\$16, "sum","Products"), is entered into cell K20. In general, the equation for this cube is: $R=\sum_{j} X j$ * $Y i j$, for each $\mathrm{i}=1$ to 5 , where X equals the products (TVs, stereos and speakers), Y equals the parts (chassis, screen, speaker, power supply, \& electronics) and R is a 1-dimensional vector containing 5 elements.

The multiplication of the two cubes in cells L17 and K16 in the first argument of PsiReduce will result in a third cube containing the product of the number of parts per product and the variable values in cells C14:E14. The cube in cell L17 contains 15 elements and is calculated along two dimensions, Products and Parts. The cube in cell K16 has 3 elements and holds the fact table for only 1 dimension, Products. Remember, when multiplying two cubes with different dimension sets, the resultant cube will be structured along the Union of both dimension sets. In this case, the resultant cube will be structured along both the Products and Parts dimensions and will also contain 15 elements. PsiReduce() reduces or eliminates the specified dimension in the third argument, in this case the Products dimension. The cube multiplication and reduction occurring in this single cell (cell K20) perform the same operations as cells G18:G22 in the original problem! Since Cubes are single cells, they can display only the first element of their cube result. In order to see all cube elements, simply double click cell K20. A popup window appears containing the following fact table.

It's also possible to check the contents of a cube on the worksheet using the PsiCubeData() function. Please see the Frontline Solvers Reference Guide for more information on this function.

PsiReduce () is also used to calculate the objective function. To compute the objective, we must multiply the cube containing the decision variables (cell K16) by the cube containing the Profit values (cell L16). Select cell L20 and click Model - Reduction. The Add Reduction dialog appears.

Select Other Cell from the Cube drop down menu and enter K16*L16 in the blank field. Since we are looking to sum over the Products dimension (sum the products of Products * Profits), select Products from the Dimension menu and Sum from the Reduce By menu. Confirm the Location is cell $\mathbf{L 2 0}$ and then click OK. The formula, =PsiReduce(\$K\$16*\$L\$16, "sum","Products"), is entered into cell L20. The result of this cube is a scalar or a single value.

Defining Outputs in Dimensional Models

It's also possible to use an output function such as PsiOptData() to observe the contents of a fact table on the spreadsheet, rather than in a pop up fact table. Let's designate cells K25: K29 as output cells to observe the final values of all five constraints calculated in cell K20. To do so highlight cells K25:K29, then enter "=PsiOptData(K20)", then CTRL + SHIFT + ENTER on the keyboard to enter this formula as an array. Once Solver finds a solution, these cells will be populated with the left hand side of each constraint. For example, cell K25 will display the left hand side of the first constraint, cell K26 will display the left hand side of the $2^{\text {nd }}$ constraint, cell K27 will display the left hand side of the $3^{\text {rd }}$ constraint, and so on.

It's also possible to create "what if" scenarios using Dimensional Modeling without ever having to run an optimization (or simulation) using a $2^{\text {nd }}$ type of output function, PsiCubeOutput(). For more information, please see below under Additional Functions.

Now let's create our Solver model by adding the variables and constraints to the Platform Task Pane.

Building the Model

At this point we can now start building our model in the Platform Task Pane.

1. Add the Variables: Select cells C14:E14, then click Decisions on the Ribbon. (Alternatively, click Decisions - Normal on the Ribbon.) If you inspect the Task Pane, you will find that cells C14:E14 now appear under the Normal Variables section.
2. Add the Constraints: Select cell K20, then click Constraints on the Ribbon. The Add Constraint dialog will appear. (Alternatively, click the down arrow under Constraints, then select Normal -- <= from the menu.) Enter cell K20 as the left hand side of the constraint and cell K17 as the right hand side of the constraint, then click OK. If you inspect the Task Pane, you will find K20 < = K17 now appears under Normal Constraints.
3. Add the Objective: Select cell L20, then click Objective, then OK. (Alternatively click the down arrow under Objective, then select Max - Normal from the menu.) If you inspect the Task Pane, you will find that cell L20 now appears under Objective with "(Max)" appearing to the right.
4. Add Variable Bounds: Since it would be impossible to make a negative amount of products, we must add a non-negativity bound. To do so, select cells C14:E14, then click Constraints. (Alternatively, click the down arrow under Constraints, and select Variable Type/Bound -- >= from the menu.) The Add Constraint dialog will open. Select $>=$ for the "sense" of the constraint (drop down menu in the middle). Enter " 0 " as the constraint left hand side, then click OK. If you inspect the Task Pane, you will find C14:E14 >= 0 now appears under Bound.

The Task Pane will look like the following.

Solving the Model

Enter 0's into cells C14:E14 then solve the model by clicking the green arrow on the Model Task Pane.

Solver will solve the model and display the final variable values in cells C14:E14: 200, 200, and 0, respectively. The status bar (found beneath the Task Pane) will display the message Solver found a solution with a green background. Analytic Solver will populate the objective formula located in L20 when the optimization finishes successfully. Note: All Solver engines except Interval Global Solver support Dimensional Modeling.

Double click cell K20 to open a grid displaying the right hand sides of the constraints or the number of parts used to manufacture the three products.

As you can see by the comparison of these two models, using a cube to model a problem will result in a more compact and easier to read model. Continue reading the next section to learn about the $2^{\text {nd }}$ goal of dimensional modeling, the parametric dimension.

Now close this example, and continue reading to discover how to use a parametric dimension within an optimization model.

Additional Functions

Using Dimensional Modeling, it's possible to create what if scenarios without ever having to run an optimization (or simulation). The function PsiCubeData() will list the contents of any cube on the spreadsheet much like PsiOptData() listed the left hand sides of the constraints in the example above. The difference between these two functions is that PsiOptData() will only be populated after an optimization is run, while PsiCubeData can be populated at any time. Let use PsiCubeData() to list the contents of the Cube located in cell K17. (This cube holds the constraint right hand sides.) First, highlight 5 blank cells, say K31:K35, enter "=PsiCubeData(K17)", then press CTRL + SHIFT + ENTER to enter the formula as an array in all five cells. Next, click Model - Cube Result - Calculate to calculate the cube without performing an optimization. Afterwards, Cell K31 will display 450, cell K32 will display 250, cell K33 will display 800 , cell K34 will display 450 , and cell K35 will display 600 . These values correspond to the values in cells H18:H22.

You'll notice that after you performed a manual cube calculation (by clicking Model - Cube Result - Calculate), the objective function cell (cell L20) now displays \#NA. To calculate and display the value of a degenerated cube (a cube that has been reduced to a scalar value), click Model - Cube Result - Output to append "+PsiCubeOutput()" to the existing formula to designate this cell as a cube output. Afterwards, click Model - Cube Result - Calculate to recalculate all cubes on the worksheet. Note: PsiCubeOutput is not required in cell L20 when running an optimization as Solver will calculate and display the contents of the objective function after a solution is found.

Now let's use PsiCubeData() to display the multidimensional cube in cell L17. First, we need to determine whether the result in L17 is a cube and which dimensions constitute that cube. Since no more than two dimensions (Parts and Products) are defined in the worksheet, we'll highlight two blank cells and enter PsiCubeData() as an array formula in these cells. (Note: If you aren't sure how many dimensions are contained in a cube, select a few extra columns and rows for the array formula. The excess cells will simply display \#N/A.) Let's pretend that we aren't sure of the number of dimensions contained in this cube, we know there are at least two, so let's highlight three cells, K32:M32. With all three cells highlighted, enter the following formula: =PsiCubeData(L17, "dims"). When "dims" is passed for the struc_format argument ($2^{\text {nd }}$ argument), the name and size of each dimension will be returned. Afterwards, press SHIFT + CTRL + ENTER to enter this formula as an array in cells K32:M32. Afterwards, K32 will display "Parts[5]" indicating that there are 5 elements in the Parts dimension. L32 will display "Products[3]" indicating that there are 3 elements in the Products dimension. M32 will display "\#N/A" indicating that a third dimension does not exist in the cube. Now that we know the number of elements (or size) of the dimensions, we can display the fact table again by entering PsiCubeData() as an array, but this time we'll use "vals" for the struc_format argument.

When passing "vals" for this argument, PsiCubeData(), when entered as an array, will display the data as a relational table. Since there are 3 elements in the Products table and 5 elements in the Parts table, the fact table for this cube will contain 15 (3×5) elements. Therefore, we will need to highlight 1 column for the first dimension (Parts), a $2^{\text {nd }}$ column for the $2^{\text {nd }}$ dimension (Products), a $3^{\text {rd }}$ column for the actual values and 15 rows to hold all 15 values in the fact table. In this example, we'll use the blank cells K33:M47. (This area encompasses three columns and 15 rows.) Select these cells, enter "=PsiCubeData(L17, "vals"), then press SHIFT + CTRL + ENTER to enter this formula as an array formula. The following table will be displayed.

Important Note: While PsiCubeData() formulas are populated when Model Cube Result - Calculate is selected, these formulas will not be populated during the optimization unless Dimensional Calculation is set to Automatic on the Platform tab in the Task Pane. If Dimensional Calculation is set to Manual, PsiOptData() can be used in place of PsiCubeData() but only with cubes holding an optimization model component, such as a cube holding decision variables (K16) or calculating constraints (K20). PsiOptData() will be populated after an optimization even when Dimensional Calculation is set to Manual. However, PsiOptData() will not be populated when Model - Cube Result - Calculate is selected on the Ribbon. Please see PsiOptData() in the Frontline Solvers Reference Guide for more information on this function.

	K	L	M
32	Parts[5]	Products[3]	\#N/A
33	Chassis	TV	1
34	Chassis	Stereo	1
35	Chassis	Speakers	0
36	Screen	TV	1
37	Screen	Stereo	0
38	Screen	Speakers	0
39	Speaker	TV	2
40	Speaker	Stereo	2
41	Speaker	Speakers	1
42	Power Suppl? TV	1	
43	Power Suppl! Stereo	1	
44	Power Suppl! Speakers	0	
45	Electronics	TV	2
46	Electronics	Stereo	1
47	Electronics	Speakers	1

If you wanted to display only the values in the fact table, then you would need to highlight 15 blank cells, in say the M column (we'll use cells M33:M47), then enter PsiCubeData() without the $2^{\text {nd }}$ argument or " $=$ PsiCubeData(L17)" then press SHIFT + CTRL + ENTER to enter the formula as an array formula in cells M33:M47. Afterwards, these cells would display only the values of the fact table as shown in cells M33:M47 in the above screenshot.

PsiCubeData() can also be used to display a slice or even a single element of the fact table. For example, to display the cube data only for Part: Screen and Product: TV, select three cells, say N36:P36 and enter the following formula: =PsiCubeData(L17, "[Parts].[Screen], [Products].[TV]"). Then press SHIFT + CTRL + ENTER to enter as an array formula. Afterwards, the following table will be displayed.

	N	0	P
36	Screen	TV	1

Parametric Dimensions with Optimization

You can define and use a Parametric Dimension to run multiple optimizations, simulations, and/or calculations. Analytic Solver treats all data included in a parametric cube as parameter values, such as ones defined by PsiOptParam(), PsiSimParam() and PsiSenParam(). Recall that these parameters are automatically varied by ASP in order to create a type of "what-if" analysis. Please see the chapter "Examples: Parameters and Sensitivity Analysis" in this Guide for more information on the PsiOptParam(), PsiSimParam() and PsiSenParam() functions. If a model only includes Parametric Dimensions, each value in the Output cube will be associated with a different simulation or optimization parameter, rather than a set of model functions.

Open the example, Parametric Dimensions.xlsx by clicking Help - Example Models on the Analytic Solver ribbon. The Frontline Example Models Overview.xls file will open. Select the Optimization tab and choose the ParametricDimensions workbook from the list.

In this example, we will illustrate the use of a Parametric Dimension by adding an additional element to the model. Imagine that you have a choice to purchase two different types of TV screens, plasma or LCD, from three different suppliers, Sony, Vizio, and Phillips, for about the same price. Each supplier can deliver a specific number of screens depending on the type of screen chosen. For example, Sony can only deliver 150 LCD screens, but 210 Plasma screens while Vizio can deliver 250 LCD screens but only 175 Plasma. Your job is to now not only decide how many TVs, stereos and speakers to make, but also to decide what type of screen will go into the TVs: plasma or LCD.

Cell B30 contains a parametric dimension. To add this dimension, click Model - Dimension - From Cell Range to open the Add Dimension dialog. Enter Screens for Name, Select the Range radio button, select or enter cells B28:B29 in the Range field, confirm cell B30 is selected for Location, then select Parametric. Then click OK.

The following formula is entered into cell B30, = PsiParamDim("Screens", B28:B29). As you can see, the arguments for PsiParamDim() are identical to $\operatorname{PsiDim}()$. The first argument is the name of the dimension and the $2^{\text {nd }}$ argument is an Excel range. It's also possible to enter upper and lower bounds for the 2nd argument (select Bounds on the Add Dimension dialog) or to simply enter an integer n which will create a parametric dimension with n elements. (In this case, there will be no names associated with the elements other than indices from 1 to n.) Repeat the steps above to create a second Parametric Dimension in cell H19 using the name Suppliers and the Excel range C27:E27.

Now select cell H19 and click Model - Cube - From Cell Range to bring up the Add Cube dialog. This cube will contain the values from cells C28:E29. Therefore, select cells C28:E29 for Range. Select Suppliers for Dimensions, then click the "+" command button to add a $2^{\text {nd }}$ dimension, Screens. Note: As mentioned above, when calculating over multiple dimensions, the "columns" dimension, or the dimension that is most often changing, must always come first. Confirm that H19 is listed for Location and click OK.

The formula =PsiCube (\$C\$28:\$E\$29, "Suppliers", "Screens") will be entered into cell H19.

If you inspect the Model tab on the Task Pane, you'll see that two more dimensions (Suppliers and Screens) and one more cube (\$H\$19) appear under the appropriate headings.

Now click the green arrow on the Model tab to run Solver. Solver will run six different optimizations each time using a different value from the cell range C28:E29 for cell H19. For example, for the first optimization, Solver will use 150 for the value of H19, for the $2^{\text {nd }}$ optimization, Solver will use 210 for the value in cell H 19 , for the $3{ }^{\text {rd }}$ optimization, Solver will use 250 for the value in cell H 19 , etc.

To easily. view the results of the six different optimizations, simply double click cell L20 to display the grid shown below.

Instantly six different "what if" scenarios are displayed organized by supplier and screen. (Click the resize icon to autofit the columns to display all values/text.) As you can easily see there are four different options that result in the largest profit. Purchasing LCD screens from either Vizio or Phillips or Plasma screens from Sony or Phillips will result in a Gross Profit of \$25,000. Purchasing Plasma screens from Vizio will result in a decreased profit of $\$ 24,875$ and purchasing LCD screens from Sony results in an even smaller profit of $\$ 24,750$. To view the products across the top and the manufacturers down the left of the grid, simply drag "Screens" above "Suppliers".

Double click cell K20 to view the number of parts required in the construction of the TVs for each of the six different screen options. (Click the ren icon to autofit the columns to display all values/text.)

Note: The organization of the grid can be easily changed to meet your needs by simply dragging the dimensions Parts, Suppliers, and Screens into the formulation of your choice. Or click the double arrows on the right side of the dialog to open the options window. Check the dimensions to be listed by row and by column.

If you wanted to view the final objective value when Sony Plasmas as used in the construction of the TVs, first select Screens on the Model tab, then select Plasma for Current Value.

Now select Suppliers on the Model tab, then select Sony for Current Value.

Solver Option... *	
	(1)Ou... ${ }^{\text {s W }}$ Wo...
	国》
	\%ions
${ }^{\square}$ Dimension	80, ${ }^{4}$
Address	\$B\$27
Formula	=PsiParamDi...
Name	Suppliers
Current Value	Sony
Locked	False
Type	Parametric
Active in Optimization	True
Active in Simulation	True
Active in Sensitivity Analy... True	

Cell H 19 will change to 210 to reflect the value in cell C 29 which is the number of Plasma screens Sony can supply. In addition, the final variable values in cells C14:E14 will change to 200, 200, 0 , the objective shown in cell L20 will change to $\$ 25,000$, the parametric dimensions in cells B27 and B30 will change to Suppliers[1] (to reflect that the first element of the Suppliers dimension is
selected as the current value) and Screens[2] (to reflect that the $2^{\text {nd }}$ element of the Screens dimension is selected as the current value).

As with PsiParamDim(), several options will appear at the bottom of the task pane under Dimension (as shown in the screenshot above). Here you can view the cell where the dimension is located (B27), the formula, the name of the dimension (Suppliers) and the type of dimension (structural or parametric). These fields are all read-only. However, Current Value, Locked, Active in Optimization, Active in Simulation, and Active in Sensitivity Analysis can all be edited. Current Value controls the values displayed in the cube cells. For example, select Vizio for Current Value. The value in cell H 19 will change to reflect the Vizio value for the Current Value of the Screens dimension (210).

Setting Locked to True, will result in the dimension being "locked" or "frozen" to the Current Value element during optimization. For example, if Current Value is set to Sony for the Suppliers Parametric Dimension and Locked is set to True only two optimizations will be ran when the green arrow is clicked, one optimization for the value 150 (cell C28) and one optimization for the value 210 (cell C29). Double click the objective cell (L20) to display the results for the two different screens supplied by Sony.

You can also reduce the dimensions displayed in the grid by performing a Parametric Analysis. Click Reports - Optimization - Parameter Analysis to open the Cube Optimization Report dialog.

All seven cubes appear under Cubes and Selection, select cells L20 and K20 and click $>$ to select. Both dimensions (Suppliers and Screens) appear under Parametric Dimensions, select one dimension, say Suppliers, then click $>$ to select. Afterwards, click OK. The following grid appears.

Here the "slices" of the structural dimensions can be viewed. Click the two arrows on the right of the dialog to open the "options" pane.

This grid displays the number of chassis parts required when Screens are purchased from each Supplier. For example, if the screens are purchased from Sony, only 350 chassis will be needed. If screens are purchased from Vizio or Phillips, 400 chassis will be required. Note: When a dimension is deactivated, it is essentially locked to its first element. In this case, the Screens dimension is locked to the LCD values of 150,250 , and 200. Click the down arrow under Parts to see how many of each part will be required when screens are purchased from each supplier.

Currently both the Screens and Suppliers Parametric Dimensions are active in all three types of analyses: optimization, simulation and sensitivity. As stated earlier, this means that if you wanted to use these dimensions for a parameter analysis, you could do so as an optimization parameter, sensitivity parameter, and/or simulation parameter. To remove this Parametric dimension from any of these analyses, simply change True to False. If Active in Optimization is set to False, this dimension will be ignored in the next optimization. Likewise, if Active in Simulation or Active in Sensitivity Analysis is set to False, then this dimension will be ignored in the next simulation or sensitivity analysis.

For example, select Screens in the Model Task Pane, select Plasma for Current Value, then change Active in Optimization to False.

Now run an optimization either by clicking the green arrow on the Task Pane or Optimize - Solve Complete Problem on the ribbon.

Solver will run three optimizations - one each for values 150,250 , and 200 or the number of LCD screens (the first element in the Screens dimension) that can be supplied by Sony, Vizio and Phillips, respectively (cells C28:E28). To view the results of each value, simply select Suppliers on the Model Task Pane and select Sony, Vizio, or Phillips or double click any of the cubes to display the values for these three optimizations. For example, click cell L20 and K20 to display the following grids. Both grids only reveal the optimization results for the three suppliers calculated using the first element from the Screens dimension.

It's also possible to view all Parametric Dimensions included in the workbook by clicking Parameters - Dimension on the Ribbon to bring up the Parametric Dimension Participation dialog. From here you can select which dimensions are
active for Optimization, Sensitivity Analysis and Simulation, all on one screen. For example, to remove the Suppliers Parametric Dimension from Simulation, select Suppliers and click <. To remove all Parametric Dimensions from Simulation, click <<.

After an optimization has finished, click Charts - Multiple Optimizations Monitored Cells to open the Optimizations Chart dialog.

Expand Variables (by clicking the "+"), then expand C14:E14. Select C14, then click $>$ to add the decision variable to the chart. Repeat this step for cells D14 and E14, then click OK to create the chart below, which tracks the decision variable values for each of the three optimizations.

Using Dimensional Modeling in Simulation

Dimensional modeling can also be used with simulation models as well as with simulation optimization models. (Note: Dimensional Modeling is not available with Stochastic Transformation.) Open the example, CityCube.xlsx by clicking Help - Example Models on the Analytic Solver ribbon. The Frontline Example Models Overview.xls file will open. Select the Simulation tab and choose CityCube.xlsx from the list.

Defining a Dimension

In this simple example, a dimension, City, has been created in cell F 15 which is comprised of the names of major cities in California (cells B15:B18). Cells $\mathrm{C} 15: \mathrm{C} 18$ contain the gross income per city. Each Gross Income is uncertain. The Gross Income for San Francisco follows the Gamma distribution, Gross Income for San Diego follows a Triangular distribution, San Jose follows a Normal distribution and Los Angeles follows a Uniform distribution.

Defining a Cube

One key benefit of this model is that it defines a simulation output in one cell which would require four cells without dimensional modeling. In cell F16, a cube has been created along the City dimension which is comprised of each city's gross income in $\$$ Millions. Double click this cell to display the grid.

City	
San Francisco	81.53672838
San Diego	23.22228049
San Jose	22.48399618
Los Angeles	31.37893588

In cell F17, a $2^{\text {nd }}$ cube has been created by using the cube in cell F16 in the formula, $=\mathrm{F} 16^{*}(1-\mathrm{C} 12)$, which multiplies the elements of the cube in cell F16 by the after tax rate or 91% (1-.09). If dimensional modeling is not used, four output cells would be required to capture the simulation statistics, percentiles, etc, for the after-tax income of each city. However, in this example, the cube in cell F17 captures all relevant information.

City	
San Francisco	36.4216781
San Diego	22.75006667
San Jose	18.20025418
Los Angeles	27.29991035

Notice that "calc" follows the cell address in the dialog title. This means that a trial value is being displayed.

Defining an Output

Cell F18 contains the PsiMean() function which creates both a simulation output as well as a dimensional modeling output. To view the statistics and percentiles for each city's Gross Income, simply set the Current Value of the City dimension to the desired city. For example, to view the simulation results for San Diego, select City under Dimensions in the Model tab of the Task Pane, then set Current Value to San Jose.

Now click the green arrow on the Output tab to run a simulation. The Simulation results window that appears contains simulation results for San Jose's after-tax income.

To view the mean results for each city, double click cell F18 to display the following grid. Notice that (sim-mean) now follows the cell address (\$F\$18) in
the dialog title. This title signifies that these results are the mean from a simulation.

	\$F\$18 (sim-mean)
City	
San Francisco	36.4216781
San Diego	22.75006667
San Jose	18.20025418
Los Angeles	27.29991035

Note: PsiMean() can be substituted with any PsiXxx statistic function except PsiCorrelation and PsiFrequency.

Double click cell F17.

	Mean -
City	
San Francisco	36.4216781
San Diego	22.75006667
San Jose	18.20025418
Los Angeles	27.29991035

Currently, this grid displays the mean results from the simulation. Click the down arrow next to Mean and select Trials.

All 1000 trial values for each city are listed. Drag "City" above "All Trials" to list the trials vertically.

City	San Francisco	San Diego	San Jose	Los Angeles	
All Trials					
1	46.73104715	23.78496263	15.70337748	27.33247531	
2	28.50234861	24.4175617	15.45680491	24.89468829	
3	26.64188513	21.88641358	15.50883072	27.83510196	
4	24.81682615	21.62422916	17.77177431	22.11157063	
5	32.51009874	21.81232927	14.54440514	32.63412365	
6	19.1973942	22.06340036	19.0651959	22.16627514	
7	44.35022594	25.89311021	14.37933422	26.68264409	
8	26.76710583	20.70553354	12.84754711	18.30830876	
9	34.85920528	20.74490302	18.37034326	29.07680146	
10	32.09188667	26.51731955	20.19144585	21.52200865	
11	6.869595363	21.68554585	24.25352266	20.18418465	
12	31.96459227	24.35080203	16.53079484	22.72200942	
13	54.63578132	22.36153494	18.30399536	31.74608083	
14	30.62519996	24.22777704	18.82129562	34.55448539	
15	30.37984111	22.24093291	17.70032358	26.04643611	
16	29.05095757	22.0681291	17.81623657	30.25830272	
17	32.84009747	23.42134436	15.9243029	25.78047491	
18	37.3186006	18.83368801	20.27071854	24.82295575	
19	18.8592001	23.67908844	18.14147651	32.38158684	
20	40.91573504	21.02691071	18.75345555	26.01503544	
21	29.38835589	23.04590371	13.99833298	30.99934192	
22	10.58599076	23.84557209	16.08843037	19.85978889	
23	21.91861684	20.56851089	16.11807878	18.95312582	
24	24.66213494	20.5524382	23.0151251	36.25948923	
25	27.75309312	23.37803736	20.03588951	36.31332384	
26	54.53244865	19.97095841	14.03012481	29.72126311	
27	5.375523606	20.98075534	14.22825254	27.95981685	
28	58.78720991	23.59414957	15.54084297	32.50387071	
29	48.46922285	22.99483866	24.03641769	18.49940487	
30	47.02225697	22.82942212	20.01391644	22.12987859	
31	42.69087371	22.77737985	22.72582395	28.10527839	
32	28.32905983	22.89583852	21.77874654	31.10294683	
33	45.55272443	19.34548716	\|21.58094157		20.42497507

To see mini histograms for each uncertain function, click the down arrow next to Trials and select Histogram.

Cells F18:F21 contain the PsiMean() simulation statistic entered as an array formula. The results of this function are similar to the results of PsiCubeData() and PsiOptData() (for objective and constraint cubes only) in that when entered as an array, the function will display the fact table for the desired cube.

When a Psi Statistic function (such as PsiMean(), PsiStdDev(), PsiVariance(), etc.) is entered as an array formula and used with a simulation model using Dimensional Modeling, the statistic function will display all elements of the cube fact table formatted according to the optional 3rd argument, struc_format. To begin, we'll need to determine the size of our array. Since the cube in cell F17 is comprised of one dimension (Cities), we'll need to select one cell and enter "=PsiMean(F17, 1, "dims")" in this cell. (When "dims" is passed for the struc_format argument (3rd argument), the size of each dimension contained in the cube in cell F17 will be returned.) Afterwards, this cell will display "City[4]" indicating that there are 4 elements in the City dimension. Now that we know the number of elements (or size) of the dimensions, we can display the entire fact table by entering PsiMean() as an array, but this time we'll use "vals" for the struc_format argument. When passing "vals" for this argument, PsiMean(), when entered as an array, will display the data as a relational table. Since there are 4 elements in the City dimension, the fact table for this cube will contain 4 elements. Therefore, we will need to highlight 1 column for the first dimension (City) and a $2^{\text {nd }}$ column for the actual values and 4 rows to hold all 4
values in the fact table. In this example, we'll use the blank cells H15:I18. (This area encompasses 2 columns and 4 rows.) Select these cells, enter "=PsiMean(F17, 1, "vals"), then press SHIFT + CTRL + ENTER to enter this formula as an array formula. The following table will be displayed. Note: PsiMean() can be substituted with any PsiXxx statistic function except PsiCorrelation and PsiFrequency.

	H	I
6	SanFrancisco	36.42570457
7	SanDiego	22.74976078
8	SanJose	18.20078012
9	LosAngeles	27.29994228

Now we'll use a different statistic, $\operatorname{PsiStdDev}()$ but this time we'll list only the values in the fact table To do so, select cells K15:K18, then enter "=PsiStdDev(F17)", then press SHIFT + CTRL + ENTER to enter the formula as an array. Notice we are only supplying the first argument. Afterwards, these cells will display only the values of the fact table as shown in cells K15:K18 in the screenshot below. Repeat the same steps in cell L15:L18 but this time using the statistic, PsiVariance() ("=PsiVariance(F17)").

A statistics function can also be used to display a slice or even a single element of the fact table. For example, to display the mean gross margin for the City of San Diego, select two blank cells, say H20:I20, and enter the following formula: =PsiMean(F17,1, "[City].[SanDiego]"). Then press SHIFT + CTRL + ENTER to enter as an array formula. Afterwards, the following table will be displayed.

4	H	I
11	San Diego	22.75017814

Now let's close this example and continue on to the next section to learn about using a parametric dimension in a simulation model.

Parametric Dimensions

Now let's see how Parametric Dimensions can be used with simulation. Open the example, ParametricCube_SimExample.xlsx by clicking Help - Example Models on the Analytic Solver ribbon. The Frontline Example Models Overview.xls file will open. Select the Simulation tab and choose Parametric Cube Simulation Example. ParametricCube_SimExample.xls opens.

4	A	B	c	D	E	F	G	H	1	1	K	1	M
15										Projected Growth in Number of Machines			
16	Computer Type	Tablets	Desktops	Laptops	HP	Dell		Computer_Iype[1]			Year 1	Year 2	
17	Manufacturers	Apple	Sony	Samsung				Manufacturer[1]			5.23	8.97	
18									Number of Machines Required				
19		Apple	Sony	Samsung	HP	Dell	Iotals	Year	Iablets	Desktops	Laptops	Number of Machines	
20	Tablets	5130	\$575	\$210	\$200	\$525		Actual - Year 0	25	35	15	75	
21	Desktops	\$1,261	\$1,200	\$1,100	\$450	\$980		\% of Computer Iype in Year 0	33.33\%	46.6\%	20.00\%		
22	Laptops	\$1,060	\$850	\$450	\$700	\$1,270		Year 1	27	37	16	80	
23								Year 2	29	41	18	88	
24													
25								Fxpected Technology Costs when Manufacturer is:				Apple	
26									Tablets	Desklops	Laplops		
27								Cost by Machine	5430	\$1,267	\$1,060	Iotal Cost	Average Cost
28								Year 1	\$11,467	\$47,301	\$16.960.00	\$75,728	575,266
29								Year 2	\$12,613	\$52,031	\$18,656.00	\$83,301	\$84,211

This example models the Estimated Technology costs for two years in the future (year 1 and year 2) for JoeBen Gaming based on which computer manufacturer the company selects. This model includes a structural dimension and a parametric dimension. The structural dimension is held in cell H16. This dimension contains the type of technology that JoeBen gaming will purchase for their employees: Tablets, Desktops, and Laptops. The parametric dimension is contained in cell H17. This dimension contains the manufacturers of the technology: Apple, Sony, Samsung, HP, and Dell.

Cells L22 and L23 contain the projected number of machines needed for years 1 and 2, respectively, based on the projected growth distributions in cells K17 and L17. The ratio of tablets, desktops, and laptops, to the total number of machines will remain constant. Therefore, the percentage of tablets will remain at 33%, the percentage of desktops will remain at 46.7%, and the percentage of laptops will remain at 20% for the next two years. As a result, the values in cells I28:K29 are calculated by multiplying the number of machines (cells L22 and L23) by the percentages in cells I21:K21.

Three cubes are located in cells I27:K27. These cubes contain the data for the Manufacturer dimension. The values in these cells will determine the total technology costs for each year. Cell I27 contains pricing data for each tablet by manufacturer, cell J27 contains pricing data for each desktop by manufacturer, and cell K27 contains pricing data for each laptop by manufacturer. Double click each of these cells to display their data values. For example, double clicking cell I27 brings up the following dialog which displays tablet pricing for each manufacturer.

Manufacturer	
Apple	\$430
Sony	\$575
Samsung	\$240
HP	\$200
Dell	\$525

Once the green arrow has been clicked in the Model tab of the Solver task pane, or Simulate - Run Once is clicked on the ASP Ribbon, five different simulations will be run simultaneously in less than one second - one simulation for each manufacturer.

Double click cell L28 to display a grid revealing the total technology costs for Year 1 for each manufacturer. (Click the rand icon to expand the columns to
display the full text in the first column.) With Dimensional Modeling, you can perform a What If analysis with the double click of one button!

		\$L\$28 (sim)
Manufacturer		
Apple	\$75,266	
Sony	\$73,284	
Samsung	\$76,597	
HP	\$33,130	
Dell	\$70,474	

Click the down arrow next to Mean and select Trials from the drop-down menu.
1000 trial values are displayed for each manufacturer. (Click the 荎 icon to expand the columns to display the full text in the first column.) 1000 what-if scenarios are again available at the double click of a button!

To view the trial values vertically (rather than horizontally), simply drag Manufacturer above All Trials in the grid or simply click the double arrows on the right of the dialog and select Manufacturer on the Cube Columns menu.

				\$L\$28 (sim)	
Manufacturer	Apple	Sony	Samsung	HP	Dell
All Trials					
1	\$75,728	\$73,733	\$77,067	\$33,333	\$70,907
2	\$75,728	\$73,733	\$77,067	\$33,333	\$70,907
3	\$76,675	\$74,655	\$78,030	\$33,750	\$71,793
4	\$74,781	\$72,812	\$76,103	\$32,917	\$70,020
5	\$73,835	\$71,890	\$75,140	\$32,500	\$69,134
6	\$74,781	\$72,812	\$76,103	\$32,917	\$70,020
7	\$74,781	\$72,812	\$76,103	\$32,917	\$70,020
8	\$75,728	\$73,733	\$77,067	\$33,333	\$70,907
9	\$74,781	\$72,812	\$76,103	\$32,917	\$70,020
10	\$75,728	\$73,733	\$77,067	\$33,333	\$70,907
11	\$75,728	\$73,733	\$77,067	\$33,333	\$70,907
12	\$76,675	\$74,655	\$78,030	\$33,750	\$71,793
13	\$76,675	\$74,655	\$78,030	\$33,750	\$71,793
14	\$74,781	\$72,812	\$76,103	\$32,917	\$70,020
15	\$74,781	\$72,812	\$76,103	\$32,917	\$70,020
16	\$76,675	\$74,655	\$78,030	\$33,750	\$71,793
17	\$74,781	\$72,812	\$76,103	\$32,917	\$70,020
18	\$73,835	\$71,890	\$75,140	\$32,500	\$69,134
19	\$75,728	\$73,733	\$77,067	\$33,333	\$70,907
20	\$75,728	\$73,733	\$77,067	\$33,333	\$70,907
21	\$75,728	\$73,733	\$77,067	\$33,333	\$70,907
22	\$75,728	\$73,733	\$77,067	\$33,333	\$70,907
23	\$74,781	\$72,812	\$76,103	\$32,917	\$70,020
24	\$75,728	\$73,733	\$77,067	\$33,333	\$70,907
25	\$75,728	\$73,733	\$77,067	\$33,333	\$70,907
26	\$75,728	\$73,733	\$77,067	\$33,333	\$70,907
27	\$75,728	\$73,733	\$77,067	\$33,333	\$70,907
28	\$75,728	\$73,733	\$77,067	\$33,333	\$70,907
29	\$73,835	\$71,890	\$75,140	\$32,500	\$69,134
30	\$77,621	\$75,577	\$78,993	\$34,167	\$72,679
31	\$74,781	\$72,812	\$76,103	\$32,917	\$70,020
32	\$76,675	\$74,655	\$78,030	\$33,750	\$71,793
33	\$74,781	\$72,812	\$76,103	\$32,917	\$70,020

Let's view the results for Dell only. First, select the Manufacturer parametric dimension in the Model tab of the Solver task pane. Then select Dell for Current Value.

The values in cells I27:K27 display $\$ 525$, $\$ 980$ and $\$ 1,270$, respectively, which equals the value for Dell in cells F20:F22.
The PsiMean() functions in cells M28 and M29 display the projected mean technology costs for years 1 and 2 , respectively, when computers manufactured by Dell are purchased.

Note: Double clicking the cubes in cells I27:K27 will display the tablet, desktop, or laptop values by Manufacturer. For example, double click cell I27 to open the following grid which displays the tablet costs for Year 1 for each manufacturer.

Manufacturer	
Apple	\$430
Sony	\$575
Samsung	\$240
HP	\$200
Dell	\$525

Double click K17 in the Model tab of the Solver Task Pane to display the simulation results for technology costs for Year 1.

Then double click cell L16 to display the simulation results for Year 2.

Note: To obtain simulation results for a different manufacturer, select the Manufacturer dimension in the Model tab of the Solver task pane, select the desired manufacturer for the Current Value field, then double click K17 or L17 on the Model tab of the Solver task pane. The uncertain function dialog will update to display the current element of the Manufacturer dimension.

To view the results of cells L28 and L29 at the same time, click Reports Simulation - Parameter Analysis. The Cube Simulation Report dialog opens displaying the two uncertain function cells L15 and L16 under Results and the two dimensions (Manufacturer and Computer Type) under Parametric Dimensions.

Click >> under Outputs to select both L15 and L16. Highlight the Manufacturer dimension, then click > to select. Afterwards, click OK. The following dialog opens.

Within this dialog, you can toggle between the results for cells L28 (which contains the total technology cost for year 1 by Manufacturer) and L29 (which contains the total technology cost for year 2 by Manufacturer).

As you can easily see, purchasing machines from HP will yield the least amount of technology costs for both Years 1 and 2.

All charts under Multiple Simulations now also support Dimensional Modeling. ("Locked" or non-active dimensions will not appear in the charts.) Click
Charts - Multiple Simulations - Box-Whisker to open the Multiple
Simulations Chart dialog. Click >> to select Simulation 1 and click OK. Analytic Solver draws the following chart.

This shows a Box-Whisker diagram for each of the 15 simulations, with the mean, median, $25^{\text {th }}$ and $75^{\text {th }}$ percentiles, and the minimum and maximum value for net revenue on each one. You can click the right edge of the Trend and BoxWhisker charts to open a right panel with options for customizing these charts. You can use the icons on the title toolbar to print the chart, or copy it to the Clipboard, where it can be pasted into another application such as PowerPoint.

Perform the same steps for each of the remaining charts: Trend, Overlay, and Statistics. For more information on these charts, please see the Frontline Solvers Reference Guide.

In addition, the three reports under Charts - Multiple Simulation Results are also supported in Dimensional Modeling. Click Charts - Multiple Simulation Results -- Trend to open the Multiple Simulation Results dialog.

Click \gg to select both output cells L28 and L29, then click OK. A trend chart of both uncertain functions is produced.

Here we can see a steep upward climb of the mean value of the total technology costs, and also the volatility around the mean, depicted here with the $25^{\text {th }}$ and $75^{\text {th }}$ percentiles.

Repeat the same steps to produce the remaining charts: Overlay and BoxWhisker. For an explanation of these reports, please see the Frontline Solvers Reference Guide.

Now close this example and continue onto the next section to learn how to use a pivot table with Dimensional Modeling.

Using Dimensional Modeling with Pivot Tables

In general, cubes are defined as multi-dimensional, not just two - dimensional as shown in the examples above. Unfortunately, a normal Excel worksheet is not the easiest medium for working with multidimensional cubes. An Excel pivot table, however, lends itself to this very practice. An Excel Pivot Table is a tool within Excel that can be used to summarize data located in an Excel worksheet. Once data is inserted into a pivot table, it can easily be sorted, counted, totaled, etc. by dragging and dropping the fields into the desired layout.

Click Help - Example Models on the Analytic Solver ribbon. The Frontline Example Models Overview.xls file will open. Select the Simulation tab and choose Pivot Table Simulation Example from the list. (This example uses parametric dimensions but structural dimensions are also supported.)
An Excel Pivot table is located in cells B13:F27. This table is comprised of the Product Line for Mark's Breakfast Delights. This company has two product lines: Waffle Mix and Pancake Mix. Each of these product lines contain two flavors: blueberry and plain. The Sales team is comprised of 4 individuals who are responsible for a specific region of the Las Vegas area where the company is based: Henderson, Summerlin, North Las Vegas, and Fremont Street. Sales figures for each product and region are located in the Sales column. Note: Since values in a pivot table cannot be evaluated, pivot table values must be constants.

How to create the Pivot Table

Highlight the data on the worksheet, then click Insert - Pivot Table - Pivot Table on the Excel ribbon. The Create PivotTable dialog opens. Select a table or range is prefilled, leave this selection as is. Select New Worksheet, then select a blank cell for Location. Then click OK.

The pivot table will be inserted into a new worksheet. Manipulate the table as desired. Afterwards, click Design - Report Layout - Show in Tabular Form.

Next, we'll create three dimensions, one each for Product, Product_Line, and Region. Select a blank cell, in this case cell I15 was used, then click Model Dimension - From Pivot Table to open the Add Dimension dialog. Select the name of the pivot table, in this case PivotTable1, select Product for Dimensions, select Parametric for Type and cell I15 for Location. Then click OK. The formula =PsiPivotDim(B13,"Product", TRUE) will be inserted into cell I15. Repeat these steps in cells I16 and I17 to create parametric dimensions for Product_Line and Region, respectively. Alternatively, this formula could also be typed directly into the cell.

Now we will create a cube from the pivot table. Select a blank cell, in this example cell I19, then click Model - Cube - From Pivot Table to open the Add Pivot Table Cube dialog.

Add Pivot Table Cube	
Pivot Tables:	PivotTable1
Location:	$\$ 1 \$ 19$
	OK
	Cancel

Leave PivotTable1 and Location at their defaults, and click OK. The following formula will be inserted into cell I19 =PsiPivotCube (\$B\$13:\$F27). Alternatively, this formula could have been entered into the cell directly.
From here we can create a simulation or optimization model. In this example, we've created a simulation model. Cell I21 holds an uncertain variable which calculates a selling price using a triangular distribution with a minimum parameter of 100, a maximum parameter of 200, and a likely parameter of 160 . This sales price is multiplied by the cube result in cell I19.

