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Tutorial: Optimization for Better Decisions 

Every day, in business, government, and even our personal lives, we make decisions about how to best 

use the resources – such as time and money – available to us.  It is challenging enough to decide which 

items to buy with our available funds, or which of several priorities we should tackle this morning, 

individually.  But for even medium-size organizations, this challenge is multiplied many times over:  How 

to best schedule every hour for a staff of 30 people in a call center?  How to load packages on a fleet of 

100 tracks, and which routes they should drive to make deliveries in the least time?  How to assign 

crews and aircraft to 1,000 airline flights, as they move across the country throughout a day? 

These decisions – how to allocate (usually limited) resources to different uses, when there are so many 

options, with so many inter-relationships – are prime candidates for optimization.  At leading firms, all 

of the foregoing decisions are routinely made with the aid of optimization.  To use optimization, we 

need to define, in quantitative terms, a model that specifies all the ways, times or places our resources 

may be allocated, and all the significant constraints on resources and uses that must be met.  Then a 

solver searches for and finds the best resource allocation decisions. 

Decision Variables, Objective and Constraints 

Our quantified decision variables are the amount of resources allocated to each individual use – for 

example, the number of call center employees working on each shift, or the number of packages of a 

given size loaded onto each truck.  To determine what “best” means, we must define a quantity called 

the objective that we can calculate from the values of decision variables:  For example, costs that we’d 

like to minimize, or profits to be maximized.  To complete the model, we must define each constraint, or 

limit on the ways resources may be allocated, that reflects the real-world situation.  We usually have 

both simple constraint limits such as “up to 100 trucks,” and constraints calculated from the decision 

variables, such as “our beginning inventory, plus units received minus units shipped, must equal our 

ending inventory.” 

A Call Center Scheduling Example 

Let’s consider a very simple example of a call center employee scheduling problem, shown in Figure 1 

(this example Excel model is included with Frontline’s Analytic Solver software).  Our problem is to 

schedule enough employees to work each day of the week (decision variables) to handle our predicted 

call volume (a constraint), while minimizing total payroll cost (our objective). 

Our personnel policy, that employees should work 5 consecutive days and have 2 consecutive days off, 

determines the possible ways that resources can be used:  There are 7 possible weekly schedules, each 

one starting on a different day of the week.  These are labeled A, B, C through G in the Excel model.  For 

example, employees on Schedule A have Sunday and Monday off, then they work Tuesday through 

Saturday.  Our decision variables – the number of employees working on each schedule – are in cells 

D15:D21; they are summed in cell D22. 

In this simple model, all employees are paid at the same rate, $40 per day at cell N15.  So our objective, 

payroll costs to be minimized, is just =D22*N15*5 (5 working days per week). 
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We must meet a constraint that the number of employees working each day of the week is greater than 

or equal to the “Minimum Required Per Day” figures in row 25.  We assume here that we actually know 

these numbers – in many real-world call centers, the call volumes per day are uncertain, and we have 

only a range or probability distribution for each one.   In this tutorial, we’re covering only conventional 

or deterministic optimization; in a future tutorial, we’ll describe stochastic optimization, where we must 

allocate resources under conditions of uncertainty in the objective and/or constraints (something that 

Frontline’s software can handle really well). 

The 1s and 0s in the middle of the worksheet help us calculate the number of employees we’ll have in 

the call center on each day of the week.  For example, on Sunday we’ll have the employees on Schedules 

B through F, but those on Schedules A and G will have the day off.  So the number of employees working 

Sunday is just =SUMPRODUCT(D15:D21,F15:F21) – and similarly for the other days of the week. 

Our SUMPRODUCT formulas are in row 24, and we want each value to be greater than or equal to the 

corresponding “minimum required” number in row 25.  We can express this as F24:L24 >= F25:L25, or 

using Excel defined names, as “Employees_per_day >= Required_per_day”.  You can see the Solver 

model taking shape in the right-hand Task Pane in Figure 1. 

 

Figure 1: [1-CallCenterExampleMode.png] Optimization at work: A Simple Call Center Scheduling 

Example 

In this model – as in many others – we must be careful to define all the limits on resources, including 

“non-negativity”:  We cannot have a negative number of employees on any schedule.  This may be 

‘obvious’ to us, but Solver does allow negative values for decision variables unless we say otherwise – so 

we include a constraint D15:D21 >= 0 (or with defined names, “Employees_per_schedule >= 0”). 
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There’s one more constraint we haven’t yet discussed:  Solver allows any whole number or fractional 

value for a decision variable, but we can’t actually assign one-half or two-thirds of an employee to a 

schedule.  Indeed, the optimal solution without this “integer” constraint assigns fractional values to four 

weekly schedules, such as 2.67 employees for Schedule A, and 6.67 employees for Schedule C – 

minimizing payroll cost to $4,933. 