To simulate gross sales for the Western region, select the Product Dimension on the Model tab in the Task Pane, then change Current Value to "Blueberry". Afterwards, perform the same steps for the remaining dimensions (Product_Line and Region) changing the current value of the Product_Line dimension to "Pancake Mix" and the current value of the Region dimension to "Blueberry". Cell I15 will display the value in cell F15, 18. Now click the green arrow on the Model tab to run a simulation. The simulation runs using the value of 18 as the number of products sold. The simulation results for the uncertain function in cell I22 are below.

Important Note: Pivot tables cannot be evaluated by the PSI Interpreter. This means that decision variables, uncertain variables, uncertain functions, and constraint or objective functions must not be used within an Excel Pivot Table. All values inside of a pivot table must be constant, or computed from constants.

Double click the cube in cell I22 to display a grid containing the Gross Sales by product and region．

昭｜包田哊，国	3．Mean－\＄1\＄22（sim）		－\square
	Product＿Line	Waffle Mix	Pancake Mix
Product	Region		
Blueberry	Henderson	613.3330274	2146.665596
	Summerlin	6746.663301	1686.665825
	North Las Vegas	1839.999082	2606.665366
	Fremont Street	3986.664678	2759.998623
Plain	Henderson	919.9995411	613.3330274
	Summerlin	766.6662843	459.9997706
	North Las Vegas	1379.999312	1073.332798
	Fremont Street	1073.332798	766.6662843

Click the down arrow next to Mean and select Trials to display the 1000 trial values used in the simulation．

Double click cell I23 to open the grid containing the Mean Gross Sales by product and region.

	- \$1\$23 (sim-mean)		Pancake Mix
	Product_Line	Waffle Mix	
Product	Region		
Blueberry	Henderson	613.3330274	2146.665596
	Summerlin	6746.663301	1686.665825
	North Las Vegas	1839.999082	2606.665366
	Fremont Street	3986.664678	2759.998623
Plain	Henderson	919.9995411	613.3330274
	Summerlin	766.6662843	459.9997706
	North Las Vegas	1379.999312	1073.332798
	Fremont Street	1073.332798	766.6662843

It's also possible to list the trial values in cells in the spreadsheet. Cells I25:I39 contain the function PsiData(I22) entered as an array function. These cells display the first 15 , of 1000 , trial values for cell I22, or Gross Sales.

	A	B	C	D	E	F G	H	I
1	Mark's Breakfast Delights							
2								
3	Sum of Sales		Product_Line ${ }^{-}$					
4	Region \quad	Product ${ }^{-}$	Waffle Mix	Pancake Mix	Grand Total			
5	\bigcirc Henderson	Blueberry	4	14	18	Dimension: Pro	Product[1]	
6		Plain	6	4	10	Dimension: Pro	Product_	
7	Henderson Total		10	18	28	Dimension:	Region[4]	
8	©Summerlin	Blueberry	44	11	55			
9		Plain	5	3	8	Cube:	18	
10	Summerlin Total		49	14	63			
11	Θ North Las Vegas	Blueberry	12	17	29	Sales Price:	190.7106	
12		Plain	9	7	16			
13	North Las Vegas Total		21	24	45	Gross Sales	3432.792	
14	Θ Fremont Street	Blueberry	26	18	44			
15		Plain	7	5	12	Gross Sales Trial 1	3266.218	
16	Fremont Street Total		33	23	56	Gross Sales Trial 2	2570.79	
17	Grand Total		113	79	192	Gross Sales Trial 3	2728.214	
18						Gross Sales Trial 4	3043.153	
19						Gross Sales Trial 5	2657.786	
20						Gross Sales Trial 6	3432.792	
21						Gross Sales Trial 7	2487.242	
22						Gross Sales Trial 8	3173.078	
23						Gross Sales Trial 9	2865.978	
24						Gross Sales Trial 10	3068.264	
25						Gross Sales Trial 11	3170.518	
26						Gross Sales Trial 12	3006.086	
27						Gross Sales Trial 13	2285.32	
28						Gross Sales Trial 14	2798.585	
29						Gross Sales Trial 15	3179.391	

Using Sparse Cubes

Analytic Solver provides the option to calculate cubes defined by PsiCube() or PsiTableCube() when the Optimization or Simulation Interpreter option is set to Psi Interpreter.
Most large cubes are sparse in nature. While they may contain thousands of elements, in practice, not all combinations of dimension elements are possible;
therefore, not all will define a model function during the Psi Interpreter's evaluation of the problem. This means that most cubes will provoke output results as sparse cubes (with missing constraints). Such sparsity in a cube (also known as structural sparsity) can be exploited to save memory and gain speed.

A sparse cube is defined by missing values in cells for PsiCube() and by missing records for PsiTableCube(). If this option is equal to False, and you have defined a cube using PsiCube() or PsiTableCube(), elements missing from the cube will be considered equal to 0 . If you set this option to True, you have defined a cube using PsiCube() with missing values or PsiTableCube() with missing records, and the percentage of elements missing or empty is more than 30% of the total possible cube elements, those missing elements or records will not be included in the model.

To illustrate this new feature, we will use the newly added example, Sparse_Cubes.xlsx. To open, click Help - Examples on the Analytic Solver ribbon, click the Simulation tab, then the link to Sparse_Cubes.xlsx.

Two dimensions have been created in cells B14 and B15, dim_vehicle and dim_model, respectively. The dim_vehicle dimension (cell B14) contains three items or elements: car, suv, and truck. The dim_model dimension (cell B15) contains five items or elements: Toyota, Honda, Nissan, Mazda, and Mitsubishi. Both dimensions together specify the number of cars, SUVs and trucks available on a car lot, organized by manufacturer.
One cube is defined using PsiCube() in cell B17 = PsiCube(C18:G20, "dim_model", "dim_vehicle"). The first argument is the cell address of the data, "C18:G20". The second and third arguments are the dimensions for which the data will be calculated. To display the contents of the cube, double-click cell B17.

		\$B\$17 (calc)		-	\square
dim_model	Toyota	Honda	Nissan	Mazda	Mitsubishi
dim_vehicle					
car	1	2	3	4	5
suv	6	7	8	9	10
truck	11	12	13	14	15

Cell B24 contains the PsiNormal distribution with mean equal to 0 , and standard deviation equal to 1 . This is a simple error term that will be added to each cube element.

The formula in cell B22 (B22 = B17 + B24 + PsiOutput()) adds the error term (that follows the PsiNormal distribution) to each element in the cube in cell B17
(i.e., the first element of the cube $=1+\operatorname{PsiNormal}(0,1)$, the second element of the cube $=2+\operatorname{PsiNormal}(0,1)$ and so on). PsiOutput is used to designate cell B22 as an output function. For details on the PsiOuput() function see the previous chapter, "Examples: Stochastic Optimization."

PsiMean() has been array entered into cells D22:D36. After a simulation has been run, these cells will display the PsiMean() value as calculated for each of the 15 elements of the cube (i.e., cell D22 will contain the mean for the first cube element, D21 will contain the mean for the second cube element, and so on).

The formula, = PsiMean(B22, 1, "[dim_vehicle].[suv], [dim_model].[maz]"), has been array entered into cells E24:G24 to illustrate how to display just one element of the cube (i.e., the number of Toyota SUVs available).

Run a simulation by clicking the down arrow beneath Simulate and selecting Run Once. Instantly, Analytic Solver performs a new simulation of 1,000 Monte Carlo trials, and updates each of the 15 cube elements and the worksheet with the results. The mean of each element can be found in cells D22:D36 or by double clicking cell B22, as shown in the screenshot below.

Notice that the value of the first cube element (Toyota/Car) corresponds to the value in cell D22, the value of the second cube element (Honda/Car) corresponds to the value in cell D23, and so on. In addition, the value for the number of available Toyota SUVs in cell G24 corresponds to the number of Toyota SUVs in the cube display.
Next, let's move to the right of the spreadsheet. Cell O15 contains PsiTableCube(). PsiTableCube() defines a sparse table. The first argument passes the dimension elements, while the second argument passes the values. (For more information on PsiTableCube, see PsiTableCube() in the Frontline Solvers Reference Guide.)
Notice that only 6 out of a possible 15 elements are used in the table. When Use Sparse Cubes is set to False (the default), the missing 9 elements will be set to 0 during the Psi Interpreter's evaluation of the problem. To display the following cube, double-click cell O15.

qty_instock (calc)				-	\square
dim_model	Toyota	Honda	Nissan	Mazda	Mitsubishi
dim_vehicle					
car	1	2	3	0	0
suv	0	0	0	9	10
truck	11	0	0	0	0

PsiMean has been array entered into cells M22:M36. Cell K22 contains the formula " $=$ B24 + M15 + PsiOutput()", which adds an error term to each element in the cube table. (This formula re-uses the PsiNormal() distribution in cell B24 as the error term).

Use Sparse Cubes = False

With Use Sparse Cubes = False on the Platform tab on the Solver Task Pane, run a simulation by clicking the down arrow beneath Simulate and selecting Run Once.

Instantly, Analytic Solver performs a new simulation of 1,000 Monte Carlo trials, and updates each of the 15 cube elements and the worksheet with the results. The mean of each element can be found in cells M22:M36 or by doubleclicking cell K22, as shown in the screenshot below.

			\$K\$22 (sim)		- \square
dim_model	Toyota	Honda	Nissan	Mazda	Mitsubishi
dim_vehicle					
car	0.994014823	1.994014823	2.994014823	-0.005985177	-0.005985177
suv	-0.005985177	-0.005985177	-0.005985177	8.994014823	9.994014823
truck	10.99401482	-0.005985177	-0.005985177	-0.005985177	-0.005985177

	-0.7377801		0.9940148				
		1.9940148					
	Toyota	-0.0059852	2.9940148	car	Toyota	0.994015	
		-0.005985	car	Honda	1.994015		
		-0.005985	car	Nissan	2.994015		
		-0.005985	car	Mazda	-0.00599		
		-0.005985	car	Mitsubishi	-0.00599		
		-0.005985	suv	Toyota	-0.00599		
		8.9940148	suv	Honda	-0.00599		
			9.9940148				
			10.994015				
			-0.005985				

The formula, = PsiMean(K22, 1, "[dim_vehicle].[suv], [dim_model].[maz]"), array entered into cells J24:L24, illustrates how to display a single element of the cube, in this case the number of available Toyota SUVs. Notice this number is a fraction because the value for a Toyota SUV was missing in PsiTableCube(). Since Use Sparse Cubes is equal to false, the value for this element was set to 0.

The formula, =PsiMean(K22, "vals") has been array entered into cells M24:Q29 to illustrate how to display the cube dimensions and values in the worksheet. Since this formula has been array entered into only seven rows, only the first seven cube elements will be displayed.

Use Sparse Cubes = True

Click the Platform tab on the Solver Task Pane, scroll down to Advanced and enter True for Use Sparse Cubes.

Advanced	Automatic
Supply Engine with	Autor
Use Incremental Parsing	False
Use Sparse Variables	False
Use Sparse Cubes	True
Only Parse Active Sheet	True
Scan for Bounds	False

Since the ratio of the number of missing elements to the total number of possible elements is greater than 30% (6 out of a possible 15), Solver will only consider those six elements included in PsiTableCube() in the model formulation. In other words, while Use Sparse Cubes is set to True, only 6 elements are contained in the cube.

Run a simulation by clicking the down arrow beneath Simulate and selecting Run Once.

Notice that only the first six cells within the range M22:M36 hold values. This is because the cube only contains six elements! The remaining nine elements have not been included in the model. The value in cell M22 corresponds to the first cube element, Toyota cars, the value in cell M23 corresponds to the second cube element, Honda cars, the value in cell M24 corresponds to the third cube element Nissan cars, the value in cell M25 corresponds to the fourth cube element, Mazda SUVs, the value in cell M26 corresponds to the fifth cube element, Mitsubishi SUVs, and the value in cell M27 corresponds to the sixth cube element Toyota trucks.

The same is true for the elements in cells O24:O30. Cells O30:O30 show \#N/A because only six elements are included in the model. Those six elements are displayed in cells O24:O29.

To display the cube output, double-click cell K22. Notice that the missing elements are now labeled as "NA," which means they do not exist in the simulation model. Our 15 element cube has been reduced to 6 .

		\$K\$22 (sim)		-	\square
dim_model	Toyota	Honda	Nissan	Mazda	Mitsubishi
dim_vehicle					
car	0.994014823	1.994014823	2.994014823	NA	NA
suv	NA	NA	NA	8.994014823	9.994014823
truck	10.99401482	NA	NA	NA	NA

-0.7377801		0.9940148			
		1.9940148			
Mazda	8.99401482	2.9940148	car	Toyota	0.994015
		8.9940148	car	Honda	1.994015
		9.9940148	car	Nissan	2.994015
		10.994015	suv	Mazda	8.994015
		\#N/A	suv	Mitsubishi	9.994015
		\#N/A	truck	Toyota	10.99401
		\#N/A	\#N/A	\#N/A	\#N/A
		\#N/A			

Automating Optimization in VBA

Introduction

| Analytic
 Solver Risk
 Solver
 Plafform
 Plaform | Premium
 Solver |
| :--- | :--- | :--- |
| Plafform | |$|$

This chapter explains how to use the Object-Oriented API in Analytic Solver Desktop to create, modify and solve optimization models under the control of your custom application written in VBA.

Note: Analytic Solver Cloud does not currently support this functionality.
This API is compatible with the object-oriented API offered by Frontline's Solver SDK Platform and Solver SDK Pro, used to build custom applications of optimization and simulation using C++, C\#, VB.NET, Java, MATLAB and other languages.

Analytic Solver also supports "traditional" VBA functions, which are upward compatible from the VBA functions supported by the standard Excel Solver. This API is described in the Frontline Solvers Reference Guide.

Why Use the Object-Oriented API?

The new object-oriented API is more powerful and much more convenient for programming than the "traditional" VBA functions.

With the "traditional" VBA functions:

- You work with procedural functions that correspond to operations - such as SolverOK and SolverSolve - you can perform interactively in the Solver dialogs. To access the model and its variables and constraints, you must process the arrays of text and numbers returned by the SolverGet function.
- To obtain solution values, you must use the Excel object model (usually the Range object) to access the decision variable cells on the worksheet. You must take care to access the correct cells for specific decision variables.
- To obtain dual values and ranges, you must call the SolverFinish function to insert a report worksheet into the workbook, then use the Excel object model to access cells in the report. You must take extra care to access the correct report cells containing dual values and ranges.
With the new Object-Oriented API:
- You work with objects that correspond to the Problem, Model, Solver, Engine, Variables, and Functions. You can access sets of variables and constraints in the current model directly with expressions such as myProb.VarDecision and myProb.FenConstraint.
- You can obtain solution values directly, with expressions such as myProb.VarDecision.FinalValue(i). If you need the cell address for a set of decision variable cells, you can write myProb.VarDecision.Name.
- You can access dual values and ranges for variables and constraints directly, with expressions such as myProb.VarDecision.DualValue(i) or myProb.FenConstraint.DualValue(i).

The result is VBA code that's easier to read, and easier to write in the first place. Since the VBA Editor recognizes the object model exposed by Analytic Solver -
just as it recognizes the object model exposed by Excel - you'll receive IntelliSense prompts as you write code. For example, if you type a line Dim myProb as New Problem, then start a new line with myProb., you'll be prompted with the properties and methods available for Problems:

If you select FcnConstraint and then type a period, you'll be prompted with the properties and methods available for Functions:

This makes it much easier to write correct code, without consulting the manual. What's more, you can use this object-oriented API when programming Excel and Analytic Solver from new languages such as VB.NET and C\#, working in Visual Studio, and receive IntelliSense prompts in the syntax of these languages!
If you're using new functionality in Analytic Solver, the object-oriented API is your best bet. And if you're planning to move your application outside of Excel in the future - so it will run as a standalone program - you'll find that Frontline's Solver Platform SDK offers an object-oriented API that closely resembles the new APIs in Analytic Solver.

Running Predefined Solver Models

Controlling the Solver can be as simple as adding two lines to your VBA code! Each worksheet in a workbook may have a Solver problem defined, which is saved automatically with the workbook. You can create this Solver model interactively if you wish. If you distribute such a workbook, with a worksheet containing a Solver model and a VBA module, you can simply add a reference to the Analytic Solver COM server (see below), activate the worksheet, and add these two lines of code:
Dim prob As New Problem
prob.Solver.Optimize

Using the Macro Recorder

If you want to set up a Solver model "from scratch" programmatically, one easy way to see how to use the object-oriented API is to turn on the Excel Macro Recorder and then set up a Solver model interactively. Microsoft Excel will
record a macro in VBA that calls the object-oriented API to mimic the actions you perform. You can then edit and customize this macro, and incorporate it into your application.

Note: You must use the classic Solver dialog to record a macro, rather than the Solver Task Pane. To open, click Add-ins - Premium Solver. By default, the Excel Macro Recorder will record calls to the object-oriented API.

Adding a Reference in the VBA Editor

To use the new object-oriented API in VBA, you must first add a reference to the type library for the Analytic Solver COM server. To do this:

1. Press Alt-F11 to open the VBA Editor.
2. Select menu choice Tools References.
3. Scroll down until you find Analytic Solver 2021 Type Library.
4. Check the box next to this entry, and click OK to close the dialog.
5. Use File Save to save your workbook.

Note that this is a different reference from Solver, which is the reference you add in order to use the "traditional" VBA functions.

Analytic Solver Object Model

Analytic Solver makes available a hierarchy of objects for describing optimization problems, as pictured on the next page. Note that the same objects are used for both optimization and simulation problems; see the next chapter, "Automating Simulation in VBA," for more information.

The Problem object represents the whole problem, and the Model object represents the internal structure of the model, which in Analytic Solver is defined by your formulas on the spreadsheet. The Solver object represents the optimization process - you call its Optimize method to find an optimal solution. The Engine object represents either a built-in or plug-in Solver engine. A Variable object represents a range of one or more contiguous cells that contains decision variables, while a Function object represents a range of cells that contains either constraint left hand sides or the objective. Each Problem has a collection of Variable objects, and a collection of Function objects. An Evaluator represents a function you write that the Solver will call on each iteration (Trial Solution), or on each subproblem in a larger problem.

The Model has a collection of ModelParam objects, each representing a single option or parameter of the PSI Interpreter (appearing in the Task Pane Platform tab). An Engine has a collection of EngineParam objects, each representing a single option or parameter of a Solver engine (appearing in the Task Pane Engine tab). It also has an EngineLimit object, holding problem size limits for this Solver engine, and an EngineStat object, holding performance statistics for the last optimization problem solved by this engine. An OptIIS object holds results of an infeasibility analysis of the problem.

Using the VBA Object Browser

You can examine Analytic Solver objects, properties and methods in the VBA Object Browser. To do this, press Alt-F11 to open the VBA Editor, and select menu choice View Object Browser. This displays a child window like the one pictured below.

The dropdown list at the top left corner of the Object Browser initially displays <All Libraries> - change this to select RSP. In the object browser pictured, we've highlighted the properties of the Function object

Programming the Object Model

You use the Analytic Solver object-oriented API by first creating an instance of a Problem, and initializing it with the Solver model defined on a worksheet in an open workbook. When you do this, a collection of Variable objects and a collection of Function objects are created automatically. Each Variable object corresponds to a cell range of decision variables that appears in the outlined list of variables, and each Function object corresponds to a cell range of constraints that appears in the list of constraints in the Task Pane.

Once you have an initialized Problem object, you can do several things:

- Set Solver and Engine parameters such as the maximum time or number of iterations, the method used to compute gradients, and other options and tolerances.
- Perform an optimization, and check the final status of the solution process.
- Get results of the optimization, by accessing properties of the Variable and Function objects, and performance statistics, by accessing properties of the EngineStat object.

Example VBA Code Using the Object Model

Below is an example of VBA code that could be linked to a command button on the worksheet:

```
Private Sub CommandButton1_Click()
    Dim prob As New RSP.Problem
    prob.Engine = prob.Engines("Standard LP/Quadratic")
    prob.Engine.Params("MaxTime") = 600
    prob.Solver.Optimize
    MsgBox "Status = " & prob.Solver.OptimizeStatus
    MsgBox "Obj = " & prob.FcnObjective.FinalValue(0)
    For i = 0 To prob.Variables.Count - 1
        For j = 0 To prob.Variables(i).Size - 1
            MsgBox prob.Variables(i).FinalValue(j)
        Next j
    Next i
    Set prob = Nothing
End Sub
```

The first line creates an instance of a Problem, which by default is associated with the Solver model defined on the active worksheet. You could associate the Problem object with a different worksheet by calling the prob.Init method:

```
Private Sub CommandButton1_Click()
    'create new problem
    Dim prob As New RSP.Problem
'initialize model on Invent2 worksheet
    prob.Init Worksheets("Invent2")
```

The second line selects the Standard LP/Quadratic Solver engine, and the third line sets the maximum solution time to 600 seconds. The string names of parameters such as "MaxTime" are documented in the Frontline Solvers Reference Guide.

The next set of three lines performs the optimization, displays the Solver Result status code (for example 0), and displays the final value of the objective.

The double for-loop in the next five lines steps through the Variable objects each one representing a range of contiguous cells - and displays the final value for each variable cell in each range.

Evaluators Called During the Solution Process

You can write a VBA function that Analytic Solver will call at certain points during the solution process. In this "callback function," you can access information about the problem and solution so far, to monitor or report progress and decide whether to stop or continue the solution process.

The object-oriented API defines an Evaluator object that is associated with your "callback function" and specifies when Analytic Solver should call it. You can define Evaluators to be called on each iteration or Trial Solution, or on each subproblem or each new solution ("incumbent") when the solution process involves multiple subproblems (global optimization problems, and problems with integer variables).

The VBA function you write to serve as an Evaluator must be contained in a class module - not a 'regular' VBA module - and it must be declared to have the With Events property.

On the next page is an example of code for an Evaluator, in a class module named Class1.

```
Private WithEvents EvalIterator As RSP.Evaluator
Private Function EvalIterator_Evaluate
        (ByVal Evaluator As RSP.IEva
    RSP.Engine_Action
    MsgBox "Iteration = "
            & Evaluator.Problem.Engine.Stat.Iterations
            & Chr(13) & Chr(10) & "Objective = "
            & Evaluator.Problem.FcnObjective.Valuē(0) _
            & Chr(13) & Chr(10)
    EvalIterator_Evaluate = Engine_Action_Continue
End Function
Public Sub MySolve()
    Set EvalIterator = New RSP.Evaluator
    Dim prob As New RSP.Problem
    prob.Evaluators(Eval_Type_Iteration) = EvalIterator
    prob.Solver.Optimize
    Set EvalIterator = Nothing
End Sub
Having created the class module Classl, in a
'regular' VBA module you can create an instance of
Class1, and then call the MySolve method in Class1:
Private Sub CommandButton1_Click()
    Dim c As New Class1
    C.MySolve
End Sub
```


Refinery.xls: Multiple Blocks of Variables and Functions

A further example of programming the object-oriented API is shown in the model Refinery.xls, which is installed in the Examples folder, normally at the path C:\Program Files\Frontline Systems\Analytic Solver Platform\Examples. (You can also open this example by clicking Help - Examples on the Ribbon, then click Optimization Examples.)
The Refinery.xls model, which is based on Problem 12.6 in the 3rd edition of Model Building in Mathematical Programming by H.P. Williams (see the Recommended Books on www.solver.com for details), has ten blocks of decision variables and eleven blocks of constraints, plus bounds on certain variables.

The VBA code for this model illustrates some of the many ways you can use the object-oriented API. For example, the following line displays the time that was required to solve the problem:

```
MsgBox prob.Engine.Stat.Milliseconds & " msec"
```

The following line inserts an Answer Report into the active workbook:

```
prob.Solver.Report "", "Answer"
```

The VBA code on the next page illustrates one way to display final solution values for each of the ten blocks of decision variables in this problem:

```
For i = O To prob.Variables.Count - 1
    prob.Variables(i).MakeCurrent
    For j = O To prob.VarDecision.Size - 1
        MsgBox prob.VarDecision.Name
            & "[" & j+1 & "] = " &
            prob.VarDecision.FinalValue(j)
    Next j
Next i
```

When executed, this code displays MessageBoxes such as:

The line prob.Variables (i). MakeCurrent associates the Problem property VarDecision (a single block of decision variables) with each of the ten blocks of variables in turn, allowing you to refer to solution values and dual values of this block in more compact notation. A similar line of code can be used to make the Problem property FcnConstraint represent one of the eleven blocks of constraints. The .Name property of the block, which usually returns a string such as "\$A\$1:\$A\$10", returns "Distilled_oil" in this case, since the Excel model has a defined name for this block of cells.

Adding New Variables and Constraints to a Model

So far, we've seen how to access variables and constraints that were defined interactively through the Ribbon and Task Pane (or the Solver Parameters dialog), using the Problem object and its VarDecision and FcnConstraint properties, as well as the Variables and Functions collections. But you can also add new variables and constraints to a model through the Object-Oriented API, and have them appear in the Task Pane Model tab. To illustrate some additional properties used in full Analytic Solver Comprehensive, let's add a recourse decision variable and a chance constraint.

To add a new decision variable, we create a Variable object, associate it with a worksheet cell, set its properties, and add it to the Variables collection. To make this a recourse decision variable, we simply set its VariableType property:

```
Dim v As New RSP.Variable
    v.Init "$D$18"
    v.VariableType = Variable_Type_Recourse
    v.NonNegative
    prob.Variables.Add v
```

Similarly, to add a new constraint, we create a Function object, associate it with a formula cell on the worksheet, set its properties, and add it to the Functions collection. To make this a chance constraint, we simply set its FunctionType, ChanceType and Chance properties:

```
Dim f As New RSP.Function
    f.Init "$C$23"
    f.FunctionType = Function_Type_Chance
    f.ChanceType = Chance_Type_V_VaR
    f.Chance = 0.95
    f.LowerBound.Array = 0 '>= 0
    prob.Functions.Add f
```


CuttingStock.xIs: Multiple Problems and Dynamically Generated Variables

A more ambitious example of programming the object-oriented API is shown in the model CuttingStockVBA(Opt).xls, which is installed in the Examples folder, normally at the path C:\Program Files\Frontline Systems\Analytic Solver Platform\Examples. (You can also open this example by clicking Help Examples on the Ribbon, then click Optimization Examples.)

This application uses the object-oriented API to define and repeatedly solve two optimization problems, passing information back and forth between the two problems. One problem is instantiated from a worksheet with the prob.Init method as mentioned earlier; the other problem is created "from scratch," with new dynamically generated decision variables added each time the problem is solved.

Cutting Stock Problem

CuttingStockVBA(Opt).xls solves a classical "cutting stock" problem, which arises for example in lumber and paper mills. Imagine that you have a number of sheets of wood or rolls of paper of a fixed width, waiting to be cut; you have customer orders for sheets or rolls of various different widths. Your task is to cut the larger, fixed-width sheets or rolls into different sizes in a way that minimizes the total stock used while meeting customer demand.
You might for example cut a 100 inch sheet into two sheets of 45 inches (leaving 10 inches wasted), three sheets of 31 inches (leaving 7 inches wasted), one 45 -inch sheet and one 31 -inch sheet (leaving 24 inches wasted), etc. Each of these is called a pattern, and the main problem will have a decision variable representing the number of copies of that pattern to cut. In a 'real-life" application, the number of possible patterns is exponentially large, yielding a model that's too large to solve.

Column Generation Method

We can instead use the technique of column generation ('columns' here refers to variables in the main problem). We choose a small initial set of patterns to include in the model, and solve the main problem (an LP). Since it is unlikely that we chose the perfect set of patterns initially, we use the dual variable information from the main problem to generate a new pattern. We generate this new pattern by solving a second optimization problem, called a 'knapsack' problem. A decision variable for the new pattern is dynamically created and added to the main problem, which is solved again. These two problems, the
main problem and the knapsack problem, are solved in turn until no more patterns can be generated that will reduce the total stock used.

Worksheets and VBA Code

In CuttingStockVBA(Opt).xls, sheet Input contains the 'knapsack' problem, which is solved to generate new patterns, and sheet Patterns contains the main problem. Our VBA code executes a loop, alternately solving the main problem and the knapsack problem. When the solution to the main problem can no longer be improved, we solve a final problem where we add integer constraints on the variables, so the final solution yields an exact count of the patterns that should be cut.

Open CuttingStockVBA(Opt).xls and press Alt-F11 to view its VBA code in the VBA Editor. The first block of code clears the Patterns sheet and sets up the initial patterns. This code simply sets values and formulas into cells, using the Excel object model.

```
Dim nPat As Integer, i As Integer, _
nNumDemands As Integer
nPat = Range("Demands").Count
nNumDemands = nPat
Worksheets("Patterns").Activate
Range("$A$1:$Z$100").Clear
' create initial patterns
For i = 1 To nPat
    Cells(2 + i, i) = Int(Range("RollSize").Value2
        / Range("Widths").Cells(i).Value2)
    Cells(2 + i, nPat + 1).Formula = "=sumproduct("
        & Range(Cells(1, 1), Cells(1, nPat)).Address
        & "," & Range(Cells(2 + i, 1),
            Cells(2 + i, nPat)).Address & ")"
    Cells(3 + nPat, i) = Range("RollSize").Value2 -
                Cells(2 + i, i) *
Range("Widths").Cells(i).Value2
Next i
```

The code then enters the main loop in which we add a new pattern to the main problem, and set up and solve that problem using Analytic Solver's object model:

```
    'generate patterns
    Cells(2, 1).Formula = "=sum("
        & Range(Cells(1, 1), Cells(1,}\mathrm{ nPat)).Address &
")"
For i = 1 To nNumDemands
    Cells(2 + i, nPat + 1). Formula = "=sumproduct(" _
        & Range(Cells(1, 1), Cells(1, nPat)).Address _
        & "," & Range(Cells(2 + i, 1), Cells(2 + i, _
            nPat)).Address & ")"
Next i
Dim prob As New RSP.Problem
' variables
prob.Variables.Clear
prob.Functions.Clear
Dim vars As New RSP.Variable
vars.Init Range(Cells(1, 1), Cells(1, nPat))
```

```
vars.NonNegative
prob.Variables.Add vars
Set vars = Nothing
    ' objective
    Dim objective As New RSP.Function
    objective.Init Range(Cells(2, 1), Cells(2, 1))
    objective.FunctionType = Function_Type_Objective
    prob.Functions.Add objective
    Set objective = Nothing
    ' constraints
    ReDim constraints(1 To nNumDemands) As _
        New RSP.Function
    For i = 1 To nNumDemands
        constraints(i).Init Range(Cells(2 + i, nPat + 1),
            Cells(2 + i, nPat + 1))
        constraints(i).LowerBound(0) =
            Range("Demands").Cells(i).Valūe2
        prob.Functions.Add constraints(i)
Next i
prob.Solver.SolverType = Solver_Type_Minimize
prob.Engine = prob.Engines("Sta\overline{n}dard LP/Quadratic")
prob.Solver.Optimize
```

Next, the code obtains the dual values from the solution to the main problem, via the Analytic Solver object model, and stores these values as parameters of the knapsack problem on the Input worksheet, via the Excel object model:

```
' capture shadow prices
For i = 1 To nNumDemands
    Worksheets("Input").Cells(2 + i, 5) =
        prob.Functions(Range(Cells(2 + i, nPat + 1), _
        Cells(2 + i, nPat + 1))).DualValue(0)
Next
Worksheets("Input").Activate
Dim j As Integer
j = 1
For i = 1 To prob.Functions.Count
    If prob.Functions(i - 1).FunctionType =
            Function Type Constraint Then
            Cells(\overline{2}+j, 5) =
                prob.Functions(i - 1).DualValue(0)
            j = j + 1
    End If
Next i
```

The code then sets up and solves the knapsack problem, again using the Analytic Solver object model:

```
Dim prob1 As New RSP.Problem
prob1.Init Worksheets("Input")
prob1.Engine = prob1.Engines("Standard
LP/Quadratic")
prob1.Engine.Params("IntTolerance").Value = 0
prob1.Solver.Optimize
```

If the objective value of the knapsack problem is less than 1 (allowing for rounding error) - meaning that there are no more patterns that will improve the solution - we can exit the loop.

```
If 1 - prob1.FcnObjective.FinalValue(0) _
    >= -0.00001 Then
    Exit Do
End If
```

Otherwise, the code writes the new pattern to the Patterns (main problem) worksheet, using the Excel object model:

```
Worksheets("Patterns").Activate
Cells(nNumDemands + 3, nPat + 1) =
    Range("RollSize").Value2
' write out new pattern, and associated waste
For i = 1 To nNumDemands
    Cells(2 + i, nPat + 1) =
        prob1.VarDecision.FinalV}alue(i - 1)
    Cells(nNumDemands + 3, nPat + 1) =
        Cells(nNumDemands + 3, nPat + 1).V}\textrm{V}=1ue2 -
        prob1.VarDecision.FinalValue(i - 1) *
        Range("widths").Cells(i).Value
Next i
nPat = nPat + 1
Set prob1 = Nothing
```

When the Do ... Loop is exited, all patterns have been generated. Finally, the code solves one more problem with integer constraints on the variables, to ensure that we produce the exact count needed to meet customer demand:

```
Worksheets("Patterns").Activate
    prob.Init Worksheets("Patterns")
    prob.Functions.Clear
    prob.Variables.Clear
    ' variables
    Dim finalvars As New RSP.Variable
    finalvars.Init Range(Cells(1, 1), Cells(1, nPat))
    For i = 1 To nPat
        finalvars.IntegerType(i - 1) =
Integer_Type_Integer
    Next i
    finalvars.NonNegative
    prob.Variables.Add finalvars
    ' objective
    Cells(3 + nNumDemands, nPat + 1).Formula =
        "=sumproduct(" & Range(Cells(1, 1),
        Cells(1, nPat)).Address & ","
        & Range(Cells(3 + nNumDemands, 1), _
        Cells(3 + nNumDemands, nPat)).Address & ")"
    Dim TotalWaste As New RSP.Function
    TotalWaste.Init Range(Cells(3 + nNumDemands,
        nPat + 1), Cells(3 + nNumDemands, nPat + 1))
    TotalWaste.FunctionType = Function_Type_Objective
    prob.Functions.Add TotalWaste
    ' constraints
    ReDim constraints(1 To nNumDemands) As _
```

```
        New RSP.Function
    For i = 1 To nNumDemands
    Cells(2 + i, nPat + 1).Formula = "=sumproduct("
            & Range(Cells(1, 1), Cells(1, nPat)).Address _
            & "," & Range(Cells(2 + i, 1), Cells(2 + i, _
            nPat)).Address & ")"
        constraints(i).Init Range(Cells(2 + i, nPat + 1),
            Cells(2 + i, nPat + 1))
    constraints(i).LowerBound(0) =
            Range("Demands").Cells(i).Value2
        prob.Functions.Add constraints(i)
Next i
prob.Engine = prob.Engines("Standard LP/Quadratic")
prob.Engine.Params("IntTolerance").Value = 0
prob.Solver.Optimize
Set prob = Nothing
```

This example illustrates some of the power of the object-oriented API. Although you could use the "traditional" VBA functions to obtain similar results, it would require quite a bit more code to do so, especially at the step of obtaining the dual values from the solution of the main problem and using them to solve the next knapsack problem.
If you wanted to move this application from Excel to a standalone program, you'd find that nearly all the code in CuttingStockVBA(Opt).xls that references the Analytic Solver object model could be re-used, with few or no changes, in building an application for the Solver Platform SDK. You'd have to rewrite the code that references cells via the Excel object model to use arrays in a programming language instead, but this would not be difficult.

Automating Simulation in VBA

Introduction

This chapter explains how to use the Object-Oriented API in Analytic Solver Desktop to create, modify and solve simulation models under the control of your custom application written in VBA.

Note: Analytic Solver Cloud does not currently support this functionality.
In the simplest case, you can use a few standard lines of VBA code to enable and disable Interactive Simulation, as described below. But you can do much more in VBA, to create custom risk analysis applications.

You can define a Problem and instantiate it from the spreadsheet with two lines of code, then access the uncertain elements of your model via Variable and Function objects. You can perform simulations, access trials and summary statistics, and present them the way you want to your end user. All the power of the Excel object model is available, including database access, charts and graphs, and custom dialogs and controls.

Analytic Solver's VBA object model closely resembles the object-oriented API of Frontline's Solver SDK Platform or Solver SDK Pro - which both include a complete toolkit for Monte Carlo simulation. This makes it easier to move an application from Excel to a custom program written in C/C++, Visual Basic, VB.NET, Java or MATLAB.

Adding a Reference in the VBA Editor

To use the new object-oriented API in VBA, you must first add a reference to the type library for the Analytic Solver COM server. To do this:

1. Press Alt-F11 to open the VBA Editor.
2. Select menu choice Tools References.
3. Scroll down until you find Analytic Solver 2021 Type Library.
4. Check the box next to this entry, and click OK to close the dialog.
5. Use File Save to save your workbook.

Note that this is a different reference from Solver, which is the reference you add in order to use the "traditional" VBA functions.

You need this reference if your VBA code uses the Event Listener as described in the next section, or uses other elements of the Analytic Solver VBA object model, described in later sections of this chapter (or both).

Activating Interactive Simulation

If you simply want to activate or deactivate Interactive Simulation under program control, you need a few standard lines of VBA code. You can place this code in any VBA procedure you write, and cause it to be run in any manner that is convenient for your application. For example, you could use:

```
Public Sub ISActivate
    Dim ev As New EventListener
    ev.AttachEvent Application
    Set ev = Nothing
End Sub
Public Sub ISDeactivate
    Dim ev As New EventListener
    ev.DetachEvent
    Set ev = Nothing
End Sub
```

You could use the Tools Macro Run menu choice in Excel to run these VBA procedures, or you could associate a Ctrl-Key combination with each procedure, so it is run when that key combination is pressed.

Another approach appears in the example workbook BusinessPlanPsiChart.xls (normally installed at C:\Program Files\Frontline Systems\Analytic Solver Platform\Examples): Two buttons named CommandButton1 and CommandButton2 are placed on the spreadsheet, along with two images named Picture Bulb On and Picture Bulb Off, that are stacked on top of each other. The VBA code is:

```
Private Sub CommandButton1_Click()
    Dim ev As New EventListener
    ev.AttachEvent Application
    Set ev = Nothing
    Me.Shapes("Picture Bulb On").Visible = True
    Me.Shapes("Picture Bulb Off").Visible = False
End Sub
Private Sub CommandButton2 Click()
    Dim ev As New EventListener
    ev.DetachEvent
    Set ev = Nothing
    Me.Shapes("Picture Bulb On").Visible = False
    Me.Shapes("Picture Bulb Off").Visible = True
End Sub
```

When the "On" button (CommandButton1) is clicked, Interactive Simulation is activated, and the light bulb is "turned on." When the "Off" button is clicked, Interactive Simulation is deactivated, and the light bulb is "turned off."

Using VBA to Control Analytic Solver

You can do much more with VBA: You can perform simulations under your control, rather than on every worksheet recalculation. You can obtain results of the simulation - statistics, percentiles, or even raw trial data - that you'd otherwise obtain through worksheet functions such as PsiMean(),
PsiPercentile(), or PsiData(). You can even define certain worksheet cells as uncertain variables and supply trial data for them in a simulation, without using functions such as PsiNormal() or PsiUniform() in cell formulas.
You also have access in VBA to the Excel object model, which provides a very rich source of high-level functions for manipulating cells and ranges, creating charts and graphs, accessing external databases, and much more. This gives you a powerful set of tools for developing custom risk analysis applications.

Analytic Solver Object Model

Analytic Solver makes available a hierarchy of objects for describing Monte Carlo simulation problems, pictured below. This object model is a simplified subset of the object hierarchy offered by Frontline's Solver Platform SDK product, which is used to build custom applications in C/C++, Visual Basic, VB.NET, Java or MATLAB. Note that the same objects are used for both optimization and simulation problems.

The Problem object represents the whole problem, and the Model object represents the internal structure of the model, which in Analytic Solver is defined by your formulas on the spreadsheet. The Solver object represents the Monte Carlo process - you call its Simulate method to perform a simulation. The Engine object represents the PSI Technology "engine" - its parameters include the sampling method, for example. A Variable object represents a range of one or more contiguous cells that contains uncertain variables, while a Function object represents a range of cells that contains uncertain functions. You may have a collection of Variable objects, and a collection of Function objects in one Problem.

Using the VBA Object Browser

You can examine the Analytic Solver objects, properties and methods in the VBA Object Browser. To do this, press Alt-F11 to open the VBA Editor, and select menu choice View Object Browser. This displays a child window like the one pictured below. The dropdown list at the top left corner of the Object Browser initially displays <All Libraries> - change this to select RSP. Below,
we've highlighted the properties of the Statistics object, which is a child of the Variable and Function objects.

Using Analytic Solver Objects

You use the Analytic Solver object model by first creating an instance of a Problem, and initializing it with the simulation model defined in your Excel workbook. Once you have an initialized Problem object, you can do several things:

- Add one or more new Variable objects to the problem. (This is an advanced step, covered near the end of this chapter.)
- Set Solver and Engine parameters such as the number of simulations, number of trials per simulation, the sampling method, and the random seed.
- Perform a simulation.
- Get results of the simulation, by accessing properties of the Variable and Function objects, and of their "child" Statistics objects.