We complete the Solver model by adding a constraint “Employees_per_schedule = integer”.  (In some 

optimization software, this is treated as a property of the decision variables, but since it does limit the 

possible solutions, Solver treats these integer requirements as constraints.)  We can now solve the 

model by clicking the Optimize button on the Ribbon, or the “green arrow” on the Task Pane.  The 

optimal solution ($5,000 payroll cost) is shown in Figure 2:  Note that the integer constraint “cost us” 

something – indeed, additional constraints always yield a “same or worse” objective. 

Even more important than the objective value are the decisions that will realize this outcome:  These 

are amounts of resources to be allocated to each use – in this case, the number of employees to be 

assigned to each of the 7 possibly weekly schedules: 2, 5, 7, 4, 6 and 1 for Schedules A, B, C, D, E and F. 

Because our call volumes on weekends are so high, we assign no employees to Schedule G. 

 

Figure 2: [2-CallCenterExampleSolution.png] Optimal Solution of the Call Center Scheduling Example 

Optimization as a Search Process: Exploiting Structure 

How did Solver find this solution, and how do we know that it is the best possible solution?  You can 

“play what-if” with this model, trying different values in cells D15 through D21, searching for a good 

combination of values.  (You’ll find that there is no better combination of values that satisfies all the 

constraints.)  But to really answer this question, we must probe more deeply into “how Solver works,” 

and talk about some key ideas: optimality conditions, linearity and convexity.  Some math and 
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geometry follows! – but if you make it all the way through this tutorial, you’ll be rewarded with a much 

deeper understanding of Solver and optimization.  

Solver does try different values for the decision variables, searching for the best solution – indeed all 

optimization algorithms work this way – but the search is much more sophisticated than randomly 

chosen “what-if” trials.  By computing partial derivatives and testing for satisfaction of the KKT (Karush-

Kuhn-Tucker) conditions, Solver can determine that it has found the “top of a peak” or “bottom of a 

valley” – there are no better solutions “nearby” (a locally optimal solution) – and if the model is convex 

(discussed below), there are no better solutions anywhere (a globally optimal solution).  This yields the 

message “Solver found a solution. All constraints and optimality conditions are satisfied.” 

In our simple Call Center example, Solver had to search a 7-dimensional “space” of possible values for 

the decision variables (one dimension for each variable), for better objective values, while ensuring that 

the “Minimum Required” and the non-negativity and integer constraints were satisfied.  In a problem 

with just 200 decision variables, this becomes a 200-dimensional search!  And Frontline’s enhanced 

Solvers are routinely used to optimize models with thousands to millions of decision variables. 

How?  Solver is able to do this by exploiting the (algebraic) structure of the model.  In this case, the 

objective (recall it is =D22*N15*5, which equals SUM(D15:D21)*40*5) is a linear function of the decision 

variables.  And each of the 7 constraints is of the form =SUMPRODUCT(D15:D21,constants), also a linear 

function of the decision variables.  Without the integer constraint, this is a linear programming problem, 

the easiest type of optimization problem to solve, and one that always yields a globally optimal solution. 

When we add the integer constraint, the model becomes a linear mixed-integer programming problem, 

or “LP/MIP” as shown in the “Model Diagnosis” area at the bottom of the Task Pane – these problems 

are significantly harder to solve, but there are sophisticated search algorithms available for LP/MIP 

problems, and Frontline’s Solvers use them.  We’ll say more about this below. 

Linearity and Convexity: The Keys to Solvability 

A linear function, such as SUM or SUMPRODUCT, or any “chain” of formulas where decision variables 

are only multiplied by constants and the result added or subtracted, can be plotted as a straight line.  In 

full Analytic Solver software, you can create such a plot (“slicing through” N-dimensional space) with 

two mouse clicks, Decisions – Plot, as shown for the objective in Figure 3. 



 Tutorial: Optimization for Better Decisions • Daniel Fylstra - www.solver.com 

 

Figure 3:  [3-CallCenterDecisions-Plot.png] Plot of the linear objective function, Total Payroll Cost. 

The constraints in our Call Center model also plot as straight lines (in 7-dimensional space).  Since they 

must all be satisfied at the same time, Solver can limit its search to points (i.e. combinations of values for 

the decision variables) in the intersection of these linear constraints – this forms the feasible region.  In 

many dimensions, the intersection of linear constraints is a geometric form called a polytope, but in two 

dimensions this would be a polygon, as shown (for a different two-variable maximization problem) in 

Figure 4.  The objective – shown in red – is also a straight line that “slides up and to the right” as it is 

maximized; the optimal solution is at point D.  But the key point is that the polygon or N-dimensional 

polytope – the feasible region – can be efficiently searched. 
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Figure 4: [4-LinearProgrammingGraphical.png] Graphical depiction of a two-variable linear programming 

problem. 