The simplest action you might want to take is to create a Problem representing the workbook, set parameters, perform a simulation, and display results. Below is an example that could be linked to a command button on the worksheet:

```
Private Sub CommandButton3_Click()
    Dim prob As New RSP.Prob}le
    prob.Init ActiveWorkbook
    prob.Solver.NumTrials = 5000
    prob.Engine.Params("SamplingMethod") = 2
    prob.Solver.Simulate
```

```
    For i = 0 To prob.Functions.Count - 1
    MsgBox prob.Functions(i).Statistics.Mean(0)
    Next i
    Set prob = Nothing
End Sub
```

The first two lines create an instance of a Problem, and initialize it with the simulation model defined in your Excel workbook. The next two lines set the number of trials in the simulation to 5000, and the sampling method to Latin Hypercube. The fifth line performs a simulation.

The for-loop in the next three lines will step through the Function objects assuming, for simplicity here, that each Function object represents just one cell and display the Mean property of the child Statistics object (the mean or average value of the function across all trials) for each one.

Using Variable and Function Objects

When you create and initialize a Problem, a collection of Variable objects and a collection of Function objects are created automatically. Each Variable object corresponds to a range of one or more cells that contain PSI Distribution functions. Each Function object corresponds to a formula cell referenced as the first argument of a PSI Statistics function, or a range of one or more formula cells referenced by PsiOutput(). For more information on the grouping of cells into Function objects, please see the Frontline Solvers Reference Guide.

Indexing Variable and Function Objects

The VBA code example above assumes that any cells containing =PsiOutput() are separated from each other on the worksheet. When uncertain variable and uncertain function cells lie in a contiguous range - for example A1:A5 or A1:E1 - one Variable or Function object is created to represent all the cells in the range. The Size property of this object tells you the number of cells in the range, and its other properties may be indexed to access statistics - for example - of individual cells. The for-loop above could be written in more general form as:

```
For i = O To prob.Functions.Count - 1
    For j = O To prob.Functions(i).Size - 1
            MsgBox prob.Functions(i).Statistics.Mean(j)
        Next j
    Next i
```


Percentiles and AllTrials Properties

In addition to the Statistics child object used above, Variable and Function objects have properties named Percentiles and AllTrials (the raw trial data).
The Percentiles property plays the same role as the PsiPercentile() function on the spreadsheet. It yields a DoubleMatrix object that takes two subscripts: the index (starting from 0) of the cell in the range represented by the Variable or Function object, and the percentile index, which runs from 0 to 98 for the $1^{\text {st }}$ through $99^{\text {th }}$ percentile.

The AllTrials property plays the same role as the PsiData() function on the spreadsheet. It yields a DoubleMatrix object that takes two subscripts: the index (starting from 0) of the cell in the range represented by the Variable or Function object, and the index of the Monte Carlo trial (starting from 0).

The example code below illustrates how to obtain and display the values of the uncertain functions for each simulation trial.

```
For i = 0 To prob.Functions.Count - 1
    For j = O To prob.Functions(i).Size - 1
    MsgBox prob.Functions(i).Percentiles(j,94)
        For k = O To prob.Solver.NumTrials -1
            MsgBox prob.Functions(i).AllTrials(j, k)
        Next k
    Next j
Next i
```


GetFrequency Method

Variable and Function objects also have a GetFrequency method, that plays the same role as the PsiFrequency() function on the spreadsheet. It takes an argument specifying the type of frequency distribution (density, cumulative, etc.) and an array argument specifying the upper limits of the "bins" for which you want to obtain frequency data. It yields a DoubleMatrix object that takes two subscripts: the index (starting from 0) of the cell in the range represented by the Variable or Function object, and the index (starting from 0) of the frequency bin.

The example code below illustrates the use of the Get Frequency method to create 14 different "bins" for categorizing the values of the uncertain functions for each simulation trial.

```
        For i = 0 To prob.Functions.Count - 1
    For j = O To prob.Functions(i).Size - 1
        Dim binlimits(14) As Double
        binlimits(0) = -125000
    For Count = 1 To 13
                binlimits(Count) =
                binlimits(Count - 1) + 25000
            Next
            Dim mymat As New RSP.DoubleMatrix
            Set mymat =
prob.Functions(i).GetFrequency(Frequency_Type_Density
                        binlimits)
        For Count = 0 To 13
                            MsgBox "Upper Bin Limit"
& ": " & binlimits(Count) & " = " &
mymat(0, Count)
                        Next Count
    Next j
Next i
```


Controlling Simulation Parameters in VBA

Analytic Solver provides a number of parameters you can use to control the simulation process, such as the number of Monte Carlo trials to perform, or the random number seed. You can set these parameters interactively, or by setting certain Solver properties or Engine.Params properties in VBA.
For example, the first line below sets the number of Monte Carlo trials to 5000. The second line set the random number seed to a fixed value - so the same
random number sequence is used on each run. The third line sets the sampling method to Latin Hypercube:

```
prob.Solver.NumTrials = 5000
prob.Engine.Params("RandomSeed") = 12345
prob.Engine.Params("SamplingMethod") = 2
```

For a list of simulation parameters that you can set in VBA, see the descriptions of the "EngineParam Object" and the "ModelParam Object" in the Frontline Solvers Reference Guide.

Evaluators Called During the Simulation Process

You can write a VBA function that Analytic Solver will call at certain points during the simulation process. In this "callback function," you can access information about the problem and simulation so far, to monitor or report progress and decide whether to stop or continue the simulation process.

The object-oriented API defines an Evaluator object that is associated with your "callback function" and specifies when Analytic Solver should call it. The VBA function you write to serve as an Evaluator must be contained in a class module - not a 'regular' VBA module - and it must be declared to have the WithEvents property.
Here is an example of code for an Evaluator, in a class module named Class1:

```
Private WithEvents EvalSim As RSP.Evaluator
Private Function EvalSim Evaluate
    (ByVal Evaluator As RS\overline{P}.IEvaluator) As _
    RSP.Engine_Action
    MsgBox "Current Simulation = "
        & Evaluator.Problem.Engine.Stāt.Simulations
    EvalSim_Evaluate = Engine_Action_Continue
End Functīon
Public Sub MySim()
    Set EvalSim = New RSP.Evaluator
    Dim prob As New RSP.Problem
    prob.Init ActiveWorkbook
    prob.Evaluators(Eval_Type_Simulation) = EvalSim
    prob.Solver.Simulate
    Set EvalSim = Nothing
End Sub
```

Having created the class module Class1, in a 'regular' VBA module you can create an instance of Class1, and then call the MySim method in Class1:

```
Private Sub CommandButton1_Click()
    Dim c As New Class1
    c.MySim
End Sub
```

You can define Evaluators to be called when the random sample for all uncertain variables is generated (Eval_Type_Sample), after each simulation is completed (Eval_Type_Simulation), or after each trial is completed (Eval_Type_Trial). However, because PSI Technology evaluates all trials in parallel, an Evaluator to be called on each trial is meaningful only if you use the

Excel Interpreter rather than the PSI Interpreter to calculate the worksheet on each trial.

Working with Trials and Simulations in VBA

Analytic Solver can perform multiple simulations in one run, where each simulation consists of a number of Monte Carlo trials that you specify. Multiple simulations can be run whenever you choose Simulate - Run Once, whenever you change a number with Interactive Simulation, or whenever you call the Problem.Solver.Simulate method in VBA.

In VBA, you can set the property Problem.Solver.NumSimulations $=n$ to perform n different simulations on a single call to Problem.Solver.Simulate.
After a simulation is run, Analytic Solver Simulation can display each Monte Carlo trial from the simulation on the Excel worksheet, if desired. In VBA, you can set the property Problem.Solver.TrialIndex $=n$ to display the nth trial, or you can call the method Problem.Solver.TrialStep to cycle through the trials.

Displaying Normal or Error Trials

Analytic Solver filters out 'error trials' from your simulation results when computing statistics and displaying charts. An 'error trial' is a Monte Carlo trial where any uncertain function returns an Excel error value. However, all trials are saved in memory, and you can access the values of uncertain variables and uncertain functions for each trial, or display each trial on the Excel worksheet.

The Variable and Function objects contain an embedded Statistics object (described later in this chapter). The property Statistics.NumValues gives the number of 'normal' trials, over which statistics were calculated, and property Statistics.NumErrors gives the number of error trials that occurred.
You can cause a specific Monte Carlo trial to be displayed on the Excel worksheet by setting the property Problem.Solver.TrialIndex $=n$ to the index (starting from 1) of the trial you want. This causes the PSI Distribution function for each uncertain variable to return the sample value it had on the nth trial. The worksheet is then recalculated, so that each uncertain function will have the value it had on the nth trial.

To "step through" all trials, normal trials only, or error trials only, and display them on the Excel worksheet, call the method Problem.Solver.TrialStep stepsize, trialtype. Trialtype is 0 for all trials, 1 for normal trials, and 2 for error trials. The stepsize may be positive (1, 2, etc.) or negative ($-1,-2$, etc.). After each call to the TrialStep method, the TrialIndex property is set to the index of the trial just displayed. If stepsize is so large that it would go beyond the last trial (if positive, or the first trial if negative), the TrialIndex will be set to the last (or first) trial, and that trial will be displayed.

Using Multiple Simulations

For multiple simulations to be useful, some parameter of the model - normally something you can control - must have a different value in each individual simulation. Also, you must access statistics, percentiles, and trial data (if used) for each simulation, so you can compare the results.

If you set Problem.Solver.NumSimulations $=n$ to perform several simulations on each run, you can use the function PsiSimParam(). This function takes
either two arguments lower and upper, as in PsiSimParam(1,3), or one argument that's a cell range or array of numbers, such as PsiSimParam(\{6.0, 7.5, 9.0 $\}$). On the nth simulation, PsiSimParam() returns the nth value from its argument list, held constant for all the trials in that simulation. In calls to the PSI Statistics functions, you can select the simulation for which you want results. For example, if you have an uncertain function in cell F1, you can write $=$ PsiMean $(\mathrm{F} 1,1)$, $=$ PsiMean ($\mathrm{F} 1,2$), and $=$ PsiMean(F1,3) to access the mean value of F1 across all the trials in the first simulation, second simulation, and third simulation, respectively.
If you leave the NumSimulations property at its default value of 1 , and call Problem.Solver.Simulate inside a for-loop, you can set parameter values that you compute on-the-fly in cells before each simulation using the Excel Range object. You can either get the values of PSI Statistics functions through the Excel object model, or (often better) you can access the Statistics, Percentiles and AllTrials properties, or call the GetFrequency method of your Variables and Functions, to retrieve the results of that simulation.

Creating Uncertain Variables and SLURPs in VBA

The chapter "Mastering Simulation and Risk Analysis Concepts" describes Stochastic Library Units, Relationships Preserved or SLURPs, and shows how to create a SLURP on the spreadsheet. You can also create SLURPs in VBA, and use the SLURP trial data for uncertain variables in your spreadsheet model.

To do this, you first create a Problem object, and initialize it with the simulation model defined in your Excel workbook. At this point, the Problem's collection of Variables will contain Variable objects for each contiguous range of cells containing PSI Distribution functions in the workbook (if any). You can then:

1. Create a new Variable object in VBA.
2. Set its Name property to an unused cell range (say "Sheet1:A1:A5").
3. Set its AllTrials property to the SLURP trial data.
4. Add the Variable object to the Problem's collection of Variables.

The simulation model then behaves just as if these cells contained $=\operatorname{PsiSlurp}()$ function calls that referred to the SLURP trial data you supplied via VBA. The SLURP data could be generated by your VBA program, read from a database, or otherwise obtained - it never appears on the Excel spreadsheet. For example:

```
Dim prob As New RSP.Problem
    prob.Init ActiveWorkbook
    Dim trials As RSP.DoubleMatrix
    Set trials = New RSP.DoubleMatrix
    trials.InitDense 1, prob.Solver.NumTrials
    Randomize
    For i = 0 To prob.Solver.NumTrials - 1
                trials(0, i) = Rnd()
    Next i
    Dim var As New RSP.Variable
    var.VariableType = Variable_Type_Uncertain
    var.Init Range("Sheet1$A$1")
    var.AllTrials = trials
```

```
prob.Variables.Add var
prob.Solver.Simulate
```

The first two lines create an instance of a Problem, and initialize it with the simulation model defined in your Excel workbook. The next three lines create a DoubleMatrix object named trials to hold SLURP data, and set its dimensions just $1 \times$ NumTrials in this case, since we're adding just one uncertain variable.
The next four lines show how the trials matrix can be initialized with newly generated values. Of course, you'd want to use a better, application-specific method - not the $\operatorname{Rnd}()$ function - to generate this trial data, or perhaps read the trial data from a database or external file.

In the next three lines, we create a Variable object, set its Name property to the cell address Sheet1!A1 (this must be an empty cell on the spreadsheet), and set its AllTrials property to the trial data we just generated.
In the last two lines, we add the new Variable object to the Problem's collection of Variables, and then perform a simulation.

The newly added Variable object, and the SLURP data represented by its AllTrials property, participates in the simulation model only for so long as the VBA Problem object exists - it is "transient" and is not saved in the workbook. Of course, your VBA program code is saved with the workbook, and it can be run at a later time to re-create the Variable object and re-generate or retrieve the SLURP data.

Mastering Conventional Optimization Concepts

Introduction

This chapter explains basic and advanced concepts of optimization, such as the types of problems you can solve, types of constraints (regular, integer, conic, alldifferent) you can specify, the nature of linear, quadratic and nonlinear functions, convex and non-convex functions, smooth and non-smooth functions, and the algorithms and methods used by Analytic Solver (or its optimization sub-set products) and plug-in Solver engines.

This chapter focuses on conventional or deterministic optimization models, which do not include any uncertainty. The next chapter "Mastering Simulation and Risk Analysis Concepts" explains the concepts of stochastic optimization models - those that do include uncertainty - and solution methods such as robust optimization, stochastic programming, and simulation optimization.

If you are using Analytic Solver for the first time, we recommend that you try out the examples described in the chapter "Examples: Conventional Optimization" before tackling this material. If you are relatively new to optimization, you may find it useful to read the first section below, "Elements of Solver Models," and then proceed to the Examples chapters. If you've been using the Solver for a while, and you'd like a more in-depth review of the mathematical relationships found in Solver models, and the optimization methods and algorithms used by the Solver, read the more advanced sections of this chapter, and the next chapter.

Elements of Solver Models

The basic purpose of the Solver is to find a solution - that is, values for the decision variables in your model - that satisfies all of the constraints and maximizes or minimizes the objective function value (if there is one). Let's examine this framework more closely.
The model you create for use with the Solver is no different from any other spreadsheet model. It consists of input values; formulas that calculate values based on the input values or on other formulas; and other elements such as formatting. You can play "what if" with a Solver model just as easily as with any other spreadsheet model. This familiar concept can be very useful when you wish to present your results to managers or clients, who are usually "spreadsheet literate" even if they are unfamiliar with Solvers or optimization.

Decision Variables and Parameters

Some of the input values may be numbers that you use, but you cannot change on your own - for example, prevailing interest rates or supplier's prices. We'll call these values parameters of the model. You may have several cases, scenarios, or variations of the same problem to solve, and the parameter values
will change in each problem variation; you can define these parameters via the Parameters button on the Ribbon. In this chapter, we'll assume that parameter values are certain, but the chapter "Mastering Stochastic Optimization Concepts" will cover situations where the parameter values are uncertain.

Other input values may be quantities that are variable, or under your control in the course of finding a solution. We'll refer to these as the variables or decision variables; the Excel Solver refers to them as Changing Cells. The Solver will find optimal values for these variables or cells. Often, some of the same cell values you use to play "what if" are the ones for which you'll want the Solver to find solution values. These cells are listed in the Variables group in the Task Pane Model tab, or the Solver Parameters dialog.

The Objective Function

The quantity you want to maximize or minimize is called the objective or objective function; the Excel Solver often uses the term Set Cell for the objective. For example, this could be a calculated value for projected profits (to be maximized), or costs, risk, or error values (to be minimized). It appears under 'Objective' in the Task Pane Model tab, or the Solver Parameters dialog.

You may have a Solver model that has nothing to maximize or minimize, in which case no cell will be listed for the objective. In this situation the Solver will simply find a solution that satisfies the constraints. Typically this will be only one of many such solutions, located close to the starting values of the decision variables.
The Solver also permits you to enter a specific value that you want the objective function to achieve. This feature was originally included in the Excel Solver to match the Excel Goal Seek... command, which allows you to seek a specific value for a cell by adjusting the value of one other cell on which it depends. Using the 'Value Of' option for the objective cell has the same effect as adding an = constraint in the outlined list, with the objective cell on the left hand side and the constant value on the right hand side; again there is nothing to maximize or minimize.

There is rarely a good reason to use the Value of option. If your problem requires only a single objective cell and a single variable cell with no constraints, you can just use the Goal Seek... command. If you have nothing to maximize or minimize, we recommend that you omit the objective and enter all of your constraints in the outlined list under "Constraints."

Constraints

Constraints are relations such as A1 $>=0$. A constraint is satisfied if the condition it specifies is true within a small tolerance. This is a little different from a logical formula such as $=\mathrm{A} 1>=0$ evaluating to TRUE or FALSE which you might enter in a cell. In this example, if A1 were -0.0000001 , the logical formula would evaluate to FALSE, but with the default Solver Precision setting, the constraint would be satisfied. Because of the numerical methods used to find solutions to Solver models and the finite precision of computer arithmetic, it would be unrealistic to require that constraints like A1 >=0 be satisfied exactly - such solutions would rarely be found.

In the Excel Solver, constraints are specified by giving a cell reference such as A1 or A1:A5 (the "left hand side"), a relation ($<=,=$ or $>=$), and an expression for the "right hand side." Although Excel allows you to enter any numeric expression on the right hand side, for reasons that will be explained in the
chapter "Best Practices for Building Large-Scale Models," we strongly encourage you to use only constants, or references to cells that contain constant values on the right hand side. (A constant value to the Solver is any value that does not depend on any of the decision variables.)

A constraint such as A1:A5 $<=10$ is shorthand for A1 $<=10$, A2 $<=10, \mathrm{~A} 3<=$ 10 , $\mathrm{A} 4<=10, \mathrm{~A} 5<=10$. A constraint such as A1:A5 $<=$ B1:B5 is shorthand for $\mathrm{A} 1<=\mathrm{B} 1, \mathrm{~A} 2<=\mathrm{B} 2, \mathrm{~A} 3<=\mathrm{B} 3, \mathrm{~A} 4<=\mathrm{B} 4, \mathrm{~A} 5<=\mathrm{B} 5$.

Another type of constraint is of the form A1:A5 = integer, where A1:A5 are decision variables. This specifies that the solution values for A1 through A5 must be integers or whole numbers, such as $-1,0$ or 2 , to within a small tolerance. This form of constraint, and related forms such as A1:A5 = binary, A1:A5 = semicontinuous, and A1:A5 = alldifferent, are explored in the section "More About Constraints."

A new type of constraint supported by Analytic Solver is of the form A1:A5 = conic, where A1:A5 are decision variables. This is called a second order cone constraint and is further described in "More About Constraints."

Solutions: Feasible, "Good" and Optimal

A solution (set of values for the decision variables) for which all of the constraints in the Solver model are satisfied is called a feasible solution. In some problems, a feasible solution is already known; in others, finding a feasible solution may be the hardest part of the problem.
An optimal solution is a feasible solution where the objective function reaches its maximum (or minimum) value - for example, the most profit or the least cost. A globally optimal solution is one where there are no other feasible solutions with better objective function values. A locally optimal solution is one where there are no other feasible solutions "in the vicinity" with better objective function values - you can picture this as a point at the top of a "peak" or at the bottom of a "valley" which may be formed by the objective function and/or the constraints.

The Solver is designed to find feasible and optimal solutions. In the best case, it will find the globally optimal solution - but this is not always possible. In other cases, it will find a locally optimal solution, and in still others, it will stop after a certain amount of time with the best solution it has found so far. But like many users, you may decide that it's most important to find a good solution - one that is better than the solution, or set of choices, you are using now.

The kind of solution the Solver can find depends on the nature of the mathematical relationships between the variables and the objective function and constraints (and the solution algorithm used). As explained below, if your model is smooth convex, you can expect to find a globally optimal solution; if it is smooth but non-convex, you will usually be able to find a locally optimal solution; if it is non-smooth, you may have to settle for a "good" solution that may or may not be optimal.

Below, we summarize the capabilities of the five Solver engines bundled with Analytic Solver Comprehensive and Analytic Solver Optimization within both Analytic Solver Desktop and the Cloud app: the LP/Quadratic Solver, SOCP Barrier Solver, nonlinear GRG Solver, Interval Global Solver, and Evolutionary Solver. (Analytic Solver Upgrade uses the LP/Quadratic Solver, the nonlinear GRG Solver, and the Evolutionary Solver.) Later sections of this chapter provide an overview of the optimization methods and algorithms employed by each of these Solver engines.

Linear Simplex and LP/Quadratic Solver

The Simplex LP Solver with the Excel Solver finds optimal solutions to problems where the objective and constraints are all linear functions of the variables. (The term linear function is explained below, but you can imagine its graph as a straight line.) Since all linear functions are convex, the Solver normally can find the globally optimal solution, if one exists. Because a linear function (a straight line) can always be increased or decreased without limit, the optimal solution is always determined by the constraints; there is no natural "peak" or "valley" for the objective function itself.
In Analytic Solver Comprehensive, Analytic Solver Optimization, Analytic Solver Upgrade and Analytic Solver Basic, the linear Simplex Solver is extended to the LP/Quadratic Solver. This Solver handles problems where the constraints are all linear, and the objective may be linear or quadratic (explained further below). If the quadratic objective function is convex (if minimizing, or concave if maximizing) the Solver will normally find a globally optimal solution. If the objective is non-convex (further explained below), the Solver will find only a locally optimal solution.

SOCP Barrier Solver

The SOCP Barrier Solver, included in all optimization products, finds optimal solutions to problems where the objective and constraints are all linear or convex quadratic functions of the variables. (This is in contrast to the LP/Quadratic Solver, which permits only the objective function to be quadratic.) It also finds optimal solutions to problems with a linear objective, linear constraints, and second order cone (SOC) constraints; this is called a second order cone programming (SOCP) problem, as explained further below. Since all linear functions and SOC constraints are convex, the SOCP Barrier Solver normally finds a globally optimal solution, if one exists.

Nonlinear GRG Solver

The nonlinear GRG Solver (in all Analytic Solver products except Analytic Solver Simulation) finds optimal solutions to problems where the objective and constraints are all smooth (convex or non-convex) functions of the variables. (The term smooth function is explained below, but you can imagine a graph whether straight or curved - that contains no "breaks.") For non-convex problems, the Solver normally can find a locally optimal solution, if one exists but this may or may not be the globally optimal solution. A nonlinear objective function can have a natural "peak" or "valley," but in most problems the optimal solution is partly or wholly determined by the constraints. The nonlinear GRG Solver can be used on problems with all-linear functions, but it is much less effective and efficient than the LP/Quadratic Solver or the SOCP Barrier Solver on such problems.

If you use multistart methods for global optimization with the nonlinear GRG Solver, you will have a better chance (but not a guarantee) of finding the globally optimal solution. The idea behind multistart methods is to automatically start the Solver from a variety of starting points, to find the best of the locally optimal solutions - ideally the globally optimal solution. These methods are more fully described (and contrasted with other methods for global search) below under "Global Optimization" and in the chapter "Solver Engine Option Reference" in the Frontline Solvers Reference Guide.

Interval Global Solver

The Interval Global Solver, included in all optimization products, finds globally optimal solutions to problems where the objective and constraints are all smooth (convex or non-convex) functions of the variables. Unlike the Evolutionary Solver or the GRG Solverswith multistart methods, the Interval Global Solver is normally able to determine for certain that the solution is globally optimal. The tradeoff is that the Interval Global Solver usually takes much more time to solve a given problem than the GRG Solver, and this time rises steeply as the number of variables and constraints in the problem increases. Hence, the Interval Global Solver is practically able to solve only smaller problems, compared to the GRG Solver.

Evolutionary Solver

The Evolutionary Solver in Analytic Solver, and all subsets except Analytic Solver Simulation, usually finds good solutions to problems where the objective and constraints include non-smooth or discontinuous functions of the variables in other words, where there are no restrictions on the formulas that are used to compute the objective and constraints. For example, if your model uses IF, LOOKUP or similar functions of the variables, it's likely that the graphs of these functions will contain "jumps" or "breaks." For this class of problems, the Solver will return the best feasible solution (if any) that it can find in the time allowed.

The Evolutionary Solver can be used on problems with all-smooth functions that may have multiple locally optimal solutions, in order to seek a globally optimal solution, or simply a better solution than the one found by the nonlinear GRG Solver alone; however, the Interval Global Solver or the combination of multistart methods and the GRG Solver are likely to do as well or better than the Evolutionary Solver on such problems. It can be used on problems with smooth convex functions, but it is usually less effective and efficient than the nonlinear GRG oSolver on such problems. Similarly, it can be used on problems with alllinear functions, but there is little point in doing so when the Simplex (Excel Solver), LP/Quadratic, or SOCP Barrier Solver is available.

More About Constraints

This section explains in greater depth the role of certain types of constraints, including bounds on the decision variables, equality and inequality constraints, second order cone constraints, and different forms of integer constraints.

Bounds on the Variables

Constraints of the form A1 $>=-5$ or A1 $\langle=10$ (for example), where A1 is a decision variable, are called bounds on the variables and are treated specially by the Solver. These constraints affect only one variable, whereas general constraints have an indirect effect on several variables that have been used in a formula such as A1+A2. Each of the Solver engines takes advantage of this fact to handle bounds on the variables more efficiently than general constraints.

The most common type of bound on a variable is a lower bound of zero (A1 >= 0), which makes the variable non-negative. Many variables represent physical quantities of some sort, which cannot be negative. As a convenience, most Solver Engines offer an option "Assume Non-Negative," which automatically places a lower bound of zero on every variable which has not been given an explicit lower bound in the model outline. If you need bounds other than zero,
the Task Pane Platform tab Default Bounds section lets you set default lower and upper bounds on every decision variable.
Regardless of the Solver engine chosen, bounds on the variables always help speed up the solution process, because they limit the range of values that the Solver must explore. In many problems, you will be aware of realistic lower and upper bounds on the variables, but they won't be of any help to the Solver unless you include them in the Constraints list box! Bounds on the variables are especially important to the performance of the Evolutionary Solver, the Interval Global Solver, and multistart methods for global optimization. They are also very important if you want the Solver to automatically transform your model, replacing non-smooth functions (such as IF) with additional variables and linear constraints.

Equations and Inequalities

Constraints such as A1 $=0$ are called equality constraints or equations; constraints such as A1 $<=0$ are called inequality constraints or simply inequalities. An equality is much more restrictive than an inequality. For example, if A 1 contains the formula $=\mathrm{C} 1+\mathrm{C} 2$, where C 1 and C 2 are decision variables, then A1 <= 0 restricts the possible solutions to a half plane, whereas $\mathrm{A} 1=0$ restricts the solutions to a line where all possible values of C 1 and C 2 must sum to $0(\mathrm{C} 1=-\mathrm{C} 2$ within a small tolerance, as explained above). Since there is only a tiny chance that two randomly chosen values for C 1 and C 2 will satisfy $\mathrm{C} 1+\mathrm{C} 2=0$, solution methods that rely on random choices, such as genetic algorithms, may have a hard time finding any feasible solutions to problems with equality constraints. To satisfy equality constraints, the Solver generally must exploit properties of the constraint formula - such as linearity or smoothness, discussed below - to solve for one variable in terms of another.
A linear equality constraint (like $\mathrm{C} 1+\mathrm{C} 2=0$ above) maintains the convexity of the overall problem, but a nonlinear equality constraint is non-convex, and makes the overall problem non-convex. Interior point methods may have difficulty solving problems with nonlinear equality constraints, since they restrict the ability of the Solver to follow the "central path" inside the feasible region.
A problem with only equality constraints (and no objective) is sometimes called a system of equations. The Solver can be used to find solutions to systems of both linear and nonlinear equations. If there are several different solutions (sets of values for the decision variables) that satisfy the equations, most Solver engines will find just one solution that is "close" to the starting values of the variables; but the Interval Global Solver can be used to find all real solutions to a system of smooth nonlinear equations - a capability that was once felt to be beyond the limits of any known algorithm.

Second Order Cone Constraints

Analytic Solver supports constraints of the form A1:A5 = conic. This is called a second order cone (SOC) constraint; it specifies that the vector formed by the decision variables A1:A5 must lie within the second-order cone (also called the Lorentz cone, or "ice cream cone") of dimension 5 - a convex set that looks like the figure below in three dimensions.

Algebraically, a second-order cone constraint specifies that, given a value for one variable, the $L 2$-norm of the vector formed by the remaining variables must not exceed this value: In linear algebra notation, $a_{1} \geq\left\|a_{2}: a_{5}\right\|_{2}$. In Excel, this could be written as A1 >=SQRT(SUMSQ(A2:A5)). You can also use a variant called a "rotated second order cone" constraint. A problem with a linear objective and linear or SOC constraints is called a second order cone programming (SOCP) problem; it is always a convex optimization problem.
Decision variables that are constrained to be non-negative also belong to a cone, called the non-negative orthant. A problem with all linear functions - a linear programming problem - is a special case of an SOCP problem, where the only cone constraint is non-negativity.

A convex quadratic objective or constraint can be transformed into an equivalent second order cone constraint. Hence, a problem with a quadratic objective - a quadratic programming or QP problem - or a problem with quadratic constraints - called a QCP problem - is also a special case of an SOCP problem. The SOCP Barrier Solver and the MOSEK Solver will automatically transform quadratics into SOC form internally; you can simply define your quadratic objective and/or constraints using ordinary Excel formulas and <= or >= relations, and use these Solver engines to obtain fast, reliable, globally optimal solutions to your problem.

Integer and Binary Constraints

As explained in the last section, integer constraints are of the form A1:A5 = integer, where A1:A5 are decision variables. This specifies that the solution values for A1 through A5 must be integers or whole numbers, such as $-1,0$ or 2, to within a small tolerance. A common special case that can be entered directly in the Add Constraint dialog is A1 = binary, which is equivalent to specifying $\mathrm{A} 1=$ integer, $\mathrm{A} 1>=0$ and $\mathrm{A} 1<=1$. This implies that A 1 must be either 0 or 1 at the solution; hence A1 can be used to represent a "yes/no" decision. Integer constraints have many important applications, but the presence of even one such constraint in a Solver model makes the problem an integer programming problem (discussed below), which may be much more difficult to solve than a similar problem without the integer constraint.

Semi-Continuous Constraints

It is often useful to place a semi-continuous constraint on a decision variable. This specifies that, at the solution, the variable must be either 0 , or else a continuous value within a range, determined by the bounds on the variable. For example, if a machine is either "off" or running at a speed between 5 and 50, you can model the machine's speed with A1 $=$ semicontinuous, A1 $>=5$ and A1 $<=50$. In situations where you might need a binary integer variable and a regular (continuous) variable, you can sometimes use a single semi-continuous variable instead - and such a variable can be handled very efficiently by most Solver engines.

Alldifferent Constraints

A special type of integer constraint supported by Analytic Solver and its subset products is called an "alldifferent" constraint. Such a constraint is of the form (for example) A1:A5 = alldifferent, where A1:A5 is a group of decision variables, and it specifies that these variables must be integers in the range 1 to $\mathrm{N}(\mathrm{N}=5$ in this example), with each variable different from all the others at the solution. Hence, A1:A5 will contain a permutation of integers, such as $1,2,3,4,5$ or $1,3,5,2,4$. The alldifferent constraint can be used to model problems involving ordering of choices, such as the Traveling Salesman Problem.

Functions of the Variables

Since there are large differences in the time it takes to find a solution and the kinds of solutions - globally optimal, locally optimal, or simply "good" - that you can expect for different types of problems, it pays to understand the differences between linear, quadratic, smooth nonlinear, and non-smooth functions, and especially convex and non-convex functions. To begin, let's clarify what it means to say that the spreadsheet cells you select for the objective and constraints are "functions of the decision variables."

The objective function in a Solver problem is a cell calculating a value that depends on the decision variable cells; the job of the Solver is to find some combination of values for the decision variables that maximizes or minimizes this cell's value. During the optimization process, only the decision variable cells are changed; all other "input" cells are held constant. If you analyze the chain of formulas that calculates the objective function value, you will find that parts of those formulas (those which refer to non-decision variable cells) are unchanging in value and could be replaced by a numeric constant for the purposes of the optimization.
If you have constant values on the right hand sides of constraints, then the same observation applies to the left hand sides of constraints: Parts of the constraint formulas (those which refer to non-decision variable cells) are unchanging in value, and only the parts that are dependent on the decision variables "count" during the optimization.
When you consider whether your objective and constraints are linear, quadratic, smooth nonlinear, or non-smooth, or convex or non-convex functions of the variables, always bear in mind that only the parts of formulas that are dependent on the decision variables "count." Below, we explain that linear functions are most desirable, and non-smooth and non-convex functions are least desirable in a Solver model (if you want the fastest and most reliable solutions). A formula such as $=\mathrm{IF}\left(\mathrm{C} 1>=10, \mathrm{D} 1,2^{*} \mathrm{D} 1\right)$ is non-smooth if C 1 depends on the decision variables; but if C1 doesn't depend on the variables, then only D1 or 2*D1 - not both - can be selected during the solution process. Hence if D1 is a linear function of the variables, then the IF expression is also a linear function of the variables.

You may also find that a function that is "bad" (non-smooth or non-convex) over its full domain (any possible values for the decision variables) can still be "good" (smooth and/or convex) over the domain of interest to you, determined by other constraints including bounds on the variables. For example, if C1 depends on the variables, then $=\operatorname{IF}(\mathrm{C} 1>=10, \mathrm{D} 1,2 * \mathrm{D} 1)$ is non-smooth over its full domain, but smooth - in fact linear - if C 1 is constrained to be 10 or more. $=\operatorname{SIN}(\mathrm{C} 1)$ is non-convex over its full domain, but is convex from - pi to 0 , or from pi to 2^{*} pi.

Convex Functions

The key property of functions of the variables that makes a problem "easy" or "hard" to solve is convexity. If all constraints in a problem are convex functions of the variables, and if the objective is convex if minimizing, or concave if maximizing, then you can be confident of finding a globally optimal solution (or determining that there is no feasible solution), even if the problem is very large - thousands to hundreds of thousands of variables and constraints.

In contrast, if any of the constraints are non-convex, or if the objective is either non-convex, concave if minimizing, or convex if maximizing, then the problem is far more difficult: You cannot be certain of finding a feasible solution even if one exists; you must either "settle for" a locally optimal solution, or else be prepared for very long solution times and rather severe limits on the size of problems you can solve to global optimality (a few hundred to perhaps one thousand variables and constraints), even on the fastest computers. So it pays to understand convexity!

Geometrically, a function is convex if, at any two points x and y, the line drawn from x to y (called the chord from x to y) lies on or above the function - as shown in the diagram below, for a function of one variable. A function is concave if the chord from x to y lies on or below the function. This property extends to any number of 'dimensions' or variables, where $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

Algebraically, a function f is convex if, for any points x and y , and any t between 0 and $1, f(\mathrm{tx}+(1-\mathrm{t}) \mathrm{y})<=\mathrm{t} f(\mathrm{x})+(1-\mathrm{t}) f(\mathrm{y})$. A function f is concave if $-f$ is convex, i.e. if $f(\mathrm{tx}+(1-\mathrm{t}) \mathrm{y})>=\mathrm{t} f(\mathrm{x})+(1-\mathrm{t}) f(\mathrm{y})$. A linear function - described below - is both convex and concave: The chord from x to y lies on the line, and $f(\mathrm{tx}+(1-\mathrm{t}) \mathrm{y})=\mathrm{t} f(\mathrm{x})+(1-\mathrm{t}) f(\mathrm{y})$. As we'll see, a problem with all linear functions is the simplest example of a convex optimization problem that can be solved efficiently and reliably to very large size.

A non-convex function "curves up and down." A familiar example is the sine function ($\mathrm{SIN}(\mathrm{C} 1)$ in Excel), which is pictured below.

The feasible region of an optimization problem is formed by the intersections of the constraints. The intersection of several convex constraints is always a convex region, but even one non-convex function can make the whole region non-convex - and hence make the optimization problem far more difficult to solve.

Linear Functions

In many common cases, the objective and/or constraints are linear functions of the variables. This means that the function can be written as a sum of terms, where each term consists of one decision variable multiplied by a (positive or negative) constant. Algebraically, we can write:
$a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}$
where the a_{i}, which are called the coefficients, stand for constant values and the x_{i} stand for the decision variables. A common example is $=\mathrm{SUM}(\mathrm{C} 1: \mathrm{C} 5)$, where $\mathrm{C} 1: \mathrm{C} 5$ are decision variables and the a_{i} are all 1 . Note that a linear function does not have to be written in exactly the form shown above on the spreadsheet. For example, if cells C 1 and C 2 are decision variables, $\mathrm{B} 1=$ $\mathrm{C} 1+\mathrm{C} 2$, and $\mathrm{B} 2=\mathrm{A} 1 * \mathrm{~B} 1$ where A 1 is constant in the problem, then B 2 is a linear function $(=\mathrm{A} 1 * \mathrm{C} 1+\mathrm{A} 1 * \mathrm{C} 2)$.

Geometrically, a linear function is always a straight line, in n-dimensional space where n is the number of decision variables. On the next page is a perspective plot of $2 x_{1}+1 x_{2}$. As noted above, a linear function is always convex.

Remember that the a_{i} need only be constant in the optimization problem, i.e. not dependent on any of the decision variables. For example, suppose that the function is $=\mathrm{B} 1 / \mathrm{B} 2 * \mathrm{C} 1+(\mathrm{D} 1 * 2+\mathrm{E} 1) * \mathrm{C} 2$, where only C 1 and C 2 are decision variables, and the other cells contain constants (or formulas that don't depend on the variables). This would still be a linear function, where $a_{1}=\mathrm{B} 1 / \mathrm{B} 2$ and $a_{2}=$ $(\mathrm{D} 1 * 2+\mathrm{E} 1)$ are the coefficients, and $x_{1}=\mathrm{C} 1$ and $x_{2}=\mathrm{C} 2$ are the variables.

Note that the SUMPRODUCT and DOTPRODUCT functions compute exactly the algebraic expression shown above. If we were to place the formula $=\mathrm{B} 1 / \mathrm{B} 2$ in cell A1, and the formula $=(\mathrm{D} 1 * 2+\mathrm{E} 1)$ in cell A2, then we could write the example function above as:

=SUMPRODUCT(A1:A2,C1:C2)

This is simple and clear, and is also useful for fast problem setup as described in the chapter "Best Practices for Building Large-Scale Models." If the decision variable cells that should participate in the expression are not all contiguous on the spreadsheet, the DOTPRODUCT function can be used instead of SUMPRODUCT.

As explained below in the section "Derivatives, Gradients, Jacobians and Hessians," each coefficient a_{i} in the linear expression $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}$ is the first partial derivative of the expression with respect to variable x_{i}. These partial derivatives are always constant in a linear function - and all higher-order derivatives are zero.

A nonlinear function (explained further below), as its name implies, is any function of the decision variables which is not linear, i.e. which cannot be written in the algebraic form shown above - and its partial derivatives are not constant. Examples would be $=1 / \mathrm{C} 1,=\operatorname{LOG}(\mathrm{C} 1),=\mathrm{C} 1^{\wedge} 2$ or $=\mathrm{C} 1 * \mathrm{C} 2$ where both C 1 and C 2 are decision variables. If the objective function or any of the constraints are nonlinear functions of the variables, then the problem cannot be solved with an LP Solver.

Testing for a Linear Model

What if you have already created a complex spreadsheet model without using functions like SUMPRODUCT, and you aren't sure whether your objective function and constraints are linear or nonlinear functions of the variables? If you have Analytic Solver, you can easily find out by pressing the Analyze button in the Task Pane. Moreover, you can easily obtain a report showing exactly which cells contain formulas that are nonlinear.

You can try solving the model with the standard LP/Quadratic Solver. If the problem contains nonlinear functions of the variables, you will (in virtually all cases) receive the message "The linearity conditions required by this Solver engine are not satisfied." You can then ask the Solver to produce a Linearity Report, which shows whether the objective and each of the constraints is a linear or nonlinear function of the variables. This report also shows which variables occur linearly, and which occur nonlinearly in your model - another way of summarizing the same information. You should next look closely at the objective or constraint formulas that the Linearity Report indicates are nonlinear, and decide whether (or not) the formula can be written in linear form.

Quadratic Functions

The last two examples of nonlinear functions above, $=\mathrm{C} 1 \wedge 2$ or $=\mathrm{C} 1 * \mathrm{C} 2$, are simple instances of quadratic functions of the variables. A more complex example is:
$=2 * \mathrm{C} 1 \wedge 2+3 * \mathrm{C} 2^{\wedge} 2+4 * \mathrm{C} 1 * \mathrm{C} 2+5 * \mathrm{C} 1$
A quadratic function is a sum of terms, where each term is a (positive or negative) constant (again called a coefficient) multiplied by a single variable or the product of two variables. In linear algebra notation, we can write $\mathrm{x}^{\mathrm{T}} \mathrm{Qx}+\mathrm{cx}$ where x is a vector of n decision variables, Q is an $n \mathrm{x} n$ matrix of coefficients, and c is an n vector of linear coefficients. The QUADPRODUCT function computes values of exactly this form. If we put the constant 5 in $\mathrm{A} 1,0$ in $\mathrm{B} 1,2$ in A2, 4 in B2, 0 in A3 and 3 in B3, then we could write the above example as:

$=$ QUADPRODUCT(C1:C2,A1:B1,A2:B3)

Common uses for quadratic functions are to compute the mean squared error in a curve-fitting application, or the variance or standard deviation of security returns in a portfolio optimization application.