From the viewpoint of optimization as a search process, the straight lines in Figure 4 are less important 

than the overall shape of the feasible region, which is convex.  (An intersection of linear constraints is 

always convex.)  A circle, formed by a formula such as x^2 + y^2, is also convex, and is also easy to 

search; but a non-convex region becomes exponentially harder to search as its dimensionality increases. 

Figure 5 shows simple examples of convex and non-convex polygons, in two dimensions: Notice that in 

the non-convex region, the straight line (called a chord) goes into and out of the feasible region multiple 

times.  A non-convex region has “nooks and crannies”, which take more and more time to search as the 

dimensionality of the region increases.  (Imagine searching a 200-dimensional version of this figure.) 

When an optimization problem’s objective and constraints are both convex – as is always true in a linear 

programming problem – the problem will have one optimal solution, which is globally optimal. But a 

non-convex problem may have many locally optimal solutions. 

 

Figure 5: [5-ConvexNonConvexRegion.png]  Convex and non-convex regions. 

IF, CHOOSE, LOOKUP: The Convexity Killers 

In Excel models, it is common to use IF functions to make “either-or” choices, and to use CHOOSE or 

LOOKUP functions to select among multiple values.  These functions are very useful, and it’s fine to use 

them in Solver models, as long as their arguments do not depend on the decision variables. 

But if a model has IF, CHOOSE or LOOKUP functions that do depend on the decision variables, this will 

quickly make the model both non-convex and non-smooth.  Figure 6 shows the type of plot we get for a 

formula such as =IF(D15<2,F24,3*F24) in our Call Center model. 



 Tutorial: Optimization for Better Decisions • Daniel Fylstra - www.solver.com 

 

Figure 6: [6-Plot-IF-Function.png]  Plot of IF Function that Depends on Decision Variables. 

Compare the “kinks” in this plot to the non-convex region in Figure 5.  To make matters worse, the 

“kinks” make the function non-smooth, which means that Solver cannot reliably compute derivatives at 

those points – another way of saying that Solver cannot reliably follow the “rate of change” in the 

function.  Again, as the number of dimensions (decision variables) and the number of constraints 

increases, the time needed to search for an optimal solution increases exponentially. 

What can you do, if you need to make “either-or” choices, or select among multiple values in your 

model?  There is a better way: You can express the same conditions using integer variables and linear 

constraints.  Frontline’s Solver User Guide explains how to do this, and our full Analytic Solver software, 

as part of its model diagnosis, can detect IF, CHOOSE and LOOKUP functions and automatically replace 

them with equivalent integer variables and linear constraints, up to a certain level of complexity. 

It is worth saying that introducing integer variables into an optimization model actually makes the model 

non-convex.  In Figure 5, because only integer-valued points (which would appear as dots) are feasible, 

the chords will go “in and out of the feasible region” multiple times.  But if integer variables are the only 

source of non-convexity in the model, then powerful algorithms for handling these integer variables can 

be applied to greatly cut down on search time.  The Gurobi Solver and XPRESS Solver, available as 

optional “plug-in Solver Engines” for any of Frontline’s Solver products, are highly effective at solving 

even large linear mixed-integer and quadratic mixed-integer problems. 

Global Optimization 

If your model simply cannot be expressed as a linear programming or linear mixed-integer problem, you 

can still use optimization!  In most cases, this means you’ll have to accept an approximate globally 

optimal solution, a locally optimal solution, or (for a non-convex, non-smooth model) just a “good” 
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solution – better than what you were doing before (this can still yield a great business payoff).  Figure 7 

is a plot of a smooth but non-convex objective function.  You can see that it has multiple “peaks” and 

“valleys” – the KKT conditions would be satisfied at each peak (when maximizing) or valley (when 

minimizing), but the globally optimal points are in dark red and dark blue. 

 

Figure 7: [7-Global-Optimization.png] A global optimization problem, with just two variables. 

Solver in Excel includes basic facilities for global optimization, using either the “Multistart option” for 

the GRG Nonlinear Solver, or the Evolutionary Solver – and Frontline’s enhanced Solver products offer 

more powerful methods for global optimization, such as the Interval Global Solver, OptQuest Solver, and 

Frontline’s hybrid Evolutionary Solver – an “engine” that combines classical (linear and nonlinear 

optimization) methods with genetic algorithm, scatter search, local search and heuristic methods. 

Conclusion: Welcome to Advanced Analytics 

If you’ve followed this tutorial to its conclusion, you now know a lot more than most people about 

optimization!  While we’ve illustrated these concepts with Excel models and simple plots, the ideas of 

linearity and convexity are fundamental, and applicable to any kind of optimization problem, solution 

algorithm, or software.  Hopefully, you also realize how optimization problems can become very difficult 

to solve, but how powerful software is available to help you find good solutions, even for the most 

challenging problems. 

 