As explained below in the section "Derivatives, Gradients, Jacobians and Hessians," the coefficients that multiply single variables in a quadratic function are the first partial derivatives of the function with respect to those variables; the coefficients that multiply the products of two variables are the second partial derivatives of the function, with respect to those two variables. In a quadratic function, these first and second order derivatives are always constant, and higher order derivatives are zero. The matrix Q of second partial derivatives is called the Hessian of the function.

Convex, Concave and Non-Convex Quadratics

A quadratic function of at least two variables may be convex, concave, or nonconvex. The matrix Q in the general form $\mathrm{x}^{\mathrm{T}} \mathrm{Qx}$ has a closely related algebraic property of definiteness. If the Q matrix is positive definite, the function is convex; if the Q matrix is negative definite, the function is concave. You can picture the graph of these functions as having a "round bowl" shape with a single bottom (or top). If the Q matrix is semi-definite, the function has a bowl shape with a "trough" where many points may have the same objective value, but it is still convex or concave. If the Q matrix is indefinite, the function is non-convex: It has a "saddle" shape, but its true minimum or maximum is not found in the "interior" of the function but on its boundaries with the constraints, where there may be many locally optimal points. Below is a plot of an example non-convex quadratic $\mathrm{x}_{1}^{2}+2 \mathrm{x}_{1} \mathrm{X}_{2}-1 / 2\left(\mathrm{x}_{2}^{2}-1\right)$:

A problem with convex quadratic functions is easily solved to global optimality up to very large size, but a problem with non-convex quadratic functions is a difficult global optimization problem that, in general, will require solution time that grows exponentially with the number of variables. The way that the Solver handles such functions is explained further below under "Quadratic Programming."

Nonlinear and Smooth Functions

A nonlinear function is any function of the variables that is not linear, i.e. which cannot be written in the algebraic form:
$a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}$
Examples, as before, are $=1 / \mathrm{C} 1,=\mathrm{LOG}(\mathrm{C} 1)$, and $=\mathrm{C} 1 \wedge 2$, where C 1 is a decision variable. All of these are called continuous functions, because their graphs are curved but contain no "breaks." $=\operatorname{IF}(\mathrm{C} 1>10, \mathrm{D} 1,2 * \mathrm{D} 1)$ is also a nonlinear function, but it is "worse" (from the Solver's viewpoint) because it is discontinuous: Its graph contains a "break" at $\mathrm{C} 1=10$ where the function value jumps from D1 to 2*D1. At this break, the rate of change (i.e. the derivative) of the function is undefined. As explained below in the section "Derivatives, Gradients, Jacobians and Hessians," most Solver algorithms rely on derivatives to seek improved solutions, so they may have trouble with a Solver model containing functions like $=\operatorname{IF}(\mathrm{C} 1>10, \mathrm{D} 1,2 * \mathrm{D} 1)$. The Interval Global Solver does not accept discontinuous functions at all.

If the graph of the function's derivative also contains no breaks, then the original function is called a smooth function. If it does contain breaks, then the original function is non-smooth. Every discontinuous function is also non-smooth. An example of a continuous function that is non-smooth is $=\mathrm{ABS}(\mathrm{C} 1)-$ its graph is
an unbroken " V " shape, but the graph of its derivative contains a break, jumping from -1 to +1 at $\mathrm{C} 1=0$. Many nonlinear Solver algorithms rely on second order derivatives of at least the objective function to make faster progress, and to test whether the optimal solution has been found; they may have trouble with functions such as $=\mathrm{ABS}(\mathrm{C} 1)$. The Interval Global Solver does not accept any non-smooth functions.

As explained below in the section "Derivatives, Gradients, Jacobians and Hessians," general nonlinear functions have first, second, and sometimes higher order derivatives that change depending on the point (i.e. values of the decision variables) at which the function is evaluated.

Convex, Concave and Non-Convex Smooth Functions

A general nonlinear function of even one variable may be convex, concave or non-convex. A function can be convex but non-smooth: $=\mathrm{ABS}(\mathrm{C} 1)$ with its V shape is an example. A function can also be smooth but non-convex: = $\operatorname{SIN}(\mathrm{C} 1)$ is an example. But the "best" nonlinear functions, from the Solver's point of view, are both smooth and convex (concave for the objective if you are maximizing).

If a smooth function's second derivative is always nonnegative, it is a convex function; if its second derivative is always nonpositive, it is a concave function. This property extends to any number of 'dimensions' or variables, where the second derivative becomes the Hessian and "nonnegative" becomes "positive semidefinite."

Discontinuous and Non-Smooth Functions

Microsoft Excel provides a very rich formula language, including many functions that are discontinuous or non-smooth. As noted above, discontinuous functions cause considerable difficulty, and non-smooth functions cause some difficulty for most nonlinear Solvers; such functions are not accepted by the Interval Global Solver. Some models can only be expressed with the aid of these functions; in other cases, you have a degree of choice in how you model the real-world problem, and which functions you use. Even when you have a "full arsenal" of Solver engines available, as you do with Analytic Solver Comprehensive and its subset products, you'll get better results if you try to use the most "Solver-friendly" functions in your model.
By far the most common discontinuous function in Excel is the IF function where the conditional test depends on the decision variables, as in the example $=\mathrm{IF}(\mathrm{C} 1>10, \mathrm{D} 1,2 * \mathrm{D} 1)$. Here is a short list of common discontinuous Excel functions:

IF, CHOOSE
LOOKUP, HLOOKUP, VLOOKUP
COUNT
INT, ROUND
CEILING, FLOOR

Here is a short list of common non-smooth Excel functions:
ABS
MIN, MAX
Formulas involving relations such as $<=,=$ and $>=$ (on the worksheet, not in constraints) and logical functions such as AND, OR and NOT are discontinuous at their points of transition from FALSE to TRUE values. Functions such as

SUMIF and the database functions are discontinuous if the criterion or conditional argument depends on the decision variables.

If you aren't sure about a particular function, try graphing it (by hand or in Microsoft Excel) over the expected range of the variables; this will usually reveal whether the function is discontinuous or non-smooth. If using Analytic Solver, just create a model using the function, and use the Analyze button to automatically diagnose the model type.

Analytic Solver Comprehensive, Analytic Solver Optimization, Analytic Solver Upgrade and Analytic Solver Basic can automatically transform a model that uses IF, AND, OR, NOT, ABS, MIN and MAX, and relations $<,<=,>=$ and $>$ to an equivalent model where these functions and relations are replaced by additional binary integer and continuous variables and additional constraints, that have the same effect - for the purpose of optimization - as the replaced functions. This powerful facility may be able to transform your non-smooth model into a smooth or even linear model with integer variables. An example is shown in the EXAMPLE5 worksheet of the StandardExamples.xls workbook, which is normally installed into C:\Program Files\Frontline Systems\Analytic Solver Platform\Examples.

Derivatives, Gradients, Jacobians, and Hessians

To find feasible and optimal solutions, most optimization algorithms rely heavily on derivatives of the problem functions (the objective and constraints) with respect to the decision variables. First derivatives indicate the direction in which the function is increasing or decreasing, while second derivatives provide curvature information.

The partial derivatives of a function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with respect to each variable are denoted $\partial f / \partial x_{1}, \partial f / \partial x_{2}, \ldots, \partial f / \partial x_{n}$. They give the rate of change of the function in each dimension. For a linear function $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}$, the partial derivatives are the coefficients: $\partial f / \partial x_{1}=a_{1}, \partial f / \partial x_{2}=a_{2}$, and so on.
To recap the comments about derivatives made in the sections above:

- Linear functions have constant first derivatives - the coefficients a_{i} - and all higher order derivatives (second, third, etc.) are zero.
- Quadratic functions have constant first and second derivatives, and all higher order (third, etc.) derivatives are zero.
- Smooth nonlinear functions have first and second derivatives that are defined, but not constant - they change with the point at which the function is evaluated.
- Non-smooth functions have second derivatives that are undefined at some points; discontinuous functions have first derivatives that are undefined at some points.

The gradient of a function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the vector of its partial derivatives:

$$
\left[\partial f / \partial x_{1}, \partial f / \partial x_{2}, \ldots, \partial f / \partial x_{n}\right]
$$

This vector points in the direction (in n-dimensional space) along which the function increases most rapidly. Since a Solver model consists of an objective and constraints, all of which are functions of the variables $x_{1}, x_{2}, \ldots, x_{n}$, it is often useful to collect these gradients into a matrix, where each row is the gradient vector for one function:

$$
\begin{aligned}
& \partial f_{1} / \partial x_{1}, \partial f_{1} / \partial x_{2}, \ldots, \\
& \partial f_{1} / \partial x_{n} \\
& \partial f_{2} / \partial x_{1}, \partial f_{2} / \partial x_{2}, \ldots, \\
& \partial f_{2} / \partial x_{n} \\
& \cdots \\
& \partial f_{m} / \partial x_{1}, \partial f_{m} / \partial x_{2}, \ldots, \\
& \partial f_{m} / \partial x_{n}
\end{aligned}
$$

This matrix is called the Jacobian matrix. In a linear programming problem, this is the LP coefficient matrix, and all of its elements (the a_{s}) are constant.
The second partial derivatives of a function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with respect to each pair of variables x_{i} and x_{j} are denoted $\partial^{2} f / \partial x_{i} \partial x_{j}$. There are n^{2} second partial derivatives, and they can be collected into an $n \mathrm{x} n$ matrix:

$$
\left\lvert\, \begin{aligned}
& \partial^{2} f / \partial x_{1} \partial x_{1}, \\
& \partial^{2} f / \partial x_{1} \partial x_{2}, \ldots, \\
& \partial^{2} f / \partial x_{1} \partial x_{n} \\
& \partial^{2} f / \partial x_{2} \partial x_{1}, \\
& \partial^{2} f / \partial x_{2} \partial x_{2}, \ldots, \\
& \partial^{2} f / \partial x_{2} \partial x_{n} \\
& \ldots \\
& \partial^{2} f / \partial x_{n} \partial x_{1}, \\
& \partial^{2} f / \partial x_{n} \partial x_{2}, \ldots, \\
& \partial^{2} f / \partial x_{n} \partial x_{n}
\end{aligned}\right.
$$

This matrix is called the Hessian matrix. It provides second order (curvature) information for a single problem function, such as the objective. The Hessian of a linear function would have all zero elements; the Hessian of a quadratic function has all constant elements; and the Hessian of a general nonlinear function may change depending on the point (values of the decision variables) where it is evaluated.

When reading the next section, "Optimization Problems and Solution Methods," bear in mind that the different classes of Solver problems, and the computing time required to solve these problems, is directly related to the nature of the derivatives (constant, changing, or undefined) of their problem functions, as outlined above.

For example, because the first derivatives of linear functions are constant, they need be computed only once - and second derivatives (which are zero) need not be computed at all. For quadratic functions, the first and second derivatives can be computed only once, whereas for general nonlinear functions, these derivatives may have to be computed many times.
A major difference between the Analytic Solver products versus Excel Solver, is the method used to compute derivatives. The Polymorphic Spreadsheet Interpreter in Analytic Solver can supply fast, accurate derivatives to Solver engines via a process called automatic differentiation.
What if your optimization problem requires the use of non-smooth or discontinuous functions? With Analytic Solver, you have several choices. First, for common non-smooth functions such as ABS, MAX and MIN, and even for some IF functions, the nonlinear GRG, Large-Scale GRG and Large-Scale SQP Solvers often yield acceptable results, though you may need to use multistart methods to improve the chances of finding the optimal solution. Second, you can use the Evolutionary Solver (which does not require any derivative values) to find a "good" solution, though you'll have to give up guarantees of finding an optimal solution, and it's likely to take considerably more computing time to find a solution. Third, you can use the automatic transformation feature to replace many of these functions with additional variables and linear constraints; if all discontinuous or non-smooth functions in the model are automatically
replaced, the problem should be solvable with the nonlinear Solvers, or even with the linear Solvers in some cases. Fourth, you can manually reformulate your model with binary integer variables and associated constraints. You can then use the nonlinear GRG Solver, or even the LP/Quadratic Solver, in combination with the Branch \& Bound method, to find the true optimal solution to your problem. These ideas are explored further in the chapter "Best Practices for Building Large-Scale Models."

Optimization Problems and Solution Methods

A model in which the objective function and all of the constraints (other than integer constraints) are linear functions of the decision variables is called a linear programming (LP) problem. (The term "programming" dates from the 1940s and the discipline of "planning and programming" where these solution methods were first used; it has nothing to do with computer programming.) As noted earlier, a linear programming problem is always convex.

If the problem includes integer constraints, it is called an integer linear programming problem. A linear programming problem with some "regular" (continuous) decision variables, and some variables that are constrained to integer values, is called a mixed-integer programming (MIP) problem. Integer constraints are non-convex, and they make the problem far more difficult to solve; see below for details.

A quadratic programming (QP) problem is a generalization of a linear programming problem. Its objective is a convex quadratic function of the decision variables, and all of its constraints must be linear functions of the variables. A problem with linear and convex quadratic constraints, and a linear or convex quadratic objective, is called a quadratically constrained (QCP) problem.

A model in which the objective function and all of the constraints (other than integer constraints) are smooth nonlinear functions of the decision variables is called a nonlinear programming (NLP) or nonlinear optimization problem. If the problem includes integer constraints, it is called an integer nonlinear programming problem. A model in which the objective or any of the constraints are non-smooth functions of the variables is called a non-smooth optimization (NSP) problem.

Linear Programming

Linear programming (LP) problems are intrinsically easier to solve than nonlinear (NLP) problems. First, they are convex, where a general nonlinear problem is often non-convex. Second, since all constraints are linear, the globally optimal solution always lies at an "extreme point" or "corner point" where two or more constraints intersect. (In some problems there may be multiple solutions with the same objective value, all lying on a line between two corner points.) This means that an LP Solver needs to consider many fewer points than an NLP Solver, and it is always possible to determine (subject to the limitations of finite precision computer arithmetic) that an LP problem (i) has no feasible solution, (ii) has an unbounded objective, or (iii) has a globally optimal solution.

Problem Size and Numerical Stability

Because of their structural simplicity, the main limitations on the size of LP problems that can be solved are time, memory, and the possibility of numerical "instabilities" which are the cumulative result of the small errors intrinsic to finite precision computer arithmetic. The larger the model, the more likely it is that numerical instabilities will be encountered in solving it.

Most large LP models are sparse in nature: While they may include thousands of decision variables and constraints, the typical constraint will depend upon only a few of the variables. This means that the Jacobian matrix of partial derivatives of the problem functions, described earlier, will have many elements that are zero. Such sparsity can be exploited to save memory and gain speed in solving the problem.

The Simplex Method

LP problems are most often solved via the Simplex method. The standard Microsoft Excel Solver uses a straightforward implementation of the Simplex method to solve LP problems, when the Assume Linear Model box is checked in the Solver Options dialog. Analytic Solver Comprehensive, Analytic Solver Optimization, Analytic Solver Upgrade and Analytic Solver Basic use a far more sophisticated implementation of the Simplex method which exploits sparsity in the LP model and uses techniques such as presolving, matrix factorization using the LU decomposition, a fast, stable LU update, and dynamic Markowitz refactorization.
The Large-Scale LP/QP Solver and MOSEK Solver engines use even more powerful implementations of the methods mentioned above. They have been used to solve LP problems with millions of variables and constraints.

The Large-Scale SQP Solver engine includes a powerful linear programming Solver that uses "active set" methods (closely related to the Simplex method). It is practical for problems up to 100,000 variables and constraints. This same Solver engine also handles large-scale QP and NLP problems very efficiently.

The Gurobi Solver and XPRESS Solver engine are Frontline's fastest and most powerful Solvers for linear programming and especially mixed-integer linear programming problems. Their advanced primal and dual Simplex and Barrier methods, combined with state-of-the-art Branch and Cut methods for integer problems, yield solutions in record time.

Quadratic Programming

Quadratic programming problems are more complex than LP problems, but simpler than general NLP problems. They have only one feasible region with "flat faces" on its surface (due to their linear constraints), but the optimal solution may be found anywhere within the region or on its surface. Since a QP problem is a special case of an NLP problem, it can be solved with the standard nonlinear GRG Solver, but this may take considerably more time than solving an LP of the same size. The LP/Quadratic Solver in Analytic Solver Comprehensive and Analytic Solver Optimization solves QP problems using a variant of the Simplex method to determine the feasible region, and special methods based on the properties of quadratic functions to find the optimal solution.

Most quadratic programming algorithms are specialized to handle only positive definite (or negative definite) quadratics. The LP/Quadratic Solver, however, can also handle semi-definite quadratics; it will find one of the equivalent
(globally) optimal solutions - which one depends on the starting values of the decision variables. When applied to an indefinite quadratic objective function, the LP/Quadratic Solver provides only the guarantees of a general nonlinear Solver: It will converge to a locally optimal solution (either a saddle point in the interior, or a locally optimal solution on the constraint surface).

The Large-Scale LP/QP Solver, Large-Scale GRG Solver, Large-Scale SQP Solver, Knitro Solver, Gurobi Solver, MOSEK Solver, and XPRESS Solver engines can all be used to efficiently solve large QP problems.

Quadratically Constrained Programming

A problem with linear and convex quadratic constraints, and a linear or convex quadratic objective, is called a quadratically constrained (QCP) problem. Such a problem is more general than a QP or LP problem, but less general than a convex nonlinear problem. The Simplex-based methods used in the LP/Quadratic Solver, the Large-Scale LP/QP Solver, and the XPRESS Solver Engine handle only quadratic objectives, not quadratic constraints. But QCP problems - since they are convex - can be solved efficiently to global optimality with Barrier methods, also called Interior Point methods.

The SOCP Barrier Solver uses a Barrier method to solve LP, QP, and QCP problems. The MOSEK Solver Engine uses an even more powerful Barrier method to solve very large scale LP, QP, and QCP problems, as well as smooth convex nonlinear problems. Both of these Solvers form a logarithmic "barrier function" of the constraints, combine this with the objective, and take a step towards a better point on each major iteration. Unlike the Simplex method, which moves from one corner point to another on the boundary of the feasible region, a Barrier method follows a path - called the central path - that lies strictly within the feasible region.

A Barrier method relies heavily on second derivative information, specifically the Hessian of the Lagrangian (combination of the constraints and objective) to determine its search direction on each major iteration. The ability of the Polymorphic Spreadsheet Interpreter to efficiently compute this second derivative information is key to the performance of this method.

Second Order Cone Programming

Second order cone programming (SOCP) problems are a further generalization of LP, QP, and QCP problems. An SOCP has a linear objective and one or more linear or second order cone (SOC) constraints. As explained earlier, a second order cone constraint such as "A1:A5 = conic" specifies that the vector formed by the decision variables A1:A5 must lie within the second-order cone (also called the Lorentz cone) of dimension 5. Algebraically, the constraint specifies that $\mathrm{a}_{1} \geq\left\|\mathrm{a}_{2}: \mathrm{a}_{5}\right\|_{2}$. SOCPs are always convex; the SOCP Barrier Solver and the MOSEK Solver Engine are both designed to solve SOCP problems, efficiently to global optimality.

Any convex quadratic constraint can be converted into an SOC constraint, with several steps of linear algebra. A convex quadratic objective $\mathrm{x}^{\mathrm{T}} \mathrm{Qx}+\mathrm{cx}$ can be handled by introducing a new variable t, making the objective minimize t, adding a constraint $\mathrm{x}^{\mathrm{T}} \mathrm{Qx}+\mathrm{cx}<=t$, and converting this constraint to SOC form. The SOCP Barrier Solver and the MOSEK Solver Engine both make these transformations automatically; in effect they solve all LP, QP, QCP and SOCP problems in the same way. Second order cone programming can be viewed as
the natural generalization of linear programming, and is bound to become more popular in the future.
You can also solve an SOCP with the GRG Nonlinear Solver or the Large-Scale GRG, Large-Scale SQP, or Knitro Solver engines. Although these Solvers do not recognize SOC constraints directly, Analytic Solver products will compute values and derivatives for SOC constraints, based on their algebraic form shown above. Hence, these general nonlinear Solvers handle SOC constraints like other general nonlinear constraints. Using these Solvers, you can find optimal solutions for problems containing a mix of linear, general nonlinear, and SOC constraints - bearing in mind that such problems may be non-convex.

Nonlinear Optimization

As outlined above, nonlinear programming (NLP) problems are intrinsically more difficult to solve than LP, QP, QCP or SOCP problems. They may be convex or non-convex, and since their second derivatives are not constant, an NLP Solver must compute or approximate the Hessians of the problem functions many times during the course of the optimization. Since a non-convex NLP may have multiple feasible regions and multiple locally optimal points within such regions, there is no simple or fast way to determine with certainty that the problem is infeasible, that the objective function is unbounded, or that an optimal solution is the "global optimum" across all feasible regions. But some NLP problems are convex, and many problems include linear or convex quadratic constraints in addition to general nonlinear constraints. Frontline's field-installable nonlinear Solver engines are each designed to take advantage of NLP problem structure in different ways, to improve performance.

If you use the GRG Nonlinear Solver - the only choice for NLPs in the standard Excel Solver and Analytic Solver Upgrade - bear in mind that it applies the same method to all problems, even those that are really LPs or QPs. If you don't select another Solver engine from the Task Pane Engine tab dropdown list box (or, in the standard Microsoft Excel Solver, if you don't check the Assume Linear Model box in the Solver Options dialog), this Solver will be used - and it may have difficulty with LP or QP problems that could have been solved easily with one of the other Solvers. Analytic Solver Comprehensive can automatically determine the type of problem, and select only the "good" or "best" Solver engine(s) for that problem.

The GRG Method

Analytic Solver includes the enhanced GRG Solver while the Excel Solver uses the Generalized Reduced Gradient method as implemented in Lasdon and Waren's GRG2 code. The GRG method can be viewed as a nonlinear extension of the Simplex method, which selects a basis, determines a search direction, and performs a line search on each major iteration - solving systems of nonlinear equations at each step to maintain feasibility. This method and specific implementation have been proven in use over many years as one of the most robust and reliable approaches to solving difficult NLP problems.

As with the Simplex method, the GRG method in the standard Excel Solver uses a "dense" problem representation, and its memory and solution time increases with the number of variables times the number of constraints. It is also subject to problems of numerical instability, which may be even more severe than for LP and QP problems. The GRG Solver engine uses sparse storage methods and better numerical methods for nonlinear models, such as matrix condition testing and degeneracy handling, to solve much larger NLP problems.

The SQP Method

The Large-Scale SQP Solver engine for Analytic Solver Comprehensive and Analytic Solver Optimization uses a Sequential Quadratic Programming (SQP) method to solve nonlinear optimization problems. This method forms and solves a QP subproblem, with a quadratic merit function and linearized constraints, on each major iteration. Because it includes a highly efficient QP solver, a powerful linear programming solver using "active set" methods, and sparsity-exploiting matrix factorization, updating and refactorization methods, the Large-Scale SQP Solver engine is very fast in solving all types of LP, QP and NLP problems. However, the SQP method typically follows a path of infeasible trial points until it finds the solution that is both feasible and optimal. Hence, if you stop the Solver before it reports an optimal solution, the GRG method is far more likely than the SQP method to return a feasible solution as its "best point so far."

Interior Point and SLQP Methods

The Knitro Solver engine for Analytic Solver Comprehensive and Analytic Solver Optimization uses a Barrier or Interior Point method, specialized for nonconvex problems, to solve general nonlinear optimization problems. As with the SOCP Barrier and MOSEK Solvers, this method forms a logarithmic "barrier function" of the constraints, combines this with the objective, and takes a step towards a better point on each major iteration. (The actual process of taking a step and the path followed are more complex, because Knitro assumes that the problem may be non-convex.) The Knitro Solver uses the PSI Interpreter to efficiently compute second derivative information, but it also has options to work with only first derivative information.

The Knitro Solver engine also includes a new, high performance Sequential Linear-Quadratic (SLQP) method, which is an "active set" method similar to the SQP method. On highly constrained problems, notably those with equality constraints, this method typically outperforms the Interior Point method. On loosely constrained or unconstrained problems, the Interior Point method can greatly outperform SQP and GRG methods, solving problems much larger than either of these methods. Benchmark studies in the academic literature have demonstrated exceptionally good performance for the Knitro Solver, on a wide range of test problems.
The GRG, SQP and Interior Point methods are all subject to the intrinsic limitations cited above for nonlinear optimization problems: For smooth convex nonlinear problems, they will (subject to the limitations of finite precision computer arithmetic) find the globally optimal solution; but for non-convex problems, they can only guarantee a locally optimal solution. To have a reasonable chance - let alone a guarantee - that you'll find the globally optimal solution to a non-convex problem, you must use special methods for global optimization.

Global Optimization

Analytic Solver Comprehensive and its subset products include powerful tools to help you find the globally optimal solution for a smooth nonlinear nonconvex problem. These tools include multistart methods, which can be used with the nonlinear GRG Solver, the Large-Scale GRG Solver, the Large-Scale SQP Solver, and the Knitro Solver; the Interval Global Solver offers powerful interval methods for global optimization in a commercial software product; and
the Evolutionary Solver, for global solutions of smooth and non-smooth problems.

The Multistart Method

The basic idea of the multistart method is to automatically run a nonlinear Solver from different starting points, reaching different locally optimal solutions, then select the best of these as the proposed globally optimal solution. Both clustering and topographic search multistart methods are included in Analytic Solver and its subset products.
The multistart method operates by generating candidate starting points for the nonlinear Solver (with randomly selected values between the bounds you specify for the variables). These points are then grouped into "clusters" through a method called multi-level single linkage - that are likely to lead to the same locally optimal solution, if used as starting points for the Solver. The nonlinear Solver is then run repeatedly, once from (a representative starting point in) each cluster. The process continues with successively smaller clusters that are increasingly likely to capture each possible locally optimal solution. A Bayesian test is used to determine whether the process should continue or stop.

For many smooth nonlinear problems, the multistart method has a limited guarantee that it will "converge in probability" to a globally optimal solution. This means that as the number of runs of the nonlinear Solver increases, the probability that the globally optimal solution has been found also increases towards 100%. (To attain convergence for constrained problems, an exact penalty function is used in the process of "clustering" the starting points.) For most nonlinear problems, this method will at least yield very good solutions. As discussed below, the multistart method, like the Evolutionary Solver, is a nondeterministic method, which by default may yield different solutions on different runs. (To obtain the same solution on each run, you can set a Random Seed option for either of these solution algorithms, as discussed in the chapter "Solver Engine Option Reference" in the Frontline Solvers Reference Guide.)

As discussed below, the Evolutionary Solver has been enhanced with "filtered local search" methods that offer many of the benefits of multistart methods making the Evolutionary Solver even more effective for global optimization problems.

The multistart method can be used on smooth nonlinear problems that also contain integer variables and/or "alldifferent" constraints. But this can take a great deal of solution time, since the multistart method is used for each subproblem generated by the Branch \& Bound method for integer problems, and it can also impact the Solver's ability to find feasible integer solutions. If you have many integer variables, or alldifferent constraints, try the Evolutionary Solver as an alternative to the multistart method.

The Interval Branch \& Bound Method

In contrast to the multistart methods and the Evolutionary Solver's methods, which are nondeterministic methods for global optimization that offer no firm guarantees of finding the globally optimal solution, the Interval Global Solver in uses a deterministic method: An Interval Branch \& Bound algorithm that will find the globally optimal solution - given enough time, and subject to some limitations related to roundoff error, as discussed in the Frontline Solvers Reference Guide.

The Interval Branch \& Bound algorithm processes a list of "boxes" that consist of bounded intervals for each decision variable, starting with a single box
determined by the bounds that you specify. On each iteration, it seeks lower and upper bounds for the objective and the constraints in a given box that will allow it to discard all or a portion of the box (narrowing the intervals for some of the variables), by proving that the box can contain no feasible solutions, or that it can contain no objective function values better than a known best bound on the globally optimal objective. Boxes that cannot be discarded are subdivided into smaller boxes, and the process is repeated. Eventually, the boxes that remain each enclose a locally optimal solution, and the best of these is chosen as the globally optimal solution.

Several methods are used to obtain good bounds on the values of the objective and constraints within a box or region. Classic interval methods rely on the ability of the PSI Interpreter to evaluate Excel functions over intervals and interval gradients. Local constraint propagation methods (also known as hull consistency methods) are used to narrow intervals at each stage of evaluation of the problem functions. Second-order methods rely on the Interpreter's ability to compute interval Hessians of Excel functions, and use a variant of the Interval Newton method to rapidly minimize function values within a region. Innovative linear enclosure methods - implemented for the first time in the Interval Global Solver - bound each problem function with a linear approximation that can be used in a Simplex method-based test for feasibility and local optimality.
The Interval Global Solver also has a unique ability to find all real solutions for a system of nonlinear equations - which can be listed in the Solutions Report. It can also find an "inner solution" for a system of nonlinear inequalities - a region or "box" (bounds on the variables) within which all points satisfy the inequalities. These capabilities are summarized in the chapter "Getting Results: Optimization."

Non-Smooth Optimization

The most difficult type of optimization problem to solve is a non-smooth problem (NSP). Such a problem may not only have multiple feasible regions and multiple locally optimal points within each region - because some of the functions are non-smooth or even discontinuous, derivative or gradient information generally cannot be used to determine the direction in which the function is increasing (or decreasing). In other words, the situation at one possible solution gives very little information about where to look for a better solution.
In all but the simplest problems, it is impractical to exhaustively enumerate all of the possible solutions and pick the best one, even on a fast computer. Hence, most methods rely on some sort of controlled random search, or sampling of possible solutions - combined with deterministic (non-random) methods for exploring the search space. The Evolutionary Solver, based on genetic algorithms, relies fairly heavily on controlled random search, whereas the OptQuest Solver Engine, based on tabu search and scatter search, relies more heavily on deterministic search methods.
A drawback of these methods is that a solution is "better" only in comparison to other, presently known solutions; both the Evolutionary and OptQuest Solvers normally have no way to test whether a solution is optimal. This also means that these methods must use heuristic rules to decide when to stop, or else stop after a length of time, or number of iterations or candidate solutions, that you specify.

Genetic and Evolutionary Algorithms

A non-smooth optimization problem can be attacked - though not often solved to optimality - using a genetic or evolutionary algorithm. (In a genetic algorithm the problem is encoded in a series of bit strings that are manipulated by the algorithm; in an "evolutionary algorithm," the decision variables and problem functions are used directly. Most commercial Solver products are based on evolutionary algorithms.)

An evolutionary algorithm for optimization is different from "classical" optimization methods in several ways. First, it relies in part on random sampling. This makes it a nondeterministic method, which may yield different solutions on different runs. (To obtain the same solution on each run, you can set a Random Seed option for the Evolutionary Solver.)

Second, where most classical optimization methods maintain a single best solution found so far, an evolutionary algorithm maintains a population of candidate solutions. Only one (or a few, with equivalent objectives) of these is "best," but the other members of the population are "sample points" in other regions of the search space, where a better solution may later be found. The use of a population of solutions helps the evolutionary algorithm avoid becoming "trapped" at a local optimum, when an even better optimum may be found outside the vicinity of the current solution.
Third - inspired by the role of mutation of an organism's DNA in natural evolution - an evolutionary algorithm periodically makes random changes or mutations in one or more members of the current population, yielding a new candidate solution (which may be better or worse than existing population members). There are many possible ways to perform a "mutation," and the Evolutionary Solver actually employs five different mutation strategies. The result of a mutation may be an infeasible solution, and the Evolutionary Solver attempts to "repair" such a solution to make it feasible; this is sometimes, but not always, successful.

Fourth - inspired by the role of sexual reproduction in the evolution of living things - an evolutionary algorithm attempts to combine elements of existing solutions in order to create a new solution, with some of the features of each "parent." The elements (e.g. decision variable values) of existing solutions are combined in a crossover operation, inspired by the crossover of DNA strands that occurs in reproduction of biological organisms. As with mutation, there are many possible ways to perform a "crossover" operation - some much better than others - and the Evolutionary Solver actually employs multiple variations of four different crossover strategies.
Fifth - inspired by the role of natural selection in evolution - an evolutionary algorithm performs a selection process in which the "most fit" members of the population survive, and the "least fit" members are eliminated. In a constrained optimization problem, the notion of "fitness" depends partly on whether a solution is feasible (i.e. whether it satisfies all of the constraints), and partly on its objective function value. The selection process is the step that guides the evolutionary algorithm towards ever-better solutions.

Hybrid Evolutionary and Other Algorithms

You might imagine that better results could be obtained by combining the strategies used by an evolutionary algorithm with the "classical" optimization methods used by the nonlinear GRG and LP/Quadratic Solver. Frontline Systems has done just that.

The Evolutionary Solver operates as described above, but it also employs classical methods in two situations: First, when the evolutionary algorithm generates a new best point, a local search is conducted to try to improve that point. This step can use a "random local search" method, a gradient-free, deterministic direct search method, a gradient-based quasi-Newton method, or a "linearized local gradient" method. Second, when the evolutionary algorithm generates an infeasible point, the Solver can use "repair methods", a quasiNewton method, or even a specialized Simplex method (for subsets of the constraints that are linear) to transform the infeasible point into a feasible one.

The Evolutionary Solver takes advantage of the diagnostic information available from the PSI Interpreter: It automatically applies genetic algorithm methods to non-smooth variable occurrences (where classical methods cannot be used) and classical methods to smooth and linear variable occurrences. In the local search phase, it can either fix non-smooth variables, or allow them to vary. And it can automatically select the most appropriate local search method, based on linearity and smoothness of the problem functions.

The Evolutionary Solver uses a "distance filter" and a "merit filter" to determine whether to carry out a local search when the genetic algorithm methods find an improved starting point. The "distance filter" plays a role similar to "clustering" in the multistart methods described earlier; both filters contribute to the excellent performance of the Evolutionary Solver on global optimization problems.

The "Achilles' heel" of most evolutionary algorithms is their handling of constraints - they are typically unable to handle more than a few inequalities, or any equality constraints at all. In contrast, the hybrid Evolutionary Solver has been able to find good solutions to non-smooth problems with many - even hundreds - of constraints.

Tabu Search and Scatter Search

The OptQuest Solver Engine for Analytic Solver Comprehensive and Analytic Solver Optimization is based on the principles of tabu search and scatter search. These methods have strong analogies with - and actually predate - genetic algorithm methods, but they rely less heavily on random choice. They work with a population of solutions, which are modified and combined in different ways, then subjected to a selection process. Scatter search methods can sample the space of possible solutions, avoid becoming "trapped" in regions close to local optima, and adaptively diversify or intensify the search. Tabu search uses memory of past search steps to avoid repeated steps and improve future searches. Use of the OptQuest Solver is described in more depth in the Frontline Solvers Engine User Guide.

Integer Programming

When a Solver model includes integer constraints (for example A1:A10 = integer, $\mathrm{A} 1: \mathrm{A} 10=$ binary, $\mathrm{A} 1: \mathrm{A} 10=$ semicontinuous, or $\mathrm{A} 1: \mathrm{A} 10=$ alldifferent $)$, it is called an integer programming problem. Integer constraints make a model non-convex, and finding the optimal solution to an integer programming problem is equivalent to solving a global optimization problem. Such problems may require far more computing time than the same problem without the integer constraints.

The standard Microsoft Excel Solver uses a basic Branch \& Bound method, in conjunction with the linear LP/Quadratic or nonlinear GRG Solver, to find
optimal solutions to problems involving general integer or binary integer variables. Analytic Solver Upgrade and Analytic Solver Basic use a much more sophisticated Branch \& Bound method that is extended to handle alldifferent constraints, and that often greatly speeds up the solution process for problems with integer variables. In Analytic Solver Comprehensive and Analytic Solver Optimization, the LP/Quadratic Solver uses improved pseudocost-based branch and variable selection, reduced cost fixing, primal heuristics, cut generation, Dual Simplex and preprocessing and probing methods to greatly speed up the solution of integer linear programming problems.

The Evolutionary Solver handles integer constraints, in the same form as the other Solver engines (including alldifferent constraints), but it does not make use of the Branch \& Bound method; instead, it generates many trial points and uses "constraint repair" methods to satisfy the integer constraints. (The constraint repair methods include classical methods, genetic algorithm methods, and integer heuristics from the local search literature.) The Evolutionary Solver can often find good solutions to problems with integer constraints, but where the Branch \& Bound algorithm can guarantee that a solution is optimal or is within a given percentage of the optimal solution, the Evolutionary Solver cannot offer such guarantees.

The Branch \& Bound Method

The Branch \& Bound method begins by finding the optimal solution to the "relaxation" of the integer problem, ignoring the integer constraints. If it happens that in this solution, the decision variables with integer constraints already have integer values, then no further work is required. If one or more integer variables have non-integral solutions, the Branch \& Bound method chooses one such variable and "branches," creating two new subproblems where the value of that variable is more tightly constrained. For example, if integer variable A1 has the value 3.45 at the solution, then one subproblem will have the additional constraint $\mathrm{A} 1<=3$ and the other subproblem will add the constraint $\mathrm{A} 1>=4$. These subproblems are solved and the process is repeated, "branching" as needed on each of the integer decision variables, until a solution is found where all of the integer variables have integer values (to within a small tolerance).

Hence, the Branch \& Bound method may solve many subproblems, each one a "regular" Solver problem. The number of subproblems may grow exponentially. The "bounding" part of the Branch \& Bound method is designed to eliminate sets of subproblems that do not need to be explored because the resulting solutions cannot be better than the solutions already obtained.

Cut Generation

The LP/Quadratic Solver, the Large-Scale LP/QP Solver, Large-Scale SQP Solver, MOSEK Solver, Gurobi Solver, and XPRESS Solver all make use of "cut generation" methods to improve performance on integer linear programming problems. Cut generation derives from so-called "cutting plane" methods that were among the earliest methods applied to integer programming problems, but they combine the advantages of these methods with the Branch \& Bound method to yield a highly effective approach, often referred to as a "Branch \& Cut" algorithm.

A cut is an automatically generated linear constraint for the problem, in addition to the constraints that you specify. This constraint is constructed so that it "cuts off" some portion of the feasible region of an LP subproblem, without
eliminating any possible integer solutions. Many cuts may be added to a given LP subproblem, and there are many different methods for generating cuts. For example, Gomory cuts are generated by examining the reduced costs at an LP solution, while knapsack cuts, also known as lifted cover inequalities, are generated from constraints involving subsets of the 0-1 integer variables. Cuts add to the work that the LP solver must perform on each subproblem (and hence they do not always improve solution time), but on many problems, cut generation enables the overall Branch \& Cut algorithm to more quickly discover integer solutions, and eliminate branches that cannot lead to better solutions than the best one already known.

The Alldifferent Constraint

In Analytic Solver Comprehensive and its subset products, a constraint such as $\mathrm{A} 1: \mathrm{A} 5=$ alldifferent specifies that the variables A1:A5 must be integers in the range 1 to 5, with each variable different from all the others at the solution. Hence, A1:A5 will contain a permutation of the integers from 1 to 5 , such as $1,2,3,4,5$ or $1,3,5,2,4$.
To solve problems involving alldifferent constraints, Analytic Solver employs an extended Branch \& Bound method that handles these constraints as a native type. Whenever variables in an "alldifferent group" have non-integral solution values, or integral values that are not all different, the Branch \& Bound method chooses one such variable and "branches," creating two new subproblems where the value of that variable is more tightly constrained.
The nonlinear GRG Solver, Large-Scale GRG Solver, Large-Scale SQP Solver, and Knitro Solver engines use this extended Branch \& Bound method to solve problems with integer and alldifferent constraints.

The Large-Scale LP/QP Solver, MOSEK Solver, Gurobi Solver, and XPRESS Solver use their own Branch \& Cut methods. They transform alldifferent constraints into equivalent sets of binary integer variables and additional linear constraints, then apply their preprocessing, probing and cut generation methods to these variables and constraints.

The Evolutionary Solver uses methods from the genetic algorithm literature to handle alldifferent constraints as permutations, including several mutation operators that preserve the "alldifferent property," and several crossover operators that generate a "child" permutation from "parents" that are also permutations.

Since Solver engines use quite different methods to handle the alldifferent constraint, you'll want to try a variety of Solver engines to see which one performs best on your model. This is especially true if your model uses smooth nonlinear or - even better - linear functions aside from the alldifferent constraint.

Looking Ahead to Models with Uncertainty

If you've read through this chapter, congratulations - you've learned a great deal about the nature of optimization problems, and how they are solved! But as we said in "Elements of Solver Models" at this chapter's beginning, we've assumed that all parameters of the model are certain. The chapter "Mastering Stochastic Optimization Concepts" will cover situations where the parameter values are uncertain - and the problems are called stochastic optimization
problems. In these problems, it's more important than ever to know how the objective and constraints depend on the decision variables.

We'll see that stochastic linear programming problems can be transformed and solved to optimality far more easily and quickly than stochastic nonlinear, non-convex problems. We'll also see that certain ways of summarizing the uncertainty involved in the model, in chance constraints and expected-value and risk-measure objectives, allow us to form a convex optimization model, that can be solved quickly and 'scaled up' to large size. We'll see that even one decision-dependent uncertainty usually makes a model non-convex and nonsmooth, and far more difficult to solve - but we can still find good solutions for such a model, using high-speed simulation optimization in Analytic Solver.

We explained in this chapter that it's usually a mistake to apply a generalpurpose Solver to a problem that has a simpler structure - for example, applying the GRG Solver or Evolutionary Solver to a linear programming problem: Solution times are much longer than necessary, solutions are less reliable, and the problem typically cannot be scaled up to large size and still solved by these methods.

In a similar way, we'll see that it's usually a mistake to apply a general-purpose stochastic optimization method to a problem that has a simpler structure - for example, applying simulation optimization (which requires a general-purpose Solver) to a stochastic linear programming problem. Again solution times will be much longer than necessary, solutions are much less reliable, and the problem typically cannot be scaled up to large size and still solved by these methods.

Mastering Simulation and Risk Analysis Concepts

Introduction

To build a Monte Carlo simulation model in Excel, you begin with a conventional spreadsheet model, designed for 'what-if' analysis. Next, you identify the inputs to your model that are uncertain, and use PSI Distribution functions to describe the uncertainty. Then, you identify the outputs of special interest (such as Net Profit), and use PSI Statistics functions to examine or summarize how they behave in light of the uncertainty.

This User Guide assumes you have some experience building conventional spreadsheet models, and you almost certainly have experience using such models to ask 'what if' questions, by manually changing input values on the spreadsheet. The key step in risk analysis is to think in terms, not of just one 'what if' scenario at a time, but of a range of scenarios, considered at once. Think of your spreadsheet cells as representing not just single numbers, that you change once in a while to explore alternatives, but arrays of numbers that cover the range of possibilities.

Although you can usually visualize the range of values for one input value at a time, it is very difficult to foresee - without computer assistance - the range of outcomes for an output value that depends on several interacting inputs, each one subject to uncertainty. But Analytic Solver Comprehensive, Analytic Solver Simulation and Analytic Solver Basic (in both the Desktop and Cloud apps) automatically compute the full range of outcomes for every cell in your spreadsheet model, and enables you to quickly see statistics such as the mean, standard deviation, or $10^{\text {th }}$ and $90^{\text {th }}$ percentiles of the range of outcomes.

What Happens During Monte Carlo Simulation

You'll find it easier to understand simulation results if you have a good grasp of the Monte Carlo simulation process. At its heart, this process is very simple. It consists of the following steps:

1. Generate a random sample for the uncertain variables in your model. If you specify (say) 1,000 Monte Carlo trials per simulation, then 1,000 randomly chosen values will be generated for each uncertain variable.
2. For each of 1,000 Monte Carlo trials, recalculate your model, with the right sample values in each uncertain variable cell. When Excel is used to recalculate, the PSI Distribution function in each uncertain variable cell returns the correct sample value for that trial. When the PSI Interpreter is used (as is always the case in Analytic Solver Cloud), this is done internally (much faster) by Analytic Solver.
3. On each Monte Carlo trial, monitor and save the calculated value of each uncertain function in your model. (Recall that any formula cell containing a call to PsiOutput(), or referenced in the first argument of PsiOutput() or a

PSI Statistics function, is monitored as an uncertain function cell.) For 1,000 trials, there will be 1,000 saved values for each uncertain function.
When the simulation process is complete, Analytic Solver Simulation uses the 1,000 saved values of each uncertain function to calculate statistics and percentiles, draw frequency distributions, scatter plots and other charts, and compute values for each PSI Statistic function call in your model.

Random Number Generation and Sampling

On each Monte Carlo trial, sample values are drawn from the probability distributions represented by the PSI Distribution functions in your model. Sample values are computed by first drawing a "random number" between 0 and 1, then transforming this uniform random sample value into a sample value that:

- Constrains the samples drawn to obtain better coverage of the sample space, where each PSI Distribution function is a 'dimension' of that space
- Ensures that the frequency distribution of samples drawn properly reflects the shape and parameters of the PSI Distribution function
- Ensures that the samples drawn for multiple PSI Distribution functions properly reflect the correlation of distributions with each other

Random Number Generator

Analytic Solver Simulation includes an advanced set of random number generation capabilities. In common applications, any good random number generator is sufficient - but for challenging applications (for example in financial engineering) that involve many uncertain variables and many thousands of trials, the advanced features of Analytic Solver Simulation can make a real difference.
Computer-generated numbers are never truly "random," since they are always computed by an algorithm - they are called pseudorandom numbers. A random number generator is designed to quickly generate sequences of numbers that are as close to statistically independent as possible. Eventually, an algorithm will generate the same number seen sometime earlier in the sequence, and at this point the sequence will begin to repeat. The period of the random number generator is the number of values it can generate before repeating.
A long period is desirable, but there is a tradeoff between the length of the period and the degree of statistical independence achieved within the period. Hence Analytic Solver Simulation offers a choice of four random number generators:

- Park-Miller "Minimal" Generator with Bayes-Durham shuffle and safeguards. This generator has a period of $2^{31}-2$. Its properties are good, but the following choices are usually better.
- Combined Multiple Recursive Generator (CMRG) of L'Ecuyer. This generator has a period of 2^{191}, and excellent statistical independence of samples within the period.
- Well Equidistributed Long-period Linear (WELL1024) generator of Panneton, L'Ecuyer and Matsumoto. This very new generator combines a long period of 2^{1024} with very good statistical independence.
- Mersenne Twister generator of Matsumoto and Nishimura. This generator has the longest period of $2^{19937}-1$, but the samples are not as "equidistributed" as for the WELL1024 and CMRG generators.

Random Number Seeds

As explained in the chapter "Getting Results: Simulation," the seed, or initial value, of the random number generator determines whether your results are exactly reproducible when you re-run a simulation, or whether your results are similar but not identical because a different random sample was drawn.
You can set a seed for the entire simulation run using the Sim. Random Seed option - the first option on the Task Pane Engine tab when you select Risk Solver Engine (the simulation engine) from the dropdown list. Any positive integer sets a specific seed; 0 means the seed will be different on every run.

You can also set a seed for any specific uncertain variable, using the Seed option in the Uncertain Variable dialog, or by supplying a PsiSeed() property function as an argument to the PSI Distribution function call. This means the uncertain variable will have its own independent stream of random numbers starting from the given seed, whether or not you've set a seed for the whole simulation run.

Sampling Method

In standard Monte Carlo sampling, numbers generated by the chosen random number generator are used directly to obtain sample values for the uncertain variables (PSI Distribution functions) in the model. With this method, the variance or estimation error in computed samples for uncertain functions is inversely proportional to the square root of the number of trials; hence to cut the error in half, four times as many trials are required.

Analytic Solver Simulation provides two other sampling methods than can significantly improve the 'coverage' of the sample space, and thus reduce the variance in computed samples for output functions. This means that you can achieve a given level of accuracy (low variance or error) with fewer trials. You choose this via the Sampling Method option on the Engine tab, shown above.

Latin Hypercube Sampling. Latin Hypercube sampling begins with a stratified sample in each dimension (one for each uncertain variable), which constrains the random numbers drawn to lie in a set of subintervals from 0 to 1 . Then these one-dimensional samples are combined and randomly permuted so that they 'cover' a unit hypercube in a stratified manner. This often reduces the variance of uncertain functions.

Sobol numbers (Randomized QMC). Sobol numbers are an example of socalled "Quasi Monte Carlo" or "low-discrepancy numbers," which are generated with a goal of coverage of the sample space rather than "randomness"
and statistical independence. Analytic Solver adds a "random shift" to Sobol numbers, which improves their statistical independence. Sobol numbers are frequently used in quantitative finance applications, where they are often effective at reducing variance.

Random Number Streams

Most Monte Carlo simulation tools generate a single sequence of random numbers, taking values consecutively from this sequence to obtain samples for each of the distributions in a model. This introduces a subtle dependence between the samples for all distributions in one trial. Analytic Solver Comprehensive and Analytic Solver Simulation allow you to specify that an independent random number sequence (stream) should be used for each distribution in the model - using the Random Number Streams option on the Engine tab, as shown on the previous page. This capability works for Monte Carlo sampling and Latin Hypercube sampling; it does not apply to Sobol numbers.

In many applications, the difference between a single stream and multiple strams is very small - but in some cases, found in financial engineering and other demanding applications, better results are obtained if independent random number sequences (streams) are used.

The PSI Interpreter and Simulation

Analytic Solver Desktop can use either Excel, or its own Polymorphic Spreadsheet Interpreter (PSI Technology) to perform Monte Carlo simulation trials at high speed - often 100 times faster or more than performing the trials by allowing Microsoft Excel to recalculate the spreadsheet. (Analytic Solver Cloud always uses PSI Technology.) Normally, you'll want to use the PSI Interpreter for simulation trials, since it is designed to compute the same values as Excel does, but much faster than the Excel Interpreter.

However, there are a few features of Excel formulas and functions that the PSI Interpreter does not handle; if you use these features in your model, you'll see an error message when you try to run a simulation. If your model requires the use of Excel features that are not supported by the PSI Interpreter, you may have to use the Excel Interpreter instead. To do this, change the Task Pane Platform tab Simulation Model group Interpreter option, as shown below.

Note: Functions not supported by the PSI Interpreter are: Call(), Cell(),
CubeX(), EuroConvert(), GetPivotData(), HyperLink(), Info(), RegisterID(), and SqlRequest().

More About the PSI Interpreter

So, how does the PSI Interpreter work, and how can it be so much faster than Excel alone for simulation? To answer this, we must look at how Excel itself computes values for your formulas.

Microsoft Excel is an interpreter for spreadsheet formulas. When you enter a formula such as $=\mathrm{A} 1+\mathrm{A} 2 *(\mathrm{~A} 3-4)$ in cell B1, Excel first scans and parses the formula, storing the results in a coded internal form. It also maintains storage for A1, A2, A3 and thousands of other cells. When you change a number and recalculate, Excel refers to the coded internal form, looks up the values of A1, A2 and A3 and fetches the constant 4, performs the arithmetic, and saves the result in storage reserved for B1. Only a small part of the time is spent on the actual arithmetic - most of the time goes into processing the encoded formula, and looking up and saving cell values.

PSI stands for Polymorphic Spreadsheet Interpreter. PSI is also an interpreter for spreadsheet formulas, that accepts the same formula syntax and built-in functions as Microsoft Excel. But where Excel evaluates formulas only for one datatype - single numbers, PSI can evaluate formulas for many different datatypes. (The word "polymorphic" comes from object-oriented programming, where it has essentially the same meaning.)

One of the special PSI datatypes is Monte Carlo trials, where each number is replaced by a vector of 1,000 or more trial values. The heart of PSI speed comes from the fact that it processes the encoded formula once, fetches 1,000 data values at once, and performs the arithmetic for all 1,000 values at once. Hence, the "overhead" of the interpreter is incurred once rather than 1,000 times; most of the time is spent doing the actual arithmetic. PSI is so fast because it is specialized for simulation (and optimization).

Uncertain Functions, Statistics, and Risk Measures

Once a Monte Carlo simulation is complete, what statistics should you use to evaluate the outputs of special interest in your model? The answer depends on your application, but some general guidelines can be given.
Descriptive statistics are usually classified into measures of central tendency, and measures of variation or dispersion. You should look at both kinds of measures, and at some kind of quantile measure, to assess almost any output in your model.

Measures of Central Tendency

Analytic Solver provides several measures of central tendency:

- PsiMean, the average of all the values
- PsiPercentile for the median or $50^{\text {th }}$ percentile
- PsiMode, the most frequently occurring single value

Measures of Variation

Analytic Solver provides several standard measures of variation:

- PsiVariance, which describes the spread of the distribution of values
- PsiStdDev for standard deviation, the square root of variance
- PsiSkewness, which describes the asymmetry of the distribution of values
- PsiKurtosis, which describes the peakedness of the distribution of values
- PsiMin, PsiMax, and PsiRange for the minimum and maximum values, and the difference between them

Risk Measures

Analytic Solver also provides several risk measure functions that are most often used in quantitative finance applications, but may be used in any model.

- PsiAbsDev for 'MAD', which measures absolute deviations from the mean
- PsiSemiVar for semivariance or lower partial moment, which measures and weights negative deviations from the mean
- PsiSemiDev for semideviation, the square root of semivariance (q th root for the lower partial moment)

PsiSemiVar and PsiSemiDev are useful in situations where 'upward' variation for example, higher stock prices or increased profits - is desirable, but 'downward' variation - lower prices or losses - is undesirable.

Quantile Measures

To get a complete grasp of the range of outcomes, it's essential to look at quantile measures, such as percentiles and Value at Risk, in addition to measures of central tendency and variation. Quantile measures allow you to answer questions such as 'How much money might we lose, with 5% or 10% probability?" or "What is the probability that we'll make at least $\$ 100,000$?" based on your simulation model. Analytic Solver provides:

- PsiPercentile, which provides percentile values from 1% to 99%
- PsiTarget, which returns the proportion of values less than or equal to a target value
- PsiBVaR, which measures standard ('Basel') Value at Risk
- PsiCVaR, which measures Conditional Value at Risk

Confidence Intervals

Every Monte Carlo simulation uses a sample of the possible values of your uncertain variables; hence any statistic resulting from the simulation involves some degree of sampling error. For the mean and standard deviation of an output value, Analytic Solver Simulation provides functions that help you assess this error, and estimate the range or interval in which you can be confident that the true mean or standard deviation lies, at a confidence level that you specify:

- PsiMeanCI, which returns a confidence interval for the mean
- PsiStdDevCI, which returns a confidence interval for the standard deviation
- PsiCITrials, which returns the number of simulation trials needed to obtain a confidence interval of a given size, at a given confidence level

Uncertain Variables and Probability Distributions

For experienced spreadsheet modelers, the most challenging task in creating a Monte Carlo simulation model is usually not identifying the key inputs and outputs, but selecting an appropriate probability distribution and parameters to model the uncertainty of each input variable.
Analytic Solver provides over 40 analytic probability distributions - which one should you use? Again the answer depends on your application, but some general guidelines can be given.

If a Certified Distribution (see below under "Probability Management Concepts") is available for an uncertain variable - for example, your company's estimate of the range and probabilities for prices of certain chemical feedstocks, or a service provider's estimate of the range and probabilities for stock or bond prices - you can simply use the Certified Distribution.

Discrete Vs. Continuous Distributions

If you must choose or create your own distribution, the first step is to determine whether to use a discrete or continuous form. If there are a small number of possible values for the uncertain variable, you may be able to use a discrete analytic distribution, or construct a discrete custom distribution. If the underlying physical process involves discrete, countable entities - such as the number of customers arriving at a service window - you can use a discrete distribution. If the possible values are highly divisible - such as most prices, volumes, interest rates, exchange rates, weights, distances, etc. - you will likely use a continuous distribution. In some cases, you may use a continuous distribution to approximate a discrete distribution.

Bounded Vs. Unbounded Distributions

Another characteristic that distinguishes input distributions is the range of sample values they can generate. Some distributions are intrinsically bounded samples are guaranteed to lie between a known minimum and maximum value. Examples are the Uniform, Triangular, Beta, and Binomial distributions. Other analytic distributions are unbounded - sample values may cluster around the distribution's mean, but may sometimes have extreme negative or positive values. Examples are the Normal, Logistic, and Extreme Value distributions. Still other distributions are partially bounded, with a known minimum such as zero, but no maximum value. Examples are the Exponential, Poisson, and Weibull distributions.
At times, you may find that the most appropriate distribution (say the Normal) is unbounded, but you know that the realistic values of the physical process are bounded, or your model is designed to handle values only up to some realistic limit. You can impose bounds on any distribution using Analytic Solver Simulation's Uncertain Variable dialog. For information about "cutoff bounds" and "censor bounds" (both may be used), consult the Frontline Solvers Reference Guide.

Analytic Vs. Custom Distributions

A third characteristic of input distributions is whether they are analytic (also called parametric) or custom (sometimes called non-parametric) distributions. An analytic distribution has a form derived from certain theoretical assumptions
about the problem. For example, a Poisson distribution is derived from an assumption that events are independent and occur at a known average rate, and an Exponential distribution is derived from an assumption of a constant rate of decay in some process. A custom distribution has a form dictated by either past data or expert opinion about the range and frequency of sample values. Analytic Solver offers five general-purpose functions - PsiCumul, PsiDiscrete, PsiDisUniform, PsiGeneral and PsiHistogram - to help you model custom distributions. Generally speaking, you should choose an analytic distribution if - and only if - the theoretical assumptions truly apply in your situation.

Creating your Own Distributions When Past Data is Available

If you have, or you can collect data on the past performance of the uncertain variable - and if you believe that 'past performance' is likely to be representative of future performance - you have three options:

- If you can fit the data (past observations) to a specific type of analytic distribution and its parameters, and if there is reason to believe that the underlying process that the uncertain variable is measuring is consistent with the assumptions from which the analytic distribution is derived, you can use this distribution (for example PsiNormal, PsiWeibull, etc.) for the variable. See "Using the Fit Feature" section below. Note: Data used in fitting a distribution should be independent.
- If you have a reasonably large number of observations of past performance of the variable, compared to the number of simulation trials you want to run, you can use the past data itself for simulation trials, in the form of a SIP (Stochastic Information Packet) or a DIST (Distribution String), and use the PsiSip() or PsiSlurp() distribution function for the uncertain variable. See "Probability Management Concepts" and, for DISTs, "Stochastic Libraries: SIPs and SLURPs" below.
- If - as is often the case - you have a relatively small number of observations of past performance compared to the number of trials you want to run, you may be better off resampling the past performance data. To do this, store the past data in a cell range or SIP, and use the PsiDisUniform() function (single values) or the PsiResample() function (multiple values). The difference is that, instead of using all of the past observations (one per simulation trial), you randomly sample the past observations on each trial.

You can use the Analytic Solver GUI to find the best-fitting analytic distribution. Both discrete and continuous distributions can be fitted to data; 29 common distributions (out of the 40+ available) are used for fitting. You can also call the Distribution object Fit and AutoFit methods in your VBA code, as described in the chapter "VBA Object Model Reference" within the Frontline Solvers Reference Guide.

When Past Data is Not Available

If you don't have, and you cannot easily collect data on the past performance of the uncertain variable - or if past performance is not likely to be representative of future performance - you must tackle the problem in a different way:

- Consult the literature for your industry, if available, to find examples of applications like yours where simulation models were built. Find out - by
contacting the authors if necessary - what kinds of distributions were used for the uncertain variables, and the rationale for choosing them.
- If you cannot find reports on industry-specific applications like yours, consult the publications of professional societies like INFORMS, where simulation applications are reported. One rich source is the past proceedings of the Winter Simulation Conference (www.wintersim.org).
- In the chapter PSI Function Reference, read the descriptions of the different PSI Distribution functions, which include brief comments on the types of applications where each distribution has been used in the past. See the books listed at the beginning of that chapter for further information.

You are well-advised to keep it simple! Many physical, social and biological phenomena are well described by the Normal distribution, or - if the possible values are equally likely to occur, as in a coin flip or single die - the Uniform distribution. Bear in mind that when any set of distributions are summed, the result (quickly) tends towards the Normal distribution.

Applications that involve queuing - customers arriving or departing, parts awaiting assembly, etc. - have been well studied, so you can often find appropriate distributions in the literature. Applications that use the Project Evaluation and Review Technique (PERT) can often use the PsiPert() function to model uncertainty.

Using the Fit feature

To fit a series of data using the Fit tool in Analytic Solver follow the following steps:

1. Select the range of data you want to fit. In this example, we've selected data in Column M.

4	A	C	E	G	I	J	K	L	M	巨
1	Financial Forecast									
2									5.5	
3	Sales Scenarios	Scenario \#	Volume	Price	Analysis				5.6	
4	Hot Market	1	100,000	\$11.50	Sales Scenario:	1			5.7	
5	OK Market	2	75,000	\$11.00	Sales Volume:	100,000			5.9	
6	Slow Market	3	50,000	\$10.50	Selling Price:	\$11.50			6.1	
7					Unit cost:	\$6.41			6.15	
8	Cost Scenarios	Costs							6.2	
9	Minimum Cost	\$5.50			Forecast Profit				6.25	
10	Most Likely Cost	\$6.50			Net Profit	\$259,356			6.3	
11	Maximum Cost	\$7.50			Average Profit	\#N/A			6.35	
12									6.4	
13	Fixed Costs	\$250,000							6.45	
14									6.5	
15									6.55	
16									6.6	
17									6.65	-
18									6.7	
19									6.75	
20									6.8	
21									6.85	

2. Select the "Fit" icon on the Ribbon in Analytic Solver Desktop,

In Analytic Solver Cloud, select Fit on the Tools ribbon.

3. Make any changes to the default settings on the Fit Options dialog.

For the Type, select Continuous if the uncertain variable's values are highly divisible - such as most prices, volumes, interest rates, exchange rates, weights, and distances - or Discrete if the underlying physical process involves discrete, countable entities.

The checkbox Allow Shifted Distributions allows Analytic Solver to shift the center of analytic distribution (equivalent to using the PsiShift() property function) to better fit the sample data; sometimes this is not desirable, so the box may be unchecked.
When fitting a sample to a distribution, it is important that the trial values are not in any way correlated with each other. In other words it is important that each trial is independent. If the checkbox Run Sample Independence Test is checked, the Psi Interpreter will run an independence test and will report an error if the trial values are found to be dependent.
Note: This option is not included in Analytic Solver Cloud. In the Cloud app, this feature is always on.

For Continuous data, you can choose to rank the fitted distributions by AIC/BIC, Chi Square, Kolmogorov-Smirnoff, or Anderson-Darling statistics. For Discrete data, only the Chi Square statistic is meaningful (and may be selected). For more information on these options, see the Analytic Solver Reference Guide.

Analytic Solver computes and displays a ranked list of candidate fitted distributions, as shown below. Initially, the distribution with the best fit statistic (selected in the above dialog) is shown in a chart that overlays the sample data.
4. Review and accept or modify the results

On the left of the dialog is a list of fit choices shown in order of decreasing Goodness of Fit based on the test you chose. You can select multiple choices to see how they compare and choose the one you are most happy with. See the example shown on the next page.

You can also click on the P-P, Q-Q, CDF Differences tabs to get additional perspective on which distribution best fits.
Tip: Once you have accepted the distribution you can open it back up and modify the lower and upper bounds, shift, etc.
5. In Desktop Analytic Solver, place the resulting distribution by clicking "X" at the top right of the menu, clicking on "Yes" in the resulting dialog to accept, and choosing where you want to place it in Excel.

In Analytic Solver Cloud, you'll be asked for the cell address. Simply type the cell address and then click OK.

You can see the new distribution where you placed it by clicking the cell. It will show up in the formula bar and if you leave the mouse over that cell a pop-up will show your distribution.

J7		-	$f_{x}=$	=PsiMinExtreme(6.80962799978675,0.394055347089468,PsiTruncate(5.5, 7.5))						
4	A	E C	[E	G	H I	J	K	L	M	$\mathrm{N}^{\text {L }}$
1	Financial Forecast									
2									5.5	
3	Sales Scenarios	Scenario \#	Volume	Price	Analys				5.6	
4	Hot Market	1	100,000	\$11.50	Sales Scenario:	1			5.7	
5	OK Market	2	75,000	\$11.00	Sales Volume:	100,000			5.9	
6	Slow Market	3	50,000	\$10.50	Selling Price:	\$11.50			6.1	
7					Unit cost:	\$6.41	=PsiMinExtreme \qquad			
8	Cost Scenarios	Costs								
9	Minimum Cost	\$5.50			Forecast Profit					
10	Most Likely Cost	\$6.50			Net Profit	\$259,356				
11	Maximum Cost	\$7.50			Average Profit	\#N/A				
12										
13	Fixed Costs	\$250,000							6.45	
14									6.5	
15									6.55	

More Hints and Warnings

Using a Triangular Distribution

If you have only estimates of the minimum, maximum, and most likely values of an uncertain variable - and no other past data or literature references - you can create a PsiTriangular distribution from these three numbers. This is unlikely to be a highly accurate representation of the uncertainty, but it will allow you to get started, and it is far better than a single average value. If your 'minimum' and 'maximum' values are really low- and high-percentile estimates rather than the absolute lowest and highest values that can occur, consider using the PsiTriangGen distribution instead.

Define Each Uncertain Variable Only Once

Often, you'll need to use the same uncertain variable in several different formulas in your model. A very common error is to enter the same distribution function, with the same parameters (say PsiNormal(100,10)), several times in a model - in a belief that these instances will yield the same results on each trial. This is incorrect - by doing this, you've actually defined several independent uncertain variables that may well sample different values on each trial. You should instead enter $=\operatorname{PsiNormal}(100,10)$ in a cell such as A1, and use A1 in each cell formula where the variable is needed.

Compute Statistics Only on Final Outputs

Another common error is to use formulas in your model to compute a statistic across two or more uncertain variables, and then use this statistic in further calculations that are part of the same simulation model.

For example, suppose you have two uncertain variables, $=\operatorname{PsiUniform}(0,10)$ in cell A1 and $=P \operatorname{PiUniform}(0,20)$ in B1. You want to know the mean or average value of these two variables, across the trials of the simulation. The wrong way to do this is to put $=(\mathrm{A} 1+\mathrm{B} 1) / 2$ or $=\mathrm{AVERAGE}(\mathrm{A} 1, \mathrm{~B} 1)$ in cell C 1 . This takes the average of A 1 and B 1 on each trial - the result will be a distribution that tends to the Normal, with a different (larger) mean than you probably intended. The right way to do this is to put $=$ PsiDisUniform(A1,B1) in cell C1. Now the distribution of cell C 1 is "flat:" On each trial only one of A1 or B1 is selected.

David Vose, principal of Vose Consulting, offers his cardinal rule of risk analysis modeling: "Every trial of a risk analysis model must be a scenario that could actually occur." To ensure that this is true, you may need to specify correlations between your uncertain variables, as described in the next section.

Dependence and Correlation

Unless you specify otherwise, Monte Carlo simulation assumes that each of your uncertain variables is independent of all the other uncertain variables. When two variables are independent, the value of one variable on a given trial conveys no information about the value of the other variable. When two variables are dependent, there is a statistical relationship between them: On average, the value of one variable on a given trial does convey information about the value of the other variable on that trial.

Measuring Observed Correlation

Correlation is a statistical measure of the degree to which one variable is related to another. When we observe that two variables are correlated, it may be that one variable is dependent on the other, or that both variables are dependent on a third variable, or that the correlation appeared by chance and there is no real dependence of one variable on the other.

The most common parametric measure of correlation is the Pearson product moment correlation coefficient. You can use the PsiCorrelation function to compute this correlation coefficient, across the trials of a simulation, for any pair of uncertain functions or variables in your model. The value of a product moment correlation coefficient can range from -1 to +1 .

A correlation coefficient captures a simple linear relationship between two variables; it cannot capture all of the ways one variable may depend on another. A low or zero correlation coefficient between two uncertain variables or functions does not necessarily mean that the variables or functions are independent the two variables or functions might have a strong relationship, but one that cannot be captured by a single correlation coefficient.

The figure below is a scatter plot of two variables X and Y . There is an obvious relationship between these two variables - when X is $1, \mathrm{Y}$ is about 2 , when X is $5, \mathrm{Y}$ is about 15 , when X is $9, \mathrm{Y}$ is about 2 , and so on - yet the Pearson product moment correlation coefficient between X and Y is zero.

More complex relationships among variables can be expressed in several ways including newly supported copulas or a very general way using SLURPs (Stochastic Library Units, Relationships Preserved). For more information on copulas, see below. For more information SLURPs, see below under "Probability Management Concepts."

Inducing Correlation Among Uncertain Variables

If you can compute a value for A1 with a formula based on an uncertain variable B 1 , then certainly A 1 is dependent on B 1 . But in many modeling situations, both A1 and B1 are uncertain variables, you have no way to directly compute one from the other, yet A1 may statistically depend on B1. For example, mortgage interest rates depend on bond market interest rates (since mortgages are pooled and sold as securities in the bond market), and both rates depend on inflation expectations, but it is quite difficult to specify a formula that relates these variables.

In cases like these, you'll need to specify the statistical dependence between uncertain variables using PSI Property functions, supplied as arguments to PSI Distribution functions. This is called inducing correlation between uncertain variables, that would otherwise be considered independent. For example, you can write $=$ PsiNormal (100, 10, PsiCorrIndep('MyCorr"')) in cell B1 and write $=$ PsiUniform(0,100 , PsiCorrDepen('MyCorr', 0.9)) in cell A1 to specify that A1 depends heavily on B1. "MyCorr" is an arbitrary string name.

The number 0.9 in the example above is a Spearman rank order correlation coefficient. This is a nonparametric measure of correlation that is computed from a rank ordering of the trial values drawn for both variables. It can be used to induce correlations between any two uncertain variables, whether they have the same or different analytic distributions, or even custom distributions. Like the product moment correlation coefficient, its value can range from -1 to +1 .

Meaning of Rank Correlation Coefficients

- A correlation coefficient of +1 forces the sampled values of the uncertain variables to be exactly positively correlated, meaning that the $p^{\text {th }}$ percentile value from one distribution will be sampled on the same trial as the $p^{\text {th }}$ percentile value from the other distribution. Coefficients from 0 to +1 will produce varying degrees of positive correlation.
- A correlation coefficient of -1 forces the sampled values of the uncertain variables to be exactly negatively correlated, meaning that the $p^{\text {th }}$ percentile
value from one distribution will be sampled on the same trial as the (100$p^{\text {th }}$) percentile value from the other distribution. Coefficients from 0 to -1 will produce varying degrees of negative correlation.
- A correlation coefficient of 0 means there is no induced relationship between the variables. In practice, one usually uses coefficients less than +1 or -1 , and uses 0 only in a correlation matrix that defines relationships among several variables (see below).

Computing Rank Correlations from Sample Data

If you have sufficient data on the past performance of two uncertain variables where the observations occurred at the same time for each variable, you can compute the Spearman rank correlation coefficient r as follows, where ΔR is the difference between the ranks of corresponding observations of the two variables:
$r=1-\frac{6 \sum_{i=1}^{n} \Delta R_{i}^{2}}{n\left(n^{2}-1\right)}$
$\Delta R_{i}=\Delta R_{i 1}-\Delta R_{i 2}$
ΔR_{i} is the difference between the ranks of observation i for the two variables
$\Delta R_{i j}$ is the rank of observation i for variable $j, j=1,2$
You can easily compute this value on a spreadsheet, using Excel's RANK function, which returns the rank of a given cell value within a range of values. Suppose that A1:A100 contains trial values for uncertain variable A, and $\mathrm{B} 1: \mathrm{B} 100$ contains trial values for uncertain variable B . In C 1 enter the formula $=$ RANK (A1, \$A\$1:\$A\$100,1), in D1 enter $=$ RANK (B1,\$B\$1:\$B\$100,1), and in E 1 enter the formula $=(\mathrm{C} 1-\mathrm{D} 1)^{\wedge} 2$. Then copy $\mathrm{C} 1: \mathrm{E} 1$ down to row 100 . Then the rank order correlation coefficient is $=1-\left(6 * \operatorname{SUM}(E 1: E 100) /\left(100^{*}\left(100^{\wedge} 2-1\right)\right)\right.$.
If you don't have data on past performance of the uncertain variables, you will have to use judgment to estimate rank correlation coefficients.

Using a Rank Correlation Matrix for Several Variables

What if you have three, four, or more uncertain variables that should all be correlated with each other? You can create a small table or matrix of rank correlation coefficients in a cell range on the worksheet, and use this cell range in the PSI Property function PsiCorrMatrix. Below is an example of a 3×3 correlation matrix:

	A	B	C
1	1	0.8	0.5
2	0.8	1	0.2
3	0.5	0.2	1

You pass PsiCorrMatrix (matrix cell range, position) as an argument to the PSI Distribution function, for example $=$ PsiNormal (10,5,PsiCorrMatrix (A1:C3,1)) for the first uncertain variable covered by the correlation matrix. You'd pass PsiCorrMatrix(A1:C3,2) to the PSI Distribution function for the second variable, and PsiCorrMatrix $(\mathrm{A} 1: \mathrm{C} 3,3)$ for the third. This specifies that the first variable
has a rank correlation coefficient of 0.8 with the second variable, and 0.5 with the third variable. The second and third variables are correlated with each other, with a rank correlation coefficient of 0.2.

Note that a correlation matrix must always have 1's on the diagonal, because an uncertain variable is always perfectly correlated with itself. Also, the matrix must be symmetric: If row 2 , column 1 contains 0.8 , then row 1 , column 2 must also contain 0.8 . Finally, the correlation coefficients must be consistent with each other: For example, if uncertain variable 1 is strongly positively correlated with variable 2 , and variable 2 is strongly positively correlated with variable 3 , then variable 1 cannot be negatively correlated with variable 3 . Formally, the matrix must be positive semidefinite - it cannot have any negative eigenvalues. Analytic Solver tests for this condition, and displays \#N/A in the PSI Distribution cells for the uncertain variables that refer to an inconsistent correlation matrix.

To learn more about rank correlation and its uses in Monte Carlo simulation, consult the book Risk Analysis: A Quantitative Guide by David Vose, mentioned in the Introduction.

Modeling Correlation Using Copulas

Analytic Solver includes copulas to improve the method of defining the correlation or dependence between two or more uncertain variables. Copulas offer more flexibility over the rank order correlation method, and are able to capture complex correlations between multiple uncertain variables. In recent years, the popularity of copulas in finance and insurance risk models has skyrocketed.

An n - dimensional copula C is a multi-variate probability distribution where the marginal probability distribution of each variable follows the Uniform $(0,1)$ distribution. A major benefit of copulas is that they allow two or more uncertain variables to be correlated without changing the shape of the original uncertain variable distributions.

For some copula C , a multi-variate distribution F with distributions of $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots$ F_{n} can be written as:

$$
\mathbf{F}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right)=\mathbf{C}\left(\mathbf{F}_{1}\left(\mathbf{x}_{1}\right), F_{2}\left(\mathbf{x}_{2}\right), \ldots, F_{\mathrm{n}}\left(\mathbf{x}_{\mathrm{n}}\right)\right)
$$

Analytic Solver Desktop supports five types of copulas: three Archimedean copulas (clayton, frank, and gumbel) and two elliptical copulas (Gauss and Student). Analytic Solver Cloud supports one type: Gaussian.

Each of these copulas may be bi-variate (correlating only two uncertain variables), or multi-variate (correlating more than two uncertain variables). Each copula type has its own parameter domain and method of calculation. The signatures for each copula are the same, except that multi-variate Archimedean copulas lack the "reflection" argument. For details regarding Archimedian copulas, see the following sections. For a complete discussion of the theory behind all five copula types, see the section Psi Property Functions in the Frontline Solvers Reference Guide.

Archimedean Copulas

Archimedean copulas can be bi-variate (correlating two uncertain variables) or multi-variate (correlating more than two uncertain variables). A bi-variate copula has a density function associated with it, which is similar to the
probability density of a bi-variate distribution. Archimedean Copulas are not supported in Analytic Solver Cloud.

To create a bi-variate Archimedean copula, enter two uncertain variable distributions into two Excel cells, and then use the PsiCopula property as an argument to both. See the screenshot below for an example.

	A
1	=PsiNormal(0, 1, PsiCopula("clayton", 10, 0))
2	=PsiBeta(3, 4, PsiCopula("clayton", 10, 0))

Cell A1 contains an uncertain variable that follows the PsiNormal distribution with mean $=0$ and standard deviation $=1$. Cell A2 contains an uncertain variable following the PsiBeta distribution with shape parameters equal to 3 and 4. The PsiCopula property is passed as the third argument to each uncertain variable. All three Archimedean copulas use the same signature.

```
PsiCopula(type, param, [reflection], [instance])
```

Type: As previously mentioned, Analytic Solver supports three types of Archimedean copulas: clayton, frank, and gumbel. The copula type should be passed in quotes as, "clayton", "frank", or "gumbel". In this example, "clayton" is passed. The two elliptical copulas have their own Psi property names: PsiCopulaGauss and PsiCopulaStudent. See the example below for their signatures.

Param: The parameter of a copula determines the strength of the correlation. In this example, a parameter equal to 10 is passed. See the following parameter restrictions for each Archimedean copula type.

Clayton:

- Bi-variate: param $>=-1$, param $\neq 0$.
- Muilti-variate: param >0

Gumbrel

- Bi-variate or Multi-variate: param $>=1$

Frank

- Bi-variate: param $\neq 0$.
- Muilti-variate: param >0

Note: Param $=0$ for a multi-variate Archimedean copula is supported, but indicates no correlation between the uncertain variables.

Reflection: (Optional) Analytic Solver allows you to control the direction of a bi-variate Archimedean copula using an optional reflection parameter. This argument may take on values of $0,1,2$, or 3 , which control the reflection of no variables using the value of 0 , the first variable using the value of 1 , the second variable using the value of 2 or both variables using the value of 3 . By default, the reflection option is set to 0 , which indicates no reflection. In this example, a 0 is passed for the reflection argument to illustrate how this parameter should be passed. In practice, a value of 0 need not be present.

The scatter plots below illustrate the four different positions of a clayton copula correlating two uncertain variables with distributions $\operatorname{PsiNormal}(0,1)$ and PsiBeta(3,4).

The scatter plots below illustrate the four different positions of a type gumbel copula correlating two uncertain variables with distributions PsiNormal $(0,1)$ and PsiBeta(3,4).

The scatter plots below illustrate the four different positions of a type frank copula correlating two uncertain variables with distributions PsiNormal $(0,1)$ and

PsiBeta(3,4). Note: Since the Frank copula is symmetric, this type of copula has only one reflection.

Instance: (Optional) Instance is the string name given to the copula. An Archimedean copula is explicitly identified by the Instance argument, and implicitly identified by its argument values. When multiple copulas are present in the same workbook, it is considered "best practice" to use this argument.

In this example, we correlate the two uncertain variables using the PsiCopula property, =PsiCopula("clayton", 10, 0). Since the Instance property is missing, the copula is identified implicitly by its unique set of arguments, in this case "clayton" and "10". When not passing the Instance property, the PsiCopula property within each uncertain variable signature, MUST use the same arguments. Otherwise, the correlation between the uncertain variables will not be invoked.

Note: PsiCopula("clayton", 10) and PsiCopula("clayton", 10, 0) is considered as the same copula since 0 is the default for Reflection argument.

To correlate a new group of uncertain variables using a second copula, such as PsiCopula("clayton", 12) or PsiCopula("frank", 10), the Instance argument is still not required since either copula is identified by its unique parameters of "clayton" and "12" or "frank" and "10". However, if correlating this same new group of uncertain variables with a copula using the same arguments of "clayton" and "10", we MUST pass a unique name to the Instance argument, for example, "copula2".
Finally, to view the output of the copula, we must make each uncertain variable an uncertain function. We can easily do so by clicking cell A1, then Results Output -- Referred on the Analytic Solver ribbon. Next, select an empty Excel cell, say C1. The formula, =PsiOutput(A1), is inserted into this cell. Perform similar steps to make cell A2 an output function. (See the screenshot below for an example.)

A	C		
1	$=P s i N o r m a l(0,1$, PsiCopula("clayton", 10, 0))		$=P s i O u t p u t(A 1)$
2	$=P s i B e t a(3,4$, PsiCopula("clayton", 10, 0))		=PsiOutput(A2)

Double-click cell A1 to open the Uncertain Variable dialog, then click the Show Results icon.

When Analytic Solver Simulation prompts you to perform a simulation, click Yes.

Instantly, a simulation with 1,000 trial values is executed. Excel cells A1 and A2 return 1,000 trial values from the sampled distribution, generating the pattern of correlation defined by the copula.

Click the Scatter Plots tab to view the results of the copula. In this example, a copula of type "clayton" is created correlating two uncertain variables with distributions of $\operatorname{PsiNormal}(0,1)$ and $\operatorname{PsiBeta}(3,4)$. The distribution generated for the first uncertain variable will still follow the $\operatorname{Normal}(0,1)$ distribution, and the distribution generated for the second variable will still follow the Beta $(3,4)$ distribution. The scatter plot below displays the copula correlating the two uncertain variables using a parameter of 10 .

Note: If the copula is multi-variate, the associated scatter plots will be 2-D projections.

Elliptical Copulas

Analytic Solver Comprehensive supports two elliptical copulas that can be either bi-variate or multi-variate: Gaussian and Student. Each elliptical copula has its own signature. Student copulas are not supported in Analytic Solver Coud.

To create a multi-variate Student copula, enter three or more uncertain variable distributions into three (or more) different Excel cells, and then use the PsiCopulaStudent() property as an argument to each. See the screenshot below for an example.

	A
1	$=P s i N o r m a l(0, ~ 1, ~ P s i C o p u l a S t u d e n t(N 2: P 4, ~ 1, ~ 1, ~ " m y c o p ")) ~$
2	$=P s i B e t a(3, ~ 4, ~ P s i C o p u l a S t u d e n t(N 2: P 4, ~ 2, ~ 1, ~ " m y c o p ")) ~$
3	$=P s i N o r m a l(0, ~ 1, ~ P s i C o p u l a S t u d e n t(N 2: P 4, ~ 3, ~ 1, ~ " m y c o p ")) ~$

Cells A1 and A3 contain an uncertain variable that follows the PsiNormal distribution with mean equal 0 and standard deviation $=1$. Cell A2 contains an uncertain variable following the PsiBeta distribution with shape parameters equal to 3 and 4. The PsiStudentCopula property is passed as the third argument to each uncertain variable. The PsiCopulaStudent property uses the following signature. Note: The signature for PsiCopulaGauss() is the same minus the "df" argument.

```
PsiCopulaStudent(number_range, position, df,
[instance])
```

Number range: If bi-variate, a number between -1 and 1 ; if multi-variate, the Excel cell range where the correlation matrix is located in the Excel spreadsheet. In this instance, the copula is multi-variate, so the correlation matrix in cells $\mathrm{N} 2: \mathrm{P} 4$ is passed.

-	L	M	N	0	P
1		Correlation	\$A\$1	\$A\$2	\$A\$4
2		\$A\$1	1	0.5	0.6
3		\$A\$2	0.5	1	0.7
4		\$A\$4	0.6	0.7	1

Position: Specifies the uncertain variable index in the correlation matrix.
For example, the " 2 " passed in the formula, $=\operatorname{PsiBeta}(3,4$,
PsiCopulaStudent(N2:P4, 2, 1, "mycop") specifies that the correlation coefficients in the second column of the correlation matrix in cells $\mathrm{N} 2: \mathrm{P} 4$ will be applied to the PsiBeta() uncertain variable.
$d f:$ Enter an integer greater than 1 . This parameter specifies the degrees of freedom for the PsiCopulaStudent function. In this example, 1 degree of freedom is used. (Note: The formula for PsiCopulaGauss() does not include this argument.)
Instance: (Optional) Instance is the string name given to the copula. An elliptical copula is explicitly identified by the Instance argument and implicitly identified by the location of the correlation matrix. PsiCopulaStudent and PsiCopulaGauss support multiple copulas using the same correlation matrix. If passing the same type of elliptical copula using the same correlation matrix within the same workbook, this argument must be present. If the workbook contains multiple copulas of different types, then this argument may be omitted. When multiple copulas are present in the same workbook, it is considered "best practice" to use this argument.
In this example, we correlate the three uncertain variables using the PsiCopulaStudent property, $=$ PsiCopulaStudent(N2:P4, 1, 1, "mycop"). Since the Instance property is present, the copula is identified explicitly by the name given in the last argument, "mycop". When not passing the Instance property, the PsiCopulaStudent property within each uncertain variable signature, MUST use the same correlation matrix. Otherwise, the correlation between the uncertain variables will not be invoked.

To view the output of the copula, we must make each uncertain variable an uncertain function. We can easily do so by clicking cell A1, and then Results Output -- Referred on the Analytic Solver ribbon. Next, select an empty Excel cell, say C1. The formula, $=$ PsiOutput(A1), is inserted into this cell. Perform similar steps to make cells A2 and A3 output functions. (See the screenshot below for an example.)

	A	B	C
1	=PsiNormal(0, 1, PsiCopulaStudent(N2:P4, 1, 1, "mycop"))		=PsiOutput(A1)
2	=PsiBeta(3, 4, PsiCopulaStudent(N2:P4, 2, 1, "mycop"))		=PsiOutput(A2)
3	=PsiNormal(0, 1, PsiCopulaStudent(N2:P4, 3, 1, "mycop"))		=PsiOutput(A3)

On the Analytic Solver ribbon, click the down arrow under Simulate, then select Run Once from the menu. Instantly, a simulation with 1000 trial values is executed. The result is a correlated uncertain function following the Uniform $(0,1)$ distribution. Excel cells A1, A2 and A3 return 1000 trial values from the sampled distribution generating the pattern of correlation defined by the copula.
In this example, a copula of type "student" is created correlating three uncertain variables with distributions of $\operatorname{PsiNormal}(0,1)$ and $\operatorname{PsiBeta}(3,4)$. The
distributions generated for the first and third uncertain variables will still follow the $\operatorname{Normal}(0,1)$ distribution and the distribution generated for the second variable will still follow the $\operatorname{Beta}(3,4)$ distribution. The scatter plots below show plots from the PsiNormal $(0,1)$ distribution, the $\operatorname{PsiBeta}(3,4)$ distribution and the copula correlating the three uncertain variables.

PsiBeta(3, 4, PsiCopulaStudent(N2:P4, 2, 1, "mycop"))

PsiNormal(0,1, PsiCopulaStudent(N2:P4, 3, 1, "mycop"))

Correlation Fitting

The previous chapter, "Getting Results: Simulation", discussed how to fit a distribution to simulation results. Recall that, in this chapter, the simulation results from the BusinessForecast(Sim).xlsx model were fit to the Min-Extreme uncertain variable distribution. Analytic Solver calculated the parameters of several distributions from the data within the example model and listed the distributions with the best fit, with Min-Extreme at the top of the list.

Similarly, the goal of correlation fitting is to find the parameters of the correlation function that match the existing (but unknown) correlation between two or more samples of historical data. Each sample is assumed to come from an independent uncertain variable. Analytic Solver offers correlation fitting using 6 correlation types: rank, clayton, gumbel, frank, gauss and student. It is up to the user to determine which correlation type results in the best fit to the data. Note: Rank is not a copula correlation, but rather a stand-alone type of correlation.

For example, if a scatter plot is drawn from two independent samples resembling a tilted ellipse, one can assume that the correlation will be a "Gauss" correlation. If the correlation is fit, using the Gauss fitting algorithm, one rankcorrelation coefficient will be returned. If more than 2 samples are drawn, the fitting algorithm will return a correlation matrix of size n.

Analytic Solver users can fit a correlation using the Copula Fit dialog which can be opened from the Analytic Solver ribbon by clicking the down arrow beneath the Correlations icon and selecting Fitting.

Two or more Excel cell ranges containing independent samples can be added to the Copula Fit dialog by clicking Add Range. Data may exist in row form, column form, or in a matrix. For example, if you had two independent samples located in cells A1:A100 and B1:B100 you would select Column Data, then click Add Range on the Copula Fit dialog.

If the data were contained by row, then you would select Row data and if data were contained in, say, a 10×10 matrix in cells A1:J10, then you would select Range data.

Then either select or enter A1:100 on the Select Data Range dialog.

Select Data Range	$?$
Range:	
$\$$ A\$1:\$A\$100 OK Cancel	

After you click OK, the data range will appear under Data Ranges and a scatter plot will appear on the right of the dialog.

| Data Ranges | | |
| :--- | :--- | :--- | :--- |
| Add Range | | |
| \$A\$1:\$A\$100 | | |
| RA1:\$A100 | | |
| Column data | | |
| Correlation Type: | Rank | |

To enter the $2^{\text {nd }}$ range, keep Column Data selected, then click Add Range again, enter the Excel range, B1:B100, then click OK to add the data range to the Copula Fit dialog.

Notice that the scatter plot that has been drawn for the two ranges resembles an ellipse. From this scatter plot, we can assume that the copula correlation type for fitting is "Gauss". A shape resembling a star points to a Student copula for Correlation Type and a shape resembling a funnel would indicate a Clayton copula. Although a complete discussion of the definition of copulas is beyond the scope of this guide, see the previous section, "Modeling Correlation Using

Copulas" for a brief introduction of each type of copula defined in the Correlation Type drop down menu.

Select Gauss as Correlation Type...

Correlation Type:	Gauss	\mathbf{v}
	Rank	
	Clayton	
	Gumbel	
	Frank	
	Gauss	
	Student	

...then click Fit at the bottom of the Copula Fit dialog to fit the correlation.
The Fit Results Parameters dialog opens to display the Correlation Type (Gauss) and the Probability and Sigma fitting parameters. Select a blank cell, say D1, to save the fitting parameters to the worksheet, then click Save.
Note: The cell entered for "Save to" on the Fit Results dialog will become the top left corner of the data range on the Excel sheet. Any value or text contained in this cell or in any cell used to save the Fit Results Parameters, will be overwritten.

Then click Done to close the Copula Fit dialog and return to the worksheet.
Notice that the information from the Fit Results dialog has been saved to the Excel range, D1:E3. The size of this range will vary depending on the
Correlation Type and number of Data Ranges present in the Copula Fit dialog.

	A	B	C	D	E
1	-0.42418	-0.21635		Correlation Type	Gauss
2	-0.408	0.677854		Probability	$4 \mathrm{E}-07$
3	-0.1467	-1.08687		Sigma	0.514222
1	0259818	-02060			

Using the Correlations Dialog

The Correlation dialog offers an easy way to create, edit, and remove correlation matrices in your model. It appears when you click the Correlations button on the Ribbon.

You use a correlation matrix to induce a statistical correlation among two or more uncertain variables. When you do this, the trial values of these variables in a Monte Carlo simulation will tend to be drawn from related percentiles of their distributions on each trial. Starting with V2016-R2, the numbers in a correlation matrix may be Spearman rank order correlation coefficients or specifying an Archimedean or Elliptical copula. For more information on correlation matrices, see "Inducing Correlation Among Uncertain Variables" in the Dependence and Correlation section above.
A correlation matrix is stored in a contiguous cell range, with an equal number of columns and rows. To correlate N variables together, you need a matrix of N columns and N rows. Here's an example of a 3×3 correlation matrix:

1	0.8	0.5
0.8	1	0.2
0.5	0.2	1

You can type in values for a correlation matrix directly on the Excel worksheet, and then reference this matrix in the PsiCorrMatrix() property function, passed as an argument to PSI Distribution functions for each of the correlated variables. But it is easier to use the Correlation Dialog to create the matrix for you.

Creating a Correlation Matrix

When you first click the Correlations button on the Ribbon, the Correlation dialog appears with an empty matrix area, and a left pane (similar to the Task Pane displayed by the Model button) that lists the uncertain variables in the model:

You can either choose the specific cells for the uncertain variables you want to correlate (press Ctrl or Shift and click for more than one) and then click the " $>$ " button to include them in the matrix, or you can click the " \gg " button to include all of them. The initial matrix with correlation values set to zero will display similar to the example below:

The preview for the correlation Matrix has three parts:

1. Black numerical values for each correlation in the top right of the matrix. In this case we have three values initially set with a zero correlation which you can edit. Since correlation matrices have to be symmetrical (the correlation between A1 and A2 must be the same as the correlation between A2 and A1) we only show one value. Note: Both values are shown in Analytic Solver Cloud.
2. Green graphical representations of each distribution diagonally from top left to bottom right. In this example, we used a Normal distribution in our worksheet in cell A1 (show here in the top left part of the matrix), a Triangular distribution in cell A2, and a LogNormal distribution in cell A3. Note: Graphical representations are not currently available in Analytic Solver Cloud.
3. Blue scatterplots reflecting the current correlations between the distributions. When you edit the values of each correlation, these will automatically update giving you a visual representation of the updated correlation. Note, you can click on any scatterplot here and a dialog will come up where you can more clearly see the scatterplot and how the scatterplot changes as you adjust the correlation (see below). In the example on the left the correlation is set to zero while on the right we have adjusted it (either directly typing in 0.75 into the Correlation field or adjusting the slider. Note: Scatterplots are not currently available in Analytic Solver Cloud.

Once you click "Accept" you are taken back to the initial dialog and it shows the updated correlation matrix.

At this point you can name your correlation matrix and then choose the location you want to place it in your worksheet. While optional, naming your matrix is recommended, and is important if you want to use the same matrix several times. To place your matrix, simply click your cursor in the location field and click where you want to place the matrix on your worksheet.

Analytic Solver Desktop

Analytic Solver Cloud

Managing Copulas

Analytic Solver includes the ability to correlate uncertain variables using Gaussian, Student or Archimedean Copulas. To correlate the three uncertain variables in cells A1, A2, and A3 using an Archimedian Copula, select Archimedian Copula from the Correlation/Copula drop down menu. Note: Only Rank Order and Gaussian Copulas are supported in Analytic Solver Cloud.

Once the Copula type is selected, three more fields will be enabled, Type, Parameter, and Reflection. Using these three parameters you may choose the type of Archimedean copula (Clayton, Frank, or Gumbel), specify the copula parameter, and choose a Reflection type. If Gaussian Copula is selected, no additional parameters are required. If Student Copula is selected, one additional parameter is required, Degrees of Freedom. For more information on copulas and copula parameters, see "Inducing Correlation Among Uncertain Variables" in the Dependence and Correlation section above.

Lastly, click "Save" to complete the process. Your new correlation matrix will then be saved and placed on your worksheet (in this case in cell B6) and the Manage Correlation Matrices Dialog will show in place of the Create New Correlation Matrix dialog. This dialog lists all the matrices you have set up on the left side of the dialog, and when you double-click on a particular matrix it will show on the right side.

As the matrix is created, Analytic Solver Simulation also edits the PSI Distribution function formulas for the uncertain variables (at A1, A2, \& A3 in the example above) to include the property function PsiCorrMatrix(C7:E9, \boldsymbol{n}), where n is 1 for A1, 2 for A2, and 3 for A3. During a Monte Carlo simulation, when trial values are drawn for the uncertain variables A1, A2 and A3, Analytic Solver will use the correlation matrix at C7:E9 to adjust the 'draws' so that the values are properly correlated across all the simulation trials.

The matrix C7:E9 now appears in the left pane of the Manage Correlation Matrices dialog. If you close and later reopen the Correlation dialog, this matrix
will reappear in the lower left pane. If you create a correlation matrix 'by hand' on the Excel worksheet, and insert the PsiCorrMatrix() calls yourself into the PSI Distribution function calls for the variables, the matrix you create will also appear in this left pane the next time you open the Correlation dialog. You can double-click on each matrix to display and edit that matrix.

Removing a Correlation Matrix

To remove a correlation matrix from your model, in the Manage Correlation Matrices dialog click on the matrix you want to remove and then click on the "Delete" icon in the dialog's ribbon menu. The matrix will disappear from the Correlations dialog, and the PsiCorrMatrix() property function formula referencing this matrix will be removed from the PSI Distribution function calls for the corresponding uncertain variables. However, the cell range on the worksheet where the matrix elements were written is left undisturbed - you can either delete them in Excel worksheet mode, or re-use them later.

To remove a correlation matrix in Analytic Solver Cloud, simply select the matrix in the Model task pane, then click the red X to delete.

Editing a Correlation Matrix

As shown in the both the Create Correlations and Manage Correlations dialogs, the value of each correlation is numerically shown in the top right portion of the matrix. To edit the value of a correlation you can simply click on the correlation you wish to edit and enter a new value from -1 (exactly negatively correlated) to +1 (exactly positively correlated). The default value of 0 means the two variables have zero correlation.

When you are finished, click the " X " button in the top right of the dialog to close it and your change(s) will be saved. Importantly, we will automatically check to make sure your matrices are valid (Positive Semi-Definite; see "Making a Matrix Consistent" below) and if they are not will offer help to correct them.

Alternatively, you can click on the Edit button on the Manage Correlations Ribbon to go to the Edit Matrix Dialog. The Edit Matrix dialog (see below) will appear, which looks very similar to the Create Matrix dialog. At this point you can change the name and location of the matrix, add or remove uncertain variables, and change correlation values. When done, simply hit Save.

In Analytic Solver Cloud, double click the correlation matrix in the Model task pane to edit. Click save when finished.

Making a Matrix Consistent

A correlation matrix must be not just symmetrical, but consistent. This means for example that if variable A has a high positive correlation with variable B , and B has a positive correlation with C, then variable A cannot have a high negative correlation with C. In mathematical terms, the correlation matrix must be positive semidefinite. This property depends on all of the elements of the matrix. If the matrix you create by hand does not satisfy this property (the example matrix above does not), Analytic Solver can automatically adjust the matrix elements so that the matrix is positive semidefinite.
To check whether the matrix you've entered is positive semidefinite, in the Manage Correlations dialog simply click the Validate icon in the dialog's ribbon menu:

In our example, the matrix is valid so the following message is displayed and no action is needed:

If, for example, we set all our correlations to be -1 , we would have a matrix which could not be valid and you will see the following message instead:

If you click No, the matrix remains as-is. If you click Yes, a new dialog appears:

In this dialog, we can simply click the Update Matrix button to allow Analytic Solver to adjust the matrix to be consistent (positive semidefinite). This may involve changing all of the elements of the matrix, by various amounts. But Analytic Solver can do more than this.
In many applications, you can determine 'good' values for correlations between certain pairs of variables, but for other pairs you have no special information. Analytic Solver Simulation can adjust the matrix to make it positive semidefinite while minimizing changes to the matrix elements you care about, and making greater changes in the elements you don't care about.

In the example above, let's say we feel very confident there is a strong negative correlation between A1 and A2 but are less sure about A1 and A3 and very uncertain about any correlation between A2 and A3. We can click first on the radio button on the left relating to the amount of change we are comfortable with and then click on the cell(s) we want changed by that general amount.

Using the information above we would click on the "Moderate Change" radio button and then click on the correlation for A1 and A3 and then click on the "Largest Change" radio button followed by clicking on the correlation for A2 and A3. Our Matrix will now look like the following:

At this point we just click the "Update Matrix" button and our matrix is updated to be consistent (Positive Semi-Definite) with new correlation values as shown below:

We can now accept the update or undo the changes. We can of course further refine our correlation values if/as we wish.

In Analytic Solver Cloud, each time the Save button is clicked on the Correlations dialog, the matrix is checked for consistency (positive semidefinite). If the matrix is not consistent, you will be asked if you would like Analytic Solver to modify the matrix. Click yes, to accept Analytic Solver's modifications. Click No to save the matrix without any modifications. Click Cancel to go back to the matrix.

Probability Management Concepts

In the February and April 2006 issues of the publication OR/MS Today, Dr. Sam Savage and coauthors Stefan Scholtes (University of Cambridge) and Daniel Zweidler (Shell Global Exploration) advance a series of ideas called "Probability Management." They argue for much broader use of risk analysis methods in planning and management, especially in large enterprises, based on three ideas:

- Interactive Simulation
- Stochastic Libraries
- Certification Authority

Probability Management calls for an up-front investment in the creation of standardized Certified Distributions, created or reviewed by an expert authority, and distributed to simulation modelers, often in the form of Stochastic Libraries. The payoffs of Probability Management include:

- Much easier creation of new simulation models
- Ability to capture complex dependencies - beyond what's possible with correlation coefficients
- 'Apples-to-apples’ comparison of simulation model results
- Valid 'roll-ups' of simulation models from different groups

Analytic Solver Comprehensive is the first product designed to support the concepts of Probability Management. In addition to best-in-class support for Interactive Simulation, it provides direct support for creating, 'publishing' and using Certified Distributions and Stochastic Libraries, as discussed in this chapter.

Analytic Distributions

As described above, and documented in the Reference Guide, Analytic Solver provides a wide range of analytic probability distributions - more than 40 distributions are available, from PsiBernoulli() to PsiWeibull(). Given knowledge and experience, you can choose and use these distributions in your simulation models. But as discussed above, this is often the most challenging
part of creating a Monte Carlo simulation model, especially for users with spreadsheet modeling expertise, but limited math and statistics background.
Moreover, when different end user modelers choose their own analytic distributions and parameters, they will often create models that cannot be compared or combined ('rolled up'), because the relationships between uncertain variables and functions would not be preserved. In large firms especially, where different business units must take into account common uncertainties, a better approach is needed.

Certified Distributions and Stochastic Libraries

A Certified Distribution is a custom probability distribution, created and/or reviewed by an expert, that is made available to end user modelers as a 'prepackaged unit.' These modelers need only the name of the Certified Distribution; they need not choose, or even be aware of, its analytic form, parameters or correlations.
An analytic Certified Distribution can be given its own random number seed, which overrides a user-specified seed for the model. This ensures that end user modelers employing the Certified Distribution will use the same samples (sequence of Monte Carlo trials) each time they run a simulation - as long as they use the same simulation software package and version.

Given the capacity of modern computers and networks, an even better idea is to create and distribute Certified Distributions in the form of Stochastic Libraries. Such libraries contain pre-generated trial data for a group of (potentially statistically dependent) distributions. The sequence of trials is predetermined, so that if two or more end users develop and run simulation models using the same Stochastic Library, their model results can be compared and combined, on a trial-by-trial basis if necessary.
Analytic Solver Desktop supports the use of both analytic distributions and Stochastic Libraries as Certified Distributions. But since they contain pregenerated trial data, the use of Stochastic Libraries can guarantee that models will be run with exactly the trial data intended, regardless of the software (or version thereof) installed on end user modelers' PCs - as long as it accepts Stochastic Libraries. This functionality is not currently supported in Analytic Solver Cloud.

Publishing and Using Certified Distributions

Certified Distributions can be prepared and tested using a variety of tools. One of these tools is Analytic Solver Desktop itself, as illustrated below. When creating a Stochastic Library, any good Monte Carlo simulation software package can be used, inside or outside of Excel, as long as it offers a way to save all the Monte Carlo trials. Once prepared, Certified Distributions should be approved and 'published' in a form where they can be made available to end user modelers.

Analytic Solver Simulation provides a property function PsiCertify() that you can use to name and "certify" a distribution as ready for publication. It also provides a distribution function PsiCertified() that end user modelers can use to access the Certified Distribution using only its name.

Certified Distributions can be physically distributed or made accessible in a variety of ways: On CDs or DVDs, via a network file share, or via email or

Web download. The data for Monte Carlo trials may be easily stored in a relational database or a multidimensional data warehouse.

Analytic Solver Simulation, with its Interactive Simulation facilities, is the ideal 'client' tool for end user modelers using Certified Distributions. It provides an easy way to access Certified Distributions by name, using Microsoft Excel as a "universal data access client" to access distributions and Stochastic Libraries.

Analytic Solver Simulation makes it easy for an expert or CPO to create an Excel workbook, separate from any end user's simulation model workbook, where Certified Distributions are defined. This may be a standard workbook or an Excel add-in workbook; the latter provides certain advantages, since it is normally hidden from display and loaded automatically when Excel starts.

For example, it is straightforward to create an Excel add-in workbook that defines a Certified Distribution that draws its trial data from a Stochastic Library (see below) that is actually stored in a relational database or data warehouse. When the add-in workbook is (automatically) opened, either Excel data access functions or VBA code can be used to query the database for the trial data.

Stochastic Libraries: SIPs and SLURPs

As described by Dr. Savage in $O R / M S$ Today, the simplest element of a coherent Stochastic Library is a Stochastic Information Packet or SIP, which is just a list of trial values for a single uncertain variable. An example might be 1,000 sample values, in a specific sequence, for the future price of oil at some point or interval of time. In a Monte Carlo simulation, trials will be drawn from the SIP in the order in which they were generated.

If the SIPs for several different uncertain variables are generated as a group, in a manner that preserves the statistical dependence between them, they may be combined into a Stochastic Library Unit, Relationships Preserved, or SLURP. A SLURP is a table of trial values, where each column represents a specific uncertain variable, and each row represents a distinct trial. The SLURP's uncertain variables may be dependent in ways not measured by traditional correlation. But if a Monte Carlo simulation draws trials in the specific order given by the SLURP, this dependence will be reflected in the simulation model results.

On an Excel spreadsheet, a SIP is naturally represented by a column of cell values, and a SLURP is most easily represented by a two-dimensional table of cell values. As noted above, the data for this table of cell values may be easily drawn from a relational database or multidimensional data warehouse, or it may be created and maintained directly in Excel.

Analytic Solver provides two PSI Distribution functions, PsiSip() and PsiSlurp(), that make it easy to define distributions using SIPs and SLURPs. PsiSip() takes one argument: a cell range (normally a column) containing the trial values for one uncertain variable. PsiSlurp() takes two arguments: a twodimensional cell range containing the SLURP data, and a column index (starting from 1) for the uncertain variable whose trials should be returned by the PsiSlurp() function. You'll want to ensure that the number of rows in the first argument range is at least as large as the number of simulation trials to be run.

PsiSip() and PsiSlurp(), like other PSI Distribution functions, can be used directly in simulation models to return sample values from a SIP or SLURP. But they are especially powerful when you name and publish a Certified Distribution based on them. Doing this is as simple as including a PsiCertify()
function call as an argument to PsiSip() or PsiSlurp() - as described below in the section "Creating and Using Certified Distributions."

Creating Stochastic Libraries

Of course, a Stochastic Library must first be created before it can be used. In some cases, you may have a data source from which you can draw SLURP data directly. For example, if you are working with demographic data such as age, family size, income, and taxes paid, you might be able to use a representative sample directly as a SLURP. But in many cases, an expert (perhaps like you) will have to select appropriate analytic probability distributions and their parameters, determine whether and how they should be correlated, and then generate the trial data through a Monte Carlo process.
Analytic Solver is a great tool for creating Stochastic Libraries, as well as using them. It supports a wide range of analytic distributions, shifting and truncation of distributions, and rank order correlation of different distributions. When you run a simulation, the trial data is generated, and with the PsiData() function, you can easily save the trial data in a column on the spreadsheet - this will create a SIP. Several PsiData() functions in adjacent spreadsheet columns will create a SLURP. To see an example, open the simulation example workbook Creating aSlurp(Sim).xls (normally installed into C:\Program Files \backslash Frontline Systems \backslash Analytic Solver Platform\Examples), pictured below.

In this workbook, we generate SLURP data for the BusinessPlanPsi.xls model (also included as an example workbook). This model has three uncertain variables: Sales in units, Price per unit, and Unit cost. In cells E14 and E15 we have PsiUniform() and PsiTriangular() functions, and in cells H15, I15 and J 15 we generate trial data as we did in the BusinessPlanPsi.xls model. For example, H15 contains the formula $=\mathbf{I F}(\mathbf{E} 14>\mathbf{0 . 5 , 1 0 0 0 0 0 , 5 0 0 0 0})$.

In the cell range B18:B1017, we've array-entered the formula $\{=\mathrm{PsiData}(\mathrm{H} 15)\}$. This will cause 1,000 trial values for H15 - a SIP for Sales in units - to be inserted in this cell range, each time a simulation is performed. Similarly, C18:C1017 contains $\{=$ PsiData(I15) $\}$, and D18:D1017 contains \{=PsiData(J15) $\}$.

To create and save the SLURP, simply run a simulation, by pressing the Simulate button on the Analytic Solver ribbon. The SLURP data will appear starting at cells B18, C18 and D18. Also note that cell range B18:B1017 has the defined name 'Sales', B18:B1017 is named 'Price', and C18:C1017 is named 'UnitCost'. BusinessPlanSLURP.xls should then be saved. We've generated 1,000 trials for each uncertain variable, enough to match the number of trials in our simulation.

Then select cells B18:D1017, press CTRL + C to copy, then select cell H18 and press CTRL + V to paste the contents of cells B18:D1017 to the cell range H18:J1017.

Using the DIST Feature

Another way to use historical data is to use the DIST feature. This tool allows you to encode your specific historical data as a distribution and then use the PsiSip function to sample that data during the simulation trials.

1. Select your data just as you did for the Fit process above.

2. Click on the Dist button on the Analytic Solver Desktop ribbon.

Or select Dist from the Analytic Solver Cloud Tools menu.

3. You will see a "Generate DIST from Data" Dialog. Click "OK".

4. The next dialog will allow you to choose where to place the DIST after it is generated as well as add information to it such as a name, comments on where the data came from, as well as the type of encoding.

DIST Data
Distribution Dist Location(s): Data Location: SMS2:SM\$32 Dist Name: Iype: Double Origin:

Tip" The default encoding choice is "Double". If you have 0-10,000 data points you can use this setting. If you have 10,001 to 20,000 data points you should use "Single". If you have more than 20,000 data points you should use the Fit feature.
5. You can see the results after you hit "OK" below.

14 - f_{x} <dist name="Example" avg="6.58226" min="5.5" max="7.5" count="31" type="Double" origin="Test Data"										
4	A	E C	[E	G	H	J	K	M	N	
1	Financial Forecast									
2								5.5		
3	Sales Scenarios	Scenario\#	Volume	Price	Analysis			5.6		
4	Hot Market	1	100,000	\$11.50	Sales Scenario:	1	dist	5.7		(1)
5	OK Market	2	75,000	\$11.00	Sales Volume:	100,000		5.9		6-3/ Optimization
6	Slow Market	3	50,000	\$10.50	Selling Price:	\$11.50		6.1		--ulb Simulation
7					Unit cost:	\$6.72		6.15		Q-Uncertain Varik
8	Cost Scenarios	Costs						6.2		E. ${ }^{\text {a }}$] Bushessfore
9	Minimum Cost	\$5.50			Forecast P	rofit		6.25		- \$3154
10	Most Likely Cost	\$6.50			Net Profit	\$227,517		6.3		
11	Maximum Cost	\$7.50			Averaee Profit	\$85.643		6.35		is en erneote

Note: In this case we chose cell L4 to place the data. You will see the DIST in the formula bar (only part of the DIST is visible above). The more data points you have the longer the DIST string will be.
Tip: The DIST you've created can now be copied and used in any spreadsheet. The data that created it no longer needs to be kept for it to work.
6. Use the PsiSip function to add the DIST to your model.

To use this DIST we enter "=PsiSip(L4)" in cell J7. Now our simulation model will use the DIST we just created.
Tip: When you run a simulation using a DIST you won't see the value in the cell containing it change as it will always show the first data point in your distribution and is working correctly.

Creating and Using Certified Distributions

As described above, Analytic Solver supports the use of both analytic distributions and Stochastic Libraries as Certified Distributions. It provides a property function PsiCertify() that you can use to name and certify a distribution as ready for publication. It also provides a distribution function PsiCertified() that end user modelers can use to access the Certified Distribution via its name.

Certified Distributions may be defined in an Excel workbook different from the end user modeler's workbook. This may be a standard workbook or an Excel add-in workbook; the latter provides certain advantages, since it is normally hidden from display and may be loaded automatically when Excel starts up.

Note: The workbook that defines Certified Distributions must be a 'complete model' on its own: It must define at least one output by using a PSI Statistics function (PsiMean(), PsiOutput(), etc.) in a formula.

Publishing Distributions with PsiCertify

To name and certify an analytic distribution, you simply include the PsiCertify() property function in the formula that defines the distribution. For example:
$=$ PsiNormal(0.1, 1, PsiTruncate(-2,2), PsiSeed(3), PsiCertify('MyDist',0.1))
will define a Certified Distribution named "MyDist" based on a Normal distribution with mean 0.1 and standard deviation 1 , truncated so that its samples lie in the interval -2 to 2 , and generated using a random number seed of 3 (this overrides any random seed specified in the end user's model). To use this distribution, the end user modeler enters =PsiCertified("MyDist") in his or her own workbook. When no simulation has been performed, the cell containing the PsiCertified() call will display the default value 0.1.

To name and certify a distribution based on trial data in a Stochastic Library, you also use the PsiCertify() property function in the formula defining the distribution. For example:
$=$ =PsiSip(A1:A1000, PsiCertify(''MyDist' ${ }^{\prime}$,100))
will define a Certified Distribution named "MyDist" whose trials are drawn sequentially from the range A1:A1000, with default value 100 to be displayed when no simulation has been performed.
When (as is often the case) the SIPs for several different uncertain variables are generated as a group, in a manner that preserves the statistical dependence between them, they should be combined into a SLURP, i.e. a table of trial values where each column represents an uncertain variable, and each row represents a Monte Carlo trial. Analytic Solver allows you to place a character string name for each column (uncertain variable) in the first row of the SLURP data. You can then name and certify the entire SLURP, for example:
$=$ PsiSlurp(A10:C1010, PsiCertify('MyPlan'"))
where range A10:C10 contains labels such as "Sales", "Price" and "UnitCost", and A11:C1010 contains the SLURP trial data.

Now the end user modeler can write =PsiCertified("MyPlan", "Sales") to define an uncertain variable in a model whose samples will be sales figures.
The PsiCertify() function allows you to define more properties of the Certified Distribution than just its name. It is good practice to document the name, description, author, history of creation, and other relevant information about a Certified Distribution using PsiCertify(). The full set of arguments is:
=PsiCertify (name, default value, short description, full description, version, author, copyright, trademark, history)

Using Distributions with PsiCertified

To use a Certified Distribution, the end user modeler simply enters:

$=$ PsiCertified(name) or =PsiCertified(slurp,sip)

in his or her own workbook, where name or slurp and sip are quoted strings. The user needs no knowledge of the form or parameters of the distribution, or of the name or folder path of the workbook that defines the distribution.

Analytic Solver scans the open workbooks (including regular workbooks and add-in workbooks) for distributions that include the PsiCertify() function, and adds the names found in PsiCertify() calls to the Certified dropdown gallery.
Certified Distributions may also be used with Risk Solver Engine, when the Analytic Solver GUI is not available. The PSI Interpreter matches calls to $=$ PsiCertified() to the known Certified Distributions. If a named distribution is not found, the PsiCertified() call will return the error value \#NAME?

To see an example of publishing and using Certified Distributions, open the simulation example workbook BusinessForecastingCertified(Sim).xls (normally installed into C:\Program Files\Frontline Systems\Analytic Solver Platform\Examples), shown on the next page. This example uses a regular workbook, rather than an add-in. Look for "Creating and Using a Certified Distribution" in the Cloud app. Click the Certified Distributions tab.

12	A	B	c	D	E	F	G	H	1	J	K	L	M	N
13		Certified Distribution \#VALUE!												
14		Market Type Distributio Unit Cost Distribution		0.217973				Sales Volume Sales Price Unit Cost						
15				7.013466				50,000	\$11.00	\$7.01		Copy SLURP		
16														
17		Sales VolumeSales Price Unit Cost						Sales Volume Sales Price Unit Cost						
18		50,000	\$11.00	\$7.01				100,000	\$8.00	\$6.24				
19		100,000	\$8.00	\$6.64				50,000	\$11.00	\$6.21				
20		100,000	\$8.00	\$6.70				100,000	\$8.00	\$6.75				
21		100,000	\$8.00	\$6.97				50,000	\$11.00	\$6.14				
22		100,000	\$8.00	\$6.87				50,000	\$11.00	\$7.05				
23		50,000	\$11.00	\$7.37				50,000	\$11.00	\$7.11				
24		100,000	\$8.00	\$7.02				50,000	\$11.00	\$6.02				
25		100,000	\$8.00	\$6.69				100,000	\$8.00	\$6.37				
26		50,000	\$11.00	\$6.86				100,000	\$8.00	\$6.99				
27		50,000	\$11.00	\$6.37				50,000	\$11.00	\$5.96				
${ }^{28}$		50,000	\$11.00	\$6.52				100,000	\$8.00	\$6.80				
29		50,000	\$11.00	\$7.12				50,000	\$11.00	\$6.61				
30		50,000	\$11.00	\$6.76				100,000	\$8.00	\$5.53				
31		100,000	\$8.00	\$6.29				50,000	\$11.00	\$6.36				
32		100,000	\$8.00	\$6.32				50,000	\$11.00	\$7.00				
33		50,000	\$11.00	\$6.64				50,000	\$11.00	\$7.13				
34		50,000	\$11.00	\$6.31				100,000	\$8.00	\$6.27				
35		50,000	\$11.00	\$7.13				100,000	\$8.00	\$6.29				
36		50,000	\$11.00	\$6.47				100,000	\$8.00	\$6.56				
37		100,000	\$8.00	\$6.16				100,000	\$8.00	\$6.04				
38		50,000	\$11.00	\$6.18				50,000	\$11.00	\$6.43				
39		100,000	\$8.00	\$6.79				50,000	\$11.00	\$6.56				
4 n		10 n ก0	\$800	\$699				50000	\$11 n	\$7 77				

This worksheet contains the function call =PsiSlurp(H17:J1017,PsiCertify("ForecastDist")) in cell D13. This cell (D13) displays \#VALUE! since there are labels rather than numbers in the first row of the SLURP range, but this doesn't affect use of the Certified Distribution.

To use the certified distribution, simply insert a function call $=$ PsiCertified("ForecastDist") into the currently selected cell. That's all there is to it.

To see how this set of Certified Distributions can be used, click the Forecast using Certified Dist tab, shown on the next page.

4	A	B	c	D
11				
12		Sales Forecast		
13		Sales Volume		100,000
14		Selling Price	\$8.00	\$800,000
15		Unit Cost	\$6.24	\$624,189
16		Fixed Costs		\$120,000
17		Net Profit		\$55,811
18		True Average		\$67,625.36

This model uses =PsiCertified ("ForecastDist", "Sales Volume") in cell D13, =PsiCertified ("ForecastDist", "Sales Price") in C14, and =PsiCertified ("ForecastDist", "Unit Cost") in C15. It no longer requires an Excel 'external reference' to a specific folder path, workbook filename, or cell range. In fact, there might not exist a single cell range containing fixed trial data - the trials might be loaded from an external database, or generated dynamically from one or more analytic distributions - as illustrated below.

Packaging Analytic Distributions

As described above, you can use PsiCertify() to name and publish an analytic distribution, with a specific form and parameters and a pre-specified random number seed, as a Certified Distribution. Further, you can "package" several analytic distributions that are correlated through a rank correlation matrix in the form of Certified Distributions. You can place these definitions in a standard workbook, or in an add-in workbook that is automatically loaded when Excel starts, hiding a good deal of complexity from end users who simply need to use these Certified Distributions.

Mastering Stochastic Optimization Concepts

Introduction

Analytic Solver offers you one unified framework for modeling and solving optimization problems, with or without uncertainty. Models may include 'normal' decision variables, constraints and an objective, plus uncertainties, recourse decision variables, chance constraints, and recourse constraints. This chapter seeks to explain this framework, starting from the basics of Solver models. It assumes only a limited knowledge of optimization - but if you've first read the chapter "Mastering Conventional Optimization Concepts," you'll gain a much deeper understanding from reading this chapter.

Our goal is to find a solution - values for the decision variables in our model that satisfies the constraints and that maximizes or minimizes the objective. In computing the objective and constraints, we use parameters of the model - for example quantities, distances, shipping costs, interest rates, etc.

Certain and Uncertain Parameters

In conventional optimization, all the parameters are assumed to be numbers known with certainty. If estimation of a parameter involves uncertainty or noise, an average or other 'nominal' value is used. This is a simplification and idealization of the real world situation: In almost all business and engineering problems, there is at least some uncertainty in the values of the parameters.
In some models, the uncertainty or variation in the parameters may be small enough to be ignored. But in many models, it is large enough to be of concern. And in some models, the uncertainty is so large that it is a major feature of the problem, and much effort is (or should be) invested in modeling the uncertainty.

In the discussion to follow, by uncertain parameter we mean a parameter of your optimization model, such as an objective coefficient or constraint right hand side, that is subject to uncertainty. Such parameters might be computed from a "primitive uncertainty," such as a future interest rate or rainfall amount; we will call this an uncertain variable, and in Analytic Solver, we'll use the Uncertain Variable dialog to define and quantify this primitive uncertainty.

Realizations of Uncertain Parameters

Where a certain parameter has a single, known value, we can think of an uncertain parameter as having many possible values. We call each such value a realization of the uncertainty. Below, we've pictured one certain and three uncertain parameters.

An uncertain parameter might have an infinite number of possible realizations, but - as discussed near the end of this chapter - normally we can work with a finite sample of possible realizations. We just don't know which one of the sample values is the 'true' value, or closest to this true value.

Decision-Dependent Uncertainties

In many real-world problems, the uncertainties being modeled are independent of the decision variables. For example, in a crop planning model where the acres to plant of different crops are decision variables, and the rainfall in a future period is an uncertainty, the uncertainty is almost surely independent of the decisions.

In other real-world problems, the uncertain parameters being modeled are dependent on the decision variables - they change if the decisions change. For example, in a market response model that includes competitor actions in a future period, where your product prices are decision variables, and your competitors' product prices are uncertainties, it is quite likely that the uncertainties will depend on the decisions.
In portfolio models where one is investing in publicly traded, large capitalization stocks, a decision to purchase some number of shares is unlikely to affect the uncertain future returns on those stocks. On the other hand, a large institution investing in thinly traded small-capitalization stocks may find that decisions to purchase a large number of shares may move the market price and impact the uncertain future returns. So both types of problems arise in practice. As we'll see later, the presence of decision-dependent uncertainties has a huge impact on how, and even whether, our model can be solved.

Resolving Uncertainty and Recourse Decisions

In some real-world problems, we are uncertain about the value of a parameter today, and we will remain uncertain about its value in the future; we have to make decisions in the presence of this uncertainty. This often arises in engineering design models, where there is uncertainty about the exact strength of a steel girder or the exact resistance or capacitance of an electronic component. The uncertainty may be irreducible - perhaps inherent in nature or it may be reducible through better data collection, measurement or calibration - but these steps may be impractical for us.

In other real-world problems, we are uncertain about the value of a parameter today, but we will know its value with certainty at some point in the future. This often arises in marketing and finance models, where a competitor's price or next year's commodity prices or interest rates are uncertain today, but will become known at some future date. We say that the uncertainty will be resolved at the future date; its many possible values will be reduced to a single value, and the uncertain parameter will become certain.

If we are dealing with uncertainty that will not be resolved, we must find values of the decision variables that yield feasible (or nearly feasible) solutions for many possible realizations of the uncertainty. On the other hand, if we are dealing with uncertainty that will be resolved at a future date, we can ask what decisions we must make 'here and now,' before the uncertainty becomes known, and what decisions we can make on a 'wait and see' basis, after the uncertainty is known. This leads to the concept of recourse decisions, described below and it has a huge impact on how our model should be formulated and solved.

Uncertainty and Conventional Optimization

The impact of uncertainty is magnified by conventional optimization. By its nature, optimization drives the decision variables to values that just satisfy certain constraints, while maximizing or minimizing the objective function. In doing so, optimization exploits any 'noise' or error, as well as the 'true value,' captured in the fixed numbers used in the model for uncertain parameters.
This effect is very evident in investment portfolio optimization, where the parameters of the model are estimated returns, variances, and covariances between securities. Practitioners often describe portfolio allocations from an optimizer as "unrealistic," and such allocations often do not perform well in practice. When the actual security returns, variances and covariances in future periods vary from the parameters used in the optimization, even by small amounts, the 'optimized' portfolio return often suffers by large amounts.

As shown by Ben-Tal and Nemirovski in a 2000 study of the NETLIB linear programming problems, "In real-world applications of linear programming, one cannot ignore the possibility that a small uncertainty in the data can make the usual optimal solution completely meaningless from practical viewpoint." Summarizing the effects of conventional investment portfolio optimization, Michaud wrote in a 1998 book "The result is that optimized portfolios are 'error maximized' and often have little, if any, investment value." Conventional optimization is not enough!

Elements of Solver Models

We'll now describe all the elements of a Solver model with uncertainty. Again our goal is to find a solution - values for the decision variables in our model that satisfies the constraints and that maximizes or minimizes the objective. In computing the objective and constraints, we may use many parameters - some of which are computed from primitive uncertain variables. In Excel, the decision variables and parameters are represented by worksheet cells; the objective and constraints are computed by formulas in other worksheet cells.

Uncertain Variables

A certain parameter is easy to model, in a worksheet cell containing a number. A primitive uncertainty requires a way to specify the range and 'shape' of the values it can assume. In Analytic Solver, we model primitive uncertainties as uncertain variables in worksheet cells that contain special add-in functions. For example:
$=$ PsiUniform $(\mathbf{0}, 1)-$ a uniform distribution ranging from 0 to 1
$=$ PsiNormal(2,1.5) - a Normal distribution with mean 2, standard deviation 1.5
$=P s i B e t a(A 1, B 1)-a$ Beta distribution with shape parameters A1 and B1
$=\operatorname{PsiSip}(A 1: A 1000)-$ a 'Stochastic Information Packet' containing a range of user-supplied sample values, or realizations, for this uncertainty
Any of the 40-odd PSI Distribution functions that you can use for Monte Carlo simulation may also be used as uncertain variables for stochastic optimization.

You can think of the cell for an uncertain variable, containing a formula such as $=$ PsiUniform $(0,1)$, as holding an array of sample values, each one selected at random from the range 0 to 1 inclusive. Each value is one possible realization
of the uncertainty. Analytic Solver can generate such an array of sample values automatically, using Monte Carlo simulation 'behind the scenes'.

Looking ahead to the section "Functions of the Variables and Uncertainties," note that any formula cell that depends on an uncertain variable cell must also compute an array of sample values. Each value corresponds to one possible realization of all the uncertain variables on which the formula depends.

In the example PsiBeta(A1,B1), it is important to know whether A1 or B1 is dependent on the decision variables. A model that includes such a decisiondependent uncertainty is much harder to solve, and will require the methods of simulation optimization. Analytic Solver can automatically diagnose your model and determine whether any uncertain variables depend - possibly through a chain of formula cells - on the decision variables.

Decision Variables

Conventional optimization deals with only one type of decision variable, which represents a decision that must be made 'here and now,' irrespective of any uncertainty in the model. We call this a normal or first-stage variable.
If we are dealing with uncertainty that will be resolved in the future, then at some point the array of sample values for the uncertainty is effectively replaced by a single value, the realization of the uncertainty as it actually occurs.

If the situation we are modeling allows us to make certain decisions after the uncertainty becomes known, on a 'wait and see' basis, we can model these decisions with recourse variables, also called second-stage variables. (At the 'second stage,' the uncertainty has become known.)

Normal or First-Stage Variables

A normal variable for a 'here and now' decision is represented by a worksheet cell - say A1 - containing a number; the Solver will replace this number with an optimal value, when the problem is solved. (The term 'normal' here is unrelated to a Normal distribution, which is one way to define an uncertain variable.)

Recourse or Second-Stage Variables

A recourse variable for a 'wait and see' decision is also represented by a worksheet cell - say A2 - containing a number. But at the time the optimization is performed, a single recourse variable effectively represents an array of solution values, one for each realization of the uncertainties in the model.

Functions of the Variables and Uncertainties

Any formula that participates (in the objective and constraints, see below) in your model will normally depend on the decision variables and the parameters.
As a simple example, the objective of the Product Mix model EXAMPLE1in the Examples.xls workbook, is SUMPRODUCT(D17:F17,D9:F9) which can also be written as D17*D9 + E17*E9 + F17*F9. Here, D17:F17 are parameters (the selling prices of the three products), and D9:F9 are decision variables (the amounts of each product to build). In this model, the parameters are assumed to be certain.

An objective or constraint might be computed, from the parameters and the decision variables, through a chain of several formula cells. For example, in the Gas Company Chance and Recourse models in StochasticExamples.xls,
illustrated in the chapter "Examples: Stochastic Optimization," the constraint at cell C23 is D15+D18-C8 $>=0$, where D15 and D18 are decision variables (amounts of gas to purchase), $\mathrm{C} 8=100+80 * \mathrm{D} 5$ (estimated demand next year), and D5 is an uncertain variable in the model.

Model Uncertainty and Optimization Methods

Recall that an uncertain variable effectively holds an array of sample values. For example, D5 =PsiUniform $(0,1)$ represents an array of realizations of the uncertainty, each one selected at random from the range 0 to 1 . If your objective or constraint (say C8 $=100+80 *$ D5) depends on D5, it must also compute an array of sample values. Each value corresponds to one possible realization of all the uncertainties on which the formula depends.

Traditional Solver Engines cannot handle an objective or constraints that depend on uncertainty, and hence represent an array of sample values. To solve a problem with such an objective and constraints, we must choose one of three possible approaches:

1. Use the 'Stochastic Decomposition Engine' that can handle constraints that depend on uncertainty. Note: This engine is not supported in Analytic Solver Cloud.
2. Transform a model whose objective and/or constraints depend on uncertainty into a 'deterministic equivalent' or 'robust counterpart' model that may be much larger, but whose objective and constraints no longer depend on uncertainty. Then we can solve the transformed model using a traditional Solver Engine, and translate the results into a solution for the original model. To be transformed successfully, the original model must have only uncertainties that are independent of the decisions, and have an objective and constraints that are linear (or certain other) functions of the decision variables.
3. Ensure that all 'top-level' formula cells computing the objective and constraints represent only single values - statistical summaries of the arrays of sample values. We can do this manually, with formulas in top-level cells that call PSI Statistics functions such as PsiMean(), PsiVariance() or PsiPercentile() - or Analytic Solver can do this automatically and implicitly, when we define our objective and constraints as described in the next two sections. This choice is flexible, but it requires that we use simulation optimization - the most general, but also the slowest and least scalable optimization method.
In all these approaches, we must specify what it means to maximize or minimize an objective, or to satisfy a constraint that depends on uncertainty - implicitly or explicitly reducing an array of sample values to a single value. The next two sections explain how we can do this.

The Objective Function

The quantity you want to maximize or minimize is called the objective function. In Excel, the objective is calculated by a formula cell - say A1 - listed in the Task Pane Model tab or the Solver Parameters dialog, in the outline list box under Objective. This could be a calculated value for projected profits (to be maximized), or costs, risk, or error values (to be minimized).
If the objective function depends on uncertainties, we must specify how we want to 'optimize' this function. The most common practice is to maximize or minimize the expected value (informally, the mean value) of the objective, over
all realizations of the uncertainties. In Analytic Solver, you do this by selecting the objective in the Task Pane Model tab, and in the lower Properties area, selecting Expected from the Type dropdown list in the Stochastic group.

Instead of maximizing or minimizing the expected value of a function of the decision variables and uncertainties, you can maximize or minimize a measure of the uncertainty in a function. Analytic Solver converts the objective to the form $\max t$ or $\min t$, where t is a new variable, and the model includes a chance constraint $\mathrm{A} 1>=t$ or $\mathrm{A} 1<=t$ with the measure of uncertainty that you specify.

Implicit and Explicit Forms for the Objective

When you select Expected from the Type dropdown list in the Stochastic group, Analytic Solver treats the objective cell as implicitly containing E[objective], or using sample realizations of the uncertainty PsiMean(objective). To make this explicit on the worksheet, you can direct Analytic Solver to automatically create a PsiObj() function call with an "Expected" argument - using either the "Use Psi Functions to Define Model" option, or the Save Model button. You can also manually enter a PsiMean() function call in the objective cell. Similar options apply to the constraints, as discussed below.

Constraints: Normal, Chance, Recourse

Constraints are relations such as $f\left(x_{1}, x_{2} \ldots, x_{n}\right)<=b$, where $x_{1}, x_{2} \ldots, x_{n}$ are decision variables. In Excel, each x_{i} corresponds to a cell, $f\left(x_{1}, x_{2} \ldots, x_{n}\right)$ is computed by a formula in another cell (say A1), the constant b is in another cell (say B1), and we enter A1<= B1 via the Ribbon or Task Pane. A constraint is satisfied when the relation it specifies is true within a small tolerance.

When your model includes uncertainty, we must examine how each constraint depends on the uncertainties and the decision variables:

- If a constraint depends only on certain parameters and normal decision variables, it is 'deterministic' and is handled in the usual way by the Solver. We call this a normal constraint.
- If a constraint depends on uncertain variables and normal decision variables, we must specify what it means for the constraint to be satisfied. There are many possible realizations for the uncertain variables, but only single values for the decision variables. The Solver must find values for the decision variables that cause the constraint to be satisfied for all, or perhaps most but not all, realizations of the uncertainties. We call this a chance constraint. For example, we might specify that the constraint must be satisfied 95% or 99% of the time; it can be violated 5% or 1% of the time. For 95%, we denote such a constraint as VaR ${ }_{0.95}$ A1 $<=$ B1. But this form may not be your best choice - alternatives called CVaR and USet are discussed in the section "More on Chance Constraints."
- If a constraint depends on uncertain variables and recourse decision variables, then the Solver will find an array of values for each of the recourse variables, corresponding to the realizations of the uncertain variables. Recourse decisions give the Solver flexibility to satisfy constraints that involve uncertainty; but in effect, each such constraint has many realizations - one for each realization of the uncertainties. We call this a recourse constraint.
- A constraint may also depend on recourse decision variables, and possibly normal decision variables, but not depend on any uncertain variables. This is also a recourse constraint, with many realizations. The Solver must find
values for the recourse variables that satisfy all the constraints where they appear - some with uncertainties, and some without.

Implicit and Explicit Forms for Constraints

When you select VaR from the dropdown list in the Constraint dialog and enter a Chance of 0.95 , Analytic Solver treats the constraint cell as implicitly containing VaR 0.95 [constraint], or using sample realizations of the uncertainty PsiPercentile(constraint, 0.95) where constraint is the left hand side. To make this explicit on the worksheet, you can direct Analytic Solver to automatically create a PsiCon() function call with a "VaR" argument - using either the "Use Psi Functions to Define Model" option, or the Save Model button. You can also manually enter a PsiPercentile() function in the constraint left hand side cell. For more information on the $\operatorname{PsiObj}()$ and $\operatorname{PsiCon}()$ functions, see the chapter "Psi Function Reference" within Frontline Solvers Reference Guide.

Multiple Uncertainties May Offset Each Other

What happens when a constraint depends on several different uncertainties? Is such a constraint harder or easier to satisfy than a constraint that depends on just one uncertainty?

In the simplest case, suppose we have a linear constraint, with coefficients a_{i} and decision variables x_{i} :

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} \leq b
$$

Suppose that each coefficient a_{i} is uncertain (and independent of all the others), with sample values drawn randomly from PsiUniform $\left(a_{i}-0.5, a_{i}+0.5\right)$.

The average or nominal value of each coefficient is a_{i}. The 'worst' that can happen is that a sample is drawn where every coefficient is $a_{i}+0.5-$ this makes the left hand side (LHS) as large as possible, so it is very likely to violate the condition LHS $\leq b$. But this case is very unlikely to occur.
In most realizations of the uncertainties, some coefficients (randomly drawn from the range $a_{i}-0.5$ to $a_{i}+0.5$) will be less than a_{i}, and some will be greater than a_{i}. The more uncertainties are involved, the greater the chance that some of them will draw samples less than a_{i}.

If we use a chance constraint to specify that the relation must be satisfied (say) 95% or 99% of the time, we actually have a better chance of satisfying this constraint when it depends on many uncertainties than when it depends on just one - as long as the uncertainties are independent, or at least not highly correlated with each other.

Solutions: Feasible, Optimal, Well-Hedged

A solution (set of values for the normal and recourse variables) for which all of the constraints in the Solver model are satisfied is called a feasible solution. For constraints that depend on uncertainties, this means that chance and recourse constraints meet their criteria for satisfaction over all the realizations of the uncertainties considered in the optimization.

An optimal solution is a feasible solution where the objective function reaches its maximum (or minimum) value - for example, the most profit or the least cost. When the objective function depends on uncertainties, this normally means that the expected value of the objective reaches a maximum (minimum) but you can also use max t or min t with a chance constraint $\mathrm{A} 1>=t$ or $\mathrm{A} 1<=t$, as described earlier.

The optimal solution to a problem with uncertainty (the 'stochastic solution') will never have an objective value that is better than one could obtain 'with 20/20 hindsight,' by solving a conventional optimization problem where the uncertainties are known. The difference between the objective value obtained 'in hindsight' and the optimal value obtained 'in foresight' is called the expected value of perfect information (EVPI).

The stochastic solution will often be (quite) different from the optimal solution to a problem where all uncertain variables are replaced with their nominal or average values. The latter optimization will exploit the 'point values' of the parameters, with no consideration for their variability; this will often yield a better objective value for the nominal problem, but the solution may not be feasible, let alone optimal, for many different realizations of the uncertain variables. Compared to the 'nominal' solution, the stochastic solution is more robust or 'well-hedged' against possible variations in the uncertain variables.

Solving for Recourse Variables

If we are dealing with uncertainty that will be resolved in the future, then at that future date, each uncertain variable will be replaced by a single value, the realization of the uncertainty that actually occurs. In Analytic Solver, you can enter these single values for uncertain variables in the Lock value field in the Uncertain Variable dialog, then choose to solve for single values of the recourse variables, given known single values for both the normal variables (determined by an earlier optimization) and for the uncertainties.

When Analytic Solver solves a problem by transforming the model, using the Deterministic Equivalent or the Robust Counterpart transformation, it computes an array of values for the recourse variables, one for each realization of the uncertainties considered during the optimization. Using the left and right Trial \# arrows on the Ribbon, you can display on the worksheet the different sample values of the uncertain variable cells, and the corresponding values of the recourse variable cells - the 'wait and see' decisions in many possible scenarios. Now, the actual values of the uncertainties, once they become known, might be different from any one of these scenarios - so it is still useful to solve for single values of the recourse variables as described above.

More on Chance Constraints

As explained above, if a constraint depends on uncertain variables and normal decision variables, we can seek solution values for the variables that cause the constraints to be satisfied for all, or perhaps most but not all, realizations of the uncertainties. If we insist that the constraints are satisfied for all realizations, we may not be able to find values for the decision variables that meet this requirement - and if we do, we will very likely 'pay for this' via worse values for the objective function.

Instead, we can seek solution values for the variables that cause the constraints to be satisfied for most, but not necessarily all, realizations of the uncertainties. We might specify that the constraint must be satisfied (it must not exceed a given limit) 95% or 99% of the time; it can be violated 5% or 1% of the time.

This is depicted in the chart below, where 95% of the area under the curve is to the left of the bar (i.e. the constraint right hand side value), and 5% is to its right.

This is one form of a chance constraint; the criterion that it must be satisfied for all realizations of the uncertainties up to a given percentile (say 95\%) makes it a VaR (Value at Risk) constraint. We write this constraint as VaR 0.95 A1 <= B1. Analytic Solver supports two other criteria besides VaR that may be better choices for many models.

A chance constraint includes:

- A left hand side that depends on decision variables and uncertainties.
- A relation that must be either $<=$ or $>=$. (A chance constraint can't be an equality. Note however that a recourse constraint can be an equality.)
- A right hand side that should be constant in the problem (if the RHS depends on decision variables or uncertainties, Analytic Solver converts LHS $<=$ RHS into the form LHS - RHS $<=0$).
- A criterion that may be VaR (Value at Risk), CVaR (Conditional Value at Risk), or USet (Uncertainty Set). These criteria are discussed below.
- A measure that may be a percentile $0.01-0.99$ for VaR or CVaR, or a 'budget of uncertainty' (any positive value) for USet.

Value at Risk Measure

Chance constraints defined by a percentile or VaR (Value at Risk) measure have been used since the early 1960s. Such constraints offer a good deal of modeling flexibility, and they are easy to understand in terms of the probability that the constraint will be satisfied. Value at Risk is used in the banking and securities industries, and its use is mandated by the international Basel II accords. But chance constraints in this form have several drawbacks:

- A VaR constraint with probability 95% requires only that the constraint be satisfied - not violated -95% of the time; it says nothing about the magnitude of the violation that may occur the other 5% of the time. For example, a portfolio of securities that is VaR-constrained to lose no more than $\$ 100,00095 \%$ of the time could still lose $\$ 1$ million+ at other times.
- As a measure of risk, the VaR criterion is not subadditive, a property expected of any 'coherent risk measure.' For example, if two portfolios A and B are VaR-constrained to not lose money 95% of the time, it is reasonable to expect that a combined portfolio A+B should have a 95% or better chance of not losing money - but this is not guaranteed by the two portfolio VaR constraints.
- A VaR constraint is not necessarily convex; hence, using such a constraint in an otherwise convex model (for example, any linear programming or convex quadratic model) will radically affect its 'solvability' - it means that
a globally optimal solution cannot be guaranteed, and solution time may rise exponentially with model size.

Further, when Analytic Solver uses robust optimization methods to automatically transform a model with VaR constraints into a larger but deterministic 'robust counterpart' model, it first approximates the non-convex VaR constraint with a convex CVaR constraint, and then transforms the CVaR constraint. Since CVaR is always more conservative than VaR as a risk measure, the robust counterpart solution will 'pay a price' in conservativeness, with a worse objective value. Users are often better off using CVaR directly.

Note: VaR ${ }_{0.95} \mathbf{A 1}<=\mathbf{B 1}$ specifies that the $95^{\text {th }}$ percentile of the realizations of A1 must be less than or equal to B1. Since VaR only describes the left side of the graph, not the right or "tail", VaR $0.95 \mathbf{A 1}>=\mathbf{B 1}$ specifies that the $5^{\text {th }}$ percentile of the realizations of A 1 must be less than or equal to B 1 .

Conditional Value at Risk Measure

To deal with the problems of Value at Risk cited above, an alternative risk measure called Conditional Value at Risk or CVaR (also called Expected Tail Loss or ETL) was developed in the late 1990s. VaR 0.95 A1 $<=\mathbf{B} 1$ specifies that the $95^{\text {th }}$ percentile of the realizations of A 1 must be less than or equal to B 1 ; realizations beyond the $95^{\text {th }}$ percentile may be greater than B1 by any amount. In contrast, CVaR $0.95 \mathbf{A 1}<=\mathbf{B} 1$ specifies that the expected value of all the realizations of A 1 up to the $95^{\text {th }}$ percentile must be less than or equal to B 1 .

Below is a chart that compares VaR and CVaR. VaR is the value $(42,900)$ that lies at the $95^{\text {th }}$ percentile of the realizations of the constraint left hand side; 5% of the realizations are greater than 42,900 and lie in the graph to the right of this point. CVaR $(54,000)$ is the expected value (i.e. the mean or average value) of all the realizations that lie in the 'tail' to the right of the VaR (Note that, if CVaR ${ }_{0.05} \mathbf{A 1}<=\mathbf{B 1}$ is satisfied for some B1, then $\operatorname{VaR}{ }_{0.05} \mathbf{A 1}<=\mathbf{B} 1$ is also (more than) satisfied.

As a risk measure, Conditional Value at Risk has several advantages over VaR:

- Unlike VaR, a CVaR constraint at 95% places a bound on the average magnitude of the violations that may occur 95% of the time.
- CVaR is a 'coherent risk measure.' It is subadditive, so if two portfolios A and B are CVaR-constrained to not lose money 95% of the time, then a combined portfolio $\mathrm{A}+\mathrm{B}$ has the same or better chance of not losing money.
- A CVaR constraint is always convex. Models consisting of all convex functions can be solved to global optimality, and solved to very large size using modern interior point optimization methods.

Uncertainty Set Measure

Analytic Solver supports a third criterion for uncertainty in a chance constraint, which reflects the approach taken in most of the literature on robust optimization methods. This criterion, called USet (for uncertainty set), is applicable only to linear constraints, with coefficients a_{i} and variables x_{i} :
$a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} \leq b$
where some or all of the coefficients a_{i} may depend on the uncertainties. It is useful to think of the vector $\left[a_{1} a_{2} \ldots a_{n}\right]$ as having a nominal or expected value, and a variation from this value for each realization of the uncertainties.

A constraint of the form USets $\mathbf{A 1}<=\mathbf{B 1}$, where $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}$ is in A1, and b is in B 1 , specifies that $\mathrm{A} 1<=\mathrm{B} 1$ must be satisfied for all variations from the nominal value of $\left[a_{1} a_{2} \ldots a_{n}\right]$ that do not exceed a bound Ω, measured by a norm. The bound Ω is often called the budget of uncertainty for the constraint. A very large Ω says that the constraint must be satisfied for practically all variations of the coefficients from nominal; a Ω of 0 effectively ignores uncertainty, requiring only that $\mathrm{A} 1<=\mathrm{B} 1$ for the nominal value of $\left[a_{1} a_{2} \ldots a_{n}\right]$, and saying nothing about departures from this value.

Analytic Solver allows you to choose among four different norms to measure variation from the nominal value: The L1, L2, L-Infinity and D norms - as described in "Uncertainty Sets and Norms" later in this chapter.

Diagnosing Your Model's Use of Uncertainty

When you create a large model, or modify a large conventional optimization model to include many uncertainties and many constraints, you may or may not realize exactly how the model depends on the uncertainties. Just as you might accidentally use a formula that creates a nonlinear dependence on a decision variable, when you intended to create a linear programming model, you might introduce a dependence on uncertainty in a constraint that you intended to be deterministic. Analytic Solver can diagnose the use of uncertainty in your model, comparing it to an 'intended' use of uncertainty that you specify in the Task Pane Platform tab Diagnosis group Intended Use of Uncertainty option. After clicking the Analyze button, you can select Reports - Optimization Uncertainty for a report of exceptions to your intended use of uncertainty.

Problems and Solution Methods

Previous sections of this chapter have described how you can create models that involve uncertainty in Analytic Solver, using certain and uncertain parameters, normal and recourse decision variables, normal and chance constraints, and your objective function. You create your models in the same way, regardless of the model transformation or solution method that will be used to solve the problem.
As outlined in the Introduction chapter, Analytic Solver is designed to find good solutions - given enough time - to models involving uncertainty in their most general form. But Analytic Solver is also designed to automatically recognize common special cases such as stochastic linear programming models, and find proven optimal solutions at much faster speeds. As with conventional LPs, the modeling assumptions of stochastic LPs are somewhat restrictive, but in a wide range of real-world applications, these assumptions can be satisfied. The great
advantage of a stochastic LP is its potential scalability to tens of thousands of variables and constraints or more.

Before we can discuss classes of problems and how they are solved using Analytic Solver, we must explain how two key concepts - decision-dependent uncertainties and recourse decisions - affect the use of two key solution methods - stochastic programming and simulation optimization.

Decision-Dependent Uncertainties

As described in the Introduction section, in many real-world problems, the uncertain variables being modeled are independent of the decision variables. In other real-world problems, the uncertainties are dependent on the decision variables - they change when the decision variables change.
The methods of stochastic programming (SP) were created, more than fifty years ago, to deal with problems where the uncertainties are independent of the decisions. Much more recently, methods of robust optimization (RO) were created, also to deal with problems where uncertainties are independent of the decisions. Most methods in the SP and RO literature cannot be applied to problems where the uncertainties are dependent on decision variables. But where they can be applied, these methods are scalable to large models, and they generally yield optimal solutions.

The methods of simulation optimization were created, also more than fifty years ago, to deal with problems where the uncertainties may be dependent on the decisions. This dependence makes the problem much harder to solve. Where SP and RO methods often are based on linear programming and conic optimization, simulation optimization is usually based on methods such as genetic and evolutionary algorithms, and tabu and scatter search. These methods are more flexible and general - but they require far more solution time, are generally not scalable to large models, and yield only 'improved' solutions, not optimal solutions.
In Microsoft Excel, you can create models where the uncertainties are either independent of, or dependent on the (normal or 'first stage') decision variables. Analytic Solver can detect decision-dependent uncertainties and report this when you choose Optimize - Analyze Original Problem or click the Analyze button in the Task Pane:

\square Model Diagnosis		$\stackrel{\oplus}{\oplus} \stackrel{A}{\oplus} \downarrow=-\mathrm{Z} \downarrow$
Model Type	SIM NonCvx	

To solve SIM NonCvx (non-convex) problems using simulation optimization, you can use the built-in Evolutionary Solver (based on genetic algorithms) or the plug-in OptQuest Solver (which uses tabu and scatter search). You can also use built-in or plug-in nonlinear Solver Engines, in conjunction with Analytic Solver's multistart methods, to solve many such problems.

Resolving Uncertainty and Recourse Decisions

The methods of simulation optimization were developed to solve problems where the uncertainty will not be resolved over the horizon of interest. Hence, these solution methods find optimal values only for normal or 'here and now' decision variables; virtually all simulation optimization methods in the literature have no concept of recourse decisions.

Unfortunately, simulation optimization has often been misapplied to problems where the uncertainty will be resolved over the horizon of interest. Users may believe that their simulation optimization model will find the best possible decision in the presence of uncertainty. But this is very unlikely to be true, if it's possible to make certain decisions on a 'wait and see' basis. Recourse decisions create flexibility for the optimizer, making it easier to satisfy the constraints and attain a better objective.
The methods of stochastic programming were developed to solve problems where the uncertainty will be resolved over the horizon of interest. Recourse decisions - the ability to make certain decisions on a 'wait and see' basis - have been extensively studied in the SP literature, and many high-performance solution methods for two-stage SP problems with recourse have been developed.

Classes of Problems Involving Uncertainty

An optimization problem that includes uncertain variables is usually called a stochastic optimization or stochastic programming problem.

Below, we'll classify such problems based on the following factors:

- How the objective and constraints depend on the decision variables
- Whether the uncertain variables depend on the decision variables
- Whether the problem includes recourse decisions (i.e. whether it is onestage with only normal variables, or two-stage with recourse variables)
- Whether the problem includes chance constraints

We'll also briefly describe how the three solution methods currently supported by Analytic Solver - robust optimization, stochastic programming, and simulation optimization - can be applied to these problems.

One-Stage Problems

One-Stage Linear Programming Problems

The simplest case is a one-stage stochastic linear programming problem:

- The objective and constraints depend linearly on the decision variables.
- The uncertain variables are independent of the decision variables.
- The problem includes no recourse decisions.
- The problem includes chance constraints to deal with the uncertainty.

This kind of problem arises if you start with a conventional, deterministic linear programming model (where all coefficients are certain), you add uncertain variables using functions such as $=\operatorname{PsiUniform}(\mathbf{0}, \mathbf{1})$ or $=\operatorname{PsiNormal}(\mathbf{2}, \mathbf{1 . 5})$ in cells, and you add formulas to compute the objective or certain constraints based on these cells, so that the LP coefficients are now uncertain.

Since no recourse decisions are available, the Solver must find values for the (normal or first-stage) decision variables that satisfy the constraints (normal and chance constraints) and maximize or minimize the objective.

We could solve this problem with simulation optimization methods. But since it is linear, this problem is especially well suited for robust optimization methods. With RO methods we can solve much larger models, hundreds of
times faster than with simulation optimization. In the Task Pane Platform tab, we set the Optimization Model group option Solve Uncertain Models to Stochastic Transformation, and we set the Transformation group option Stochastic Transformation to Robust Counterpart. When we click Optimize, the transformed model is created and solved.

One-Stage Quadratic Programming Problems

A slightly more complex case is a one-stage stochastic problem with a quadratic objective and all linear constraints:

- The objective is a deterministic, convex quadratic function of the decision variables - it doesn't depend on the uncertainties.
- The uncertain variables are independent of the decision variables.
- The problem includes no recourse decisions.
- The problem includes chance constraints to deal with the uncertainty.

The situation here is basically the same as for one-stage stochastic linear programming problems. We can apply simulation optimization methods, but we can also apply more scalable robust optimization methods, as long as the objective doesn't depend on the uncertainties.

One-Stage Nonlinear Optimization Problems

The situation changes if we have a one-stage stochastic nonlinear problem:

- The objective or the constraints are general nonlinear, convex or nonconvex functions of the decision variables.
- The uncertain variables may be dependent on the decision variables.
- The problem includes no recourse decisions.
- The problem includes chance constraints to deal with the uncertainty.

We cannot use Analytic Solver's robust optimization methods or stochastic programming methods on problems with general nonlinear, possibly non-convex functions. Our only option is to use simulation optimization; this is feasible since the problem does not include any recourse decisions. Given that we are using simulation optimization, we can allow the uncertainties to be dependent on the decisions, although some speed gains are possible if they are not.

Two-Stage Problems

Two-Stage Linear Programming Problems

A very common case is a two-stage stochastic linear programming problem:

- The objective and constraints depend linearly on the decision variables.
- The uncertain variables are independent of the decision variables.
- The problem includes both normal decisions and recourse decisions.
- The problem may or may not include chance constraints.

The presence of recourse decisions in the problem implies that at least some (and usually all) of the uncertainty will be resolved over the horizon of interest. Hence the problem is called 'two-stage,' where the normal decisions are made at the first stage - before the uncertainties are resolved - and the recourse
decisions are made at the second stage - after they are resolved. The Solver must find single values for the normal variables, and multiple values for the recourse variables (for each realization of the uncertainties) that satisfy the constraints and optimize the objective.

We cannot solve this problem with conventional simulation optimization methods, because these methods have no concept of recourse decisions. But since the problem is linear, we can use either stochastic programming or robust optimization methods - and with these methods we can solve much larger models, hundreds of times faster than with simulation optimization. In the Task Pane Platform tab, we set the Optimization Model group option Solve Uncertain Models to Stochastic Transformation, and we set the Transformation group option Stochastic Transformation to either Deterministic Equivalent or Robust Counterpart. When we click Optimize, the transformed model is created and solved.

If we choose the 'Determ Equivalent,' we can place integer constraints on the normal and recourse variables (though this may make the model more difficult to solve). But the model cannot include chance constraints, and the transformed model may become quite large (its size depends on the product of the number of recourse variables and constraints, and the number of simulation trials).
If we choose the 'Robust Counterpart', the model can include chance constraints, and the transformed model will be significantly smaller and solve faster than if we choose 'Determ Equivalent.' But we cannot place integer constraints on the recourse variables, and the solution may be more conservative than with 'Determ Equivalent.'

Two-Stage Quadratic Programming Problems

A slightly more complex case than the one above is a two-stage stochastic problem with a quadratic objective and all linear constraints:

- The objective is a deterministic, convex quadratic function of the decision variables - it doesn't depend on the uncertainties or the recourse variables.
- The uncertain variables are independent of the decision variables.
- The problem includes both normal decisions and recourse decisions.
- The problem includes no chance constraints.

Again the presence of recourse decisions in the problem implies that at least some (and usually all) of the uncertainty will be resolved over the horizon of interest. We cannot solve this problem with conventional simulation optimization methods, because these methods have no concept of recourse decisions. But we can use stochastic programming methods - and these methods are far more scalable than simulation optimization methods would be. In the Task Pane Platform tab, we set the Optimization Model group option Solve Uncertain Models to Stochastic Transformation, and we set the Transformation group option Stochastic Transformation to either Deterministic Equivalent. When we click Optimize, the transformed model is created and solved.

Two-Stage Nonlinear Optimization Problems

If we have a two-stage stochastic nonlinear problem:

- The objective or the constraints are general nonlinear, convex or nonconvex functions of the decision variables.
- The uncertain variables may be dependent on the decision variables.
- The problem includes recourse decisions.
- The problem may or may not include chance constraints.

We cannot use Analytic Solver's robust optimization methods or stochastic programming methods on problems with general nonlinear functions, and we cannot use conventional simulation optimization methods either, because these methods have no concept of recourse decisions. But future Frontline Systems products may be able to solve such problems; contact us for more information.

Advanced Topics

Bounds, Discretization, and Correlation

An uncertainty specified via a probability distribution such as $\operatorname{PsiUniform}(0,1)$ has finite bounds of 0 and 1 , but it has a practically infinite set of possible values between 0 and 1 ; we can only consider a sample of the possible values during an optimization. An uncertainty specified via PsiNormal $(0,1)$ has infinite bounds, as well as an infinite set of possible values. In practice, however, most of the probability mass of the Normal distribution lies within three standard deviations on either side of the mean, and a reasonable sample of values from the Uniform and Normal distributions can be used for computations.

Analytic Solver uses Monte Carlo simulation to generate samples of uncertainties, based on the probability distributions specified by the user. It uses the minimum and maximum values for each distribution obtained during the simulation as 'effective' lower and upper bounds, which are used in constructing the robust counterpart to an uncertain model.

When Analytic Solver solves a stochastic LP (as explained above) by forming the 'deterministic equivalent' problem, the Monte Carlo trials are used as 'scenarios' in constructing this problem; hence they serve as a discretization of any continuous probability distributions specified by the user.
The impacts of uncertainties on each coefficient of the objective and the constraints may be correlated - either because multiple coefficients depend on the same primitive uncertainty, or because correlation was deliberately induced among several uncertain variables. When Analytic Solver solves a stochastic LP by forming the 'deterministic equivalent' problem, the correlations are reflected in the Monte Carlo trials used to construct the problem. When it solves a stochastic LP using robust optimization methods, the robust transformation takes into account the observed correlations in the sample.

Uncertainty Sets and Norms

As described in the earlier section "More on Chance Constraints," if a chance constraint is linear in the decision variables, you can use the USet (uncertainty set) criterion, in lieu of the VaR or CVaR criterion. The advantage of using this criterion is that the robust counterpart model more accurately reflects the degree to which you want the chance constraint to be satisfied, which can lead to less conservative solutions, with better objective values. Consider a constraint:
$a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} \leq b$
where $=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}$ is in $\mathrm{A} 1, b$ is in B , and some or all of the coefficients a_{i} may depend on uncertain variables z_{1}, z_{2}, \ldots It is useful to think of the vector $\left[a_{1} a_{2} \ldots a_{n}\right]$ as having a nominal or expected value, and a variation from this value for each realization of the uncertain variables.

A constraint of the form USets $\mathbf{A 1}<=\mathbf{B 1}$ specifies that A1<= B1 must be satisfied for all variations from the nominal value of $\left[a_{1} a_{2} \ldots a_{n}\right]$ that do not exceed a bound Ω, measured by a norm. The uncertainty set includes all the points formed by adding a vector of allowed variations to the vector of nominal values; the bound Ω is often called the budget of uncertainty for the constraint.

Analytic Solver allows you to choose among four different norms to measure variation from the nominal value: The L1, L2, L Inf (Infinity) and D norms. (One choice of norm applies to all chance constraints.) The graphs shown on the following pages may help you visualize the shape of the uncertainty set (based on two uncertain variables z_{1}, z_{2}) for each of the norms.

The D norm represents the intersection of the L1 norm and the L-Inf norm; thus it can define a 'tighter' uncertainty set than either of these norms alone. For the D norm, Ω can be interpreted as a bound on the number of coefficients [$a_{1} a_{2} \ldots$ $\left.a_{n}\right]$ that depart from nominal values. When the D norm is used, the robust counterpart of a stochastic LP problem is a (larger, conventional) LP problem; when the L2 norm is used, the robust counterpart is an SOCP problem.

L1 Norm

L2 Norm

L Inf Norm

D Norm

Best Practices for Building Large-Scale Models

Introduction

It's a maxim that a successful Solver model will grow in size over time. When the initial results from an optimization model demonstrate ways to achieve significant cost savings, improved schedules, higher quality or increased profits, management is naturally interested in applying these methods to bigger problems. This might involve extending the model to include more plants, warehouses, assembly lines, or personnel; to bring in other divisions or geographic regions; or to cover more time periods, more detailed process steps, or more specific parts or products. The result is an increase in the number of decision variables, constraints, and cells in your model.
When your model grows in size, it becomes more challenging to design and maintain, and also more challenging to solve. Good modeling practices touched upon in the chapter "Examples: Conventional Optimization" - become far more important, so your model remains comprehensible to other Excel users, auditable for errors, and easy to modify. Issues such as your model type (LP, QP, QCP, SOCP, NLP or NSP), sparsity, and scaling also become far more important, since they strongly influence the time it takes to solve your model, and the reliability of the solutions you obtain.

This chapter can only briefly survey good modeling practices - entire books have been devoted to this subject (we will recommend some). It focuses on steps you can take to obtain faster and more reliable solutions for large models using the Analytic Solver including:

- Steps towards better performance that are easy to apply in most situations
- Steps you can take - with more design and modeling effort - to improve the formulation of your model, by replacing non-smooth or nonlinear constraints with linear (or integer linear) constraints
- Steps you can take to enable Analytic Solver to analyze your model more efficiently

Designing Large Solver Models

A large Solver model in Microsoft Excel is both a large spreadsheet workbook and a large optimization model. If you plan to build such a model, you'll be well advised to learn about good spreadsheet modeling practices, and about good optimization modeling techniques.
We highly recommend the textbook Management Science: The Art of Modeling with Spreadsheets by Stephen G. Powell and Kenneth R. Baker, published by John Wiley \& Sons, listed in the following chapter "References and Further Reading." Unlike other management science textbooks, this book teaches you "best practices" in modeling and spreadsheet engineering, as well as techniques of linear and nonlinear optimization using Excel.

Other books on good spreadsheet design are hard to find, but through resources like the Amazon.com Marketplace, you may be able to locate a copy of John Nevison's book Microsoft Excel Spreadsheet Design (Prentice-Hall, 1990), or his earlier works 1-2-3 Spreadsheet Design (1989) or The Elements of Spreadsheet Style (1987), both of which are still useful in designing modern spreadsheets. A relatively new (2003) book, Excel Best Practices for Business by Loren Abdulezer, includes chapters on spreadsheet construction techniques, "makeovers" of spreadsheets developed by others, and spreadsheet auditing.
Training courses in Microsoft Excel often cover at least some elements of good spreadsheet design. They are offered in many venues, from universities and community colleges to public seminars, in-house corporate training, and classes sponsored by computer dealers. Check the course outline or syllabus to see if it features spreadsheet design and good modeling practices, and other topics most relevant to you.
A readily available book on optimization modeling techniques is H . Paul William's Model Building in Mathematical Programming, 4th Edition (John Wiley, 1999), listed at the end of the chapter "Introduction." Focusing on modeling for linear and integer programming problems, it includes a treatment of large-scale model structure and decomposition methods that is hard to find elsewhere.

Spreadsheet Modeling Hints

Below is a brief set of suggestions for planning, designing and constructing large Solver models:

Start with a Plan. Plunging in and entering numbers and formulas immediately will quickly lead to problems when constructing a large spreadsheet. Write down your objectives and sketch out a design before you begin working on the real spreadsheet.
Build a Prototype. Plan in advance to build a prototype, throw it away, and then build the real spreadsheet model. What you learn from building and solving the prototype will probably save you time in the long run.

Create a Table of Contents. In the upper left corner of your first worksheet, include comments that point readers to the major areas or sections of the spreadsheet.
Separate Data and Formulas. Avoid using constants in formulas, unless they are intrinsic to the mathematical definition of the function you are using. Instead, place constants in cells, and refer to those cells in formulas. Create separate areas on the spreadsheet for input data and for calculations, and identify these with distinct colors, borders or shading.
Document Assumptions, Parameters and Methods. As John Nevison suggested, seek to "surface and label every assumption" in your model. Use labels or cell comments to document key formulas and complex calculations.

Use defined names. Use Excel's Insert Name Define and Insert Name Create commands to assign meaningful names to individual cells and cell ranges. This will help make your formulas clearer and more flexible.
Use and Separate Two-Dimensional Tables. Many elements of your model will lend themselves to a row-column table representation. Create separate table areas, with distinct colors, borders and shading. Collect non-table data (such as individual parameters) into a separate area.

Use Excel Tools to View and Audit Your Spreadsheet. Use the slider to zoom in Excel 2013/2016 to get a high-level view of your spreadsheet's structure. Select 'Show Formulas' on the Formulas tab in Excel 2013/2016 to display formulas instead of values, and scan them for consistency. Learn to use Excel's auditing functions to trace precedents and dependents of your formulas.

Use a Spreadsheet Auditing Tool. Several auditing tools are available, including $S p A C E$ from the UK Customs and Excise Audit unit, $O A K$ from Operis Ltd. in the UK, and the Spreadsheet Detective from Southern Cross Software in Australia.

Optimization Modeling Hints

Identify Your Model's Index Sets. Your decision variables, constraints, and many intermediate calculations will fall into groups that are indexed by elements such as products (A, B, ...), regions (North, South, ...), time periods (January, February, ...) and similar factors. Identify and write down these index sets and their members. Then organize the columns and rows of your table areas using these index sets. Use the top row and left column of each table area for index set member names as labels.

Identify Your Decision Variables. Once you've identified the quantities that will be decision variables, and how they are indexed (for example, units made by product A, B,... or shipments by region North, South,...), it's usually easier to determine the constraints and their indexing.
Determine the Data You'll Need. In building large optimization models, you will frequently spend a good part of your time figuring out what data you need, how you will get it (and keep it up to date), and how you'll have to summarize or transform it for the purposes of the model. This may involve getting help from your IT department or from other groups that create or maintain the data.
Define Balance Constraints. It is easy to overlook "balance" or "continuity" constraints that arise from the physical or logical structure of your model. For example, in a multi-period inventory model, the ending inventory at time t must equal the beginning inventory at time $t+1$. At each node of a network model (such as a warehouse), the beginning item quantity plus incoming deliveries minus outgoing shipments must equal the ending item quantity ("what goes in must come out").

Learn to Use Binary Integer Variables. Many relationships that you might find difficult to model at all, and many where you might otherwise use IF, CHOOSE or other non-smooth or discontinuous functions, can be effectively modeled with binary integer variables. The section below "Improving the Formulation of Your Model" describes many situations where you can use such variables to organize your model.

Using Multiple Worksheets and Data Sources

Large Solver models and their data are often organized into multiple worksheets of a single workbook. Some large models reference data found in other workbooks. Given the large number of data elements, the sources from which you are getting the data, and the procedures you use to keep the data up to date, multiple worksheets are often necessary or at least useful for organizing your data.

Analytic Solver Pro, Risk/Premium Solver Pro and Premium Solver Pro require that cells containing decision variables and constraint left hand sides are on the
active worksheet. But Analytic Solver allows you to define decision variables and constraint left hand sides on any worksheet of a workbook. For this and many other reasons, you are well advised to upgrade to one of these products if your model grows in size. With either product, the formulas in your objective and constraint cells can refer to cells on other worksheets, and those cells on other worksheets can contain formulas that depend, directly or indirectly, on decision variable cells. For more information, see the Frontline Solvers Reference Guide.

Several commentators on good spreadsheet modeling practice feel that models defined on a single worksheet are easier to understand and maintain. In Excel 2013 and beyond, a single worksheet can have up to 16,384 columns and $1,048,576$ rows. So you may want to keep the core of your Solver model - the formulas (i) that are used to compute your objective and constraints and (ii) that depend on the decision variables - on a single worksheet. If you find that you can better structure your model by placing decision variables and constraints on different worksheets, it's highly recommended that you adopt a consistent scheme for choosing blocks of variable and constraint (and other formula) cells, and referencing these cells across worksheets.

Some of the data you need may be available in relational databases, OLAP databases or data warehouses. Microsoft Excel provides rich facilities, such as external data ranges and PivotTables, to bring such data into an Excel worksheet. The raw data, even if partially summarized from database records or transactional data, often needs to be further transformed and summarized on your worksheet(s). This is usually easy to do with Excel formulas. But for clarity in your model, we recommend that you use separate worksheet areas, with distinct colors, borders or shading, for formulas that simply massage the data and do not participate in the solution process (i.e. do not depend on the variables). The Solver can determine which formulas depend on the variables, but you or your colleagues may find it difficult to do so if the formulas are intermixed.

Quick Steps Towards Better Performance

The rest of this chapter focuses on steps you can take to obtain faster and more reliable solutions for large models from Analytic Solver. This section describes steps that are easy to apply in most situations.

For users of Analytic Solver Basic and Analytic Solver Upgrade, the best recommendation we can make to improve performance is to upgrade to Analytic Solver Comprehensive, Analytic Solver Optimization or Analytic Solver Simulation. This is more than just a "sales pitch" - every step you take costs something, either in terms of money or your effort. For most professionals, the cost of upgrading will be repaid if it saves just a few hours of time. And you can find out at no cost whether the upgrade will be worthwhile.
For users of Analytic Solver Comprehensive or Analytic Solver Optimization, we highly recommend that you try solving your model with our field-installable Solver Engines - especially the Large-Scale SQP Solver, Knitro Solver, MOSEK Solver Engine, and XPRESS Solver Engine. While the difference in cost may be greater, the same rationale applies: If you can solve your model more quickly or more reliably by upgrading the software, this is almost always cheaper (and yields results sooner) than spending many hours or days of valuable professional time.

Ensure that You Have Enough Memory

If the Solver seems unusually slow and you are using Analytic Solver Desktop, check whether the hard disk activity LED (present on most PCs) is flickering during the solution process. If it is, memory demands may be causing Windows to swap data between main memory and disk, which greatly slows down the Solver. If you're investing money and, especially, hours of your time to develop an optimization model, consider that RAM is very cheap, and relatively easy to install. We recommend at least 1 GB RAM if you are working with large Solver models - 2 GB or more is certainly desirable. However, the best solution is simply to run your simulation model using Analytic Solver Cloud. Since the Cloud app runs on Microsoft's Azure App Service, memory is not an issue in the cloud!

Analyze Your Model for Scaling Problems

Poorly scaled calculations are a frequent cause of long solution times and unreliable solution results, for both linear and nonlinear problems. For a further discussion, see "Problems with Poorly Scaled Models" in the chapter "Getting Results: Conventional Optimization."

Add Constraints to Your Model

Frequently, you can improve solution time by adding constraints to your model which may not be essential in defining the problem, but which do further constrain the search space that the Solver must explore. It's true that the Solver must do more work to handle the additional constraints, but this extra work usually has an excellent payoff if the constraints are "binding" (i.e. satisfied with equality) at some point during the solution process.
The greatest payoff often comes from additional constraints that are simple bounds on the decision variables. This is because (i) it's usually easier for you to determine realistic lower and upper bounds on the variables than to formulate new general constraints, (ii) it's easy to enter bounds on the variables via the Ribbon Constraints choice, and (iii) each of the Solver engines is able to handle bounds on the variables more efficiently than general constraints.

Users often omit upper bounds on their decision variables, and sometimes omit lower bounds as well. A first step towards improving performance is to enter the tightest bounds on the variables that you can, without eliminating possible good solutions.
Since bounds on the variables are especially important for the performance of the Evolutionary Solver and for multistart methods for global optimization used with the nonlinear Solver engines, the Engine tab options for these Solver engines include an option Require Bounds on Variables, which is True by default. When this box is checked, the Solver will stop with an error message if some variables do not have lower or upper bounds at the time you click Solve. If you are using the Interval Global Solver or the OptQuest Solver, bounds on all variables are required - the Solver will always stop with an error message if bounds on the variables are missing.

Improving the Formulation of Your Model

The type of problem you are trying to solve, and the solution method or Solver engine that must be used, has a major impact on solution time:

- Linear programming problems can be solved most quickly.
- Quadratic programming problems take somewhat more time.
- Nonlinear optimization problems take considerably more time.
- Non-smooth problems take by far the greatest amount of time.

This section discusses techniques you can use to replace nonlinear functions, and even non-smooth functions, with equivalent (or nearly equivalent) linear or quadratic functions, or with linear functions and binary integer variables. As explained in the chapter "Mastering Conventional Optimization Concepts," a problem with integer variables can take much longer to solve than a problem without such variables. However, an integer linear problem formulated using the techniques described in this section may still take significantly less time to solve than the equivalent nonlinear or non-smooth problem. Moreover, if your problem is integer linear, you can find a guaranteed optimal solution, or a solution that is guaranteed to be within at least $x \%$ of optimal, whereas with a nonlinear or non-smooth problem you will have no such guarantees. As a rough guide, non-smooth models with more than 1,000 variables may be difficult or impossible to solve in a reasonable amount of time - but equivalent models formulated with linear functions and binary integer variables can often be solved efficiently with the LP/Quadratic Solver. And with the Large-Scale LP/QP Solver, MOSEK Solver or XPRESS Solver, you can often solve linear integer problems of $10,000,100,000$ or more variables in a reasonable amount of time.
A caveat: If you currently have a model with many nonlinear or non-smooth functions, and you decide to implement some of these techniques to speed up solution of your model, bear in mind that you can use the LP/Quadratic Solver, Large-Scale LP/QP Solver, or XPRESS Solver only for models where all of the problem functions are linear (except for the objective function, which may be quadratic). If you create a model with a mix of nonlinear or non-smooth functions and linear functions using binary integer variables, it may still take a long time to solve.

Techniques Using Linear and Quadratic Functions

Below are three common situations where you might at first expect that a nonlinear function is required to express the desired relationship - but with a simple transformation or approximation, you can use a linear or quadratic function instead.

Ratio Constraints

You may want to express a relationship that seems to require dividing one or more variables by other variables. Suppose that you have a portfolio of 1month, 3-month and 6-month CDs, with the amounts of each CD in cells C1, D1 and E1, and you wish to limit the average maturity to 3 months. You might write a constraint such as:
$(1 * \mathrm{C} 1+3 * \mathrm{D} 1+6 * \mathrm{E} 1) /(\mathrm{C} 1+\mathrm{D} 1+\mathrm{E} 1)<=3$
This constraint left hand side is a nonlinear function of the variables, so you would have to use the GRG Solver to find a solution. However, the same constraint can be rewritten (multiplying both sides by the denominator, then collecting terms) as:
$(1 * \mathrm{C} 1+3 * \mathrm{D} 1+6 * \mathrm{E} 1)<=3 *(\mathrm{C} 1+\mathrm{D} 1+\mathrm{E} 1)$, i.e. $-2 * \mathrm{C} 1+3 * \mathrm{E} 1<=0$

This constraint is a linear function of the variables, so you would be able to use the much faster LP/Quadratic Solver to find a solution. (This transformation above relies on the fact that $\mathrm{C} 1+\mathrm{D} 1+\mathrm{E} 1>=0$.)

Mini-Max and Maxi-Min

You may want to minimize the maximum of a group of cells such as C1:C5 (or maximize the minimum of a group of cells). It is tempting to use an objective function such as MAX (C1:C5)- but as explained in the chapter "Mastering Conventional Optimization Concepts," MAX (and MIN) are non-smooth functions, so you'd need to use at least the GRG Solver, and perhaps the Evolutionary Solver to find a solution. Instead, you can introduce another variable D1, make D1 the objective to be minimized, and add the constraint:

C1:C5 <= D1

The effect of this constraint is to make D1 equal to the maximum of C1:C5 at the optimal solution. And if the rest of your model is linear, you can use the much faster LP/Quadratic Solver to find a solution.

Quadratic Approximations

If you cannot represent the entire problem using linear functions of the variables, try to formulate it as a quadratic (QP) or quadratically constrained (QCP) problem, with a quadratic objective and/or constraints. You may be able to use a local, quadratic approximation to a smooth nonlinear function f near a point a :
$f(x) \cong f(a)+f^{\prime}(a)(x-a)+1 / 2 f^{\prime \prime}(a)(x-a)^{2}$
where $f^{\prime}(a)$ denotes the first derivative, and $f^{\prime \prime}(a)$ denotes the second derivative of the function f at the point a. Several Solver engines offer excellent performance on QP problems, and the SOCP Barrier Solver and the MOSEK Solver offer good to excellent performance on QCP problems.
Even if you cannot eliminate nonlinear functions from your problem altogether, you can improve solution time by making an effort to ensure that as many variables as possible occur linearly in the objective and all of the constraints. If you're using the GRG Solver, you can set its Engine tab option Recognize Linear Variables to True, to save time during the solution process. And the Large-Scale GRG Solver and Large-Scale SQP Solver engines also recognize both linearly occurring variables and linear constraints automatically, for still faster solutions. The Large-Scale SQP Solver is particularly effective when used with Analytic Solver Comprehensive or Analytic Solver Optimization because it uses the Interpreter's Structure analysis to break down each function into linear and nonlinear terms, which it handles as efficiently as possible.

You can use the Ribbon choice Optimize - Analyze Original Problem or the Task Pane Analyze button to easily determine the number of linear variables, functions, and occurrences of variables in functions, as illustrated in the chapter "Examples: Conventional Optimization."

Techniques Using Linear Functions and Binary Integer Variables

Below are three common situations where you might at first expect that a nonsmooth function such as IF is required to express the desired relationship - but you can instead use a binary integer variable and one or two linear functions to define an equivalent relationship. The techniques described here are similar to
those used when Analytic Solver automatically transforms your model, but you can apply these techniques yourself to handle situations where the automatic transformation is not available.

Fixed-Charge Constraints

You may have a quantity x in your model that must "jump" from zero to some (fixed or variable) non-zero value, under certain conditions. For example, a machine on a production line may have a fixed setup time or cost if it is used at all, plus a time or cost per unit produced. You can avoid creating a non-smooth function for x by introducing a binary integer variable y (which is 1 if x is used and 0 if it isn't), and adding a constraint $x<=M y$, where M is a constant that is larger than any possible value for x.

For example, suppose you have a machine that has a setup time of 10 minutes, but once set up will process a widget every 30 seconds. Let cell C 1 hold the number of widgets you are producing on this machine, and use cell E1 for a binary integer variable y that is 1 if you produce any widgets on this machine. Then the total production time can be computed as $=0.5 * \mathrm{C} 1+10 * \mathrm{E} 1$. Assuming that C 1 can be at most 10,000 , let $\mathrm{M} 1=10000$ and add a constraint:
$\mathrm{C} 1<=\mathrm{M} 1 * \mathrm{E} 1$ (or $\mathrm{C} 1-\mathrm{M} 1 * \mathrm{E} 1<=0$)
If variable C 1 is nonnegative $(\mathrm{C} 1>=0)$ and variable E 1 is binary integer $(\mathrm{E} 1=$ binary), then C 1 is forced to be 0 whenever E 1 is 0 , or equivalently E 1 is forced to be 1 whenever C 1 is greater than 0 . Since the production time calculation and the constraint are both linear functions, you can solve the problem with the LP/Quadratic Solver and the Branch \& Bound method. This is called a fixedcharge constraint.

You can sometimes use a semi-continuous variable to model this kind of situation, instead of a binary variable, continuous variable, and "Big M" constraint. At the optimal solution, a semi-continuous variable must either be zero, or must lie within a specified continuous range. This is usually even more efficient than using a fixed-charge constraint as outlined above.

Either-Or Constraints

Constraints in an optimization problem are implicitly connected by the logical operator AND - all of them must be satisfied. Sometimes, however, your model may call for either one constraint (say $f(x)<=F$) or another constraint (say $g(x)$ $<=G$) to be satisfied. You might consider using the OR function in Excel, but as noted in the chapter "Mastering Conventional Optimization Concepts," this function is non-smooth. Instead, you can introduce a binary integer variable y and a constant M, where M is greater than any possible value for $f(x)$ or $g(x)$, and add the constraints $f(x)-F<=M y$ and $g(x)-G<=M(1-y)$. Now, when $y=0$, $g(x)$ is unrestricted and $f(x)<=F$; when $y=1, f(x)$ is unrestricted and $g(x)<=G$.

For example, imagine you want to allocate your purchases among several suppliers in different geographic regions, each of whom has imposed certain conditions on their price bids. Suppose that one supplier's bid requires that you either purchase at least 400 units from their Chicago warehouse or else purchase at least 600 units from their Phoenix warehouse, in order to obtain their most favorable pricing. Let cell C 1 hold the number of units you would purchase from Chicago, and cell D1 hold the number of units you would purchase from Phoenix. Assume that cell M1 contains 10,000 which is more than the maximum number of units you intend to purchase. You can model the supplier's either-or requirement with a binary integer variable in cell E1 and the following constraints:

$$
\begin{aligned}
& 400-\mathrm{C} 1<=\mathrm{M} 1 * \mathrm{E} 1 \\
& 600-\mathrm{D} 1<=\mathrm{M} 1 *(1-\mathrm{E} 1)
\end{aligned}
$$

Notice that we have reversed the sense of the constraint left hand sides to reflect the "at least" $(>=)$ requirement. If $\mathrm{E} 1=0$, then C 1 (units purchased from Chicago) must be at least 400 , and the second constraint has no effect. If $\mathrm{E} 1=1$, then D1 (units purchased from Phoenix) must be at least 600, and the first constraint has no effect.

IF Functions

In the chapter "Mastering Conventional Optimization Concepts," we used $=\operatorname{IF}(\mathrm{C} 1>10, \mathrm{D} 1,2 * \mathrm{D} 1)$, where C 1 depends on the decision variables, as an example of a non-smooth function: Its value "jumps" from D1 to $2 * D 1$ at $\mathrm{C} 1=10$. If you use this IF function directly in your model, you'll either have to try the Task Pane Platform tab Nonsmooth Model Transformation option, or solve the model with the Evolutionary Solver. Instead, you can avoid the IF function and solve the problem with the nonlinear GRG Solver - or even the LP/Quadratic Solver - by introducing a binary integer variable (say E1) that is 1 if the conditional argument of the IF is TRUE, and 0 otherwise. Add the constraints:

$$
\begin{aligned}
& \mathrm{C} 1-10<=\mathrm{M} 1 * \mathrm{E} 1 \\
& 10-\mathrm{C} 1<=\mathrm{M} 1 *(1-\mathrm{E} 1)
\end{aligned}
$$

When E1 is 0 , the first constraint forces $\mathrm{C} 1<=10$, and the second constraint has no effect. When E1 is 1, the first constraint has no effect, and the second constraint forces $\mathrm{C} 1>=10$. (If $\mathrm{C} 1=10$ exactly, this formulation allows either $\mathrm{E} 1=0$ or $\mathrm{E} 1=1$, whichever one yields the better objective.) The value of the IF function can then be calculated as D1*E1 + 2*D1*(1-E1), which simplifies to $\mathrm{D} 1 *(2-\mathrm{E} 1)$ in this example. If D 1 is constant in the problem, this is a linear function; if D1 depends linearly on the variables, it is a quadratic; otherwise, it is smooth nonlinear. In all cases, the non-smooth behavior has been eliminated.

Depending on how you use the result of the IF function in the rest of your model, you may be able to take this strategy further. Suppose, for example, that if $f(x)>=F$ then you want to impose the constraint $g(x)<=G$; if $f(x)<F$ then you don't need this constraint. You can then use a binary variable y (cell E1 in the example above), and impose constraints like the pair above plus an additional constraint on $g(x)$:
$f(x)-F<=M y$
$F-f(x)<=M(1-y)$
$g(x)-G<=M(1-y)$
If y is $0, f(x)<=F$ is enforced, and the second and third constraints have no effect. If y is $1, f(x)>=F$ and $g(x)<=G$ are enforced, and the first constraint has no effect. If $f(x)$ and $g(x)$ are linear functions of the variables, the constraints involving y remain linear, and the problem can be solved with Branch \& Bound and the LP/Quadratic Solver.

Using Piecewise-Linear Functions

Many problems involve "stepped" price schedules or quantity discounts, where you might at first expect that a non-smooth function such as CHOOSE or LOOKUP is required to express the relationship. You might be surprised to learn that you can instead use linear functions and binary integer variables to express the relationship.

For example, you might be purchasing parts from a vendor who offers discounts at various quantity levels. The graph on the next page represents such a discount schedule, with three prices and three "breakpoints." You have a decision variable x representing the quantity to order.

The three prices (slopes of the line segments) are c_{1}, c_{2} and $c_{3} . V_{1}$ represents a fixed initial cost; V_{2} and V_{3} are also constant in the problem and can be computed from:
$V_{2}=V_{I}+c_{1}^{*} \boldsymbol{B}_{1}-c_{2}^{*} \boldsymbol{B}_{I}$
$V_{3}=V_{2}+c_{2}^{*} \boldsymbol{B}_{2}-c_{3}^{*} \boldsymbol{B}_{2}$
In the model, the variable x is replaced by three variables x_{1}, x_{2} and x_{3}, representing the quantity ordered or shipped at each possible price. Also included are three $0-1$ or binary integer variables y_{1}, y_{2} and y_{3}. Since you want to minimize costs, the objective and constraints are:

Minimize $V_{1}{ }^{*} y_{1}+V_{2}{ }^{*} y_{2}+V_{3} * y_{3}+c_{1} * x_{1}+c_{2} * x_{2}+c_{3}{ }^{*} x_{3}$
Subject to $x_{1} \leq B_{1}{ }^{*} y_{1}, x_{2} \leq B_{2}{ }^{*} y_{2}, x_{3} \leq B_{3}{ }^{*} y_{3}$
If the cost curve is concave as shown above, this is sufficient; but if the function is non-concave (it may vary up and down), additional "fill constraints" are needed:
$y_{1}+y_{2}+y_{3} \leq 1$
$x_{1} \leq B_{1}{ }^{*} y_{2}$
$x_{2} \leq B_{2}{ }^{*} y_{3}$
This approach is called a "piecewise-linear" function. It can be used in place of a CHOOSE or LOOKUP function, and it results in a linear integer model instead of a difficult-to-solve non-smooth model. Piecewise-linear functions can also be used to approximate a smooth nonlinear function, by using line segments with slopes matching the gradient of the nonlinear function at various intermediate points.

Organizing Your Model for Fast Solution

This section describes ways you can organize your model so that Analytic Solver can analyze it more efficiently. Most of this section is devoted to an indepth discussion of "fast problem setup" for linear and quadratic models (possibly with integer variables); it is not applicable to nonlinear and nonsmooth models. Because the Polymorphic Spreadsheet Interpreter in Analytic Solver has largely superseded this form of fast problem setup, this section is
relevant primarily for very large LP models (100,000 variables or more), where memory required for the Interpreter may be greater than available RAM and cause swapping to disk.

Fast Problem Setup

If your model is linear or quadratic, you may find that the Solver spends most of its time with "Setting Up Problem..." on the Excel status bar, then speeds through the "Trial Solutions" very quickly. The setup time is required to extract the LP coefficients of the problem functions by recalculating the worksheet. (The LP coefficients are the first partial derivatives of the problem functions with respect to the variables, and they are obtained by the method of finite differencing, which requires $n+1$ recalculations if there are n decision variables.)

Although the time taken to extract the LP coefficients was drastically decreased in V2017-R2, even more of this setup time can be avoided if you write the formulas for the objective function and all of the constraint left hand sides using the functions recognized for fast problem setup: SUM, SUMPRODUCT, DOTPRODUCT, QUADPRODUCT and MMULT. This may require some work on your part to revise a model you have already constructed, but you'll be rewarded with a 5- to 100-fold speed improvement in setup time, compared to the time taken by the Excel Solver or the Excel Interpreter.

You can always express a linear or quadratic programming problem using these functions for the objective and all of the constraints, although you may need to introduce new sets of cells to hold the calculated coefficients so that these cells can be referenced by one of the fast problem setup functions.

The PSI Interpreter in Analytic Solver uses the techniques of automatic differentiation to obtain the LP coefficients faster and more accurately than they can be obtained via finite differencing. Because the Interpreter handles almost every kind of Excel formula and built-in function, you don't have to do the work of designing your model - or revising an existing model - to use only the small set of functions recognized for fast problem setup.

Fast problem setup is still available in Analytic Solver as a specialized method of extracting the constant Jacobian matrix (the LP coefficients) of a linear or quadratic problem, and the constant Hessian matrix (the QP coefficients) of a quadratic objective function - but it is used only if you set the Task Pane Platform tab Optimization group Interpreter option to Excel Interpreter. If your LP or QP model is very large, defining it in fast problem setup format may still save time compared to use of the PSI Interpreter - but the advantage is not nearly as great as the 5- to 100-fold speed improvement mentioned above.

The following subsections describe the functions supported for fast problem setup, and the form of the function arguments that you must use to ensure that they are recognized for fast setup purposes.

The SUM Function

The simplest case of a function recognized for fast problem setup is a formula such as $=\mathrm{SUM}(\mathrm{C} 1: \mathrm{C} 10)$ where C 1 through C 10 are decision variables. An example of the use of SUM to define constraints can be found in the "Shipping Routes" sheet in the SOLVSAMP.XLS workbook included with Microsoft Excel. Note that a SUM of decision variables is a linear function where all of the coefficients are 1. To be recognized in fast problem setup, your formula must consist only of $=\mathrm{SUM}$ (cells) (with no constants) where every cell
referenced is a decision variable. You may use absolute or relative references or defined names in the arguments to SUM.

The SUMPRODUCT Function

The SUMPRODUCT function is documented in Microsoft Excel online Help. It returns the sum of the products of corresponding elements in its two arguments, which is exactly the form of a linear function:
$a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}$
SUMPRODUCT requires that its two arguments refer to the same number of cells in the same orientation (either a row, a column or a rectangular area of cells). Only single selections, not multiple selections, are permitted in the arguments. If SUMPRODUCT is used in an array formula (see below), it will return the same value in every resulting array element, which is usually not the result you want. (The DOTPRODUCT function, described below, has more flexible arguments and is far more useful in array formulas.) To be recognized in fast problem setup, your formula must consist only of =SUMPRODUCT(cell range, cell range) where one of the cell ranges consists entirely of decision variables, and the other cell range consists entirely of cells that are constant in the Solver problem. You may list the arguments in either order, using absolute or relative references or defined names.

Other Functions for Fast Problem Setup

Use of the MMULT function is illustrated below under "Using Array Formulas." To be recognized in fast problem setup, your formula must follow the same rules as for SUMPRODUCT: It must consist only of =MMULT(cell range, cell range) where one cell range specifies the decision variables, and the other cell range specifies the corresponding coefficients.
The DOTPRODUCT and QUADPRODUCT functions are described in their own sections below. To be recognized in fast problem setup, your usage of these two functions must follow the same rules as for SUMPRODUCT.

To qualify as a quadratic programming (QP) problem - which can be solved efficiently by the LP/Quadratic Solver engine - only the objective function (not any of the constraints) may use QUADPRODUCT, or any other quadratic form.

Using Array Formulas

Optimization models in algebraic form can often be expressed more compactly using indexing and summation notation. For example, the five constraints in EXAMPLE1 could be written as:

3
$\sum a_{i j} x_{i}, i=1, \ldots, 5$
$j=1$
The SUMPRODUCT function corresponds to the summation expression above for one constraint. The entire set of five constraint formulas could be defined with the array form of the DOTPRODUCT function (described in detail later in this section). In EXAMPLE1, you would select cells C11 to C15 and "arrayenter" the following formula:
$\{=$ DOTPRODUCT(D9:F9,D11:F15) $\}$
The braces above are not typed, but they appear when you "array-enter" the formula by pressing CTRL-SHIFT-ENTER instead of just ENTER. If you
aren't familiar with array formulas in Microsoft Excel, you can read about them in Excel's online Help. They are one of the most useful features of Microsoft Excel.

If your LP model is "dense" and regular in form rather than "sparse," you may wish to consider use of Microsoft Excel's matrix built-in functions, such as MMULT which (when array-entered into a group of cells) yields the matrix product of its two operands. For example, the five constraints in EXAMPLE1 (normally installed into C:\Program Files\Frontline Systems\Analytic Solver Platform\Examples\StandardExamples.xls could be written in vector-matrix form as:

Ax $<=\mathbf{b}$
where \mathbf{A} is the matrix of coefficients, \mathbf{x} is the vector of decision variables and \mathbf{b} is the vector of constraint right hand sides. In the Microsoft Excel formula language, the left hand side of this expression could be written as:

\{=MMULT(_A,TRANSPOSE(_X)) \}

(The TRANSPOSE function is needed only to "match up" the orientation of the matrix _A with the row vector_X.) In worksheet EXAMPLE1, if you insert defined names _A for the coefficients D11:F15 and _X for the variables D9:F9, then select cells C11:C15 and array-enter the above formula, it will compute the values of all five constraints.

The PSI Interpreter in Analytic Solver recognizes most kinds of array formulas supported by Microsoft Excel. But (for rather technical reasons) the use of array formulas actually involves a speed disadvantage in the PSI Interpreter when the coefficients are extracted via automatic differentiation.

If you're using Analytic Solver, we recommend that you use array formulas where they make sense, and focus on making your model simple and easy to maintain. In a large model, you'll probably find that you want or need to use multiple tabular areas for the formulas that define your constraints, and it may be inconvenient or impractical to define entire constraint left hand sides with functions like MMULT and TRANSPOSE.

Using the Add-in Functions

Analytic Solver products define two special Excel functions: DOTPRODUCT and QUADPRODUCT. These functions behave just like Excel built-in functions: You can use them in formulas in any spreadsheet (not only in Solver models). When you use the Insert Function... menu option, these functions will appear in the "Select a Function" or "Paste Function" list (classified as Math \& Trig functions), and you'll be prompted with named edit fields for their arguments.
In addition, DOTPRODUCT and QUADPRODUCT are recognized for purposes of fast problem setup as described earlier in this chapter. They are also recognized by the PSI Interpreter.

Using DOTPRODUCT

DOTPRODUCT is a generalized version of the Excel function SUMPRODUCT, and it is very useful for defining the objective function and constraints of linear programming problems. DOTPRODUCT is also recognized for fast problem setup as described above, provided that you follow the rules outlined earlier: Your formula must consist only of =DOTPRODUCT(cell reference, cell reference) where all of the cells in one of the cell references are decision
variables, and all of the cells in the other cell reference are constant in the Solver problem. Each cell reference must be either an individual selection or a defined name, but the cell ranges specified by the two arguments need not have the same "shape" (row, column, or rectangular area).

For use in Excel and for purposes of fast problem setup, DOTPRODUCT will accept defined names that specify multiple selections for either of its arguments. For example, if you had designed a model where the decision variables consisted of several rectangular cell selections, you could still calculate the objective function for your model with one call to DOTPRODUCT.
DOTPRODUCT always processes its arguments in column, row, area order - in an individual selection it reads cells across columns, wrapping around to subsequent rows, and in a multiple selection it reads the individual cell selections in the order in which they are listed. For example, the formula:
=DOTPRODUCT(A1:C2,D1:D6)
will calculate as $=\mathrm{A} 1 * \mathrm{D} 1+\mathrm{B} 1 * \mathrm{D} 2+\mathrm{C} 1 * \mathrm{D} 3+\mathrm{A} 2 * \mathrm{D} 4+\mathrm{B} 2 * \mathrm{D} 5+\mathrm{C} 2 * \mathrm{D} 6$.

The Array Form of DOTPRODUCT

If SUMPRODUCT is used in an array formula, it returns a scalar (single number) result, which is returned in every cell of the array. However, if DOTPRODUCT is used (with the proper arguments) in an array formula, it returns an array result. You can use this capability to calculate the left hand sides of several constraints with a single array formula. In a sparse model where you'd like to use the built-in function MMULT to compute the constraint values, but the variables and constraints aren't laid out in a single matrix, you can use the array form of DOTPRODUCT instead.
Further, when you use the array form of DOTPRODUCT, Analytic Solver will recognize this form and use it to process many constraints at once in problem setup. (The array form is recognized for fast problem setup, and it's also recognized by the PSI Interpreter.) If you can't use the array form, even the simple form of DOTPRODUCT will save time in problem setup.
DOTPRODUCT will return an array value when the number of cells in one of its arguments is an even multiple of the number of cells in its other argument. As an example, consider the calculation of parts used in the LP model EXAMPLE1. The decision variables are in cells D9 to F9 (3 cells), and the coefficients of the constraint left hand sides - the number of parts used for each product - are in cells D11 to F15 ($15=3 * 5$ cells). We want to calculate the left hand sides of the constraints in cells C11 to C15. To do this, we would first select the group of five cells C11:C15 with the mouse. Then we would type:
=DOTPRODUCT(D9:F9,D11:F15)
completing the entry with CTRL+SHIFT+ENTER instead of just ENTER. The formula will display as $\{=$ DOTPRODUCT(D9:F9,D11:F15) $\}$ - the braces are added by Microsoft Excel when the formula is array-entered. With the cell values shown in EXAMPLE1 prior to solution (e.g. 100 for each of the decision variables), this array formula will calculate 200 in $\mathrm{C} 11,100$ in C12, 500 in C13, 200 in C14 and 400 in C15. Hence, it will compute the same set of values as the array expression shown earlier: $\left\{=\mathrm{MMULT}\left(_A, \operatorname{TRANSPOSE}\left(_X\right)\right)\right\}$.
Whether it is used in the simple form or the array form, DOTPRODUCT always processes its arguments in column, row, area order. In the array form, when the cells in the "shorter" argument have all been processed and cells remain to be processed in the "longer" argument, DOTPRODUCT "wraps around" to the beginning of the "shorter" argument. In the example above, cell C11 calculates
the value $=\mathrm{D} 9 * \mathrm{D} 11+\mathrm{E} 9 * \mathrm{E} 11+\mathrm{F} 9 * \mathrm{~F} 11$; cell C 12 computes
$=\mathrm{D} 9 * \mathrm{D} 12+\mathrm{E} 9 * \mathrm{E} 12+\mathrm{F} 9 * \mathrm{~F} 12$; and so on. Keep this rule in mind when you use the array form of DOTPRODUCT, and keep your spreadsheet layouts as simple as possible!

Using QUADPRODUCT

The QUADPRODUCT function can be used to define the objective for quadratic programming problems in a single function call, as required for fast problem setup.
As explained in "Quadratic Functions" in the chapter "Mastering Conventional Optimization Concepts," a quadratic function is a sum of terms, where each term is a (positive or negative) constant (called a coefficient) multiplied by a single variable or the product of two variables. This means that in order to represent the most general quadratic function, we might have a coefficient for each instance of a single variable, and a coefficient for each possible pair of two variables. The QUADPRODUCT function is designed to supply coefficients for each single variable and each pair of variables, in a manner similar to SUMPRODUCT and DOTPRODUCT.

You supply the arguments of QUADPRODUCT as shown below:
=QUADPRODUCT(variable cells, single coefficients, pair coefficients)
The first argument must consist entirely of decision variable cells. The second and third arguments must consist entirely of cells whose values are constant in the optimization problem; if these cells contain formulas, those formulas must not refer to any of the decision variables. The second argument supplies the coefficients to be multiplied by each single variable in the first argument, using an element-by-element correspondence. The third argument supplies the coefficients to be multiplied by each pair of variables drawn from the first argument. Hence, if there are n cells in the first argument, there must be n^{2} cells in the third argument. If the variables are represented by $x_{1}, x_{2}, \ldots, x_{n}$, the single coefficients by $a_{1}, a_{2}, \ldots, a_{n}$, and the pair coefficients by $c_{1}, c_{2}, \ldots, c_{N}$ where $N=n^{2}$, QUADPRODUCT computes the function:
$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{n(i-1)+j} x_{i} x_{j}+\sum_{j=1}^{n} a_{j} x_{j}$
The pairs are enumerated starting with the first cell paired with itself, then the first cell paired with the second cell, and so on. For example, if the first argument consisted of the cells A1:A3, there should be nine cells in the third argument, and the values in those cells will be multiplied by the following pairs in order: $\mathrm{A} 1 * \mathrm{~A} 1, \mathrm{~A} 1 * \mathrm{~A} 2, \mathrm{~A} 1 * \mathrm{~A} 3, \mathrm{~A} 2 * \mathrm{~A} 1, \mathrm{~A} 2 * \mathrm{~A} 2, \mathrm{~A} 2 * \mathrm{~A} 3, \mathrm{~A} 3 * \mathrm{~A} 1, \mathrm{~A} 3 * \mathrm{~A} 2$, and A3*A3. The value returned by QUADPRODUCT is the sum of all of the coefficients multiplied by their corresponding single variables or pairs of variables.

Multiple selections can be used for each argument of QUADPRODUCT, subject to the same considerations outlined above for DOTPRODUCT: You can use the general syntax for multiple selections in Microsoft Excel, but defined names are needed for purposes of fast problem setup, and multiple selections are not accepted by the PSI Interpreter.
A common application of quadratic programming is to find an "efficient portfolio" of securities - often called portfolio optimization. Worksheet EXAMPLE4 in the StandardExamples.xls workbook, used in the chapter "Examples: Conventional Optimization," illustrates portfolio optimization using
the Markowitz method. This model uses the QUADPRODUCT function to compute the variance of a portfolio of five securities, and uses this quantity as the objective to be minimized, subject to a constraint that gives a lower limit on the portfolio return. Because the objective is a quadratic function, and the constraints (including the bound on return) are all linear functions, this Solver model is a quadratic programming (QP) problem which can be handled by the LP/Quadratic Solver in Analytic Solver Comprehensive and Analytic Solver Optimization.

References and Further Reading

Introduction

Although this Guide provides many valuable hints for making effective use of Analytic Solver, it does not attempt to teach you everything about optimization, Monte Carlo simulation, and stochastic optimization. We strongly recommend that you consult one of the books cited below, or discuss your problem with a knowledgeable consultant at Frontline Systems, at a nearby university, or at a firm specializing in optimization and simulation methods. There's a vast literature on problems of various types and for various industries and business situations that have been solved successfully with the methods available in the Solver. Don't reinvent the wheel - find out how others have solved problems similar to yours!

You may also want to attend a training seminar on risk analysis and simulation, optimization, and other advanced techniques in Excel, presented by Frontline Systems instructors or consultants who work closely with us. For current information on training seminars, visit www.solver.com or contact us at info@solver.com.

Textbooks Using Analytic Solver

Management Science: The Art of Modeling with Spreadsheets, $4^{\text {th }}$ Edition by Stephen G. Powell and Kenneth R. Baker, published by John Wiley \& Sons, ISBN 978-1118582695.

Management Science, written by faculty members at Dartmouth's Tuck School of Business, helps business professionals gain the essential skills needed to develop real expertise in business modeling. The $4^{\text {th }}$ Edition uses Analytic Solver Platform throughout the text, and describes how to use most of its features. Overall, this book teaches you "best practices" in modeling and spreadsheet engineering, methods for data visualization, analysis and data mining, and techniques of linear and nonlinear optimization, Monte Carlo simulation, and stochastic optimization using Excel. Additional open-ended case studies that are less structured are included, along with new exercises.

Spreadsheet Modeling and Decision Analysis: A Practical Introduction to

 Management Science, $7^{\text {th }}$ Edition by Cliff T. Ragsdale, published by Cengage Publishing, ISBN 978-1285418681.Cliff Ragsdale's book was first to base all of its optimization examples on the Microsoft Excel Solver, and it has become the best-selling MBA textbook for management science. You'll find a discussion of linear, nonlinear and integer programming; an explanation of sensitivity analysis and how to use the Solver's reports; topics like goal programming and multiobjective optimization; and additional coverage of regression, time series analysis, queuing, project management, decision analysis, and other topics. The 7th Edition uses Analytic Solver Platform for its examples.

Essentials of Business Analytics, $\boldsymbol{1}^{\text {st }}$ Edition by Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann and David R. Anderson, published by Cengage Publishing, ISBN 978-1285187273.

This book provides coverage over the full range of descriptive analytics (classical statistics), predictive analytics (data mining), and prescriptive analytics (optimization and simulation), integrating several important analytics topics not covered by any other single book. It includes step-by-step instructions to help students learn how to use Excel and Analytic Solver Platform. Practical, relevant problems at a variety of difficulty levels help students learn the material. Applications are drawn from all functional business areas: finance, marketing, operations, etc. Data sets are available for most exercises and cases.

Business Analytics, $\boldsymbol{1}^{\text {st }}$ Edition by James Evans, published by Pearson Publishing, ISBN 978-0132950619.

This book provides readers with the fundamental concepts and tools needed to understand the emerging role of business analytics in organizations, how to apply basic business analytics tools in Excel, and how to communicate with analytics professionals to effectively use and interpret analytic models and results for making better business decisions. The $1^{\text {st }}$ Edition (which appeared before Analytic Solver Platform was released) teaches both forecasting and data mining methods using XLMiner, and optimization, simulation and other topics using Risk Solver Platform.

Textbooks Using Solver or Premium Solver

VBA for Modelers - Developing Decision Support Systems Using Microsoft Excel, $4^{\text {th }}$ Edition by S. Christian Albright, published by Cengage Publishing.
This unique book will prove invaluable to anyone seeking to use VBA (Visual Basic Application Edition) to programmatically control Microsoft Excel and build custom applications. It includes a basic introduction to VBA and the Excel object model, and 16 example applications developed in depth with VBA source code, many of them calling the Solver's VBA functions. The applications include blending, product mix, production scheduling and similar models, plus capital budgeting, stock trading, option pricing and portfolio optimization.

Other Textbooks

Model Building in Mathematical Programming, $5^{\text {th }}$ Edition by H.P. Williams, published by John Wiley, ISBN 978-1118443330. Though it doesn't cover spreadsheet optimization, this book is still valuable for its explanation of modelbuilding approaches, especially if you are building large-scale optimization models. It provides an in-depth treatment of modeling for linear and integer programming problems. It mentions nonlinear models only briefly, but it offers a unique treatment of large-scale model structure and decomposition methods. It also includes a complete discussion of 24 models drawn from various industries.

Academic References

The following academic journal articles, written by the developers of the Excel Solver, Premium Solver Pro, Analytic Solver Pro, Premium Solver Platform,

Risk Solver Platform and Analytic Solver Platform, describe many of the algorithms and technical methods used in these products. The first article describes the design of the original Excel Solver. You can download PDF versions of the first three articles at http://www.solver.com/academic.htm:
D. Fylstra, L. Lasdon, J. Watson and A. Waren. Design and Use of the Microsoft Excel Solver. INFORMS Interfaces 28:5 (Sept-Oct 1998), pp. 29-55.
I. Nenov and D. Fylstra. Interval Methods for Accelerated Global Search in the Microsoft Excel Solver. Reliable Computing 9 (2003): pp. 143-159.
D. Fylstra, "Introducing Convex and Conic Optimization for the Quantitative Finance Professional," Wilmott Magazine (March 2005), pp. 18-22.

For a technical description of the nonlinear GRG solver included with the standard Microsoft Excel Solver and the Premium Solver, please consult the following:
L.S. Lasdon, A. Waren, A. Jain and M. Ratner. Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming. ACM Transactions on Mathematical Software 4:1 (1978), pp. 34-50.
L.S. Lasdon and S. Smith. Solving Sparse Nonlinear Programs Using GRG. INFORMS Journal on Computing 4:1 (1992), pp. 2-15.

